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IMPROVING THE ACCURACY OF COMPUTED
EIGENVALUES AND EIGENVECTORS*

J. J. DONGARRA,t C. B. MOLER AND J. H. WILKINSON

Abstract. This paper describes and analyzes several variants of a computational method for improving
the numerical accuracy of, and for obtaining numerical bounds on, matrix eigenvalues and eigenvectors.
The method, which is essentially a numerically stable implementation of Newton’s method, may be used
to "fine tune" the results obtained from standard subroutines such as those in EISPACK [Lecture Notes
in Computer Science 6, 51, Springer-Verlag, Berlin, 1976, 1977]. Extended precision arithmetic is required
in the computation of certain residuals.

Introduction. The calculation of an eigenvalue , and the corresponding eigenvec-
tor x (here after referred to as an eigenpair) of a matrix A involves the solution of
the nonlinear system of equations

(A AI)x O.

Starting from an approximation h and , a sequence of iterates may be determined
using Newton’s method or variants of it. The conditions on and guaranteeing
convergence have been treated extensively in the literature. For a particularly lucid
account the reader is referred to the book by Rail [3]. In a recent paper Wilkinson
[7] describes an algorithm for determining error bounds for a computed eigenpair
based on these mathematical concepts. Considerations of numerical stability were an
essential feature of that paper and indeed were its main raison d’etre. In general this
algorithm provides an improved eigenpair and error bounds for it; unless the eigenpair
is very ill conditioned the improved eigenpair is usually correct to the precision of
the computation used in the main body of the algorithm.

In this paper we present several extensions of that algorithm which greatly increase
its range of application. These extensions cover the efficient determination of the
complex conjugate eigenpairs of a real matrix and the determination of appropriate
invariant subspaces when individual eigenvectors are very ill conditioned, and finally
give more rapid convergence when the initial eigenpair is of low accuracy. It should
perhaps be emphasized that the main relevance of these algorithms in the case when
the approximate eigenpairs are derived from a well designed eigenvalue package such
as EISPACK [4], [2] is to provide error bounds. As in the earlier paper, the emphasis
in each of the algorithms is on the problems of numerical stability.

1. The basic algorithm. We begin with a brief description of the basic algorithm
described by Wilkinson. If h, x is an approximate eigenpair, and h +/x, x + 37 is a
neighboring eigenpair, then

(1.1) A (x + 37) (h +/x )(x + 37),
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this relation being exact. We assume that x is normalized so that [[x[[ 1 xs, and
we remove the degree of arbitrariness in 37 by requiring that 37s 0. From (1.1)

(A hI) txx hx -Ax +
where the last term on the right will be of second order in the errors of h, x. Equation
(1.2) may be simplified by the introduction of a vector y defined by

(1.3) yr= (y, y2,""", y-t, , ys+l,’’", Yn),

so that y gives the full information on both z and )7. Equation (1.2) then becomes

(1.4) By r + y37,

where r hx-Ax is the residual vector corresponding to h, x and B is the matrix
A-hi with column s replaced by -x. For use in the analysis (but not in the
computation) we may rewrite (1.4) as

(1.5) y eb +yX,

where

(1.6) X B -1 eb Xr, Ilblloo-- 1

The factor e is introduced to emphasize that [[Xr[[oo must be at least moderately small,
if the algorithm is to be satisfactory.

An essential element in all the algorithms we discuss is the solution of any linear
system having as its matrix of coefficients either B as defined above or some generali-
zation of it. Now n- 1 columns of B are drawn from (A- hi) and the remaining
column is a normalized vector x. If the elements of A are very large or very small
compared with unity then B is a badly scaled matrix. The o-condition number
IIBIIoollB- lloo will be very large when B is badly scaled, independent of whether or not
the equations are difficult to solve accurately.

This point is perhaps best illustrated by considering a trivial example. Consider
the two systems

-.9475 9123
x

.40371’

.9142
Qx

-.9475
101(.9825)1
101(.9123)_1’

.4123]Y .4037_1"

The exact solutions are such that

xl Yl, x2= 101y2.
If the systems are solved on a decimal computer, these relations are also satisfied
exactly by the computed solution. The rounding errors in the mantissa are identical;
only the exponents are different. The matrix P is very well conditioned (from any
standpoint) and Ilello llP- G is of order unity. On the other hand IlOll llO- ll is of
order 101. Clearly the c-condition number of B will not really reflect the "difficulty
of solving the system" if it is badly scaled. It is the c-condition number of B when
A is scaled so that IIAG- o(1) that is really relevant to the behavior of our algorithm,
and results are quoted in terms that are significant only when A is so scaled. It is
clear that there is no need to scale A in this way in a practical algorithm any more
than we need to scale Q in our trivial example. However, we must remember that in
y defined by (1.3) the sth component give a corrections to h while the remaining
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n 1 components give corrections to components of a normalized vector. In general,
errors in the sth component will be acceptable at a level which is IIAIIoo times as large
as errors in the remaining components. It might be said that the infinity norm is not
the appropriate norm when B is badly scaled, and that we should be using some
biased norm. Although this is true, it amounts to no more than describing a simple
problem in more complicated terms.

Relation (1.5) leads quite naturally to consideration of the iterative procedure

(1.7) y(p+l) eb + y(f)Xp.
In practice (1.7) could be used in two rather different ways.

(i) The initial approximation may already be of quite high accuracy, and one
may wish merely to use an analysis of the iterative procedure to demonstrate that the
y CP defined by it tends to a limit y corresponding to an exact eigenpair and to obtain
a bound for Ily y (11.

(ii) The iteration may actually be used to compute a succession of the y (. The
analysis of the convergence behaviour would then be employed to obtain a bound for
Ily-y where y (q is an iterate which is considered to be of acceptable accuracy.

However, a certain volume of computation is required merely to establish that
the conditions are satisfied for the iteration to converge. Once we have made this
computational effort, y(1) is available with little additional work. Hence, even when
the initial estimate has been derived using a very stable algorithm, one will normally
determine y(1) and then obtain a bound for Ily- y([[ rather than [ly-y Dongarra
[1], Wilkinson [5] and Yamamoto [8], [9] have both used the iteration defined by
(1.7); we present their results here, modified slightly for convenience.

