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Abstract 

Constraint based modelling methods, such as Flux Balance Analysis (FBA), have been 
extensively used to decipher complex, information rich -omics datasets in order to 
elicit system-wide behavioral patterns of cellular metabolism. FBA has been 
successfully used to gain insight in a wide range of applications, such as range of 
substrate utilization, product yields and to design metabolic engineering strategies 
to improve bioprocess performance. A well-known challenge associated with large 
genome-scale metabolic networks (GEMs) is that they result in underdetermined 
problem formulations. Consequently, rather than unique solutions, FBA and related 
methods examine ranges of reaction flux values that are consistent with the studied 
physiological conditions. The wider the reported flux ranges, the higher the 
uncertainty in the determination of basic reaction properties, limiting interpretability 
of and confidence in the results. Herein we propose a new, computationally efficient 
approach that refines flux range predictions by constraining reaction fluxes based on 
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the elemental balance of carbon. We compared carbon constraint FBA (ccFBA) 
against experimentally measured intracellular fluxes using the latest CHO GEM 
(iCHO1766) and were able to substantially improve the accuracy of predicted flux 
values compared to FBA. ccFBA can be used as a stand-alone method but is also 
compatible with and complimentary to other constraint-based approaches. 

Graphical Abstract 

Constraint based modelling methods, such as Flux Balance Analysis (FBA), have been 
extensively used to decipher complex, information rich -omics datasets in order to 
elicit system-wide behavioral patterns of cellular metabolism. FBA has been 
successfully used to gain insight in a wide range of applications, such as range of 
substrate utilization, product yields and to design metabolic engineering strategies 
to improve bioprocess performance. 
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Introduction 

Genome-scale metabolic network models (GEMs) have been successfully used to 

assign functionality to annotated genome sequences by providing the context of 

how the biochemical components of the cell interact on a molecular basis to effect 

the emergent cell phenotype. The gamut of biochemical reactions catalyzed by the 

enzymes identified in an annotated genome sequence form the basis of a metabolic 

network, which can be further refined by incorporating other –omics data such as 

transcriptomics, proteomics and/or metabolomics (Opdam et al., 2017; Ramon, 

Gollub, & Stelling, 2018). By assuming that the cell operates in a pseudo-steady 
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state, that is, there is no net metabolite production or consumption of intracellular 

metabolites, a series of mass balance constraints can be introduced and a linear 

programming (LP) problem can be formulated (Bonarius, Schmid, & Tramper, 1997; 

Varma & Palsson, 1994). This can be solved to quantify the distribution of carbon, 

energy and metabolic resources across the entire network for a given set of 

physiological conditions, commonly defined through metabolite uptake and 

secretion rates (Orth, Thiele, & Palsson, 2010). A variety of methods to augment and 

refine the resulting flux distributions through the incorporation of several types of 

biological activity data have been proposed (Beg et al., 2007; Covert & Palsson, 2002; 

Henry, Jankowski, Broadbelt, & Hatzimanikatis, 2006; Sánchez et al., 2017).  

Since the stoichiometry of biochemical reactions is well-established and widely 

available in curated public databases, GEMs can be used as an accurate 

representation of the metabolic capabilities of a particular organism (Kelk, Olivier, 

Stougie, & Bruggeman, 2012). Constraint-based modeling has been successfully used 

to guide metabolic engineering strategies (Mishra et al., 2018), identify novel genes 

as antimicrobial drug targets (Mienda, Salihu, Adamu, & Idris, 2018), predict cellular 

phenotypes (Ramirez et al., 2017), analyze biological networks (Selvarasu et al., 

2012) and study evolutionary processes (McCloskey, Palsson, & Feist, 2013; Pál et al., 

2006) across more than 30 different organisms (Cook & Nielsen, 2017; N. C. Duarte 

et al., 2007; Natalie C Duarte & Herrg, 2004; Feist et al., 2007b; Förster, Famili, Fu, 

Palsson, & Nielsen, 2003; Hefzi et al., 2016; Reed, Vo, Schilling, & Palsson, 2003; 

Selvarasu et al., 2012).  

Flux Balance Analysis (FBA), arguably the most prevalent constraint-based method, 

assumes the existence of an overarching metabolic objective, such as the 

maximization of biomass or of some metabolic product of interest (Schuetz, Kuepfer, 

& Sauer, 2007), resulting in a LP optimization problem. Information about the 

physiological state of the cell, under the conditions examined, is required in the form 

of uptake or secretion rates (also referred to as fluxes) (vex) for extracellular 

metabolites and the biomass growth rate. These are introduced through the upper 

(vU) and lower (vL) bound constraints for the respective exchange fluxes, where (vL ≠ 



 
A

cc
ep

te
d 

A
rt

ic
le

 
vU) to account for experimental uncertainty. Additional information for the flux of 

intracellular reactions, if available, either through experimental data or relevant 

scientific literature, can be similarly integrated through the bound constraints of the 

respective reactions. The remaining, unknown reaction fluxes (νi) are typically 

constrained to arbitrarily large numerical values (-1000 ≤ νi ≤ 1000 mmol gDCW-1 h-1) 

(Kelk et al., 2012). Originally, these arbitrarily large bounds were introduced during 

GEM development as a purely computational heuristic “trick” to test network 

connectivity and identify reactions carrying no flux. Since then it has extensively 

propagated in the scientific literature as a means to ensure that the “true” flux state 

of the cell is contained in the solution space. While factually the above statement is 

correct, the large numerical values commonly used are several orders of magnitude 

away from any physiologically observable flux and unnecessarily dilute the solution 

space with physiologically meaningless flux distributions. 

Each reaction in the network for which (vL ≠ vU) introduces additional degrees of 

freedom. Coupled with the high interconnectivity of metabolic networks and the 

limited number of reactions for which an exact flux value is known, this leads to a 

severely underdetermined LP problem. The result is numerous alternative internal 

flux distributions that satisfy the model's constraints and can achieve the same 

optimum (Orth et al., 2010; Lee et al., 2006; Soh et al., 2012). Consequently, a 

unique solution of the optimization problem carries little value. Instead, the range of 

permissible flux values through a particular reaction (Fv,i), under a given set of 

physiological conditions, can be studied either through Flux Variability Analysis (FVA) 

(Mahadevan & Schilling, 2003) and/or through Monte-Carlo sampling of the solution 

space (Price, Schellenberger, & Palsson, 2004).  

