
Improving the Accuracy of Network Intrusion Detection
Systems Under Load Using Selective Packet Discarding

Antonis Papadogiannakis, Michalis Polychronakis, Evangelos P. Markatos
Institute of Computer Science,

Foundation for Research and Technology – Hellas
Heraklion, Crete, Greece

{papadog,mikepo,markatos}@ics.forth.gr

ABSTRACT
Under conditions of heavy traffic load or sudden traffic bursts,
the peak processing throughput of network intrusion detec-
tion systems (NIDS) may not be sufficient for inspecting all
monitored traffic, and the packet capturing subsystem in-
evitably drops excess arriving packets before delivering them
to the NIDS. This impedes the detection ability of the sys-
tem and leads to missed attacks. In this work we present
selective packet discarding, a best effort approach that en-
ables the NIDS to anticipate overload conditions and mini-
mize their impact on attack detection. Instead of letting the
packet capturing subsystem randomly drop arriving packets,
the NIDS proactively discards packets that are less likely to
affect its detection accuracy, and focuses on the traffic at the
early stages of each network flow. We present the design of
selective packet discarding and its implementation in Snort
NIDS. Our experiments show that selective packet discard-
ing significantly improves the detection accuracy of Snort
under increased traffic load, allowing it to detect attacks
that would have otherwise been missed.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.4.8
[Operating Systems]: Performance—Measurements, Mon-
itors, Operational analysis

General Terms
Security, Performance, Experimentation

Keywords
intrusion detection, selective packet discarding, overload con-
trol

1. INTRODUCTION
Network Intrusion Detection Systems (NIDSs) are crucial

for the detection of security violations and suspicious activ-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EUROSEC ’10, Paris, France
Copyright 2010 ACM 978-1-4503-0059-9/10/04 ...$10.00.

ity, enhancing the robustness and secure operation of mod-
ern networks. However, the constant increase in link speeds
and number of security threats poses significant challenges to
NIDSs, which need to cope with higher traffic volumes and
perform increasingly complex per-packet processing. When
the network traffic load becomes higher than the peak pro-
cessing throughput the NIDS can sustain, the CPU becomes
saturated, and the Operating System inevitably starts drop-
ping packets before delivering them to the NIDS, impeding
its detection ability. Since these packets are not inspected,
if they are part of an attack or other malicious activity, then
that event will be missed.

Several techniques have been proposed for improving the
performance of NIDSs by accelerating the packet processing
throughput and thus processing higher traffic loads [2, 4,
9, 23]. Other techniques automatically tune the NIDS con-
figuration to balance detection accuracy and resource re-
quirements [6,10]. However, given a highly loaded network,
intrusion detection systems based on non-specialized hard-
ware are usually not able to analyze all traffic to the desired
degree [18]. Even after carefully tuning the NIDS according
to the monitored environment, it will still have to cope with
inevitable traffic bursts or processing spikes [19].

In this paper, we present selective packet discarding, a
technique that allows a NIDS to dynamically diagnose con-
ditions of excessive traffic load and minimize their impact
on its detection accuracy by choosing which packets should
be dropped. Using selective packet discarding, the system
selectively skips processing packets that are less likely to af-
fect the correct operation of the detection engine as soon as
possible, instead of letting the Operating System randomly
drop arriving packets. This allows the NIDS to inspect a
larger number of “useful” packets that are important to the
detection process.

We observe that the first packets of a connection play a
crucial role in the correct detection of a large class of at-
tacks. For instance, signatures for threats like network ser-
vice probes and reconnaissance attacks, brute force login at-
tempts, protocol misbehaviour, and code-injection attacks,
usually match packets that are among the first few hundred
packets of a network flow. Moreover, the first control pack-
ets of a TCP connection are crucial to proper flow tracking
and TCP stream reassembly, which are mandatory features
of modern NIDSs [8, 16]. If any of the packets in the TCP
three-way handshake is lost, the corresponding flow will not
be considered established, and potential attack vectors in
this flow may evade detection. On the other hand, very
large flows usually correspond to file transfers, P2P traffic,

or streaming media applications, which typically are not re-
lated to security threats. Inspecting all packets from such
“heavy-hitters,”which comprise a large percentage of the to-
tal traffic, usually does not contribute much to the detection
accuracy of a NIDS.