THEOREM . If IIXII and eK < 1/4 then

1 -(1 --4eK) 1/2

(1,8) Ilylloo_-<
2

and yO) y, the solution of (1.4). The convergence is geometric in that

(1.9) Ily (O+ 1)__ Y (o)lloo --<
where

23/2t
(1.10) /<[(l_2e)+(l_4ex)1/211/2<4e < 1.

In order to give greater numerical stability in the practical realization, the iteration
(1.7) is first recast in the equivalent form:

B8 (o) r, Y
(1) 6 (o),

(1) (1) y _[_B6(1) Y Y Y(2) (1) (1)

(1.11) B6(2) y 2)(2)_ y (sl)}T(1) y (sl)g(1) _1.. 6(sl); (2), y(3) >,(2)

B6 () =y(f)37(P)-y =y +6 y =y +

Here each correction to y is derived by solving a linear system with the matrix B. To
diminish the errors made in solving each of these systems, we include one step of
iterative refinement of the solution of the kth system in the solution of the (k + 1)st
system. Thus we obtain as the typical equation

(1.12) B6(P) [r(p-1)_B6(P-1)]+ y p-1)g(,-1) + 6(-1)37() r()
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where double precision accumulation of inner product is used in the computation of
the residual, r--r) and of all the rP-I)-B6’-I). Rather surprisingly, this technique
is just as effective as continuing iterative refinement to its conclusion in each individual
step.

2. Extensions of the basic algorithm. The basic algorithm can be extended and/or
improved in several directions. To this end we make the following observations.

(i) The convergence rate of the basic iteration and the error bounds depend on
the condition of B with respect to inversion. If A is an approximation to a multiple
eigenvalue or to one of a number of close eigenvalues, then B is ill conditioned. (B
is singular when A, x is exact and A is a multiple eigenvalue.) Both the performance
of the algorithm and the error bounds suffer from this ill conditioning, though multiple
or pathologically close eigenvalues may be quite well conditioned. (If A is normal,
all eigenvalues are well conditioned.) Although in the case of close eigenvalues the
individual eigenvectors are ill conditioned, the invariant subspace associated with a
cluster is well determined if the cluster is well separated from the remaining eigen-
values. This suggests that an algorithm for finding generators of such invariant sub-
spaces is advisable.

(ii) When A is one of a set of r ill conditioned eigenvalues (including possibly
some defective eigenvectors), one should still be able to determine accurately an n r
matrixX and an r r matrixM such that

(2.1) AX XM,

where the columns of X accurately define the relevant invariant subspace [7].
(iii) Although B -1 need not be computed explicitly in the basic algorithm, each

step requires the solution of a linear system with the matrix B. This requires some
stable factorization of B. Thus, if A is a full dense matrix, O(n 3) multiplications and
additions are required; and if p approximate eigenpairs are to be improved, O(pn 3)
operations are needed. When the approximate eigenpairs have been found by a
reduction of A by similarity transformations, the reduced form can be used to achieve
a more economical algorithm.

(iv) The basic algorithm uses the same matrix B throughout. It is natural to think
in terms of updating and x in B at each stage, thereby greatly improving the rate
of convergence. This procedure, however, would require a complete refactorization
of B at each stage. (If the initial h, x is an accurate eigenpair, refactorization may
not be important because one or at most two iterations may suffice.) Success on the
lines discussed in (iii) could make modifications in B less formidable.

(v) When A is real but )t is one of a complex conjugate pair, one would hope
that the improvement of h, x would require only twice as much work as the improve-
ment of a real and x. (The factor two is reasonable because two eigenvalues are
effectively being determined simultaneously.) Straightforward execution of the
algorithm, however, requires four times as much work and storage of an n n complex
matrix.

In this paper we discuss modifications designed to cover the above weaknesses.
It should be appreciated that some of the modifications can be coupled together; to
cover them all effectively would require a substantial number of programs.

3. Invariant subspaces (linear elementary divisors). We begin by finding gen-
erators that give a good determination of an invariant subspace in the case where the
eigenvalues are well conditioned (i.e., A is not close to being defective). For simplicity
we restrict ourselves initially to two approximate eigenpairs A 1, x and A2, x2, where
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[/.I-,2I/[[AI[ is small and xl and x2 are substantially different, so that the two-space
in which they lie is numerically well determined. Here is not necessary that X and
x. should be orthogonal but only that the angle between them be substantial; A and
A z may correspond to a double eigenvalue.

Although x and x z may have substantial errors, they should belong reasonably
accurately in the appropriate two-space. Hence we have

(3.1)
A (xl + 371)= (A +/x lx)(x + 1)4./2,21(X2 4. 2),

A (xz + z) txzl(xl + 1) + (Az + txzz)(xz + 372)

where )71, f2 and/xq are expected to be small. Because (3.1) implies that

(3.2) A[x14. llX2 4. 2] [X14. llX2 4. 2](l.1q- I.lt, 11

the vectors x + 371, X2 4. f2 are exact generators of an invariant two-space, the corres-
ponding eigenvalues being those of the 2 x 2 matrix on the right. We assume that
IIx 111o IIx211 1. To select specific vectors in the subspace, we must prescribe some
form of "normalization" of x + fl and x2 4- 372 analogous to our requirement that 37s 0
in the basic algorithm. We shall require that

(3.3) flp )2p flq f2q 0,

where p and q are such that

(3.4) [xlpl max Ix 1,1
and

(3.5)

Notice that this selection ensures that q p. Further, if the maximum in (3.5) is small,
x and xz are nearly parallel, and small perturbations in them could not provide us
with two vectors giving a good numerical determination of the invariant subspace.

From equation (3.2), we obtain

(3.6)
(A A 1I)71- tz xlx -/x21x2 rl +/x 11371 + Ix2172,

(A A2/)372-/z 12xl-/z22x2 r2 + p, 12371 4-/d,22f2,

where

(3.7) ri Aixi Axi.

