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ABSTRACT

PSI-BLAST is an iterative program to search a data-
base for proteins with distant similarity to a query
sequence. We investigated over a dozen modifica-
tions to the methods used in PSI-BLAST, with the
goal of improving accuracy in finding true positive
matches. To evaluate performance we used a set of
103 queries for which the true positives in yeast had
been annotated by human experts, and a popular
measure of retrieval accuracy (ROC) that can be
normalized to take on values between 0 (worst) and 1
(best). The modifications we consider novel improve
the ROC score from 0.758 ± 0.005 to 0.895 ± 0.003.
This does not include the benefits from four modifi-
cations we included in the ‘baseline’ version, even
though they were not implemented in PSI-BLAST
version 2.0. The improvement in accuracy was
confirmed on a small second test set. This test
involved analyzing three protein families with
curated lists of true positives from the non-redun-
dant protein database. The modification that
accounts for the majority of the improvement is the
use, for each database sequence, of a position-
specific scoring system tuned to that sequence’s
amino acid composition. The use of composition-
based statistics is particularly beneficial for large-
scale automated applications of PSI-BLAST.

INTRODUCTION

BLAST and PSI-BLAST are widely used programs for
detecting sequence similarities, including subtle ones, in
searches of protein sequence databases (1,2). PSI-BLAST’s
basic strategy is to construct a multiple alignment from the
output of a BLAST protein database similarity search, abstract
a position-specific score matrix from this multiple alignment,
and search the database anew using the score matrix as query.
The process may be iterated many times, as new significant
similarities are found.

The ways in which PSI-BLAST estimates the statistical
significance of the similarities it finds, and constructs position-
specific score matrices from multiple alignments, are
amenable to a variety of modifications. Some of these involve
simple parameter adjustments, but others are based on deeper
theoretical considerations. We sought to investigate the effect
of a large number of proposed refinements on PSI-BLAST’s
sensitivity to distant sequence relationships, with the aim of
incorporating any that proved beneficial. To this end, we
constructed a test set of query sequences, and annotated for
each those yeast sequences that were related. We tested various
versions of PSI-BLAST with a protocol described in the next
section. To evaluate the performance of PSI-BLAST versions,
we pooled the output from all queries, ranked by E-value, and
plotted false positives versus true positives.

The outlined procedure was used to test over a dozen ideas
for improving PSI-BLAST search accuracy. Among these,
fewer than half proved of value. Nevertheless, PSI-BLAST
version 2.2.1, which incorporates all useful changes found, is
substantially more accurate than the original program. Among
the modifications tested are four that we considered ‘known’
and could reasonably have been implemented in the original
PSI-BLAST (version 2.0.1) or were published elsewhere (3).
We included these four improvements first in what we call the
‘baseline’ version of PSI-BLAST, and in what follows we do
not count the improvement that they yield. The remaining
modifications were added, usually one at a time, in what
seemed to us a plausible order. Among the modifications we
included in the baseline version of PSI-BLAST are: (i) the
ability to run the Smith–Waterman algorithm on all alignments
reported, and (ii) the filtering of database sequences for the
presense of ‘low-entropy’ segments of restricted amino acid
composition. The modification that yields most of the
improvement above the baseline version is the use of statistics
tuned to the composition of the query and database sequences
to evaluate the significance of local alignments.

THE TEST SET AND SEARCH PROTOCOL

We used as a primary test set some queries originally
constructed for the purpose of detecting proteins with wide-
spread regulatory and signal-transduction domains in the yeast
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Saccharomyces cerevisiae and the nematode worm
Caenorhabditis elegans (4). Lists of true positives in yeast
were delineated and curated by human experts (L.A. and
E.V.K.).

An earlier version of this query set with 105 sequences was
used to test IMPALA in Schäffer et al. (5) and called the
aravind105 set. For the tests reported here we used 103 queries
of which 91 are common to the aravind105 set. The changes in
the new query test set are due to: 12 useful queries added after
the IMPALA project started; nine queries dropped due to
having no apparent true positives in yeast; five queries dropped
due to overlaps with other queries and/or difficulties in identi-
fying all true positives because of the PSI-BLAST corruption
problem discussed below. Even though the methods presented
here largely solve the PSI-BLAST problems that made some
annotations difficult, we did not reintroduce the problematic
query sequences. Starting with the copy of the yeast proteome
used by Schäffer et al. (5) and containing 6406 proteins, we
dropped 65 proteins that were identical or nearly identical to
substrings of proteins remaining in the yeast database to avoid
double counting what were really single true positives.

At the start of this project, the 103 lists of true positives
included 918 total matches. As a result of testing with
hundreds of PSI-BLAST versions we identified 87 more true
positives, giving a total of 1005 for a mean of 9.8/query (range:
2–123). Improved software is expected to detect new true posi-
tives, and the ability to add these to the original true positive
set is important. Therefore, we chose to use match lists devel-
oped and curated in house in lieu of fixed external ones. The
103 queries, copy of the yeast database, and lists of true posi-
tives are available from ftp.ncbi.nlm.nih.gov under directory
pub/impala/blasttest.

For our 103 queries, we had comprehensive lists of true posi-
tives only for the yeast database. However, PSI-BLAST
achieves greater sensitivity to distant relationships when it
constructs its score matrices from larger and more diverse sets
of related sequences (6). If one is ultimately interested in rela-
tionships between a query and the members of a restricted
database, such as the proteins in PDB (7), it pays to search a
comprehensive sequence database with PSI-BLAST through
several iterations, save the resulting position-specific score
matrix (PSSM) as a ‘checkpoint’, and then restart using the
checkpoint matrix to search the database of interest. We have
used this general protocol in evaluating PSI-BLAST search
accuracy. To evaluate each version of PSI-BLAST, we first
compare every query sequence to the NCBI nr protein
sequence database (8) (frozen on 2 February 2000 for consist-
ency across tests) and save the matrix computed after the fifth
PSI-BLAST iteration, or when the program stops because no
further significant similarities are found. After this, each saved
PSSM is compared to the yeast database, and the program’s
accuracy in detecting distant relationships is evaluated through
an analysis of the pooled search outputs.