We implemented selective packet discarding in the Snort
NIDS [17] as a preprocessor that runs before the detection
engine. We experimentally evaluated our technique using
production traffic, mixed with real attacks that Snort can
detect. Under overload conditions, the original Snort imple-
mentation misses a significant number of packets, resulting
to a considerably lower number of alerts, with many of the
labeled attacks in our trace passing undetected. In contrast,
selective packet discarding significantly improves the detec-
tion accuracy of Snort under increased traffic conditions,
allowing it to detect most of the attacks that would have
otherwise been missed.

2. SELECTIVE PACKET DISCARDING
Ideally, a NIDS should be able to capture and inspect

all network traffic passing through the monitored link. In
highly loaded networks, this may not be possible due to the
limited computational power of the monitoring sensor. For
traffic speeds higher than a few hundred Mbit/s, the sys-
tem cannot process all monitored traffic, which unavoidably
leads to packet drops [18].

One way to offload the detection engine is to select a sub-
set of the monitored traffic to be excluded from the NIDS
processing using a capture filter during initialization [12].
However, events of excessive traffic load or bursty traffic can
still occur. Given that under such conditions some packets
will unavoidably get lost, we argue that it is better to proac-
tively discard those packets that are less likely to affect the
detection effectiveness of the system, instead of letting the
OS drop packets at random.

In this section, we describe in detail the design and im-
plementation of selective packet discarding. We first discuss
which packets should be considered for discarding, and we
propose a selection based on the position of packets in their
flows. Then, we describe the performance measurements
that the NIDS should perform periodically to monitor the
system’s load and decide when selective packet discarding
should be triggered. Finally, we present an algorithm that
dynamically estimates how many packets should be dropped
according to the system performance measurements.

2.1 Flow-based Packet Selection
The starting point of our work is the observation that in

a typical NIDS, some network packets play a more impor-
tant role for the detection of a large class of threats than
the rest of the traffic, i.e., without processing them, there is
an increased probability to miss an attack. For example, in-
specting the protocol interactions of commonly targeted ser-
vices like RPC and NETBIOS seems more important than
inspecting a large file transfer of a file-sharing application.

Probably the most widely used abstraction when referring
to network traffic, besides the network packets themselves,
is the network flow. A network flow comprises packets with
the same protocol, source and destination IP addresses, and
source and destination port numbers (same 5-tuple) and rep-
resents a connection between two hosts.

The first packets of a network connection are very im-
portant for the correct detection of a large class of attacks.

Many types of threats like port scanning, service probes and
OS fingerprinting, code-injection attacks, and brute force lo-
gin attempts, require a new connection for each attempt, and
the attack vector is usually present in the first few thousands
KB of the flow. By contrast, very large streams usually cor-
respond to file transfers, VoIP communication, or stream-
ing media applications, which typically are not related to
security threats. Very long flows usually comprise a large
portion of the total traffic in an organization’s network, and
inspecting the packets towards the end of such flows does
not contribute much to the detection accuracy of a NIDS.

Another reason for the increased importance of the first
packets of a connection is the flow tracking and TCP stream
reassembly functionality of modern NIDSs. The packets in
the three-way TCP handshake, which are always the first
packets in a TCP flow, are crucial for updating the state of
a new flow as established, identifying the direction of each
stream, and performing TCP stream reassembly. If a control
packet is lost during the connection initialization phase, the
corresponding flow will not be considered as established and
possible attack vectors present in subsequent packets of this
flow may evade detection.

We observe that 4627 of the 9276 rules in the default Snort
rule set [1] contain the flow:established keyword, which
defines that the detection engine should process the rest of
the rule only if the packet belongs to an established TCP
connection. If under high load conditions a packet of the
three-way handshake does not reach Snort’s flow tracking
preprocessor, then the rules that rely on flow tracking will
never match for that flow, and potential attacks will not be
detected. Furthermore, attack vectors that span multiple
packets in the beginning of the stream, such as the shell-
code of a code injection attack or the URI of a malicious
XSS HTTP request, are usually inspected after the original
stream has been reassembled. If packets are being dropped
randomly by the OS, the stream reassembly preprocessor
may not receive a packet containing part of an attack, leav-
ing the reassembled stream incomplete.

To verify our intuition based on the above observations,
we analyzed traces of real attacks and extracted the actual
position of the attack vector within the flow. We ran Snort
using real traffic captured at the access link of an educa-
tional institution network, which triggered 1976 alerts from
78 different rules. We further augmented the trace with
120 traces containing real attacks captured in the wild [15],
which Snort detects using the default rule set. We inter-
spersed these traces in random offsets within the large trace,
so that the resulting trace generates a total of 2252 alerts due
to 92 attack signatures. Further details about the trace and
the experimental environment are discussed in Section 3.1.