Because components p and q of both 371 and )72 are zero, it is convenient to define
vectors yl and y2 in which two zeros are replaced by/xll and/x21 and/-t12 and/x22,
respectively. The equations then become

(3.8) B,y, r, + y,pfl + yq)72 (i 1, 2),

where Bi is A-AJ with columns p and q replaced with -xl and -x2. If the given
eigenpairs are reasonably accurate, equation (3.8) is a coupled pair of mildly nonlinear
equations and may be solved by the iterative procedure

(s+l) ()z() ()"() (i 1, 2)(3.9) BiYi =ri+yp yl +Yiq Y2
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with y 0. (Here we have changed the upper suffix from p, used in (1.7), to s to
avoid conflict with p and q above.) These equations may be expressed in the form

eb +X (y io : + y q y (i 1, 2),

precisely as in (1.5), (1.6), and (1.7).
The analysis of this algorithm is similar to that of the basic algorithm. We have

the following theorem"
THEOREM 2. Let i =llxill, =max (, K2), E =max (e, 82), and

a 4/[(1-4e) + (1 8e)/a].
Then ge < , we have

Ily, eg +e (i 1, 2)
(s)for all s and y y. The convergence is geometric in that

where 4e (1 +ae) 4e (a/2)/ < 1.
For numerical purposes equation (3.10) may be recast as in (1.11) and (1.12).

The sth equation corresponding to the set (1.11) then becomes

(3.11) Bi)=yo +io +yi +i

and the sth equation corresponding.to the set (1.12) becomes

(3.12)
Bi3 (i [r(-)i Bi3 (s-1)i ] q" Y

(s- 1)g(lS-1)ip q" ’-’ (s- 1)f(lS)ip -[- Y iq q" iq

where we have incorporated one stage of iterative refinement in the equations for
(s-l) (s)deriving 8i in the equation determining 8

When h and h2 are well separated from the other eigenvalues and are well
conditioned, the matrices B and B2 will be well conditioned even though the matrices
B arising in the use of the basic algorithm for improving h 1, x and h 2, x2 independently
are very ill conditioned. The two generators x + 371 and x2 + 372 will be accurately
determined. Because the final accepted values accurately satisfy the relation (3.2), the
eigenvalues of the 2 x2 matrix should give very accurate approximations to the
eigenvalues. In a KDF9 program in which all the right-hand sides of equations (3.12)
are derived using double precision accumulation inner product and the corrections

(s) (s)8 are added to the y in double precision, the final accuracy is appropriate to
double precision computation throughout, even though no multiplication of double
precision numbers is used and a very high percentage of all computation is therefore
in single precision. When A really does have a double root 3’ (say) corresponding to
linear elementary divisors, we must have

(3.13) (/ -[- it/, 11 /-12 )__( 0)[J,21 . 2 "{- $J,22 3’

with only double precision errors. Hence the/x 12 and ]d,21 should be of order -2t for
computation with precision/-’. If the exact h and h2 are such that [A-=[/IIAII
/3 -p-t, then/21 and/z 12 should reflect this closeness and be of order IIA I1 --’. Improved
individual eigenvectors are found in the KDF9 program from the eigenvalues and
eigenvectors of the 2 x 2 matrix in (3.2).
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For simplicity of notation, we have exposed the case of two simple eigenvalues.
The algorithm extends immediately to a set of k close eigenvalues. We have then

(3.14) A[xl + fl, ", xk + 37k] Ix1 + 37,’"’, Xk + 37k][diag (A,) +M],

where m, =/z, and it is expected that both 37 and/x, will be small. We now obtain a
set of k loosely coupled nonlinear equations, the matrixB associated with the th set
being A-AJ with k of its columns replaced by -x,-x2,’",--Xk. The only new
complication is how to determine the k elements of 37 that are to be zero. The choice
can be made as follows. Let X be the k x n matrix with rows xi. Let this be reduced
to upper-trapezoidal form using Gaussian elimination with column pivoting, rather
than the row pivoting involved in the standard partial pivoting algorithm. If the
relevant pivotal elements are in columns p, p2,"’, Pk, respectively, then these ele-
ments are to be zero in the 37. (The last p is chosen to be the maximum element in
the final reduced row although no further reduction is to be done at this point. It will
readily be verified that when k 2, this gives the choice which we have described.)

At each step in the iterative solution of the nonlinear equations, we have to solve
k linear systems of order n with matrices B (i 1,..., k); in addition, we have the
initial factorization of the B. The total amount of work is only marginally greater
that that in the separate improvement of each of the At using the basic algorithm.
Indeed, if some of the approximate A’s are equal, then corresponding to these we
have only one B, to factorize. Furthermore, if m of the Ai are almost equal, we can
start by replacing each of these by the mean of the m values. The invariant subspace
algorithm can therefore be substantially more economical than the basic algorithm.

4. Invariant subspaces (almost defective matrices). When A is defective (or
almost defective), the computed eigenvectors corresponding to the relevant eigen-
values will be almost linear dependent. For a set of vectors x, x,...,x this near
linear dependence will become apparent when Gaussian elimination with column
pivoting is performed. Small corrections to such a set of x will serve little purpose.
Instead, to achieve a good determination of the invariant subspace, we proceed as
follows.

Again for simplicity we concentrate on just two eigenvalues. Clearly it is essential
to start with two well separated generators x, x. of the invariant subspace. We should
start then with approximate x, x. and a 2 2 matrixM such that

.[mll m2,(4.1) A[xxxz][xxz]M[xx:lkm m22/

and attempt to determine fl, f2 and tz, (i, j 1, 2) such that

](mml-b/A, 11 m12 +12)(4.2) A[xa + fl, x2 + fz] [x + fx, xa + fz
"q"/2,21 m22 +/z22

If we attempt to derive an algorithm based on this relation, however, we find that the
pair of equations is no longer loosely coupled. A much more effective algorithm can
be produced if m2 0 in (4.1), Equation (4.2) then gives

(4.3)

where

(4.4)

mizf + (A mz2I)f- tz x2xx- txzzx2 r2 + Ix 237x +/x22372,

rl mxixa -Axe, r2 m2x + m22x2 -Ax2
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and both r and rE are expected to be small. These equations can be expressed in
simpler form as in (3.8) using B1, BE, y, and yE. Thus we have obtained the iterative
procedure

).,r c;, (2s(4.5) ByS+l)=rl+y,yl +Y2qy

(s)(s) (s)(s)(4.6) BEy(2s+l) =rE rn1.37+) +YE,yl +YEoYE

in which y(/l is derived from (4.5) and then y(2/1 is derived from (4.6) using the
y(/ just computed. Again we have only two matrices to factor and two linear systems
of order n to solve in each step. The reformulation of the equations in the interest
of numerical stability proceeds on the lines already established. The algorithm gives
very accurate generators of the invariant subspace, but although the 2 x 2 matrix on
the right of (4.2) is accurate, this accuracy is not reflected in the two eigenvalues
because its eigenvalues are necessarily sensitive to small perturbations in its elements.