As metabolic networks increase in size, the underlying linear programming problem 

becomes progressively more underdetermined which increases uncertainty in 

predicting an exact intracellular state relevant to the studied physiology. Reaction 

fluxes are likely to be overestimated and, particularly for networks with arbitrarily 

large bound constraints, internal loops or so-called futile cycles emerge in the 

majority of the reported flux distributions. Internal loops, also referred to as Type III 



 
A

cc
ep

te
d 

A
rt

ic
le

 
extreme pathways (Price, Famili, Beard, & Palsson, 2002), consist of a series of 

reactions that operate in a cycle, with unrealistically large flux values that allow 

them to generate metabolic resources at no cost. These internal loops can cause 

problems under two circumstances; (i) if they are linked to electron transfer 

between different electron carrier pools and (ii) if they are able to generate ATP or 

other currency metabolites (Maranas & Zomorrodi, 2016). This leads to a large 

amount of physiologically meaningless flux distributions, which confounds the 

determination of the “true” metabolic state. Several approaches have been 

proposed to tackle this problem, including: (i) identification and removal of internal 

loops (Chan, Wang, Dash, & Maranas, 2018; Schellenberger, Lewis, & Palsson, 2011), 

(ii) identification and removal of energy generating loops (Fritzemeier, Hartleb, 

Szappanos, Papp, & Lercher, 2017) (iii) reduction of the permissible flux ranges 

through the introduction of additional constraints based on thermodynamic 

properties (Henry et al., 2006), molecular crowding (Beg et al., 2007) or enzyme 

availability (Sánchez et al., 2017). 

While some of the proposed methods significantly increase the accuracy of FBA 

predictions (Henry, Broadbelt, & Hatzimanikatis, 2007), they either require the 

problem to be reformulated as a mixed integer linear programming problem (MILP) 

(Henry et al., 2007; Schellenberger, Lewis, et al., 2011) or introduce a series of 

constraints that require information from aspects of cellular physiology that are 

difficult to quantify experimentally (Beg et al., 2007; Sánchez et al., 2017). In the 

absence of the required delicate intracellular measurements, researchers have to 

rely either on heuristic assumptions or on literature derived data. On the other hand, 

MILP problems scale poorly with dimension, making their application in the context 

of large scale GEMs computationally expensive. Herein we propose a new method 

for refining the flux ranges reported by FVA that is computationally efficient, relies 

on existing experimental data or assumptions and is able to systematically reduce 

flux variability (FV) to physiologically meaningful values. The method is based on the 

elemental balance of carbon throughout the network and ensures reported flux 

values are consistent with the amount of carbon being taken up or secreted (Zarecki 

et al., 2014). While the proposed method does not explicitly resolve internal loops or 
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futile cycles, it does limit the permissible flux through reactions that participate in 

such loops and therefore substantially reduces their overall impact. Carbon 

Constrained FBA (ccFBA) can be used as a stand-alone method or to compliment any 

of the above mentioned methods. 

Materials and Methods 

All simulations were performed using Matlab (R2016a) (Mathworks, Natick 

Massachusetts, USA) and the algorithms included in the COBRA Toolbox v2.0 

(Schellenberger, Que, et al., 2011). LP optimization problems were solved using the 

Gurobi solver (Gurobi Optimization, 2016). 

Genome-scale model and experimental data 

The latest metabolic network reconstruction for CHO cells (Hefzi et al., 2016) was 

used in the present work in order to ensure (a) a well-curated large scale GEM and 

(b) the existence of multiple, diverse experimental datasets to use for validation. The 

iCHO1766 was pre-processed to eliminate dead-end metabolites from the network 

ensuring complete functionality remained in terms of maximum biomass production, 

maximum product formation and oxygen dependence. Reactions containing dead-

end metabolites are incapable of carrying flux under any imposed constraints. The 

removal of these reactions does not have any impact on the predicted flux patterns 

or general behavior of the model (Thiele & Palsson, 2010). In addition, an exchange 

reaction and the corresponding intracellular transport reaction for ethanolamine 

were introduced (‘etha_e  <=> ’; ‘etha_e <=> etha_c’;) (Voelker & Frazier, 1986) in 

the network. The final metabolic network, after curation, contained 4642 reactions 

(excluding 595 exchange reactions) involving 2816 metabolites (1571 unique 

metabolites). The model is available in supplementary materials 

(SuppInfo3_iCHO1766_currated) as a SBML file. Datasets containing uptake, 

secretion and intracellular flux rates for central carbon metabolism (Glycolysis, 

Tricarboxylic Acid Cycle (TCA) and Pentose Phosphate Pathway (PPP) ) were 

retrieved from literature (Ahn & Antoniewicz, 2011; McAtee Pereira, Walther, 

Hollenbach, & Young, 2018; Templeton, Xu, Roush, & Chen, 2017) and used to 

validate the predictions of the proposed algorithm (Table 2). In cases where 
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experimentally measured fluxes corresponded to more than one reaction in 

iCHO1766, average FVA or sample means were used for comparison (Table 1 and 

SuppInfo4 for an example calculation). 

Table 1 : The validation process involved integrating experimental data of 

secretion/uptake rates through the appropriate constraints and comparing the 

resulting intracellular fluxes with the corresponding experimental values from each 

dataset. A comprehensive list of the upper and lower bound values used to constrain 

exchange reactions for each experimental dataset can be found in supplementary 

material (SuppInfo1). In the absence of explicit experimental information, 

generalized upper and lower bounds allowing only secretion (0 ≤ νex,i ≤ 100) were 

used for all remaining exchange reactions. Intracellular reactions were purposefully 

left unconstrained, i.e. the limits were set to arbitrarily large values (-1000 ≤ νi ≤ 

1000 or 0 ≤ νi ≤ 1000) according to their reversibility properties. 