We slightly modified Snort to categorize packets into flows,
and report the rank of the matching packet within its flow.
Figure 1 shows the cumulative distribution of the matching
packet position within the flow for the 2252 alerts in the
trace. We observe that most of the alerts are triggered by
the first few packets of a flow. For instance, 90% of the
alerts were triggered within the first 30 packets of the flow,
and only 3% of the alerts are triggered from packets coming
after the 100th packet.

Flows usually follow a heavy tailed distribution on the In-
ternet, i.e., the great majority of the flows have a quite small
size, while only a very small subset has a very large size and
is responsible for most of the total traffic volume [7]. Our

Position of alert in the flow (packet’s rank)
0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.2

0.4

0.6

0.8

1

Figure 1: Distribution of the positions of matching

packets within their flows.

Flow size (#packets)
1 10 100 1000 10000 100000 1000000

C
D

F

0

0.2

0.4

0.6

0.8

1

Figure 2: Cumulative distribution of flow size

trace also follows this property, as we can see in Figure 2,
which shows the cumulative distribution of flow sizes. We
can see that 86% of the flows contain up to 10 packets, while
97% of the flows have no more than 70 packets. The average
flow size in the trace is 50.2 packets.

Based on these observations, we argue that NIDS under
high load conditions would benefit from focusing on the pro-
cessing of the first packets of each flow, and discarding the
rest. Selecting the packets to be processed by setting a flow
size limit seems promising, since it will affect a small per-
centage of flows, but will also exclude a large portion of the
total traffic from processing. Dynamically setting the flow
size limit according to NIDS’s load is an important aspect
of our approach, which we discuss in the rest of this section.

2.2 System Load Monitoring
Implementing selective packet discarding requires the fore-

casting of overload conditions that will probably lead to
dropped packets before the kernel actually starts dropping
them. Our system identifies overload conditions using three
metrics: the occurrence of packet drops, CPU utilization ap-
proaching 100%, and a comparison of NIDS processing time
and packet inter-arrival times.

Ideally, we would like to perform CPU measurements at
per-packet granularity. However, this would incur a pro-
hibitively high overhead. Instead, we measure the NIDS’s
CPU usage, processing time, and packet drops once every
N packets have been processed. We automatically choose
N based on the socket buffer size, to permit the timely de-
tection of overload conditions before any packet drops are
caused by the kernel, and based on the system’s timing res-
olution in measuring accurately CPU time.

Every N packets, the system examines whether any pack-
ets were dropped by the kernel in the elapsed period and
measures the user, system and real time the NIDS spent
while processing the group of N packets. The CPU utiliza-
tion is computed as (user time + system time)/real time.
For the third metric, we compare the time t required for
processing the group of N packets with the time interval s
during which these packets were observed on the network. If
t > s, then this is an indication that the kernel will probably
start dropping packets, if not already. Otherwise, if t < s,
the kernel did not drop any packets in that interval.

Since we need to predict packet loss events before the CPU
gets saturated, we set an upper threshold for CPU usage and
processing time, above which selective packet discarding is
triggered. When t < s and CPU usage is relatively low,

with no packet drop events during that period, the system
decides whether more packets per flow should be processed
or not based on a second lower threshold. These two thresh-
olds should be close enough to allow for optimum resource
usage and prevent CPU under-utilization. We also take into
account the typical CPU load variation during short term in-
tervals to avoid rapid oscillations, i.e, falling into a loop that
would change very often the flow size limit up and down.

After running Snort using different traffic speeds and ob-
serving the correlation between the traffic load, CPU load,
and packet drops, we set the upper threshold to 0.95 and the
lower threshold to 0.8, i.e., 95% and 80% CPU utilization,
respectively. Putting it all together, the NIDS triggers selec-
tive packet discarding if during the processing of the previ-
ous N packets i) some packets were dropped by the kernel,
or ii) CPU utilization > 0.95 and t > 0.95s. The condi-
tion for identifying an idle period is CPU utilization < 0.8
and t < 0.8s. Otherwise, the CPU utilization is within the
desirable range and the flow size limits remain the same.

2.3 Flow Size Limit Adjustment Algorithm
Upon detection of an overload condition, the NIDS should

back off and reduce the number of packets that it is going to
process. First, we need to specify how many packets should
be discarded, and then this number should be translated to
the proper reduction of the per-flow cutoff limit. Ideally,
the number of packets to be discarded should be such that
it would allow the processing time for the packets in the
following group to remain within the desirable range.