EVALUATING PSI-BLAST SEARCH ACCURACY

Given a classification of (query sequence, database sequence)
pairs as related or unrelated, it is useful to have an objective
criterion for comparing the performance of database search
programs. Eliding for the moment the precision of reported

E-values, one may treat them simply as a means of ordering
database search results, and then plot the number of false
versus the number of true relationships found as E-values
increase. Such a procedure yields a ‘sensitivity curve’ such as
those shown in Figures 1–4. In general, one prefers to find as
many true positives as possible before a given number of false
positives, so the farther to the right the sensitivity curve lies the
better. A problem in assessing the relative merit of different
search procedures is that their sensitivity curves are high-
dimensional objects subject to a variety of reasonable linear
orderings (9–13). A measure of search ‘accuracy’ derived from
sensitivity curves that has gained fairly wide use is the
truncated receiver operating characteristic (ROC) (13). Let T
be total number of true positives available to be found. For a
fixed number of false positives n, the quantity ROCn is the
proportion of the area in the rectangle [0,T][0,n] that lies to the
left of the sensitivity curve. ROCn is a proportion, so its values
lie between 0 (worst) and 1 (best). See Appendix A for more
information.

The upper bound on false positives in calculating ROC
values has a practical justification. Programs such as BLAST
(1,2) report similarities only above a fairly high threshold
score, so only a limited number of false positives appear in the
output. Moreover, a researcher performing a database search
generally is unwilling to analyze many weak matches, most of
which are false positives, in the hope of finding a few more
true positives. For comprehensive sequence database searches
with a single query, Gribskov and Robinson (13) have recom-
mended ROC50 as a figure of merit. Since we use pooled
results from approximately 100 searches here, this would
appear to translate into a recommendation of ROC5000. Because
the database we ultimately search consists of only 6341
proteins and contains a mean of <10 true relationships per
query, diminishing returns have a much earlier onset. After a
total of about 100 pooled false positives have been observed,
the number of additional false positives found per additional
true positive escalates beyond a level most researchers would
consider fruitful for detailed analysis. Thus, the figure of merit
we will report for our pooled results is ROC100.

When analyzing database search programs, it is useful not
only to compare their ROC values, but also to know when
these values are significantly different. We approximate the
‘random’ distribution of ROC values for a given program
through bootstrap resampling of the false positive database
search results it returns. As described in Appendix A, this
distribution should be approximately normal, so that we need
estimate only its standard deviation, which can be calculated
analytically.

As we investigate various methods for improving PSI-
BLAST, we in essence are exploring the high-dimensional
space of different possible combinations of methods for
constructing PSSMs. Due to the combinatorial explosion, it
would be impractical to consider all points in this space and
find a version of PSI-BLAST that is on average optimal.
Accordingly, we generally content ourselves with examining
one proposed change at a time, and accepting it if it produces a
program with improved search accuracy. Therefore we claim
only that the version of PSI-BLAST we finally produce is a
significant improvement over the baseline version of the
program.
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THE ‘BASELINE’ PSI-BLAST PROGRAM

To keep track of the various versions of PSI-BLAST we will
be studying, we will use a shorthand to describe modifications
to the original program. Single upper case letters will refer to
modifications that we programmed so that they may be easily
turned on or off in our test versions. Lower case letters will
refer to changes in a numerical parameter, and will be followed
by a numerical argument. In the released code, we do not
enable the user to turn on/off each option individually because
most combinations are of interest only in testing. As modifica-
tions to PSI-BLAST are described, letters signifying these
changes will be introduced, but for reference purposes the
meanings of all these codes are collected in Table 1.

The ‘baseline’ version of PSI-BLAST with which we will
begin our analysis is modified in four ways from that described
by Altschul et al. (2). Because the first two changes are incor-
porated in all versions of PSI-BLAST we will study, neither
will be assigned a letter for program designation. The other
two changes will be assigned a letter because we will consider
the effect of suppressing them.

Estimation of statistical parameters

BLAST and PSI-BLAST E-values are calculated using statis-
tical and edge-effect parameters (3). These parameters cannot
be calculated analytically, but must be estimated by prior
random simulation for any amino acid substitution matrices
and gap costs to be supported. BLAST release 2.2.1 employs
parameter values estimated by a more accurate procedure
(3,14) than that used for earlier releases (15).

Numerical precision and amino acid pair frequency ratios

The scores sij in the PAM (16,17) and BLOSUM (18) amino
acid substitution matrices are constructed using the formula

sij = log rij 1

where rij is the ratio of the estimated frequency with which the
amino acids i and j are aligned due to evolutionary descent, to
the frequency with which they would be aligned by chance. All
local alignment substitution matrices are implicitly of this
form, with the base of the logarithm simply providing a scale
factor (19,20).

For convenience, scores constructed using equation 1 are
generally rounded to the nearest integer. However, as
described below, we will have occasion to change, sometimes
by small degrees, the scale of the matrices employed by
BLAST and PSI-BLAST. Integral substitution scores of the
usual scale discard too much precision for our purposes, so our
new baseline version of BLAST and PSI-BLAST represents
substitution matrices internally by the floating point rij rather
than by the integral sij. This provides the programs with two
opportunities for greater precision. [Note that the rij used in
constructing substitution matrices generally do not appear
explicitly in the literature. For the PAM matrices (16,17) we
inferred these values from other published data, while for the
BLOSUM matrices (18) we obtained these values from the
authors, S. Henikoff and J. G. Henikoff.]

First, as described below, we re-evaluate all database
sequences that participate in an alignment with good initial
score. This is done using an integral score matrix but, since the
rij are available, we employ a scaled-up version of the standard
matrix. For greater precision, the log-odds scores to the usual
scale derived from equation 1 are multiplied by 32 before
rounding, as are any gap costs. (The usual scale varies among
matrices.) To avoid confusion, ‘raw’ alignment scores are
returned to the usual scale before printing.

Secondly, the availability of the rij gives PSI-BLAST an
opportunity for greater precision in constructing amino acid
frequency ratios for individual columns. In contrast to the
frequency ratio Ri = Qi/Pi for amino acid i implied by equations
3–5 of Altschul et al. (2), where Qi and Pi are the predicted and
background frequencies, respectively, for amino acid i, the
baseline PSI-BLAST now derives this ratio using the equation:

2

Here, as defined and discussed further by Altschul et al. (2), fi
is the weighted observed frequency of amino acid i for the
column in question, α reflects the effective number of inde-
pendent observations for that column, and β is the pseudocount
parameter, which balances the relative importance given to
data from the multiple alignment, and prior information on
amino acid mutation propensities implicit in the reference
substitution matrix. The ratio rij here replaces the earlier eλuSij.
The earlier formulation was inferior both because the sij in
general have low precision, and because the scale parameter λu
was derived using standard amino acid background frequencies Pi
(21) as opposed to the frequencies implicit in the original
construction of the substitution matrix.