Table 2 :  Flux Balance Analysis 

Constraint-based methods, such as FBA, represent the gamut of biochemical and 

transport reactions known to occur in a particular type of cells in the form of a 

stoichiometric matrix S of size (m x n). Every row (m) of S represents a unique 

compound, while every column (n) represents a single reaction. Consequently, each 

element (sij) of S contains the stoichiometric coefficient of the ith metabolite in the jth 

reaction. The flux through all (n) reactions is represented by the (n x 1) vector v. 

Assuming the existence of a steady-state, that is the total amount of any compound 

being produced is equal to the total amount being consumed, a mass balance across 

the entire metabolic network yields (Orth, Thiele, et al., 2010): 

𝑆 ∙ 𝑣 = 0 (E1) 

The system of algebraic equations defined by equation 1 is underdetermined and 

therefore a unique solution cannot be found. FBA assumes that cells configure their 

metabolism in a manner that seeks to optimize a particular objective, such as the 

maximization of biomass or ATP (Blazeck & Alper, 2010). Therefore, the problem can 

be formulated as a linear programming (LP) optimization problem: 
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 𝑚𝑖𝑛/max (𝑧) (E2) 

 𝑠. 𝑡. 𝑆 ∙ 𝜈 = 0 (E3) 

 𝜈𝑢𝑏 ≥ 𝜈 ≥ 𝜈𝑙𝑏 (E4) 

where z corresponds to the flux or sum of fluxes being optimized subject to mass 

balance constraints (Equation 3) and set of inequality constraints (Equation 4). In the 

present study, maximization of biomass was used as the objective function (z = 

νbiomass). The set of inequality constraints described by Equation 4 is used to constrain 

flux values between an upper (νub) and lower (νlb) bound. 

Calculating reaction flexibility 

Despite the reformulation into an LP problem, the system is still 

underdetermined and the calculated flux distribution ν is never a unique solution to 

the problem. Therefore, unique solutions rarely hold much value in FBA problems. 

Instead, Flux Variability Analysis (FVA) (Mahadevan & Schilling, 2003) or Monte-Carlo 

sampling of the null space (Schellenberger & Palsson, 2009) are used to evaluate the 

network’s performance under a given set of physiological conditions. The concept of 

reaction flexibility introduced in previous work (Kiparissides & Hatzimanikatis, 2016) 

can be adapted as a means to quantify uncertainty in determining an exact 

metabolic state through the permissible flux range (Fv) for each reaction in the 

network as shown in equation 5. 

𝐹𝑣,𝑖 = �𝑣𝑖𝑚𝑎𝑥 − 𝑣𝑖𝑚𝑖𝑛 � (E5) 

For a metabolic network containing (n) reactions, the total flux variability across the 

entire network can be defined as: 

𝐹𝑣𝑇𝑂𝑇 = ∑ �𝑣𝑖𝑚𝑎𝑥 − 𝑣𝑖𝑚𝑖𝑛�𝑛
𝑖=1   (E6) 
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Carbon Constrained FBA (ccFBA) 

The problem of FBA solutions containing very high flux values, well outside the 

physiological range, can be largely be attributed to: (a) the existence of redundancy 

and plasticity in cellular metabolism (Güell, Sagués, & Serrano, 2014; Mahadevan & 

Lovley, 2008; Min et al., 2011), (b) the use of arbitrarily large bounds for intracellular 

fluxes allowing orders of magnitude more carbon to cycle through the network than 

what is available to the cell through its environment and (c) a lack of physiological 

constraints such as additional intracellular flux measurements. The latter is 

illustrated in the example network shown in Figure 1a below. In reality, fluxes ν5-ν8 

would involve multiple substrates and potentially co-factor pairs such as ATP/ADP or 

NAD+/NADH which could lead to excessive generation of energy and redox potential, 

as fluxes (ν5-ν8) would form a type III extreme pathway. This problematic behavior is 

further exacerbated by the fact that large GEMs contain a number of extracellular 

reactions that are allowed to import, export or extracellularly convert metabolites 

into other chemical species. ccFBA attempts to resolve the issues outlined above, by 

constraining the permissible flux through intracellular reactions based on the 

amount of carbon taken up by the cell under the studied physiological conditions 

(Figure 1b). In the carbon-constrained example network, fluxes ν5-ν8 are 

constrained based on the maximum carbon taken up supplied through ν1 (Figure 

1b). While at its core, ccFBA imposes constraints based on the elemental balance of 

carbon on a constraint-based model, several aspects of cellular metabolism need to 

be taken into account and are elaborated in the following section. 

Figure 1 

ccFBA requires all sources of carbon uptake and their detailed chemical formulae to 

be known and an appropriately constrained FBA model. Therefore, availability of 

experimental measurements for major carbon sources (e.g. glucose, glycerol, etc.) in 

the form of uptake and secretion rates need to be provided. In the absence of 

experimental measurements for some carbon uptake rates, relevant values from 

literature can be used. In addition, detailed knowledge of culture media composition 

is necessary in order to determine compounds available for uptake and compounds 
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completely absent from the simulated experiment or condition. Below we present 

an overview of the basic concept of the proposed methodology using a simple 

example before presenting the entire algorithm in detail. Let us consider the case of 

a reversible reaction involving two substrates, two products and a co-factor pair 

(Reaction 1):  

1 𝐺3𝑃 + 1 𝑃 + 1 𝑁𝐴𝐷+  ⇔ 1 𝐵𝑃𝐺 + 1 𝐻+ + 1 𝑁𝐴𝐷𝐻 (R1) 

Using the chemical formula for each of the involved species this can be written as: 

𝐶3𝐻5𝑂6𝑃 + 𝑃𝑖 + 𝐶21𝐻26𝑁7𝑂14𝑃2 ⇔ 𝐶3𝐻4𝑂10𝑃2  + 𝐻 + 𝐶21𝐻27𝑁7𝑂14𝑃2 (R2) 

Let us further assume that the total amount of carbon taken up by the cell (CTOT) is 

equal to 9 mmolC gDCW-1 h-1. In this particular reaction, NAD+ and NADH act as co-

factor pair and consequently their carbon atoms do not immediately participate (i.e. 

are exchanged or cleaved) in the reaction. Hence, co-factor pairs such as 

NAD+/NADH, should not be considered when estimating the permissible carbon flux 

through biochemical reactions. Without loss of generality, we can apply the same 

rationale to the most commonly met co-factor pairs in metabolic networks. 