We need to reduce the processing time t to become equal
to 0.95s, i.e., the number of packets to be discarded from the
next group will correspond to processing time t − (0.95s),
that is (t − 0.95s)N/t packets. In case the system observes
packet drops in that interval, we should also consider it in
our decision. Therefore, the amount of packets that will
be discarded is the maximum of i) the number of packets
dropped in that interval, and ii) (t − 0.95s)N/t packets. If
an idle period is detected, the NIDS should ramp up and
process more packets. The NIDS can spend (0.8s) − t more
processing time in the next group of N packets, which cor-
responds to (0.8s − t)N/t number of packets.

At this point, we have the mechanisms for estimating the
number of packets that the NIDS should discard in case of
overload. However, our selection strategy is based on limit-
ing the flow size, which requires setting an appropriate flow
size threshold. The algorithm for deriving the new flow size
limit for each interval is based on aggregated statistics the

NIDS gathers during the classification of arriving packets
into flows. The flow classification engine keeps packet coun-
ters for predefined flow size ranges. Each position of the
table indicates the number of packets that correspond to
flows with size within the respective range.

In case of packet discarding, the algorithm descends the
flow statistics table starting from the range of the current
flow limit and counts the packets that will be discarded in
each lower flow size range, until we reach the desirable num-
ber. The procedure for increasing the flow size limit is sim-
ilar, by ascending the flow statistics table until the required
number of packets is encountered. Then, the flow size limit
is adapted accordingly.

2.4 Implementation in Snort
We have implemented our approach within the Snort [17]

NIDS as a preprocessor configured to run before the detec-
tion engine and all other preprocessors. The preprocessor re-
ceives each packet immediately after Snort’s Layer-4 packet
decoding, looks up its corresponding flow through a hash
table, and updates the size of the flow. Based on the flow
size and the current cutoff limit, the preprocessor decides
whether the packet should be discarded, or forwarded to
the other Snort preprocessors and the core detection engine.

Furthermore, as we have discussed in Section 2.3, the pre-
processor keeps the aggregate number of captured packets
for predefined flow size ranges. Flows are closed either after
a timeout of inactivity (set to 10 seconds in our experiments)
or due to normal TCP connection termination after RST
or FIN/ACK packets. It is important to precisely follow
TCP connection terminations in order to prevent attackers
to evade detection by closing and opening new TCP con-
nections immediately. Thus, each new connection will be
considered as new flow and its first packets will be always
processed by Snort.

Finally, the flow size limit readjustment algorithm is acti-
vated every N packets. The size of the interval, N , is auto-
matically chosen based on the size of the socket buffer and
the systems’ resolution in measuring CPU time. After pro-
cessing N packets, the preprocessor reasons about potential
overload conditions based on the performance measurements
and adjusts the flow size limit accordingly.

3. EXPERIMENTAL EVALUATION

3.1 Experimental Environment
Our experimental environment consists of two PCs inter-

connected through a 10 Gbit switch. The first PC is used for
traffic generation, which is achieved by replaying real net-
work traffic traces at different rates using tcpreplay [20].
The traffic generation PC is equipped with an Intel Xeon
2.00 GHz CPU with 6 MB L2 cache, 2 GB RAM, and a
10 Gbit network interface. This setup allowed us to replay
traffic traces with speeds up to 900 Mbit/s. By rewriting
the source and destination MAC addresses, the traffic is
sent to the second PC, which captures the traffic and in-
spects it using the original Snort, as well as our extended
version with selective packet discarding. We modified Snort
v2.8.3.2, used the latest official rule set [1] containing 9276
rules, and enabled all the default preprocessors as specified
in its default configuration. The NIDS PC is equipped with
an Intel Xeon 2.66 GHz CPU with 4 MB L2 cache, 2 GB
RAM, and a 10 Gbit network interface. The socket buffer

Flow size limit (#packets/flow)
10 100 1000 10000 100000

S
no

rt
’s

 th
ro

ug
hp

ut
 (

M
bp

s)

0

500

1000

1500

2000

2500

A
le

rt
s

tr
ig

ge
re

d
(%

)

0

20

40

60

80

100

Throughput
Alerts

Figure 3: Snort’s throughput and detection accu-

racy as a function of the flow size limit.

size was set to 6 MB in order to minimize packet drops due
to short packet bursts.