There remains the task of determining generators x and xE which correspond to
a zero value of mE1. This can be done when the eigenvalue problem of A has been
solved by the orthogonal triangularization of A, as in Francis’s double OR algorithm.
We assume that

(4.7) OTAQ T,

and that the two approximate eigenvalues h and h2 are the diagonal elements tt, and
t.,., respectively, with < m. The two eigenvectors of T may be found immediately
in the form

(4.8)

and

(4.9)

Zl,1, Zl,2, ", Zl,/-1, 1, 0,. ., 0

Z2,1, Z2,2, Z2,m-1, 1, 0,’’’, 0

by solving the two relevant triangular systems (T-h lI)z --0, (T h2I)z2 0, though
in our case, of course, they will be almost parallel. In fact, we find z in this way but
determine z2 as the solution of

(4.10) (T-h2/)z2 kzl,

where k is chosen so that z2, 0. Clearly k is given by

(4.11) tl,l+lZ2,1+l -1- tl,l+2Z2,1+2 + -1- tl,mZ2,m k

and is determined when we reach element z2, of Z2o Then x Qz 1, X2 QZ2, satisfying
our relation with

(4.12)

The technique extends immediately to a set of k ill conditioned eigenvalues.
From the triangular matrix T we can determine Zl, ZE,..., Zk such that

(4.13) (T-hI)zl=O, (T-h2I)z2=m12zl, (T-a3I)z3=m3zl+m23z2,

where each rn 0. is chosen so that the appropriate element of Zi is zero. In general the

zi determined in this way will be highly linearly independent, and we may take xi Qzi.
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We can now define an iterative process in each step in which we solve k sets of linear
equations with matrices of order n, the left-hand side being derived by

Bly+,
.-.(s+l)B2y(2s+l) + m12y

(4.14)
Bsy(3+I) + m13371s+1) + m2337(2s+l),

so that y(S+1), y(2+,),.., may be found in succession. The work involved is only
marginally greater than in determining k individual eigenpairs by the basic algorithm.
If any of the A are equal, the same is true of the corresponding B, and the volume
of work is correspondingly reduced.

5. Use of orthogonal triangular|zatlon ot real A. We now turn to the case where
the original approximate eigenpairs have been found by Francis’ double OR algorithm.
We have an orthogonal matrix O such that

(5.1) A OTO T,
where T is quasi upper triangular, that is, triangular apart from possible 2 x 2 diagonal
blocks corresponding to complex conjugate eigenvalues. For simplicity we assume
that T is truly upper triangular. In presenting the basic algorithm we solved a succession
of linear systems of the form

(5.2) Bw =g

with various right-hand sides g. It will be convenient to introduce the generic notation
Z hi Zx and (Z hI)e Zxes zxs. Equation (5.2) may then be written in the form

(5.3) [Ax (x + axs)e f]w (A, + cer )w g,

where

(5.4) c -x -a.

From (5.1) we have

(5.5) Q[Tx +OTceTO]OTw g,

giving

(5.6) (T, + dfr)Orw Og,
where

(5.7) d =Orc, fr erO.
The matrix dfr in (5.6) is a rank one modification of the triangular matrix Tx. To
solve this system, we need to re-triangularize Tx + dfr. Accordingly, we premultiply
the system by two orthogonal matrices O1 and 02, giving

O2O1(Tx + dfT)QTw O2OlOTg,

where Q1 and Q2 are products of elementary plane rotations determined as follows.
The matrix Q1 is such that

(5.9) Old (P2P"" P.)d 3’el where
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and Pi is a rotation in the (i- 1, i) plane designed to annihilate the ith component of
Pi/lPi+2 P,d. We have

(5.10) Ol(Tx + dfT) Oi Tx +’yellT.
QTx is upper Hessenberg while 3el is null except in the first row. Hence the
right-hand side of (5.10) is also an upper Hessenberg matrix H.H may now be reduced
to upper triangular form, Tx, by premultiplication with 02 defined by

(5.11) Q2 P "P3P2,

where the premultiplication by P annihilates the element (i, i-1) of the current
matrix by a rotation in the (i- 1, i) plane. Hence we have left to solve the triangular
system

(5.12) Orw Q2QxQg.
Solution of a system with the matrix B may thus be solved in O(n 2) operations.

6. Updating of the matrix B. When the orthogonal triangularization ofA is used,
it becomes practical to update the matrix B at each stage of the iteration using the
current approximation to the eigenpair. Accordingly, we treat the (p + 1)st step of
the iteration as though it were the first step in the basic iteration starting with values, and x". The algorithm then becomes

(P)" (P) (P) (P)I (P)(6.1) (A-A(P)I)(’)-Ss x =r =(h -A)x

where
(p)(6.2) x ("+) x(P) + (") h ("+) h (")+s

We may rewrite this as

(6.3) B(")8 () --r (p)

where
(p)(6.4) B(’)=A-A(’)I +c(P)e, c (p) =-x -a,

We now write

(6.5) B(’)= Q(T(’) +QTc(’)eT O)QT Q(T(’ + d(’fT)Q T

and solve (6.3) by the triangular system

(6.6) (,Q T, (p Q(2pQ,)Qr(,

Note that Q and f will be independent of p if s is not changing from one iteration
to the next. The rotations involved in Q(P and Q(2, on the other hand, differ from
one iteration to the next, but because the number of operations in each re-triangulari-
zation is O(n 2) and some n2/2 multiplication and additions are necessarily involved
in the solution of a triangular system, this is quite acceptable.

7. Convergence of the updated iteration process. We can now consider the
convergence of the updated iteration process. This process is precisely Newton’s
method applied to the system

(7.1) (A-hl)x =0, ex =0.

(In fact, the basic algorithm itself is merely a recasting of the simplified Newton
method in which the Jacobian matrix is not updated.) Convergence could therefore
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be analyzed using the Newton-Kantorovich theorem [3]. Such an analysis would lead
to a result of the following form:

If the initial error is small enough, the iteration will converge and the convergence
is quadratic.

However, in the rounding error analysis given later we shall need most of the
intermediate results which are derived in proving the Kantorovich theorem. It is
therefore more convenient to analyze convergence directly from first principles. In
doing so we can take advantage of the simple form of the equations (7.1).