Consequently, excluding the co-factor pair, only 3 carbon atoms (NC = 3) are being 

exchanged in reaction 1. Therefore, taking into consideration the total amount of 

carbon being taken up by the cell (CTOT = 9 mmolC gDCW-1 h-1) and the inherent 

assumption of FBA for the existence of a metabolic pseudo-steady state, the 

maximum carbon flux through the reaction (R1) can be estimated as: 

𝑣𝑚𝑎𝑥 = 𝐶𝑇𝑂𝑇
𝑁𝐶

= 3 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊−1 ℎ−1  (E7) 

Equation 7, provides a hard upper bound on the permissible flux through reaction 1, 

based on the amount of carbon cycling through the metabolic network. As reaction 1 

is bidirectional, the resulting bound constraints can be written as 

(−3 mmol 𝑔𝐷𝐶𝑊−1ℎ−1 ≤ 𝑣𝑥 ≤ 3 mmol 𝑔𝐷𝐶𝑊−1ℎ−1). This approach can be 

extended to the entire metabolic network; the steps of the ccFBA algorithm are 

detailed below:  
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1. Identification of all exchange (or “drain”) reactions contained in the FBA 

model. These are reactions in the general form: 

𝑚𝑖
𝑒𝑥

𝑣𝑗
𝐸𝑋

��  ′ ′  (E8) 

Where 𝑚𝑖
𝑒𝑥 is the extracellular concentration of metabolite (i) and 𝑣𝑗𝐸𝑋 is 

the flux through exchange reaction (j). 

2. Exchange reactions containing carbon need to be split based on 

directionality (uptake or secretion). The upper (vUB) and lower (vLB) 

bounds of exchange reactions involving carbon containing metabolites 

that are present in the culture media (𝑣𝑗
𝐸𝑋,𝑝𝑟𝑠) should be adjusted to 

allow uptake and secretion: 

𝑣𝑗
𝐿𝐵,𝑝𝑟𝑠 ≤ 𝑣𝑗

𝐸𝑋,𝑝𝑟𝑠 ≤ 𝑣𝑗
𝑈𝐵,𝑝𝑟𝑠, where 𝑣𝑗

𝑈𝐵,𝑝𝑟𝑠 ≥ 0 𝑎𝑛𝑑 𝑣𝑗
𝐿𝐵,𝑝𝑟𝑠  ≤ 0 

 (
E9) 

Similarly, the bounds for exchange reactions involving carbon containing 

metabolites absent from the culture media (𝑣𝑗
𝐸𝑋,𝑎𝑏𝑠) should be adjusted 

to allow only secretion:  

𝑣𝑗
𝐿𝐵,𝑎𝑏𝑠 ≤ 𝑣𝑗

𝐸𝑋,𝑎𝑏𝑠 ≤ 𝑣𝑗
𝑈𝐵,𝑎𝑏𝑠, where 𝑣𝑗

𝐿𝐵,𝑎𝑏𝑠 ≥ 0 (E10) 

3. Available experimental data for uptake and secretion rates are integrated 

in the model by adjusting the bounds of the appropriate exchange 

reaction constraints. Variability in the reported experimental values 

should be reflected in the set upper and lower bounds so that all 

experimental values fall within the bounds. If the available experimental 

data does not contain values for all exchange reactions set as uptakes, 

relevant values should be sourced from literature. If such values are not 

available for conditions similar to the physiology being studied, the lower 

bound should be set to allow, at most, a carbon uptake rate equal to the 

highest experimentally measured carbon uptake rate (usually a primary 

substrate such as glucose). This can be calculated as: 
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𝑣𝑢𝑘𝐿𝐵 ≤ 𝑣𝐶𝑚𝑎𝑥

𝐿𝐵 𝑁𝐶𝑚𝑎𝑥
𝐶

𝑁𝑢𝑘
𝐶  (E11) 

where 𝑣𝑢𝑘𝐿𝐵 is the unknown lower bound of the exchange reaction we 

wish to calculate, 𝑣𝐶𝑚𝑎𝑥
𝐿𝐵  is the lower bound of the exchange reaction 

carrying the highest amount of carbon, 𝑁𝐶𝑚𝑎𝑥
𝐶  is the number of carbon 

atoms participating in the highest carbon uptake and 𝑁𝑢𝑘𝐶  is the number 

of carbon atoms participating in the unknown uptake we wish to 

calculate. 

4. The total carbon consumed (CTOT) is calculated through the sum of 

products of each uptake rate (𝑣𝑢
𝐿𝐵,𝑝𝑟𝑠) multiplied with the number of 

carbon atoms present in the taken up metabolite (𝑁𝑢𝐶). 

𝐶𝑇𝑂𝑇 = ∑ �𝑣𝑢
𝐿𝐵,𝑝𝑟𝑠 ∙ 𝑁𝑢𝐶�

# 𝑢𝑝𝑡𝑎𝑘𝑒𝑠
𝑢=1  (E12) 

Only the lower bound is considered in the calculation of CTOT to ensure 

that the maximum feasible amount of taken up carbon is estimated.  

5. The maximum allowable flux (𝑣𝑗𝑐𝑐) through each intracellular reaction (j) 

can be calculated based on the total amount of carbon available (CTOT) 

and the number of carbon atoms participating in each reaction (𝑁𝑗𝐶). 