Sequence filtering

Alignments involving ‘low entropy’ protein segments with
highly restricted or biased amino acid composition generally
are not of interest, and BLAST has traditionally filtered such
segments out of query sequences using the SEG program
(22,23). However, because PSI-BLAST PSSMs are
constructed from the output of database searches, it has been
possible for low-entropy segments from database sequences to
strongly influence the scores in these PSSMs, which are then
aligned with unfiltered segments of other database sequences
in further rounds of PSI-BLAST searching. Accordingly, we
apply SEG filtering in our baseline program to database
sequences as opposed to the query sequence in the original

Table 1. Abbreviations for modifications of BLAST and PSI-BLAST

F Filtering of database sequences with the SEG program

W Construction of final alignments with the Smith–Waterman algorithm

S Composition-based statistics

R Reversed sequence score normalization

D Dispersed method for inferring amino acid frequencies from gaps

C Concentrated method for inferring amino acid frequencies from gaps

M Restricted score rescaling

bx Pseudocount parameter (default 10)

px Purging percentage (default 98)

hx E-value threshold for inclusion in PSI-BLAST multiple alignment

Ri

α fi Pi⁄( ) β Σj fjrij( )+

α β+
-------------------------------------------------- ⋅=
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PSI-BLAST program; this change is designated with the letter
‘F’. For SEG filtering of the database we use a window-size of
10, a trigger complexity of 1.8 and an extension complexity of
2.1; this compares with the default values of 12, 2.2 and 2.5,
respectively. The SEG parameters were tuned by testing them
on all proteins in Mycoplasma genitalium plus some problem-
atic queries that arose in studies by Y.I.W. We considered SEG
parameter values to be safe if we could run all queries for five
iterations without obvious signs of PSSM corruption, such as a
program crash or massive increase in the size of the output file.
We tried to find the lowest safe setting of the window and
trigger-complexity, while keeping the difference between
extension complexity and trigger complexity at 0.3 as
suggested by the developer (J. Wootton, personal communica-
tion). It is not surprising that one can use more permissive SEG
parameters for filtering the database because the composition-
based statistics also help correct for composition biases.
Applying SEG filtering to both query and database sequences
appears to be overkill, and reduces search accuracy (data not
shown).

Smith–Waterman alignments

Database search heuristics such as FASTA (24) and BLAST
(1,2) are used in place of the Smith–Waterman local alignment
algorithm (25) primarily for the purpose of speed. These
heuristics may completely miss some significant alignments,
and may produce non-optimal alignments for some sequence
similarities they find. At a small price in speed it is possible to
avoid the second of these problems in BLAST. One simply
runs the full Smith–Waterman algorithm on the small fraction
of database sequences the heuristic algorithm chooses to
report. We have implemented this option, and represent it with
the letter ‘W’; thus the baseline version of PSI-BLAST is
designated FW.

THE CHOICE OF THRESHOLD PARAMETER AND
THE PROBLEM OF CORRUPTION

A major potential problem for users of PSI-BLAST is that of
PSSM ‘corruption’. At each iteration, PSI-BLAST constructs a
multiple alignment, from which it then abstracts a PSSM. If a
sequence S that is unrelated to the original query sequence Q is
included in the multiple alignment, then the resulting PSSM
will tend to produce highly significant alignments to sequences
related to S as well as those related to Q. Such a PSSM is said
to have been corrupted, and the search results from further
iterations are unreliable (26). For the purpose of analysis, we
shall say that the PSSM produced by one of our query
sequences after five rounds of comparison to the nr database
has become corrupted if it produces a false positive alignment
with E-value ≤10–4 when compared to the yeast database.

With PSI-BLAST, a single corrupted query can yield many
false positives with very low E-values. Because we consider
pooled results, the sensitivity curves and corresponding ROC
values may be greatly affected. One might argue that this
penalizes corruption too heavily, and conclude that program
evaluation should instead be conducted on a query-by-query
basis (12). However, for researchers using PSI-BLAST on a
large scale, even a small percentage of corrupted queries can
be a major problem, and should therefore weigh heavily in any
evaluation. First, the results of a corrupted search can be

almost completely meaningless, and this casts considerable
doubt on the reliability of results from the large majority of
searches that are uncorrupted. Secondly, a corrupted search
can consume a great quantity of computing time, exhaust all
virtual memory causing a crash, or produce a huge volume of
bogus output, limiting the applicability of PSI-BLAST to
large-scale, automatic annotation projects.

One may attempt to avoid PSSM corruption by setting to a
sufficiently low value the parameter h, which defines the
maximum E-value a similarity may have for inclusion in the
multiple alignment. We use the letter ‘h’, followed by its
setting, in designating versions of PSI-BLAST. For most
queries, the threshold h = 10–3 is sufficient to avoid corruption
with the baseline program FW, but a small percentage yield
corrupted PSSMs at this and even much lower values of h.
Among our 103 query sequences, three become corrupted with
h = 10–3, one with h = 10–6 and none at h = 10–9. The corre-
sponding sensitivity curves are shown in Figure 1. Although
one may avoid most corruption by lowering h sufficiently, one
pays a price in search accuracy for the majority of queries that
do not get corrupted. Among the thresholds considered, the
highest ROC100 score, 0.758 ± 0.005, is for FWh10–6. Several
of the refinements described below influence PSI-BLAST
accuracy to a large degree by suppressing the appearance of
false positives with low E-values in the iterated searches of the
nr database, thereby allowing the value of the h parameter to be
raised.

COMPOSITION-BASED STATISTICS

Our most important refinement is to compute the statistical
significance of a match by taking into account the composition
of the query and database sequences. The statistical signifi-
cance of a local alignment produced by BLAST is assessed
with an E-value, calculated using the formula:

Figure 1. Sensitivity curves of baseline program at three settings of the thresh-
old parameter for including matching sequences in the PSI-BLAST multiple
alignment. The versions compared are FWh10–3, FWh10–6 and FWh10–9. The
sensitivity curve for FWh10–3 crosses the others because at this setting for h,
three queries yield substantially corrupted results, while many other queries
show improved search accuracy. The ROC100 scores for FWh10–9, FWh10–6

and FW10–3 are 0.713 ± 0.005, 0.758 ± 0.005 and 0.721 ± 0.020, respectively.
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E = Kmne–λS 3

where m and n are the effective lengths of the query sequence
and database, S is the nominal score of the alignment, and λ
and K are statistical parameters dependent upon the scoring
system used and the composition of the sequences being
compared (2). Because it enters equation 3 exponentially, the
scale parameter λ is the far more important.

For alignments that are not allowed to contain gaps, the
parameters λu and Ku (where the subscript indicates an
ungapped scoring system) may be calculated analytically
(19,27), but for gapped alignments λg and Kg must be estimated
(3,14,15,28–33). BLAST employs estimates of λg and Kg
precomputed from the comparison of a large number of
‘random protein sequences’ (3,15), generated using standard
amino acid frequencies (21).