First we introduce the notation used in analyzing both the exact iterates and the
computed iterates. We shall assume that all approximate eigenpairs x, Amwhether
exact or computedmare such that xs 1. Hence the difference between any two x’s
has a zero in position s, and we can replace this with the difference between the A ’s.
All the information can therefore be provided in a single error vector so. We may write

(7.2) (XE, AE)--(Xl, A 1)

where sc xz x 1, s A 2 1, but for brevity we shall often write

(7.3) x2-x1--.
Corresponding to any (x, A) is a B matrix defined by

(7.4) B A AI (axs + x)e.
The B matrices corresponding to x l, A1 and 2, A will be denoted by B1 and B,
respectively. Note that

(7.5) By (A ;ti)37 yx for all y.

We begin the analysis with the following lemmas about a single step of the
iteration.

LEMMA 1. If Xl, h and x2, h2 are any two approximate eigenpairs, the residuals
r and rE are defined by

(7.6) ri hiXi-Axi (i 1, 2)

and is the difference between their approximations. Then

(7.7) r2 rl-B2(x2-xl)-,
where B2 is the B matrix corresponding to A2 and x2.

ProoL
rE A2x2-ax2 X2(xl + )-a(xl +)

(A2/-A)+ A2xl -Ax

(7.8) (A21 A)+ A ix Ax +x
(hzI-A)+ (h1x1-Ax) + sX2-

rx-B2-= r-Bz(x2-x,)-
because B2 (A AzI)-xz.

LEMMA 2. With the same notation as in Lemma 1, if x and x2 are used as initial
values in one step of the iteration process to and give corrections of6 and 62, respectively,
then
(7.9) 62 8 + (Ba B )ra B .
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Proof. By definition,

(7.10) Bltl rl, 32t2 r2.

From Lemma 1 we obtain the second term

(7.11) B262 rl-B2-js’,

(7.12) 82=Blrl-$j-Bl’=a-+(B

Note that the term - on the right of (7.12) cancels the initial difference between
(x, a 1) and (x2, a 2). This difference is replaced by

(7.13) (B

If the two approximations are close, sc is small and I111--< I111=, Hence, provided we
have a satisfactory bound on IIBI[ the second term in (7.13) is promising. For the
first term we have the following:

LEMMA 3. If B-(1 exists and 2113 111111 < 1 then

(7.14)

and

(7.15)

Proof.
(7.16)

(7.17)

[I(B B ;1 )ull < 211B 7 I111 lIB 7ull
1_211B7111111

(BE B x)

liB=-B 111 -< I=1+ IITII < 21111.
For the second inequality we have

(7.18) (B

B]IB1 =(B1 +E)-IBx =I+F whereE=BE-B1(7.19)

where

(7.20) IIFll < liB 711111EII/(1 -liB 711111EII)
Equation (7.15) follows immediately. Using Lemma 3, we have

Ii(B -1 B -1 )r III < 211B *11 I1@11 liB 7r11l/(1 211B 71111@11)
(7.21)

2[[B -1[[
LEMM 4. If , h is an approximation to an exact eigenpair (x, h ), the difference

being , then

(7.22) F

and the correction provided by one step of iteration is

(7.23) -giving an approximation with error _:-1.
Proof. Using Lemma 1 with (x, 3,) and (, A) as the two approximations, we have

(7.24) r -/s-s -/ since r 0.
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One step of iteration gives

(7.25) B-
Now the update iteration gives a sequence of x (’), () defined by

B (o)8 (o) r(O), x

(7.26) B(1)6 (a)= r (a), x

B(P) (p) r (p), x

We have the following lemma:

(1)
X

(0) _+_ g(0), / (1) __/. (0) ._ 0),
(2)

X
(1)

_
g(1) / (2) =/ (1) -- 6 (sl)

(P), (P)(P+I) x(P)
_
g A(p+I)=A(p)+6

that

(7.28)

giving

LEMMA 5. If the x (i), i (i) are iterates provided by the algorithm startingfrom x ()A (o),
then
(7.27) r(P+) 6sP)(p).

Proof. Applying Lemma 1 with Xl, A x(+) A (+1) and x2, A2 x SO

we have

r()=

(7.29) r

because by definition B()6 () r (v). Hence, the exact algorithm is defined by

(7.30) B()6 () r (), B()6()= 8(s-)g(-) (p 1, 2,...).

We are now in a position to combine these results for a single step to establish
the quadratic convergence of the overall iterative process. We naturally assume that
B () is nonsingular. For the process to be defined, all B () must be nonsingular. From
Lemma 3 we know

(7.31)

(7.32)

We note that B () will certainly be nonsingular if

(7.33)

and hence certainly if

(7.34) 1.

We write <0)= and II <)ll e n <o). We see immediately that unless
2e < 1, even B (a) may be singular. It is intuitively obvious that for convergence we
require e to be small enough.

We introduce the quantities (’) and o) defined by

(7.35) (o)=(-a)/(1-2(o-1)n(P-a)), n(’)=(’)(n(’-)) (p= 1,2,...).

Provided all (’) are positive, it is evident from (7.30) and (7.32) that the () and
n (o) majorize II(B())-II and I1<’11 respectively, and ensure the existence of the former.

Quadratic convergence of the iteration can therefore be established by proving
that the (o) remain and that the (o) approach zero quadratically. To this end, we
introduce

(7.36)
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so that

(7.37) (p) (P-/(1 2fie-l).

It is certainly inadvisable that the / should increase because this endangers the
nonsingularity of B (p. If flo=/ we have

(7.38) /o=/=(r/(=((r/()=(r(r/(/(1-2/o))2=(/o/(1-2/o)),
giving flo 1/4. (The solutions flo 0,/1 =-1 are of no interest.) Because in general

(7.39) /30 ()r (0)= ((o)7 (o-1))2= ((p-1)r(p-1)/(l_ 2flo_1))2 (/o_/(1_ 2flo_))2,

we have/o 1/4 (P 1, 2,...). On the other hand,

(0)= t ()(r (o-,)) [ (o-1)rt (o-1)/(1 2 (-l)r/(-’))It/(p-l) 1/2T/(p-l)(7.40) r/

Hence,

(7.41) r(o)+r(1)+... +r(o-x)= (o)[1 +1/2+... +-1] r/()[2-1/2-1],
(i)and Y=o r converges to 2r o). For the Co) we have

(7.42) (P) 1/4r/(P)= 2-2/r/(o),

showing that although all B () are certainly nonsingular, they may be tending to
singularity. The value/3o 1/4 is therefore a borderline case.