For the evaluation we used a one-hour full payload trace
captured at the access link that connects an educational net-
work with thousands of hosts to the Internet. The trace con-
tains 58,714,906 packets, corresponding to 1,493,032 flows,
totalling more than 40 GB in size. Snort generates 1976
alerts from 78 different rules for this trace. Reasoning about
whether these alerts are true positives or not would re-
quire manual inspection of each alert and the corresponding
matching packets. Most of the matching rules are related
to common threats such as probes for vulnerable web ap-
plications and database servers, old buffer overflow exploits,
and protocol violations. There are also few alerts from rules
that look for suspicious activity, such as robots.txt access
or HTTP 403 Forbidden responses, which correspond to 49
and 263 alerts, respectively. Given the nature of the trig-
gered alerts, we believe that most of them are true posi-
tives. However, based on our experience, and since we have
not checked all alerts one by one, we speculate that some
of them could be false positives. In order to strengthen our
evaluation we augmented the trace with 120 short traces of
real attacks, adding 276 alerts from 14 different rules which
are definitively true positives.

3.2 Flow Cutoff Impact Analysis
In our first experiment, we explore the impact of impos-

ing a limit in the number of packets of each flow that are
going to be processed on Snort’s processing throughput and
detection accuracy. We modified our preprocessor to dis-
card the packets of each flow after a certain flow size limit
has been reached. We ran Snort using different flow cutoff
values using the augmented network trace. Snort loads the
trace for offline analysis, so there is no dynamic adaptation
in the flow cutoff size—the same flow size limit is used for
the whole duration of each run.

For each run, we measure Snort’s processing throughput
as the total trace size divided by the user plus system ex-
ecution time. We repeat each measurement 10 times and
report the average value of the throughput. For each run,
the detection accuracy is defined as the percentage of alerts
triggered for each different flow cutoff out of the total num-
ber of alerts (2252) in the trace. We are mostly interested
in the detection of the 276 attacks that we have injected in
the trace, since we know that the corresponding alerts are

Traffic speed (Mbps)
200 300 400 500 600 700 800 900 1000

P
er

ce
nt

ag
e

(%
)

0

20

40

60

80

100

Alerts triggered (%)
CPU usage (%)
Packets dropped by kernel (%)

Figure 4: Performance of unmodified Snort as a func-

tion of the monitored traffic speed.

Traffic speed (Mbps)
200 300 400 500 600 700 800 900 1000

P
er

ce
nt

ag
e

(%
)

0

20

40

60

80

100

Alerts triggered (%)
CPU usage (%)
Packets Discarded by SPD (%)
Packets dropped by kernel (%)

Figure 5: Performance of Snort with selective packet

discarding as a function of the monitored traffic speed.

definitively true positives, but it is also desirable to observe
as many of the rest of the alerts in the trace as possible.

Figure 3 presents Snort’s throughput and detection ac-
curacy when varying the number of processed packets per
flow from 10 to 100,000. The unmodified version of Snort
achieves a throughput of 560 Mbit/s. When enabling the
preprocessor, as the number of inspected packets per flow
decreases the throughput increases. For instance, for a flow
cutoff limit of 1000 packets, Snort can process up to 1400
Mbit/s traffic, while with 100 packets per flow the processing
throughput reaches 2 Gbit/s. When using larger flow cut-
off sizes, the throughput approaches the unmodified Snort’s
throughput, e.g., with a limit of 50,000 packets the through-
put drops to 675 Mbit/s, which still is a 20% improvement.

For flow limits higher than a few hundreds of packets, only
a small percentage of alerts is missed. As already expected
from Figure 1, alerts are triggered mostly due to packets
that belong to the first few packets of a flow. For instance,
processing up to 10,000 packets per flow results to 5 missed
alerts out of the 2252 alerts in the trace, while at the same
time the throughput increases 56%. For a cutoff size of
50,000 packets only one alert was missed. The 276 alerts
due to the manually injected attacks are all triggered even
for a cutoff limit as low as 20 packets per flow.

Even when inspecting just the first 100 packets of each
flow, 95% of the alerts are still triggered. Considering the
corresponding improvement in Snort’s throughput, which is
3.62 times faster reaching up to 2033 Mbit/s, enabling se-
lective packet discarding for traffic volumes higher that 560
Mbit/s seems promising. As we are going to see in the next
section, under such conditions, the packet drops by kernel
result a much higher number of missed alerts. When the
monitored traffic throughput drops to normal and Snort is
not high loaded, the selective packet discarding preproces-
sor will dynamically adapt the flow size limit as much as
effectively disabling packet discarding at all.