Occasionally, the amino acid compositions of a particular
query and matching database sequence pair imply a λ′g
substantially different from the precomputed λg, rendering
unreliable the estimates of statistical significance based upon
λg for any alignments between these sequences. Most often this
is due to a similar, slightly biased amino acid composition
shared by the sequences, yielding a λ′g < λg. Using the standard
λg then results in a smaller E-value than is justified, sometimes
off by several orders of magnitude. The same problem can
arise with the PSI-BLAST comparison of PSSMs to protein
sequences.

It is not practical to estimate statistical parameters by
random simulation for each (query sequence, database
sequence) pair for BLAST, or each (PSSM, database
sequence) pair for PSI-BLAST. Thus we adopt the rescaling
strategy introduced by the IMPALA program (5), an inverse
form of PSI-BLAST. In brief, for a given pairwise comparison,
the ungapped scale parameter λ′u can be calculated analytically
(19). By rescaling the substitution scores, this parameter may
be forced to equal λu, the ungapped scale parameter for a
reference scoring system in the context of standard amino acid
frequencies. Allowing gaps, with specified costs, changes the
scale parameter for this reference scoring system to the pre-
estimated λg. We simply assume the same holds for our
rescaled substitution scores in the context of non-standard
amino acid frequencies (2,5). This assumption is supported by
random simulation (2,5). More details on the rescaling method
are given in Appendix B.

It would be possible to rescale each PSSM for each database
sequence, but this would slow down the program unduly. We
rescale PSSMs and then recalculate alignments only for those
pairwise comparisons that have yielded near-significant align-
ments after a first pass that employs scores scaled assuming a
standard amino acid composition. Versions of PSI-BLAST
that employ these composition-based statistics will be desig-
nated with the letter ‘S’.

With PSI-BLAST, it is important to use the rescaling
strategy outlined here for the initial BLAST search as well as
any subsequent PSI-BLAST searches, because corruption can
occur at any stage. As a result, the alignment scores produced
by the initial BLAST search in general do not correspond
precisely to those implied by a standard substitution matrix,
and even the same alignment involving two different database
sequences can receive slightly different scores because of
differing amino acid compositions.

The gain in PSI-BLAST accuracy from the use of composition-
based statistics is substantial. Whereas the baseline PSI-
BLAST program FWh10–6 yields one corrupted PSSM and
achieves a ROC100 of 0.758 ± 0.005, with composition-based
statistics the program FWSh0.002 yields no corrupted PSSMs,
and the ROC100 rises to 0.879 ± 0.003 (Fig. 2). Composition-
based statistics alone go a long way toward removing the need
for SEG filtering of database sequences. For our test set, the
program WSh0.0002 yielded no corruption and achieved a
ROC100 of 0.838 ± 0.003 (Fig. 2).

Other approaches to accounting for amino acid composition
are possible when evaluating statistical significance. Mott (33)
has derived an empirical formula for estimating statistical
parameters that relies upon sequence composition. Employing
this formula would require slightly less execution time than
our rescaling procedure, but the statistics it produces may be
somewhat less accurate (3).

Karplus et al. (34) suggest subtracting from the optimal local
alignment score the score obtained from the best local align-
ment of the query with a reversed copy of the database
sequence. We designate subtracting the reverse alignment
score by the letter ‘R’; this procedure has the advantage that it
accounts for higher-order statistical sequence properties
beyond that merely of composition. A disadvantage is that the
reversed alignment score introduces some random noise. To
get a handle on this effect, one may make the rough assumption
that after suitable normalization the scores for locally aligning
a random query sequence to a database sequence and its
reversed copy are independent random variables X1 and X2 that
follow a standard extreme value distribution. Some calculus
then shows that X1 – X2 has a probability density function with
right-hand tail asymptotically equal to e–x, the same as the
right-hand tail for X1 (K. Karplus, personal communication).
However, the extreme value distribution is positively skewed
with mean equal to Euler’s constant γ ≈ 0.577, so subtracting
the reversed alignment score X2 tends to dilute statistical
significance. The mean change in score corresponds to a multi-
plicative factor of eγ ≈ 1.8 in significance. Incorporating the
reversed-alignment score adjustment procedure decreased the
ROC100 score from 0.879 ± 0.003 for FWSh0.002 to 0.872 ± 0.003

Figure 2. Sensitivity curves comparing the effects of adding filtering of the
database and composition-based statistics. The versions compared are FWh10–6,
WSh0.0002 and FWSh0.002.
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for FWSRh0.01 (where the ROC score was maximum), and we
have therefore not adopted this method. The R option does
provide added protection against corruption arising from
sequences with certain anomalous statistical properties, and
may be useful in some contexts.

AMINO ACID FREQUENCIES FOR COLUMNS
INCLUDING GAPS

To calculate the weighted observed frequencies for the 20 amino
acids in a given column of a multiple alignment (hereafter
called simply the observed frequencies), the baseline PSI-
BLAST program considers only sequences of the multiple
alignment actually containing a residue in that column, and
ignores any sequences with a gap there (2). This choice,
however, may throw away important information.

To test whether integrating information from sequences with
gaps in a column could improve the sensitivity of the PSSMs
constructed by PSI-BLAST, we implemented the following.
When calculating sequence weights for a given column (2),
include all sequences that participate in the column, whether
with a residue or null character (gap). A null character is
treated initially as if it were simply a twenty-first amino acid.
After each sequence is assigned a weight, one is faced in
general with a non-zero observed frequency for the null
character. However, to calculate substitution scores for the
given column, the observed frequencies of the 20 amino acids
should sum to 1 (2), and thus the frequency for the null
character must somehow be distributed among the amino
acids. Two alternative ways to do this, which we call respec-
tively the dispersed (letter ‘D’) and concentrated (letter ‘C’)
methods, distribute the null character frequency in proportion
to the standard background frequencies of all 20 amino acids,
and in proportion to the observed frequencies of those amino
acids present in the column in question. The dispersed method
captures the idea that gaps in a given position should imply a
degree of indifference as to which amino acids might occur
there in related proteins, while the concentrated method
involves no such assumption.

When added to FWS, the dispersed method yielded a small
but not statistically significant improvement in PSI-BLAST
accuracy, partially by better suppressing the appearance of
false positives at low E-values, and thereby allowing the h
parameter to be raised. Furthermore, with the dispersed
method at h = 0.005, the pseudocount parameter (see below)
could vary over a wide range of values without inducing
corruption, whereas for the same pseudocount parameter range
some corruption occurred with the concentrated or original
method even at h = 0.002. The ROC100 value for FWSDh0.005
was 0.884 ± 0.002, in contrast to 0.878 ± 0.003 for
FWSCh0.002 and 0.879 ± 0.003 for FWSh0.002 (Fig. 3). We
adopted the dispersed method for further tests.