 𝑣𝑗𝑐𝑐 = 𝐶𝑇𝑂𝑇
𝑁𝑗
𝐶

 (E13) 

Consequently, unidirectional intracellular reactions can be constrained 

between [0, 𝑣𝑗𝑐𝑐], while bidirectional intracellular reactions can be 

constrained between [−𝑣𝑗𝑐𝑐, 𝑣𝑗𝑐𝑐]. It is important to note, that when 

calculating (𝑣𝑗𝑐𝑐) substrates that do not participate in the reaction 

through their carbon atoms, such as co-factors, should be excluded from 

the calculation. This includes currency metabolites such as NAD+/NADH, 

NADP+/NADPH, FAD/FADH2, ATP/ADP-AMP but also coenzyme A, 

cytochromes and quinones. The algorithm (available on github: 

https://github.com/usMiggs/ccFBA) accounts for the most common non-
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carbon contributing metabolites but a user defined list can be 

additionally provided (SuppInfo4). Furthermore, some metabolic 

reconstructions include generalized R-groups, particularly as part of lipid 

metabolism, which can contain a variable amount of carbon atoms. In 

such cases, the lowest possible number of carbon atoms is used for a 

more conservative constraining approach (see SuppInfo4 for more 

details). When the number of carbon atoms (NC) can not be defined 

either due to missing chemical formulae or in the case of inorganic 

reactions, the bounds should be left at their default value. 

6. Finally the model is tested for solvability with the given constraints and 

compared to experimental rates (e.g. growth rate) if available. If a 

feasible solution cannot be found with the bounds imposed by ccFBA, the 

bounds can be uniformly relaxed by introducing an incremental, 

percentage increase of the total amount of carbon available to the model 

(𝐶𝑇𝑂𝑇) until a feasible solution is achieved (see SuppInfo4 for more 

details). Optionally, a ccFVA can be performed which may lead to a 

further reduction of 𝐹𝜈𝑇𝑂𝑇 (see SuppInfo4 for more details). It is 

recommended to compare the amount of carbon being taken up through 

the set exchange rates against the amount of carbon being secreted 

through the respective exchange rates (carbon closure). This enables an 

accurate approximation of unmeasured secretion rates (e.g. CO2 in 

mammalian cell culture) but also may identify unknown carbon sources 

or inconsistencies in the experimental data.  

Results & Discussion 

A series of studies that report experimentally measured values for both extracellular 

(uptake/secretion) and intracellular fluxes were used to evaluate the performance of 

ccFBA (Templeton et al. 2017, McAtee Pereira et al. 2018, and Ahn & Antoniewicz 

2011). The curated iCHO1766 model was constrained to reflect each experimental 

dataset using the reported values for extracellular reactions only and the ability of 

ccFBA/ccFVA to predict intracellular fluxes was compared to that of traditional 
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FBA/FVA. Rates for all major carbon sources and sinks such as glucose, lactate, 

amino acids, biomass and product formation were constrained based on 

experimental data while all other metabolite exchange rates were constrained to 

allow only secretion. After imposing the constraints on exchange fluxes, all 

experimental datasets were tested for solvability without carbon constraining as well 

as their ability to predict biomass and product yields (solving for maximum biomass 

or product yield without imposing upper bound constraints on them). Predictions of 

biomass and product formation were generally very close (e.g. experimentally 

determined growth rate = [0.0168 – 0.0238 h-1], FBA value = 0.0284) to or even 

within the experimentally measured values (e.g. experimentally determined growth 

rate = [0.0150 – 0.0213 h-1], FBA value = 0.0198). However, the wide flux ranges (FV) 

reported for intracellular reactions, limit our ability to draw any conclusions 

regarding the underlying metabolic phenotype. 

Flux variability with (ccFVA) and without (FVA) carbon based constraints 

A total of seven experimental datasets, corresponding to seven distinct sets of 

culture conditions (Table 2) were considered. Compared to traditional FVA, ccFVA 

reported a lower flux variability (FV) for 58% ± 7% of the reactions in iCHO1766 

across all 7 experimental datasets. This result compares well with the value reported 

by Sanchez et al. using the GECKO method (60% of the reactions showed reduced 

flux variability) (Sánchez et al., 2017). Furthermore, ccFVA led to a significant 

reduction in total flux variability ( 𝐹𝑉𝑇𝑂𝑇, Equation 6) with the extent of reduction 

being dependent on two factors: (i) the arbitrary value used to constrain intracellular 

fluxes and (ii) the total amount of carbon consumed by the cell (CTOT). According to 

common FBA practice, arbitrarily large bounds are applied to unknown intracellular 

fluxes constraining bidirectional reactions between [-1000, 1000] mmol gDCW-1 h-1 

and unidirectional reactions between [0 , 1000] mmol gDCW-1 h-1 (Bordel, Agren, & 

Nielsen, 2010; Chaudhary, Tøndel, Puchałka, Santos, & Bhatnagar, 2016; Kelk et al., 

2012; Maranas & Zomorrodi, 2016; Opdam et al., 2017; Yang et al., 2016). In the 

present study, three different arbitrary values for the bounds of unknown 
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intracellular fluxes (10, 100, and 1000 mmol gDCW-1 h-1) were considered (SuppInfo2 

Figures S1 and S2). 

Our results (SuppInfo2 Figure S3) indicate a negative linear dependence between the 

reduction in 𝐹𝑉𝑇𝑂𝑇and CTOT. The lower the arbitrary value used to constrain unknown 

intracellular fluxes the higher the percentage reduction in 𝐹𝑉𝑇𝑂𝑇 with increasing 

carbon uptake (CTOT), as indicated by the increasing negative gradient of the linear fit 

from 𝑅1000
𝐹𝑣,𝑇𝑂𝑇 (slope = -0.018) to 𝑅10

𝐹𝑣,𝑇𝑂𝑇
 (slope = -1.511). ccFVA was able to reduce 

total flux variability (𝐹𝑉𝑇𝑂𝑇) by at least 85% compared to normal FVA across the set of 

21 simulations considered (7 experimental datasets using 3 different arbitrary values 

to constrain unknown intracellular fluxes). Crucially when constraining unknown 

intracellular fluxes using the values most commonly met in literature, between 100 – 

1000 mmol gDCW-1 h-1, ccFVA resulted in a reduction of total flux variability of at 

least 95%. The substantial difference in the size of the resulting solution space on a 

reaction basis can be seen for the stationary growth condition data as reported by 

Ahn & Antoniewicz (2011) in Figure 2 (results for all other conditions can be found in 

supplementary materials SuppInfo2 Figures S4 - S9). Over 50% of the reactions of the 

FVA treated model use their maximum flux range (in this example 1000 mmol gDCW-

1 h-1). A reduction of this magnitude has significant implications when considered in 

the context of sampling the space of feasible solutions of a GEM using Monte-Carlo 

methods. The benefits of using ccFVA to adjust the bounds of intracellular reactions 

prior to sampling are twofold: (i) a significantly higher proportion of the sampled flux 

distributions will contain physiologically relevant solutions, devoid of internal loops 

and unrealistically high flux values and (ii) the resulting solution space will be 

considerably smaller increasing computational efficiency and leading to faster 

convergence of sample statistics. 