When/3o<1/4, (7.38) shows that/31<1/4, and then (7.39) shows by induction that
(i)/30 < 1/4. Similarly n Co)< 1/2r CP-), Yi=o r converges, and

(i) (o)(7.43) Y r <2r/ =2e.
i=0

This convergence, however, conceals the essential difference between the condition

flo 1/4 and/30 < 1/4. From (7.39) we have
3 4(7.44) /30 < 4/3_x < 4 p-2 < <1/4(4flo)20

showing that/30 is converging quadratically to zero. Because
2 2(7.45) 30 (1 2p_1)-2 0-1 0-1,

we see that even (7.43) severely underestimates the convergence rate.
For the (0), repeated use of (7.35) gives’

t (P)= (-1)/[1 2 (P- )rt (p-l)] / (0-2)/[ 1 2 (p--2)( (p-l)
d- T/(p--2))]

(7.46)
()/[1 2 ()[r (o) + rt

(1) + + rt (o-1)]].
Because Y rt

() converges and its sum is less than 2e, we see that () (), which is
finite. However,

(7.47) ()rt ()=/30 < (4/3o)20/4,
and hence rt

() also tends quadratically to zero. When e is significantly less than 1/4,
()we would expect rt to be significantly less than 2e, and this is indeed true. To

()establish a simple explicit expression for Y rt let

(7.48) fo 1 (1 4/30)
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We establish a simple relation between successive fi. From (7.39),

(7.49) 1-4/30 (1 4/3p_1)/(1 2/3p_a) :z,

(7.50) 1-(1-4/3p)a/z= 1-
(1 4/3p_1) 1/2

(1-2/3p-1)

1 (1 4/3,) 1/2 1 2/3p_- (1- 4/3_x)/2
(7.51) fp= 2r(P 2r (p)(1 2/3p_

Hence, because [p-1 r (p-l) (p-l), we have

1-2p_-(1-4p_1) 1/z

1-2p-1

1- 2/3r,_ (1- 4/3,_)/2

(7.52) fp =fp_l- n (-1),
giving

(7.53) rt() + rt( + + rt(o-l fo-fo.
But fp 0 (because/3p 0) and r( r (. Hence,

(7.54)
i=0

(7.55) 1 (1 4/30)1/2]/2ro
1 -(1 410) 1/2

(7.56) e
2t3o
2

(7.57)
1 +(1-4/o)/2e"

This analysis can be summarized in the following theorem’
THEOREM 3. When 13o re <1/4, then r

(p) is bounded and
zero quadratically. In fact,

) 2
(7.58) Z r/

i=o 1 + (1-4/3o)/2e"

and p approach

and

(7.60) IIx
where x is the limit, i.e. the exact solution. In fact the process will often converge
when/30> 1/4 and some later/3 will satisfy the requirement. At that stage we shall have
a ball containing all subsequent iterations and the limit.

8. Complex eigenvalues for real matrices. When we have a real matrix with
complex eigenvalues, the previously developed approach for improving the accuracy
runs into a problem. While we could use the procedures as described with complex
arithmetic throughout, we would end up doing four times as much computation and
using twice as much storage. The various components needed in solving this problem
for the most part are real; only the diagonal of T-AI and the vector x are complex.

Note that we may regard the process as starting with any of the x p). Because
4x-, for all p when/30 < 4

a- we see that



38 J. J. DONGARRA, C. B. MOLER AND J. H. WILKINSON

In the real eigenvalue case, in order to find the improvements we need to solve
a system based on the matrix

--X
(8.1) (A-I 0)"es

This matrix can be transformed by (0) and its transpose to arrive at

where p =-Ox and q Oes. One diagonal element of T-M is zero, say at the
kth position. We will replace this zero by the value 1 through a rank one change and
remove the row q T similarly. Then the resulting matrix, say 7/ has the form

where T+ T- hi + eke ’, and + differs from by a rank 2 change.
When h and x are complex the matrix T is real and quasi-triangular, O is real

and T-hi is complex on the diagonal only. T-hi has a singular 2 2 block on the
diagonal (this corresponds in the real case to a zero on the diagonal). The 2 2 block
has the form

(8.4) (ot (hr -+- ihi) b )c d -(A + iA)

To force this block to be nonsingular, a rank one change is made by adding 1 to the
1, 1 element of that block. The resulting matrix is T+ T- AI +ee. The matrix then
has the form

The rowq is removed by a rank one change to arrive at

0

We wish to solve systems of the form T+z v. For this system the matrix T+ is real
except for its diagonal and last column, and the right-hand side vector v is complex.
Since T+ is almost completely real, hardly any complex arithmetic is involved. To
correspond to a 1 x 1 diagonal block of T+ we have to solve

(8.7) (t i)z v.

This will involve a complex division of v by the quantity t-A- iA. For the 2 2
diagonal block associated with + i, a 2 2 complex linear system will have to be
solved.

By using such a procedure the work needed in this case goes up by a factor of
two over the case where there is a simple real eigenvalue. This factor of two is not
surprising since the improvement process will produce an improved eigenpair and its
conjugate. The total additional storage needed will be modest, only a few additional
vectors.
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9. Influence of rounding errors. As a result of our calculations, we have a
sequence of computed $(P, (P that are contaminated by rounding errors. One might
attempt to find a bound for each II  O -gO ll and then sum them to obtain a bound
at any stage for This procedure would be reasonable if the iterates were
steadily drifting apart. In fact, however, even if some intermediate $, is
appreciably distant from x, A, the iterates must subsequently move together again.
This tendency for current differences in iterates to be largely cancelled in the next
step is apparent from Lemmas 2-4. Moreover, we may think in terms of starting fresh
with each $P,. Thus the previous history is, in a sense, irrelevant, provided the
iterates do not drift so far away that there is a chance of homing in on some different
solution.

In practice the boundary value/o 1/4 is rather less important than it may seem
from the above analysis for a number of reasons.

(i) The iteration often converges starting from a value of /30 which is much
greater than 1/4. When this is true, one soon reaches a stage when/3 < 1/4 is well satisfied
and we can then regard the current values as the initial values.