DISCORDANT SEQUENCE COMPOSITIONS AND
RESTRICTED SCORE RESCALING

Sometimes when two sequences, or a sequence and a PSSM
are compared, the corresponding ungapped scale parameter λ′u
before score rescaling is greater than the parameter λu for
sequences with standard amino acid composition. This is a
rarer event than the case of main concern above, in which λ′u < λu,

and the departure from the standard parameter tends to be of
much smaller magnitude (5). Larger than standard values for
λ′u usually result from sequences with discordant rather than
similar amino compositions. If λ′u > λu, using the standard
statistical parameters, without rescaling the substitution scores
as described above, results in an overestimate of E-values.
Nevertheless, there are several reasons it may be desirable not
to rescale the substitution scores in this case.

First, discordant compositions alone provide some evidence
against biological relatedness, so rescaling is more likely to
yield a chance high-scoring and now statistically significant
false positive than a newly statistically significant true posi-
tive. Secondly, the amino acid composition of some proteins
has a mosaic structure, which effectively implies different λs
appropriate for the comparison of different regions. Scaling
scores to account for globally discordant compositions may
yield exaggerated significance estimates for local alignments
involving regions with more typical compositions. Thus, it
may be desirable to rescale substitutions scores only when λ′u
< λu, and not when λ′u > λu. We designate such restricted
rescaling with the letter ‘M’.

Cases where λ′u > λu are relatively rare (5), so including
restricted rescaling changed the ROC100 score only insignifi-
cantly, from 0.8837 ± 0.0025 for FWSDh0.005 to 0.8845 ±
0.0021 for FWSDMh0.005. We adopted this feature because it
renders the program less susceptible to producing spurious
results in the cases discussed above.

We have slightly changed two of PSI-BLAST’s default
parameters. The program’s sequence weighting scheme (2,35)
may somewhat overweight closely related sequences. Thus the
original version of PSI-BLAST purged from its multiple align-
ment all but one copy of aligned sequence segments ≥98%
identical, and this percentage has been changed to 94, indi-
cated by ‘p94’. Also, the pseudocount parameter (2), which
balances multiple alignment data with prior knowledge of
amino acid substitutability, and originally set empirically to
10, has been changed to 9, indicated by ‘b9’. The best values
for these parameters appear to change slightly from one
version of PSI-BLAST to another, and so we have attempted to

Figure 3. Sensitivity curves showing the benefit of the ‘dispersed’ method for
columns with gaps in the multiple alignment. The versions compared are
FWSh0.002 and FWSDh0.005.
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optimize them only as a final step. Combined with the other
changes discussed above, the refined parameters yield a
ROC100 of 0.895 ± 0.003 for FWSDMb9p94h0.005 (Fig. 4).

IDEAS THAT DID NOT WORK

We have discussed several modifications to PSI-BLAST that
in combination significantly improve search accuracy. We also
tested a substantial number of modifications that did not yield
improved results, several of which we describe briefly here.
Most of these modifications were motivated by appealing theo-
retical ideas, so it is possible that some refinement or combina-
tion of these approaches could still prove fruitful.

Adaptive pseudocount parameters

The range of evolutionary divergence optimally detected by a
given amino acid substitution matrix is perhaps best captured
by the matrix’s relative entropy (20,36), and the concept of
average relative entropy is easily extended to PSSMs that are
constructed using log odds ratios. A scoring system whose
relative entropy is too high will tend to detect only closely
related sequences, whereas one whose relative entropy is too
low is optimized for detecting relationships so distant that they
are not distinguishable from chance in any case. As a result,
most substitution matrices used in database searches are tuned
to distant but still detectable evolutionary distances (16–18).
PSI-BLAST’s pseudocount parameter affects the average rela-
tive entropy of the PSSMs the program produces, with a higher
value of the parameter yielding lower average relative entro-
pies. Thus it may be advisable to choose the pseudocount
parameter adaptively, so as to produce PSSMs with a ‘target’
average relative entropy near that associated with the most
effective amino acid substitution matrices (34). However, our
implementation of adaptive pseudocounts degraded search
accuracy. It may be possible to parse PSI-BLAST multiple
alignments so as to determine those regions most important for
detecting distant relationships, and base average relative
entropy calculations on those regions alone.

Sequence weight scaling

In calculating the ‘observed’ residue frequencies for a given
column of a multiple alignment, it is important to weight the
raw counts of amino acids appearing in the column to correct
for correlations among the sequences included in the alignment
(2). Many sequence weighting schemes have been proposed, of
varying sophistication and ease of implementation (35,37–46).
PSI-BLAST implements a slight modification (2) of the
method of Henikoff and Henikoff (35), because it is simple and
rapidly computable. However, this method has no strong
mathematical foundation, and the weights it produces may tend
to either overweight or underweight highly correlated
sequences. We introduced an extra exponent parameter into the
weighting scheme, transforming the weights w1,w2, w3, … to
cw1

P,cw2
P, cw3

P, …, where the coefficient c is chosen so the
new weights sum to 1. As the exponent p was varied about 1,
no clear improvement in PSI-BLAST performance could be
observed. We measured the performance of exponents 0.9,
0.95, 1.05, 1.10, as possible enhancement to
FWSDMb9p94h0.005. The ROC100 scores were 0.892, 0.892,
0.894, 0.890, all slightly lower than 0.895 for
FWSDMb9p94h0.005. It is an open problem to provide
theoretical justification for why p = 1.0 should perform near
optimally.

Window-based amino acid composition calculations

Because amino acid composition may vary through a protein,
one may argue that an alignment’s statistical significance
should be assessed based upon the ‘local’ composition near the
sequence segments involved in the alignment. Accordingly, we
implemented a procedure whereby the amino acid composi-
tions used for rescaling scores for a particular alignment are
drawn from the sequence segments constituting the alignment,
plus a window of fixed length to each side of each segment,
although shorter if the end of the protein is encountered. This
procedure was executed in lieu of the restricted score rescaling
discussed in the previous section. A Bayesian variation
involved assuming a prior standard background amino acid
composition (21), which entered the amino acid frequency
calculation in the form of pseudocounts. For window lengths
50, 100 and 200, and using Bayesian amino acid pseudocounts
or not, we observed no improvement in accuracy using an
earlier implementation of composition-based statistics. We
remeasured the performance of windows of 100 and 200 without
pseudocounts as a modification to FWSDMb9p94h0.005. The
ROC100 score decreased significantly from 0.895 to 0.852 for
window length 100 and to 0.866 for window length 200.