Figure 2 

One of the main benefits of ccFBA/ccFVA is the ability to mitigate the impact of 

internal loops which are prevalent in large-scale, highly interconnected networks 

(Price, Reed, & Palsson, 2004). A closer observation of the FVA results presented in 
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Figure 3 (A-G: grey, blue, and green bars) highlights six central carbon reactions that 

are allowed to carry physiologically unrealistic amounts of flux and are likely to be 

involved in internal loops. These include isocitrate dehydrogenase (IDH), malate 

dehydrogenase (MDH), fumarase (FUS), ribose-5-phosphate isomerase (PPI), lactate 

dehydrogenase (LDH), and triose phosphate isomerase (TPI) indicated by their 

minimum and maximum permissible flux being equal to the set upper and lower 

bounds. While ccFVA does not explicitly attempt to remove internal loops, it reduces 

the flux carried through such reactions to a physiologically meaningful range (Figure 

3 A-G: red bars) and consequently limits their impact in terms of potential electron 

or ATP drains (Maranas & Zomorrodi, 2016).  

In addition, the implementation of ccFVA does not modify the underlying LP problem 

formulation or increase its complexity as it acts directly on the bounds of 

intracellular reactions. The benefits of this approach are twofold: (i) it makes ccFBA 

fully compatible with other methods, such as ll-FVA (Schellenberger, Lewis, et al., 

2011), tFBA (Henry et al., 2007), GECKO (Sánchez et al., 2017), FCF (Burgard, 

Nikolaev, Schilling, & Maranas, 2004) or lll-FVA (Chan et al., 2018) and can be used in 

tandem to further refine the predicted flux distributions and (ii) it makes 

ccFBA/ccFVA computationally efficient compared to approaches that recast or 

modify the original LP formulation (for example through the implementation of 

additional constraints). This results in execution times significantly (p>0.001) faster 

than other approaches (Table 3). 

Figure 3 

Table 3 : In order to investigate how ccFVA scales with model size, a series of 

simulations involving models of increasing complexity were performed. The 

predictions (SuppInfo2 Figure S10) and computational efficiency (Table 3) of ccFVA 

were compared against traditional FVA and loopless-FVA (Schellenberger, Lewis, et 

al., 2011). As expected, the computational time increases with model size for all 

three methods. Interestingly, ccFVA outperforms normal FVA for the largest model 

examined (iCHO1766) which implies that the reduction in flux variability achieved by 
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the carbon based constraints increases the efficiency of the subsequently run FVA 

algorithm. 

Comparing ccFVA predictions with intracellular flux measurements 

The upper and lower bounds calculated by ccFBA are based on the total amount of 

carbon (CTOT) being taken up by the cell. An inherent assumption being made is that 

any biochemical reaction within the metabolic network has access to all of the 

carbon entering the cell. While an improvement over arbitrarily selected bounds, 

this is a generous assumption that will result in the overestimation of the permissible 

flux range for many nodes in the network. Therefore, despite the significant 

reduction in total flux variability compared to normal FVA, the permissible flux 

ranges calculated using ccFVA are still expected to contain the “true” phenotypic flux 

distribution. In order to validate this statement, the results of ccFVA were compared 

against intracellular flux measurements conducted using 13C labelled glucose for 

each of the seven experimental datasets considered (Figure 4). Not only were nearly 

all experimental flux ranges contained within the permissible flux range calculated 

by ccFVA, they were also mostly within the same order of magnitude as the 

calculated ccFVA flux ranges highlighting the reliability of the proposed method. 

Only two reactions had measured flux values that were not within the flux range 

calculated by ccFVA (isocitrate dehydrogenase and citrate synthase) and this was the 

case in only one of the seven datasets considered (Figure 4G). However, in both 

cases the experimentally measured flux values were very close to the range reported 

by ccFVA indicating that the observed discrepancy could be caused by an 

experimental or conversion calculation error. 13C measurements are prone to a 

number of measurement errors such as suboptimal metabolism quenching, 

unaccounted carbon sources in the media (Mairinger et al., 2018), or errors in 

conversion calculations. An example of the latter is the conversion of experimental 

flux values from the conventionally reported g cells-1 h-1 into mmol gDCW-1 h-1 

usually used in GEMs. This conversion requires the dry cell weight of the culture to 

be determined based on the viable cell concentration. The cell size and dry cell 

weight of individual cells varies through cultures leading to difficulties in estimating 
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dry cell weight accurately (Pan, Dalm, Wijffels, & Martens, 2017) and is a known 

potential source of error (Ahn & Antoniewicz, 2011). A comprehensive list of 

potential errors in 13C measurements has been reported by Mairinger and co-

workers (Mairinger et al., 2018). Despite this minor discrepancy, the predictions of 

biomass and product yields were not affected by ccFBA/ccFVA in any of the seven 

experimental datasets considered compared to the reported experimental values 

further increasing confidence in the algorithm. 