3.3 Detection Accuracy under High Load
In this section, we evaluate the detection accuracy of un-

modified and our extended Snort version under realistic con-
ditions of increased load. Figure 4 shows the performance
of original Snort when replaying traffic with speeds varying
from 200 to 900 Mbit/s. For each traffic speed, we repeated
the measurements 10 times and report the average of the

percentage of triggered alerts, the CPU utilization of Snort,
and the percentage of dropped packets by the OS. We see
that for speeds higher than 500 Mbit/s, a significant per-
centage of packets is dropped by the kernel, ranging from
15% for 500 Mbit/s up to 46% for 900 Mbit/s traffic. When
packets are dropped, the CPU utilization is always higher
than 99%, since Snort cannot handle the high traffic volume.

The consequence of these drops is a significant reduction
in the number of detected events. For a traffic speed of
500 Mbit/s, with just 15% of the packets being randomly
dropped by the OS, Snort misses 18% of the alerts. When
46% of the packets are dropped, for 900 Mbit/s traffic, about
half of the alerts are missed. Even for 400 Mbit/s traf-
fic, a slight percentage of dropped packets (0.096%) causes
16 alerts to be missed (0.7%). Furthermore, among differ-
ent runs for the same traffic speed, Snort generates different
sets of alerts, indicative of the non deterministic results that
random packet drops induce. Moreover, the 276 real alerts
we injected are lost with the same probability as all other
alerts in the trace. For instance, for 500 Mbit/s traffic, Snort
identified 223 out of the 276 attacks. For 900 Mbit/s, just
55% of these alerts were successfully detected. These re-
sults demonstrate that Snort’s detection accuracy degrades
significantly under conditions of excessive traffic load.

Figure 5 shows the performance of Snort with selective
packet discarding enabled. A first observation is that the
number of packets dropped by the kernel is negligible. There
are no packet drops for traffic speeds up to 600 Mbit/s, while
there is just a 0.098% of dropped packets for 900 Mbit/s.
We also notice that for high traffic speeds, the CPU uti-
lization remains within the desirable range imposed by the
0.8 lower and 0.95 upper thresholds. Figure 5 also shows
the percentage of packets that are selectively discarded. As
we expected, the percentage of discarded packets increases
according to the traffic speed. By discarding the desirable
amount of packets according to the traffic load, Snort con-
trols the CPU utilization and keeps it constantly within the
desirable range.

The number of selectively discarded packets is larger than
the number of dropped packets by the kernel in unmodi-
fied Snort for the same speeds. There are two explanations
for this outcome. First, the selective packet discarding al-
gorithm is purposely quite aggressive in discarding packets
in order to proactively prevent packet drops from the ker-

nel. Thus, the preprocessor tends to discard more packets
from the end of the flows and benefit from preventing un-
controlled random packet drops from the kernel. Second, in
unmodified Snort, packets are dropped in kernel level, before
they are copied to user level. With selective packet discard-
ing, all packets are first delivered in user space and then
are discarded by the Snort preprocessor, which results to
a higher number of discarded packets. However, even with
eventually less inspected packets, selective packet discarding
allows Snort to achieve a much better detection accuracy, as
discussed below. Moreover, the number of flows affected by
selective packet discarding is just 0.42% of the total flows
for the highest traffic speed of 900 Mbit/s, and even smaller
for lower traffic speeds. In contrast, random packet drops
by the kernel affect a significantly higher number of flows.

Finally, Figure 5 shows the significant improvement in de-
tection accuracy by enabling selective packet discarding. For
all traffic rates, even for 900 Mbit/s, Snort reports almost
all of the alerts that exist in the monitored traffic. For 500
Mbit/s traffic, our modified Snort reports 2234 out of the
2252 alerts (99.2%), which is an improvement of 20% over
unmodified Snort. The percentage of triggered alerts re-
mains almost constant as the traffic speed increases, falling
slightly to 96.3% for 900 Mbit/s traffic, missing just 84
events. We observe that for all traffic speeds, our modi-
fied Snort detects all the 276 real attacks that we manually
inserted, suggesting that selective packet discarding indeed
tends to improve the detection accuracy of real attacks. Of
course, the vast majority of the alerts due to events in the
original trace are still triggered.