Generalized affine gap costs

Most popular sequence alignment and database search
programs employ affine gap costs, which charge a fixed
penalty for the existence of a gap, and an additional penalty for
each residue within a gap (47–50). Altschul (51) has suggested
permitting a gap to leave an arbitrary and in general different
number of residues in both sequences unaligned; the cost of a
gap involving x and y residues in the two sequences, where x ≤ y,
would be a + b(y – x) + cx. We implemented such generalized
affine gap costs for use with BLAST and PSI-BLAST, and
explored a variety of plausible settings for the gap cost

Figure 4. Sensitivity curves showing the benefits of restricted score rescaling
and of tuning the pseudocount parameter and the purging percentage. The ver-
sions compared are FWSDh0.005 and FWSDMb9p94h0.005.
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parameters, but did not observe any improvement in PSI-
BLAST accuracy vis a vis traditional affine gap costs.

TESTING PSI-BLAST VERSIONS WITH AN
INDEPENDENT QUERY SET

To confirm that the refinements to PSI-BLAST described
above yield improved accuracy in detecting distant relation-
ships, we tested several versions of PSI-BLAST on their ability
to detect relationships within three diverse protein families
whose members within the nr database of 2 February 2000
have been delineated. For each family we employed two sepa-
rate queries, and we pooled the results from the six runs to
generate ROC scores. Each query was compared to the nr data-
base through five rounds of PSI-BLAST searching, and the
search results returned on a final sixth round against nr were
evaluated.

The three protein domain families employed in this test
were: (i) DHH phosphoesterases (52), a family of predicted
phosphoesterases with a broad spectrum of substrates; (ii) POZ
domains (53,54), a family of eukaryotic and viral domains
involved in specific protein–protein interactions; (iii) metallo-
β-lactamase domain proteins (55), containing a metal-
dependent hydrolase domain particularly abundant in archaea,
but also present in a wide variety of bacterial and eukaryotic
proteins. A list of family members, and the frozen nr database
are available upon request. The query sequences used respec-
tively to seek members of these families have gi numbers
4982166 (positions 6–297) and 2498554 (7–317); 482321 (50–
169) and 2315751 (95–205); and 115023 (36–257) and
1172877 (536–778).

Compared to the development query set used for refining
PSI-BLAST, this set contained many fewer queries, but many
more true positives per query. The aggregate point of
diminishing returns appeared to occur near 50 false positives,
so we used ROC50 scores to compare versions of PSI-BLAST.
Those versions we tested were FWh10–6, WSh0.0002,
FWSh0.002, FWSDh0.005, and FWSDMb9p94h0.005. The
results appear in Table 2 along with ROC100 scores from our
development query set. There is broad agreement on relative
PSI-BLAST version accuracy between the two sets of queries.
For the development set, the use of the dispersed method to
score columns containing gaps led to a statistically non-significant
increase in accuracy, while for the test set it led to a statistically
non-significant decrease. However, there is strong agreement
that FWSDMb9p94h0.005 is far superior to the baseline
version of PSI-BLAST with which we began.

THE ACCURACY OF BLAST DATABASE SEARCHES

Most of the refinements discussed above concern the construc-
tion of PSSMs, and are therefore applicable to PSI-BLAST but
not to simple BLAST searches. The exceptions are composition-
based statistics, and restricted score rescaling. To test whether
these refinements led to improved BLAST as well as PSI-
BLAST accuracy, we compared both our development and test
query sets directly to their respective target databases using the
programs FW, FWS and FWSM. For the development set, the
ROC100 scores were 0.529 ± 0.003, 0.522 ± 0.003 and 0.525 ±
0.003, respectively. For the test set, the ROC50 scores were
0.118 ± 0.002, 0.112 ± 0.002 and 0.113 ± 0.003, respectively.

Composition-based statistics do not appear to improve
BLAST search accuracy, even when restricted score rescaling
is also incorporated. One reason for the discrepancy in these
results with those for PSI-BLAST is that a rare unrelated data-
base sequence with an anomalously low E-value has only a
minor effect on the BLAST ROC score, but by corrupting the
resulting PSSM it can have a major negative effect on that for
PSI-BLAST. Some users may find it desirable to use composi-
tion-based statistics and restricted score rescaling even for
BLAST, to avoid rare spuriously low E-values. These changes
have the disadvantage of frequently returning different scores
for identical alignments, due to the varying compositions of
database sequences, and of rarely returning scores that corre-
spond precisely to those implied by the standard, unscaled
substitution matrix used. For these reasons, we recommend the
changes described above primarily in the context of PSI-
BLAST.

We note that using our testing protocol, the ROC100 for the
development set improves from ∼0.53 using one round of
searching with BLAST to 0.89 using six rounds (five versus nr
and one versus yeast) of searching with PSI-BLAST. This rein-
forces the conclusions of previous studies (56–60) that most
biologists who still commonly use only BLAST for protein
queries would benefit substantially by switching to PSI-
BLAST.

THE PRECISION OF BLAST AND PSI-BLAST
E-VALUES

The ROC method we have used to compare various versions of
BLAST and PSI-BLAST relies on reported E-values only to
sort into one list the matches for different queries. The
accuracy of E-values in describing statistical significance is
relevant within the program only for setting the h parameter,
whose values have in any case been chosen empirically.
However, a user of BLAST or PSI-BLAST may wish to rely
upon reported E-values in evaluating the potential relevance of
similarities found. Accordingly, we test here how well the
E-values returned by these programs reflect the distribution of
scores produced by chance.

To obtain a large number of relatively independent query
sequences, we selected 1000 Escherichia coli proteins from
GenBank (8) with GI numbers ending in 1, 2 or 3. For BLAST,
we compared these sequences to a ‘shuffled’ version of our
yeast database, in which the letters of each sequence were
randomly permuted. For PSI-BLAST, we compared each

Table 2. Search accuracy of PSI-BLAST, measured using development and
test query sets

PSI-BLAST version Aggregate ROC100 score
for development query set
versus yeast

Aggregate ROC50
score for test query
set versus nr

FWh10–6 0.758 ± 0.005 0.615 ± 0.004

WSh0.0002 0.838 ± 0.003 0.839 ± 0.004

FWSh0.002 0.879 ± 0.003 0.906 ± 0.003

FWSDh0.005 0.884 ± 0.002 0.902 ± 0.002

FWSDMb9p94h0.005 0.895 ± 0.003 0.910 ± 0.003
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query to the unscrambled nr database through five iterations or
until convergence, and then compared the resulting PSSM to
the scrambled yeast database. Because we were unable to
assess theoretically the magnitude of the effect restricted score
rescaling has on random score distributions, we studied
versions of BLAST and PSI-BLAST that include and exclude
this feature.