(ii) Suppose the initial approximation has been derived by a specific algorithm.
If that algorithm is used on two different computers, one of which has a mantissa with
one binary digit more than that on the other, the initial values of /3 on the two
machines will almost certainly differ by a factor of 2. This puts the relevance of the

1.value/= n perspective.
(iii) Consider the behavior of the iteration with/ 1/2. From (ii) above we may

regard this as "only marginally smaller than 1/4". Yet the sequence of/i’s is now

(9.1) flo=, /1=, /2=9, 2--2209, 4 <2.1X10-7, 5 <5.0X10-14,
and the ri--> 0 in much the same way.

In the rounding error analysis there is little point in obscuring the essential
simplicity of the argument by sailing too close to the wind. On the other hand, realistic
bounds are essential for the rounding errors made at each step of the computed
sequence.

We assume that Ilall, IIA- AIII, Ilnll are all of order unity throughout, and, thus
we shall replace them by unity whenever they occur. For the computation of Pq,
where P is an n x n matrix and q is an n vector, we make the following assumption
for single-precision floating point computation to the base/3 with a digit mantissa:

(9.2) fl(eq eq /,
If, on the other hand, all inner products are accumulated in double precision and
rounded to single precision on completion, we assume that

(9.3) fl2(Pq) eq +, I111--< -’lleqll + n-=’llellllqll,
where the second term in the bound for sc comes from the rounding in the double
precision part, and the first term comes from the final rounding to single precision.
The first term is, of course, the dangerous one" Its omission removes all realism from
the analysis. Finally, we assume that the computed solution of Px =q satisfies exactly
the relation

(9.4) (P + E)x q, IIEII <= n[3-’llPll.
Of the three assumptions, the first two are strict for a computer using a standard
rounding procedure. The third assumption is partly empirical in nature, but is likely
to be very conservative for stable methods of solving linear systems.
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To demonstrate that our results converge to working accuracy, we must show
that the error vector satisfies I111 <---’ or is only marginally larger than this. Before
attempting a detailed error analysis, however, we shall show that higher precision is
essential in the computation of the residual. Suppose we already have an , which
is correct to working accuracy, and we then perform one further iteration. We have then

(9.5) I1 xll I111 <--
If we were to perform this iteration exactly, then from Lemma 4 we would have

(9.6) e= -B: :,
(9.7) B8

(9.8) g= -: -/-:,
where ?,/ are exact results corresponding to the given , . The error in the correct, is therefore -/-:, the error having been cancelled. Clearly,

(9.9) I1-11-<_ IIn-ll I111
Naturally we require that lIB-111 <_-’ or the error may actually be increased. However,
something appreciably stronger than this is needed in any case when rounding errors
are involved or B +E might well be singular. If ’ is the computed residual using single
precision arithmetic, we have from (9.2)

(9.10) e +, Ilfll--<-- n/ -t,
and from (9.6)

(9.11)

The computed residual is unlikely to have any correct significant figures and even if
we solve the linear equation exactly, we can guarantee only that

(9.2)

The corrected solution is likely to be much less accurate than its predecessor. Because
we cannot even conserve a correctly rounded solution, there is little chance that it
would ever be attained in the first place. We shall assume, therefore, that all residuals
are determined by double precision accumulation with rounding to single precision
on completion. We have then from (9.3), (9.10), and (9.11)

(9.13)

(9.14) Ilfll-<_-’EIlll+llll=]+n -=’_-<3-‘[/-’+/3-zt]+n/ -2’_-<(n +2)3 -z’.
Solving exactly, we obtain the error from f bounded by

(9.15) (n

The solution may be degraded unless IIB-II -’ is appreciably less than unity. We have
already seen that such a demand is, in any case, inevitable.

In order to get some idea of the behavior under conditions which are almost
borderline for Theorem 3 to apply, we analyze the case

(9.16) /o ()r/(o)=e < , nB-’ < 0.01.

The second of these is reasonable since if were appreciably larger than this we
should be computing an invariant subspace rather than a simple eigenpair. We
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emphasize that relations (9.16) need not necessarily be satisfied by the first approxima-
tion, but provided there is some q for which

(9.17) /3q K (q)rt ()=8 < ],
then this qth computed 2q could, for the purposes of the analysis, be regarded as
the initial value. From the condition/30 we know that the exact process converges
to a solution x, h and

(9.18) IIx(-x(ll<-_[2/(1+(0.2)1/2)]8 < 1.4e for allp,

(9.19) IIx -x(ll < 1.4e,

(9.20) (p) -< ( (/(0.2) 1/2 < 2.24 for all p.

We wish to show that the 2(i never deviates far from the x ". The analysis of the
first step is different from that for the general step since x ()= (o and the simple
expression given in (7.27) for the residual does not apply. We have then

(9.21) BO)6(o) rO), ,o_ i1o11_ ,
(9.22) (BO) +EO))go) rO) + f(o), ilfo)ll <= -tllr(o)ll + nfl-2t,
where we assume IIEII_-< n/3-’ covers the errors made during the solution of the linear
system and also the trivial errors made in computing A- h)L From (9.1) we have

(9.23) IIrll _-< lIB )11 I1 )11-- e,

and from (9.22) we have

go)= (BO))-lr(O)_MO)(BO))-irO) + (BO) + E(O))-lfO),(9.24)

where

(9.25)

(9.26)

IIMII < II(U )-1111EII/(1 -II(B )-’1111EII) <n -7(1 nt3
II(B) + E))-lll-< II(U )-all/(1 II(U)-11 IIEII) -<_ K/(1

Hence from (9.24) we get

(9.27) go) =6.(O)_MO)6o)+(BO)+EO)-af(o)
and

(9.28)

K --t
8

--t
8 --2t]<-- In/3 +/3 +

1 Kn/3-’
(9.29) <- 1.02[-n/3-’ + /3 -t + 0.01/3-’],

where we have used condition (9.17). To simplify the analysis, we assume n > 10 (this
merely ensures/3-’ < 0.1n/3-’); condition (9.29) then gives

(9.30)

We still have to add g(o) to x
and

this step gives a further error, bounded by/3-’ < 0. ln/3-’
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In subsequent steps we have

(9.32) B(’)6 (’)= r (p)-- 8f-l)gp-a), 1ls(p)ll <-_ , IIr)ll_-<(-)=,
(9.33) (’ +E,o)g computed (?)),
where/P) is the exact B corresponding to 2 (p), and E) covers the rounding errors
made both in the computation of A-h)I and in the solution of the linear system.
We assume

(9.34)

From Lemma 5 we have

(9.35)