4. RELATED WORK
The requirements for more complex per-packet inspec-

tion and the constant increase in network speeds have mo-
tivated numerous works for improving the performance of
NIDSs. To speed-up the inspection process, many NIDS im-
plementations use specialized hardware like content address-
able memory [23], FPGAs [2], network processors [4], and
graphics processing units [22]. To cope with high traffic vol-
umes, other approaches propose to distribute the load across
multiple machines instead of using a single sensor [9, 21],
or to use multi-core processors for parallel inspection [14].
These solutions offer almost linear processing throughput
improvement, but with the additional cost of buying spe-
cialized hardware or multi-processor machines. Overloads
are still possible in such systems in case of traffic bursts
that exceed the NIDS processing throughput, or if one of
the individual sensors of a NIDS cluster is overloaded. Fur-
thermore, attackers may intentionally overload a NIDS to
degrade its performance and increase their chances to evade
detection [16].

Lee et al. [10], propose to dynamically reconfigure the
NIDS based on the current run-time conditions, in a work
closely related to our approach. In contrast, our system
selectively discards some packets with minimum impact to
detection accuracy without changing the NIDS configura-
tion.

Another related approach by Dreger et al. [5] deals with
packet drops due to overloads using precompiled sets of fil-
ters which the NIDS enables and disables depending on the
workload. The main difference from our technique is that
it relies on the NIDS operator to statically define an or-
dering of filters. A more recent work from the same au-

thors [6] presents a model for monitoring the resource usage
of a NIDS, and then predicting its resource consumption.
While this approach can help the NIDS operator to find a
suitable configuration, our approach allows a NIDS to adapt
its performance under high load even if no configuration can
prevent overloads.

Load shedding is proposed as a defence to overload attacks
in the Bro NIDS [13]. However, the discarding strategy is
not discussed, so the NIDS operator is responsible to define
one. In our work we propose a new subset of traffic that
should be discarded, based on the position of the packet
within its corresponding flow. A load shedding [3] technique
has also been proposed in the CoMo passive monitoring in-
frastructure. Using an on-line prediction model for the query
resource requirements, the monitoring system sheds load un-
der conditions of excessive traffic using uniform packet and
flow sampling.

Similarly to our work, Time Machine [11] uses a per-flow
cutoff to reduce the number of packets that are stored on
disk for retrospective analysis. In contrast, our work uses the
per-flow cutoff limit for real time intrusion detection. Time
Machine uses user-configured static cutoff values for different
packet classes, while our modified NIDS adaptively selects
the optimum cutoff value based on real-time measurements.

5. CONCLUSION
Events of excessive network traffic load are a common fact

that affects the performance of NIDSs. Under conditions of
heavy traffic load or sudden traffic bursts, the processing
throughput of the system cannot cope with the amount of
traffic that needs to be inspected, and the OS unavoidably
drops excess arriving packets at random.

In this paper, we present selective packet discarding, a
best effort approach that gracefully reduces the amount of
traffic that reach the detection engine of the NIDS by se-
lectively discarding packets that are less likely to affect its
detection accuracy. We have implemented selective packet
discarding in the Snort NIDS as a preprocessor that con-
stantly measures performance aspects of the system in or-
der to detect overload conditions and dynamically adjusts
the number of packets that needs to be discarded. This is
achieved by setting a cutoff limit to the number of packets
to be inspected for each network flow.

A concern that arises when using selective packet discard-
ing is that a sophisticated attacker could exploit the flow
size limit and evade detection by filling the stream with be-
nign requests and then send the actual attack vector after
the flow cutoff limit has been reached. Although such an at-
tack may be feasible for protocols like HTTP, which allows
multiple requests to be sent through the same connection,
other services terminate the connection after the end of each
transaction, especially in case of protocol violations or failed
requests. Furthermore, for protocols that support persistent
connections, such repetitive behaviour can be detectable by
following the protocol’s request/response semantics. With-
out selective packet discarding, an attacker can evade detec-
tion from an overloaded NIDS by repeating the attack mul-
tiple times—depending on the traffic load, after a certain
number of attempts the attack will go undetected. Selec-
tive packet discarding makes such overload attacks harder
to achieve.

Our experimental evaluation with real-world traffic and la-
beled attacks demonstrates that selective packet discarding

improves significantly the detection accuracy of Snort under
increased traffic load conditions, allowing it to detect most
of the attacks that would have otherwise been undetected.

6. ACKNOWLEDGMENTS
A. Papadogiannakis, M. Polychronakis and Evangelos P.

Markatos are also with the University of Crete.

7. REFERENCES
[1] Sourcefire vulnerability research team (vrt).

http://www.snort.org/vrt/.

[2] M. Attig and J. Lockwood. A framework for rule
processing in reconfigurable network systems. In
Proceedings of the 13th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM ’05), pages 225–234, Washington, DC, USA,
2005.