Specifically, we tested versions of FWSDh0.005 and
FWSDMb9p94h0.005 for PSI-BLAST, and the corresponding
versions FWS and FWSM for BLAST. For the 1000 query
sequences, we recorded the total number or alignments
returned with E-value ≤ 1.0, 0.1 and 0.01, which by theory are
expected to be near 1000, 100 and 10 respectively; the results
are shown in Table 3. In all cases, the number of alignments
observed at various E-values are within a factor of two of the
number predicted. The reported E-values for BLAST appear
slightly high (i.e. conservative), while those for the version of
PSI-BLAST without restricted score rescaling appear slightly
low.

IMPLEMENTATION

We use the terms BLAST and PSI-BLAST throughout to refer
to versions of the command-line program more precisely
called blastpgp. There is also a Web-based version (http://
www.ncbi.nlm.nih.gov/BLAST/, follow hyperlinks there),
which differs primarily in how the options are set, and in that
the user can control which matching sequences get used in
constructing the PSI-BLAST PSSM. Since it is impossible to
synchronize the public releases of the command-line blastpgp
(because it is part of the larger NCBI software toolkit), the
Web version and papers, we summarize how the modifications
described herein are encapsulated in different numbered
versions of the released code.

The improved statistical parameters λ and K were first made
available in version 2.1.3. The new ‘edge-effect’ parameters
(3) accounting for the fact that alignments are unlikely to begin
near the ends of sequences, are in version 2.2.1. The improved
precision and use of proper amino acid pair frequency ratios
started in version 2.1.1. Version 2.1.1 made available Smith–
Waterman alignments (W) as a command-line option only, but
disallowed its use on the Web page because of worst-case
running time. We evaluated the effect on search accuracy of
turning off W on versions of PSI-BLAST. The resulting
ROC100 scores for our development query set improve from
0.780 ± 0.005 for Fh10–6 to 0.884 ± 0.004 for
FSDMb9p94h0.005.

Version 2.1.1 first made available an option that combines
filtering of database sequences (F), a preliminary implementation
of composition-based statistics (S) and restricted score
rescaling (M), under the combined name ‘composition-based
statistics’. Version 2.2.1 includes a better implementation of S.
Version 2.1.1 and beyond implement the dispersed method for
inferring frequencies from gaps (D), but it cannot be turned off.
No released version implements reversed sequence score
normalization (R). Among the three numerical parameters, the
user can control the settings of the pseudocount parameter (b)
and the E-value threshold for inclusion in a PSI-BLAST
multiple alignment (h), but not the purging percentage (p).
Versions 2.0.* used b10p98h0.001 by default. Version 2.1.1
changed the default to b7p98h0.002, which is conservative,
since we showed that one can safely raise h to 0.005. Version
2.2.1 changes the default again to b9p94h0.005.

DISCUSSION AND CONCLUSION

PSI-BLAST is a widely-used extension to BLAST that permits
iterative searching, and is particularly good at finding distant
relationships. There have been several evaluations of PSI-
BLAST accuracy published by other groups (56–60) which
show there was substantial room for improvement in the
accuracy of versions 2.0.*. A particularly frustrating limitation
to using PSI-BLAST for large-scale automated protein
analysis was that on a small, but certainly not negligible
percentage of queries, false positives could enter the list of
matches at one iteration with an E-value low enough to corrupt
the PSSMs constructed for searching in subsequent iterations.
In some cases the corruption got so bad that the program would
exhaust all virtual memory and crash, or produce tens of mega-
bytes of worthless output.

We have described a long list of modifications that were
implemented in a large-scale attempt to improve PSI-BLAST
accuracy in protein database searching. Of course, there are
more ideas left to test, especially involving methods for
generating the multiple alignments used to construct the PSI-
BLAST PSSMs. However, the improvements described herein
are substantial enough that it seemed desirable to suspend the
testing of new ideas long enough to quantify these improve-
ments and make them publicly available. The modifications
that improved performance are retained in PSI-BLAST version
2.2.1. Most of these were introduced, at least in preliminary
implementations in version 2.1.1. Version 2.1.1 appears to
have nearly eliminated the corruption problem in PSI-BLAST.

The change that yielded the majority of the improvement is
the use of ‘composition-based’ statistics to re-evaluate candi-
date alignments. Composition-based statistics take into
account the letter frequencies in database sequences, and adjust
the scale of the query PSSM accordingly. The use of composition-
based statistics represents a more careful interpretation of the
statistical theory behind BLAST (19,27), initially assessing the
significance of a local alignment between two sequences, and
then extending the results to database searching. The original
BLAST implementation of that extension codified the
questionable assumption that all database sequences should be
treated as if they have the same average letter frequencies.
This assumption is dangerous in the iterative context of
PSI-BLAST, where allowing false positives to enter the set of
matches used to construct a PSSM can lead to corruption. We

Table 3. Precision of BLAST and PSI-BLAST E-values, measured with 1000
queries

BLAST or PSI-BLAST
version

Number of alignments with E-value
less than or equal to

1.0 0.1 0.01

FWS 759 60 10

FWSM 641 53 8

FWSDh0.005 1179 132 18

FWSDMb9p94h0.005 815 86 14
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implemented composition-based statistics efficiently by using
them only to re-evaluate candidate matches identified using the
average composition assumption.

Incorporating composition-based statistics substantially
improved the accuracy of PSI-BLAST searches, primarily by
decreasing the retrieval of false positives, and thereby
suppressing the corruption of constructed PSSMs. This modi-
fication of PSI-BLAST is most important for large-scale
searches, for example during genome annotation, and for all
searches with compositionally-biased queries. However, our
results are averaged over many cases, and for individual
queries the use of composition-based statistics, or indeed any
of the other refinements we have introduced, may degrade
performance.

We measured the performance of our modifications on a set
of 103 query sequences, with lists of true positives in yeast
curated by human experts. On this set the ROC100 score
improved from 0.758 ± 0.005 to 0.895 ± 0.003, even without
accounting for four improvements implemented in the baseline
version. Nevertheless the gap between our current best ROC100
score of 0.895 and the best possible score of 1.0 is substantial.
More research is needed to identify new algorithmic and/or
statistical refinements to narrow this gap further.