Figure 4 

Random sampling of feasible flux distributions with (ccFVA) and without 
(FVA) carbon based constraints 

Once the region of feasible flux distributions has been defined either via FVA or 

ccFVA, random sampling of flux distributions from the resulting solution space can 

be used to enhance behavioral understanding of the network state (Mo, Palsson, & 

Herrgard, 2009; Schellenberger & Palsson, 2009; Shlomi, Benyamini, Gottlieb, 

Sharan, & Ruppin, 2011). Each of the 7 experimental conditions considered were 

uniformly sampled using the ACHR sampler included in the COBRA toolbox 

(Schellenberger, Que, et al., 2011). Prior to ACHR sampling, the GEM was 

constrained using the experimentally reported extracellular fluxes in combination 

with either normal FVA (RSFVA) or ccFVA (𝑅𝑆𝐹𝑉𝐴𝑐𝑐 ) results. Each experimental condition 

was sampled until 200,000 unique flux distributions had been retrieved using a set of 

warm-up points equal to four times the number of reactions in the GEM. The 

resulting sampled flux distributions were compared to determine if carbon based 

constraints improve the reliability and efficiency of flux sampling. 

Figure 5 (A-G) presents the estimated sample means with their respective standard 

deviations for reactions in central carbon metabolism and compares them against 
13C experimental data. Overall, random sampling of feasible flux distributions led to 

narrower predicted flux ranges compared to the FVA ranges irrespective of the 

method used to constrain the model. The sampled flux distributions calculated from 

models using ccFVA constraints (𝑅𝑆𝐹𝑉𝐴𝑐𝑐 ) were substantially narrower and in better 

agreement with experimentally measured values when compared with samples 
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constrained with normal FVA (RSFVA). Moreover, the sampled distributions for all 

reactions where the permissible flux range predicted by FVA (Figure 3) coincided 

with the initially set bounds (-1000 ≤ νi ≤ 1000 mmol gDCW-1 h-1) remained very wide 

(Table 4) for all RSFVA samples. Crucially, for the CM dataset (Figure 5A) the sampled 

means derived from RSFVA could not predict the correct reaction directionality for 

four reactions (indicated with a § in Table 4). This inability to predict reaction 

directionalities with RSFVA could be observed in all datasets considered (Figure 5) 

leading to a mismatch for 33 out of 149 (22%) experimentally determined 

directionalities. In comparison sample means derived from 𝑅𝑆𝐹𝑉𝐴𝑐𝑐  failed to predict 

only 14 out of 149 (9%) experimentally measured reaction directionalities, all for 

reactions that RSFVA had also failed to predict (except LDH reaction Figure 5F). This is 

an improvement of > 50% and highlights the benefits of using ccFVA not only to 

reduce flux variability but also to obtain improved predications in terms of reaction 

directionality. 

Figure 5 

Table 4 

Conclusion 

Herein we presented ccFBA/ccFVA, a fast and simple method to accurately constrain 

stoichiometric metabolic networks using physiologically relevant assumptions. We 

demonstrated ccFVA’s ability to reduce total flux variability by >85% (initial bounds 

1000 mmol gDCW-1 h-1) and >95% (initial bounds ≤100 mmol gDCW-1 h-1) compared 

to standard FVA techniques. A set of seven distinct experimental datasets containing 
13C measurements for central carbon fluxes were retrieved from literature and used 

to validate the predictive capabilities of ccFVA. We showed that permissible flux 

ranges estimated by ccFVA contained the experimentally measured intracellular 

fluxes in the majority of cases and lead to quantitative predictions in the same order 

of magnitude as 13C measurements. This can be attributed to ccFVA’s ability to 

mitigate the impact of internal loops or futile cycles by constraining the amount of 

flux able to pass through any single reaction based on the amount of carbon entering 

the cell. Moreover, when used in combination with random sampling, ccFVA 
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substantially improved our ability to predict reaction directionalities compared to 

normal FVA. ccFBA is an easy to use and computationally efficient method for 

reducing flux variability in and increasing the reliability of constrained-based 

metabolic networks. It can be used as a stand-alone method or as a complimentary 

tool to most other methods currently available for stoichiometric metabolic network 

analysis. Finally, the method can be expanded to consider additional elemental 

balances such as nitrogen and phosphorous which could be beneficial when studying 

other organisms such as algae or specific types of bacterial strains. Future updates of 

ccFBA will include additional elemental balances and will be made available online 

through the github repository. 
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Nomenclature 

Abbreviation Explanation Reaction ID 
iCHO1766 

IDH aconitate hydratase / isocitrate dehydrogenase (NAD+ and 
NADP+) 

2001 / 1591 / 
1593 

ADH 2-oxoglutarate dehydrogenase 1589 / 2561 

CS citrate synthase 1590 

MDH malate dehydrogenase 1594 

FUS fumarase 2191 

SDH succinate dehydrogenase 1595 
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PDH pyruvate dehydrogenase 2457 

TKT2 transketolase 1803 

TAL transaldolase 2563 

TKT1 transketolase 1802 

PPI ribose-5-phosphate isomerase 2506 

PPE ribulose 5-phosphate 3-epimerase 2505 

G6PDH L-gulonate 3-dehydrogenase / 6-phosphogluconolactonase 
/ phosphogluconate dehydrogenase 

1797 / 2464 / 
2675 

LDH lactate dehydrogenase 1720 

HK hexokinase 2313 

PK pyruvate kinase 1723 

ENO phosphoglycerate mutase / enolase 1722 / 2157 

GAPDH glyceraldehyde-3-phosphate dehydrogenase / 
phosphoglycerate kinase 1719 / 1721 

TPI triose-phosphate isomerase 1724 

PFK phosphofructokinase / fructose-bisphosphate aldolase 2462 / 1716 

PGI glucose-6-phosphate isomerase 2674 

GALK galactokinase / UDP-glucose: alpha-D-galactose-1-
phosphate uridylyltransferase / phosphoglucomutase 

2258 / 2595 / 
2465 
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Tables 

Table 1: Example for reported experimental flux corresponding to multiple reactions within the 
iCHO1766 model. 

Enzyme Reaction iCHO1766 ID iCHO1766 Reactions 

PFK F6P → DHAP + GAP 2462;1716 1) 'atp_c + f6p_c -> h_c + adp_c + fdp_c ' 
2) 'fdp_c <=> dhap_c + g3p_c ' 

 

Table 2: Process information on experimental data used in this study. Further information can be 
found in the respective original publications. 