[3] P. Barlet-Ros, G. Iannaccone, J. Sanjuàs-Cuxart,
D. Amores-López, and J. Solé-Pareta. Load shedding
in network monitoring applications. In Proceedings of
the USENIX Annual Technical Conference (ATC’07),
Berkeley, CA, USA, 2007.

[4] W. de Bruijn, A. Slowinska, K. van Reeuwijk,
T. Hruby, L. Xu, and H. Bos. SafeCard: a Gigabit IPS
on the network card. In Proceedings of 9th
International Symposium on Recent Advances in
Intrusion Detection (RAID), Hamburg, Germany,
September 2006.

[5] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer.
Operational experiences with high-volume network
intrusion detection. In CCS ’04: Proceedings of the
11th ACM conference on Computer and
communications security, pages 2–11, 2004.

[6] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer.
Predicting the resource consumption of network
intrusion detection systems. In Proceedings of the 11th
International Symposium on Recent Advances in
Intrusion Detection (RAID), pages 135–154, 2008.

[7] W. Fang and L. Peterson. Inter-as traffic patterns and
their implications. In Global Telecommunications
Conference, 1999.

[8] M. Handley, V. Paxson, and C. Kreibich. Network
intrusion detection: Evasion, traffic normalization,
and end-to-end protocol semantics. In Proceedings of
the 10th USENIX Security Symposium, 2001.

[9] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer.
Stateful intrusion detection for high-speed networks.
In Proceedings of the IEEE Symposium on Security
and Privacy, pages 285– 294, May 2002.

[10] W. Lee, J. B. D. Cabrera, A. Thomas, N. Balwalli,
S. Saluja, and Y. Zhang. Performance adaptation in
real-time intrusion detection systems. In Proceedings of
the 5th International Symposium on Recent Advances
in Intrusion Detection (RAID), pages 252–273, 2002.

[11] G. Maier, R. Sommer, H. Dreger, A. Feldmann,
V. Paxson, and F. Schneider. Enriching network
security analysis with time travel. In SIGCOMM ’08:
Proceedings of the 2008 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 183–194, New York, NY, USA,
August 2008. ACM Press.

[12] S. McCanne and V. Jacobson. The BSD Packet Filter:
A New Architecture for User-level Packet Capture. In
Proceedings of the Winter 1993 USENIX Conference,
pages 259–270, January 1993.

[13] V. Paxson. Bro: A system for detecting network
intruders in real-time. In Computer Networks, pages
2435–2463, 1998.

[14] V. Paxson, R. Sommer, and N. Weaver. An
architecture for exploiting multi-core processors to
parallelize network intrusion prevention. In
Proceedings of the IEEE Sarnoff Symposium, May
2007.

[15] M. Polychronakis, K. G. Anagnostakis, and E. P.
Markatos. An empirical study of real-world
polymorphic code injection attacks. In Proceedings of
the 2nd USENIX Workshop on Large-scale Exploits
and Emergent Threats (LEET), April 2009.

[16] T. H. Ptacek and T. N. Newsham. Insertion, evasion,
and denial of service: Eluding network intrusion
detection. Technical report, Secure Networks, Inc.,
1998.

[17] M. Roesch. Snort: Lightweight intrusion detection for
networks. In Proceedings of the 1999 USENIX LISA
Systems Administration Conference, November 1999.

[18] L. Schaelicke, T. Slabach, B. J. Moore, and
C. Freeland. Characterizing the performance of
network intrusion detection sensors. In Proceedings of
the 6th International Symposium on Recent Advances
in Intrusion Detection (RAID), pages 155–172, 2003.

[19] R. Smith, C. Estan, and S. Jha. Backtracking
algorithmic complexity attacks against a nids. In
Proceedings of the Annual Computer Security
Applications Conference (ACSAC), 2006.

[20] A. Turner. Tcpreplay.
http://tcpreplay.synfin.net/trac/.

[21] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson,
and B. Tierney. The NIDS cluster: Scalable, stateful
network intrusion detection on commodity hardware.
In Proceedings of the 10th International Symposium on
Recent Advances in Intrusion Detection (RAID), 2007.

[22] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P.
Markatos, and S. Ioannidis. Gnort: High performance
network intrusion detection using graphics processors.
In Proceedings of the 11th International Symposium on
Recent Advances in Intrusion Detection (RAID), pages
116–134, Berlin, Heidelberg, 2008. Springer-Verlag.

[23] S. Yusuf and W. Luk. Bitwise optimised CAM for
network intrusion detection systems. In Proceedings of
International Conference on Field Programmable Logic
and Applications, pages 444–449, 2005.