Our testing protocol involved saving a checkpoint PSSM
after five PSI-BLAST rounds versus the nr database, and then
comparing that checkpoint to an annotated yeast database. The
choice of five rounds versus nr was based on early experiments
which suggested that five initial rounds of searching produced
results comparable to 10. We performed a post facto evaluation
of this choice by saving the PSSM generated by PSI-BLAST
version FWSDMb9p94h0.005 after one to 10 rounds versus nr.
The resulting ROC100 scores were: 0.754, 0.829, 0.861, 0.886,
0.895, 0.896, 0.894, 0.893, 0.891 and 0.895. From round 5
through round 10, the scores move slightly up and down, but
there is no corruption with any query in any round. We also
recorded the number of queries that converged after each round
versus nr, meaning that no new matches were found with an
E-value ≤ h = 0.005. The numbers of converged queries out of
103 were: 2, 19, 27, 43, 55, 60, 67, 72, 75 and 78. These exper-
iments suggest that for large-scale, automated applications,
running PSI-BLAST for five to six rounds (which corresponds
to saving the checkpoint computed after four to five rounds)
may reveal most of the matches that could be found by running
until convergence.
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APPENDIX A

Estimating the standard deviation of ROC scores

Fix a query sequence and consider any database search method
that ranks the relatedness of database sequences to the query
(e.g., by using E-values). For simplicity, classify each database
sequence as either a true positive or a false positive with
respect to the query. Let i = 1,2,3 … index the rank of the false
positives, and let ti be the number of true positives ranked
ahead of the ith false positive. For the Appendix, we assume
for simplicity that there are no ties in rank, although ties can be
accounted for easily in the estimates below, and were
accounted for in the ROC scores and standard deviations
reported above. The accuracy of the search method can be
assessed by the ‘receiver operator characteristic’ for n false
positives, defined as:

4

Here T is total number of true positives in the database, and we
used either n = 50 or 100 in the results reported. The sum alone
in equation 4 we denote

Given two search methods, resampling with a bootstrap
(described in detail below) can assign an empirical p-value to
the difference between their corresponding ROCn values. For
each bootstrap sample, calculate the difference between the
sample ROCn’s and then note the position of the actual difference
within the bootstrap distribution. This appendix announces
some simple analytic results that can be used to decide whether
the difference between two ROCn values is statistically significant
under bootstrap resampling. The mathematical details will be
published elsewhere (Czabarka and Spouge, manuscript in
preparation).

Two bootstrap resampling schemes could be used: either
resample all sequences or resample only from the false positives,
leaving true positives fixed. Usually, the set of true positives is
well characterized, so the false positives generate the real
‘noise’ in the ROCn measurement. When only the false posi-
tive sequences are resampled, the analytic results simplify
because the denominator (nT) in equation 4 remains constant.
The following presents results on resampling only the false
positive sequences.

Let F be the total number of false positives in the database.
A bootstrap sample consists of F false positives sampled
uniformly, independently and with replacement from the entire
set of false positives. Let Fi be the (random) number of times
that the false positive of retrieval rank i is resampled. Define
the random variable Nn to be the smallest integer satisfying

ROCn
1

nT
------= ti ⋅

1 i n≤ ≤
�

R̃n ⋅
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i.e., the false positive ranked n in the resampling has original
rank Nn.

The false positive sequences contributing to ROCn, for any
reasonable choice of n, form a very small proportion of the
database. Thus, the distribution of the ROCn under resampling
can be approximated by taking each false positive in its rank
order and sampling it Fi times, where Fi is chosen from a
Poisson distribution with mean 1. One can stop when the total
of the Poisson sample counts reaches n.

The equivalence of an experiment resampling false positives
and an experiment sampling from a Poisson distribution
implies that many important quantities concerning ROCn can
be approximated analytically. For example, by definition, the
resampled, non-normalized ROCn is:

6

The mean µ(Rn) and the variance σ2(Rn) have analytic forms
that can be practically computed under all conditions (although
they are not shown here because they are too complex as
formulas). Mathematical theorems show that under typical
conditions µ(Rn) ≈ Σ1 ≤ i ≤ n ti = and σ2(Rn) ≈ Σ1 ≤ i ≤ n (tn+1 – ti)2.
Moreover, the distribution of Rn is close to normal, so the
approximate standard deviation can be used to provide an
approximate p-value.

These distributional results can be extended to differences
between resampled ROCn’s, which is of use when comparing a
pair of retrieval methods. Let us use the prime symbol (′) to
denote quantities pertaining to a second search method. Then:

and

7

The summation condition Di = D′j indicates a sum over
sequences common to the first n false positives in both
retrieval lists. The notation expresses the condition that false
positive Di in the first list is the same as false positive D′j in the
second list.

The comparisons of experimental data above use the esti-
mate σ2(Rn – R′n) ≈ σ2(Rn) + σ2(R′n) and ignore the final corre-
lation term in equation 7, so that we can assign a standard
deviation to each version rather than each pair. The omission
of the third term, which is subtracted, leads to an overestimate
of the standard deviation.

APPENDIX B

Matrix rescaling

The method of rescaling matrices can be be summarized as
follows. Let λu be the ungapped scale parameter (19) for the
reference substitution matrix (e.g., BLOSUM62) in the context
of standard amino acid frequencies (21). Suppose that Q is the
query sequence and Dinit is the initial matching database
sequence.
(i) Multiply the gap costs by a scaling factor f, and divide λu by
f. We currently set f = 32 for five extra bits of precision.
(ii) Compute the residue frequencies in Q.
(iii) If filtering (modification F) is turned on, let D be the
output of filtering Dinit with SEG (currently using parameters
10, 1.8, 2.1). If F is off, let D = Dinit. Compute the residue
frequencies for D, ignoring all segments that were replaced
with X’s by SEG.
(iv) Given frequency ratios Rij for the current score matrix,
compute scaled-up scores Sij as the nearest integer to log(Rij)/
λu. Since λu has been previously divided by f, this will have the
effect of multiplying each score by roughly f.
(v) Using the residue frequencies for Q and D and the scaled up
matrix scores Sij compute a match-specific λ′u (19).
(vi) Let the ratio r = λ′u/λu. If restricted score rescaling (modi-
fication M) is turned on, change r to min(r,1).
(vii) For each position i, j in the matrix, compute the rescaled
score S′ij as the nearest integer to r · log(Rij)/λu.

Since the resulting rescaled score matrix S′ and gap costs are
both scaled up by a factor of f, we divide the final raw align-
ment scores by f before printing the output. Note that at steps 4
and 7, the scaling is done in floating point first, and the nearest
integer score is computed at the end.

Fi n ;≥
1 i Nn≤ ≤
�

Rn Fiti n Fi

1 i Nn 1–≤ ≤
�–
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