(Here ?) is the exact residual corresponding to ).) The computed results show that

(9.36) computed (?)) ?P) +[),
(9.37)

Hence we get

(9.38)

(9.39) gP)= f-)P-) +fP),
(9.40)

We now need to show that the matrices BC")+E (p) are nonsingular and have bounds
for their inverses. We know that theB (p) are nonsingular; for information on BC") +E (p),
we neea ounas for I"-)1 ll")-x")ll, remembering that

(9.41)

A rough preliminary analysis indicates that P) will not exceed a modest multiple
of n-’, and we now prove by induction that

(9.42) I1)11 0.5nB-’ for allp

(and indeed that the later P) are much smaller). We already know it is true for p 0,
and we assume that it is true up to p-1). Notice that this would merely extend the
bounds in (9.18) and (9.19) to 1.4e + 0.5nB-’. From our inductive hypothesis we have

#(o B(O +F(O, IIFll N 2 x 0.5nB -t
n# -t,

(9.43)

From (9.20) and (9.19) we therefore have

(9.44)
1 (2.24) (2n/3-’)

< 1.05 (0) < 2.36.

(Sometimes we shall use the former and sometimes the latter of the two bounds.)
Similarly we have

(9.45)

where

(9.46)

(J(P) +E(P))-lu (B(P))-lu -L(’)(B(’))-lu for all u

IlL (O)ll < 1.05 (P)(2n/3 -t) < 2.36 (2n/3 -1)
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and

(9.47)

where

(9.48)

(:(P) +E(’))-l(’)u u -M(’)u

[IM(II < 1.05 ()(n/3-’) < 2.36Knfl-tu.
The inductive hypothesis guarantees the nonsingularity of all relevant matrices up to
and including the case we are about to use in determining g(o). Returning now to
(9.38) we have first, using (9.45) and (9.46) with u r),
(9.49) (J(P) + EP))-lrP) 6P)-LP)6(’) 6 p) + a

where

(9.50)

then, using (9.47)

(9.51) -(B()+E())-B(")("-)=-(-)+M(")(-)=-(-I)+b(O)
where

(9.52) lib ()ll <-- 2.36nt3-’ll(-a)ll.
Finally, we wish to bound (/(o)+E(p))-ag(O) using (9.40). We treat the term in (9.40)
involving (rt (o-a))a differently from the rest. We have

(9.53)

while from the rest of g(O) we have the bound

(9.54) 2.36[[l(o-1)[[2 + [3-t (l[(P-a)ll + [l(o-)[[Z) + n[3-2t] d(t’).

Combining these results, we get

g(o) 6()_ s(-) + h (),(9.55)

where

(9.56)

Clearly

the/3 -t coming from the addition of g(o) to ,f(o). Note that the term _(p-1) in (9.55)
annihilates the previous error. In (9.56) the first two terms involve rt

() and rt (o-a),
those "belonging" to the exact process, and tend quadratically to zero. They are of
significance only in the first one or two iterations. The terms [[b ()1] and d () ultimately
control the behavior completely. Using the inductive hypothesis (and the assumption
that n > 10), we have

lib ( )11 2.36n/3-’ (0.5nil-’) < 0.0118nil-’,

d(’) < 2.36 [0.25n :z/3 -:z’ + 0.5nfl-2t + 0.25n 2/-3t +n -2t]

< 2.36[.0025 n/3-’ + .0005n/3-’ + .0000025n/3-’ + .00 ln/3-’]

< .0092n/3-t.
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The terms [la (P)[[ and c (p) present their greatest danger when p 1 and we have

Ila (11 < 1.05K (2n/3 -’) ---2n/31"05- < .24n/3 -’,

1.05c()_<_ 1.05K()/3-,(/(0))2= (1.05)te2/3-t <
9 .01

which is negligible for any reasonable/-t.
Summing the contributions, we see that

0.4n/ -’

Hence the result is improving, but the proof shows that after the first two iterations
the f(i) are decreasing rapidly. The computation of the successive f(i) is so tedious
that we have contented ourselves with showing that the f(i’s remain less than 0.5n/3-’.
However, it is evident that after the first two iterations the I1 (’ 11 decreases rapidly.
Although tedious, the computations are perfectly straightforward; all the error analysis
is covered in the assumptions embodied in (9.2), (9.3) and (9.4). It is more in the
spirit of practical numerical analysis to produce a program for computing the

The program parameters are

/3o, n,/3-’ and co=

It is more convenient to work in terms of 7i and a defined by

3’i i/o and

The first step is special and ao is given by

[1 ]/ao /3o+-(/3o +o) (1-o).
n

For subsequence steps we have the relations

3’i 1-2fli-1’

where ’li 3i(1 + 2ai_)o

and

(1 4" 20i-1)iq_ -’i q_liC.O{Oti_lq_(lq_-t)Ot2 0i-lq-1} 1
ai 1 O yo (1 Oi)

i-+n +-’n
of which the last term comes merely from the addition of g(o) to x (). The O computed
in this way give realistic upper bounds for the [[f(o[[. In fact, if s(-) an/3-’ we have

lib <= 0.0236an/3-’,
IIdO)ll 2.36[0.01a 2 + 0.001a + .0001a 2]n/3 -’ + 0.0236/3-’,

where the last term arises from the n/3 -2’ and we have not made the substitution of
0.1n/3-’ for/3-’. This last term and the term/3-’ coming from the addition of gP) to
x p) finally remain when all the other terms have receded. The ultimate f) will
almost certainly be the correct rounded solution, though the term 0.0236/3-’ poses a
slight danger that it will not be the correctly rounded value and could even oscillate
between two values that differ by/3-’.
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As an example, we display these quantities as obtained from the above formulae
with re 1/2, rn/ -t 0.01, n 9 (Table 1).

TABLE
Error analysis quantities

0 6.5 103 1.0 .2 .202
1.08104 1.67 .111 .274

2 1.39x 104 2.14 .0204 .151
3 1.45 x 104 2.23 4.5 10-4 .116
4 1.45 104 2.24 2.05 x 10-7 .115
5 1.45 104 2.24 4.21 x 10-14 .115

Naturally when re is significantly smaller than and/or rn/ -t is significantly
smaller than 0.01, all our results will be significantly stronger. If rn/-=/-" (say),
then if we iterate until convergence to working accuracy and add the final computation
to x" using precision, we shall have an eigenpair with an error of approximately/--".
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