Code Media Cell 
type 

Culture type Culture 
phase 

Source 

CM  Sanofi in-hose chemically 
defined CHO cell growth 
media 

mAb 
producing 
CHO cells 

Batch culture in  

250 mL Shakeflasks 

Exponential 
growth phase 

McAtee 
Pereira et al., 
2018 

LA  Adjusted CM media with 
changes in 5 AA 
concentrations 

LAp  Same composition as LA 
except suplimented with 
4mM Ammonia as control 
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EXP 

DMEM + 10% FBS + 1% 
penicillin–streptomycin 

CHO-K1 
cells 

Fed-batch in  

T-25 flasks 

Exponential 
growth phase 

Ahn & 
Antoniewicz, 
2011 

STAT  Stationary 
phase 

FB 

Proprietary chemically 
defined CHO cell media 
and feeds 

IgG1 
producing 
GS-CHO 

Fed-batch in 3L glass 
bioreactor 

Stationary 
phase 

Templeton et 
al., 2017 

PF  Perfusion in 3L glass 
bioreactor with ATF 

 

Table 3: Comparison of computational efficiency for FVA, ll-FVA and ccFVA using Gurobi solver. 
Efficiency is reported as execution time in seconds. In addition to the iCHO1766 model the 
performance comparison was expanded to a wider range of publically available constraint-based 
models including the E.coli core model (Orth, Palsson, & Fleming, 2010) and the iMM904 yeast 
model (Mo et al., 2009). Run times were measured on a standard laptop with an Intel Core i7-
5600U CPU processor @ 2.60 GHz and 16GB of RAM on Windows 7 64-bit operating system. 

  Execution time (s) 

 # of Reactions FVA ll-FVA ccFVA 

E.coli core 95 0.97a 4.20a 2.01a 

iMM904 1577 45.25a 10263b 59.32a 

iCHO1766 5237 871.02a >86400c 475.34a 

a average across six consecutive simulations. b average across three consecutive simulations. c simulation was 
aborted at the reported time. 

Table 4: Sample mean data for selected reactions of the CM data set shown in Figure 5A (McAtee 
Pereira et al., 2018). All values shown are in mmol gDCW-1 h-1. Reactions indicated with a section 
sign (§) show differences in predicted directionalities between RSFVA and 𝑹𝑺𝑭𝑽𝑨𝒄𝒄 . 

 

TPI GAPDH§ LDH PPI  FUS MDH§ IDH§ 

13C mean 0.29 -0.60 -0.29 -0.02 0.35 0.21 0.29 
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ccFVA SM 0.39 -0.82 -0.62 -0.02 0.13 0.45 0.16 

FVA SM 47.58 80.87 -18.41 -11.92 3.44 -70.03 -29.07 

 

Figures 

Figure 1: Example network illustrating a conventionally constraint network (a) and a carbon 
constraint network (b). The arrow thickness is not to scale and is only for visual accentuation of the 
differences in flux magnitude. 

 

Figure 2: Comparison of reaction flux ranges between ccFVA and FVA treated iCHO1766 model 
under experimental constraints. Shown in this graph are the flux ranges for the stationary growth 
condition as reported by Ahn & Antoniewicz, 2011. Results for all other conditions can be found in 
Supplementary materials SuppInfo2 Figures S4 - S9. For the purpose of this illustration, all 
bidirectional reactions were split into two individual reactions resulting in a maximum flux range of 
1000 mmol gDCW-1 h-1. The y-axis shows the normalized number of non-zero flux reactions as the 
number differs between the two different methods. The x- axis shows the flux range on a log-scale 
with a maximum flux range of 1000 mmol gDCW-1 h-1. 
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Figure 3: Flux Variability Analysis. (A-G): Comparison between normal FVA (blue, green, grey bars 
correspond to data from Templeton et al., 2017; Ahn & Antoniewicz, 2011; McAtee Pereira et al., 
2018 respectively) and ccFVA (red bars) for central carbon metabolism reactions (glycolysis, TCA, 
PPP) in iCHO1766 across seven distinct experimental datasets. The initial arbitrary bounds vLB and 
vUB were set to 0 and 100 mmol gDCW-1 h-1 for unidirectional and -100 – 100 mmol gDCW-1 h-1 for 
bidirectional reactions. The discontinued x-axis was chosen in order to increase visibility on the very 
small flux ranges compared to the ones reaching the large initially set bounds. 
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Figure 4: Comparison of ccFVA to intracellular flux measurements for central carbon metabolism 
(Glycolysis, TCA, PPP). (A-G): Comparison between ccFVA (blue, green, grey bars correspond to data 
from Templeton et al., 2017; Ahn & Antoniewicz, 2011; McAtee Pereira et al., 2018 respectively) 
and 13C measurements (orange bars).  
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Figure 5: Random Sampling of Feasible Solution Space: Comparison of sample means derived from 
FVA () and ccFVA () constrained iCHO1766 in compariosn to intracelullarly measured fluxes (█). 
A total of 200,000 samples were generated for each scenario per experimental condition. Plotted 
are the means with their respective standard deviation. Reactions marked with a section sign (§) 
indicate erroneous identification of reaction directionality by samples derived from models 
constrained with normal FVA (𝑹𝑺𝑭𝑽𝑨) but correct prediction by models constrained with ccFVA 
(𝑹𝑺𝑭𝑽𝑨𝒄𝒄 ). Reactions marked with a double dagger sign (‡) indicate erroneous identification of 
reaction directionality by samples derived from models constrained with both, RSFVA and 𝑹𝑺𝑭𝑽𝑨𝒄𝒄 . 
Reactions marked with a dagger symbol (†)indicate erroneous identification of reaction 
directionality by samples derived from 𝑹𝑺𝑭𝑽𝑨𝒄𝒄  but correct prediction by models constrained with 
𝑹𝑺𝑭𝑽𝑨. A-B: Results for Templeton’s data (FB and PF). C-E: Results for McAtee’s data (CM, LA, and 
LAp respectivly). F-G: Results for Ahn’s data (EXP and STAT). 
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