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Abstract. The phonetic alignment of the spoken utterances for speech
research are commonly performed by HMM-based speech recognizers, in
forced alignment mode, but the training of the phonetic segment models
requires considerable amounts of annotated data. When no such mate-
rial is available, a possible solution is to synthesize the same phonetic
sequence and align the resulting speech signal with the spoken utter-
ances. However, without a careful choice of acoustic features used in
this procedure, it can perform poorly when applied to continuous speech
utterances. In this paper we propose a new method to select the best
features to use in the alignment procedure for each pair of phonetic seg-
ment classes. The results show that this selection considerably reduces
the segment boundary location errors.

1 Introduction

Phonetic alignment plays an important role in speech research. It is needed in a
wide range of applications, from the creation of prosodically labelled databases,
for research into natural prosody generation, to the creation of training data for
speech recognizers. Furthermore, the development of many corpus-based speech
synthesizers [1,2]) requires large amounts of annotated data.

Manual phonetic alignment of speech signals is an arduous and very time
consuming task. Thus, the size of the speech databases that can be labelled this
way are obviously very constrained, and the creation of large speech inventories
requires some sort of automatic method to perform the phonetic alignment.
While building a system to automatically align a set of utterances, two different
problems can be found. First, we have to know the sequence of phonetic segments
observed in those utterances. Then, we have to locate the segment boundaries.
The sequence of segments can be obtained by using a pronunciation dictionary
or by applying a set of pronunciation rules to the orthographic transcription of
the utterances. However, it is, usually, not possible to predict the exact sequence
uttered by the speaker and we must take into account possible disfluencies,
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elisions, allophonic variations, etc. In this work, we will assume that we already
have the right sequence of segments and we will focus on the task of locating
the segment boundaries.

Several approaches have been taken to try to solve this problem. The most
widely explored technique is the use of HMM-based speech recognizers (some-
times hybrid systems, based on HMM and Artificial Neural Networks) in forced
alignment mode. This approach relies on the use of phone models built under
the HMM framework. This models

are trained using large amounts of labelled data, recorded from several speak-
ers, to take into account the phone’s acoustic properties in very different contexts.
For single speaker databases, the performance of the system can be improved by
adapting the speaker independent models to the speaker’s voice. The difficulty
of this approach is that it requires the availability of segmented data for the
speaker. This material must be annotated following strict segmentation rules so
that the resulting system can locate segment boundaries with the necessary pre-
cision. When no such system is available, a Dynamic Time Warping (DTW, [3])
based approach can be taken. This technique was used in early days of speech
recognition to compare and align a spoken utterance with pre-recorded models,
taking into account possible variations on the speaker’s rhythm. The recognized
utterance corresponded to the model with the minimum accumulated distance
after the alignment. The same methodology can be used for the phonetic align-
ment problem as described in [6] and [7]. This procedure, also known as speech
synthesis based phonetic alignment, starts by producing a synthetic speech sig-
nal with the desired phonetic sequence that allows us to know the exact location
of the phonetic segment boundaries. This can easily be achieved using a modified
speech synthesizer. The next step is to compute, every few milliseconds, vectors
of acoustic features for both the synthetic and natural speech signals. By using
some type of distance measure, the acoustic feature vectors can be aligned with
each other using the DTW algorithm. The algorithm result is a time alignment
path between the synthetic and natural signal time scales, that allows us to map
the segment boundaries from the synthetic signal into the natural utterance.
This approach does not require any previously segmented speech from the same
speaker but the results depend, in some extent, on the similarity between the
synthesizer’s and speaker’s voice, and they should have, at least, the same gen-
der. The performance of this method is strongly dependent on the selection of
the acoustic features used in the alignment procedure and on the distance used
to compare them.

This work is part of an effort to automate the process of multi-level anno-
tation of speech signals. A complete view about this problem can be found in
[4]. In this paper, we will describe our work on the use of different features to
improve the performance of a DTW-based phonetic alignment algorithm. The
results of this study lead us to a new method to perform the alignment that uses
multiple acoustic features depending on the class of segments to be aligned.

The paper is divided into five sections. The next section describes the pro-
cess for producing the synthetic reference signal with segmentation marks. The
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following section describes an automatic procedure for the selection of the most
relevant acoustic features. These results are then applied in the next section,
where the alignment procedure is described. The final section compares the re-
sults of the new method with a traditional approach.

2 Waveform Generator

An important issue on the DTW-based phonetic alignment is the generation of
the reference speech signal. This can be achieved by using some sort of a speech
synthesizer, that can be modified to produce the desired phonetic sequence to-
gether with the segment boundaries. The problem with this solution is that the
signal processing required to impose the rhythm and intonation determined by
the prosody module also introduces distortions on the synthetic signal. For our
purposes, these prosodic modifications are not necessary and a simple wave-
form concatenation system was used. Since our goal was to locate the segment
boundaries, we used diphones as concatenation units. This way, the concatena-
tion distortion is located in the middle of the phone and does not affect the
signal in the phone boundary.

In order to have a general purpose system it must be able to produce any
phonetic sequence and the inventory must contain all the possible diphones in
the language. We followed the common approach of generating a set of nonsense
words (logathomes), containing all the required diphones in a context that min-
imizes the co-articulation with the surrounding phones. A speaker was asked
to read the logathomes in a sound proof room and was recorded using a head
mounted microphone in order to keep the recording conditions reasonably con-
stant among sessions. We also asked the speaker to keep a constant intonation
and rhythm. The recorded material was then manually annotated.

We used the unit selection module of the Festival Speech Synthesis System[8]
to perform the concatenation. A local search is made around the diphone bound-
aries to find the best concatenation point. We used the Euclidean distance be-
tween the Line Spectral Frequencies (LSF) for costing the spectral discontinuities
of the speech units.

3 Acoustic Features

We considered some of the most relevant acoustic features used in speech pro-
cessing: the mel frequency cepstrum coeficients (MFCC) and their differences
(deltas), the four lowest resonances of the vocal tract (formants), the line spec-
tral frequencies (LSF), the energy and its delta and the zero crossing rate of
the speech signal. Both the energy and the MFCC coefficients, as well as their
deltas, were computed using software from the Edinburgh Speech Tools Library
[9]. The formants were computed using the formant program of the Entropic
Speech Tools [10] and the remaining features were computed using our own
programs.
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Our first experiments showed that each of these features used separately
produced uneven results. Depending on the class of phones to be aligned some
features proved better than others. For instance, in a vowel-plosive transition,
the energy feature was the performer, but for vowel-vowel transition, the best
results were achieved using formants as features. This immediately suggested
the use of multiple features to distinguish the different phone transition classes.

3.1 Feature Normalization

The combination of multiple features requires a previous normalization step to
equalize its influence on the overall alignment cost. It was decided to normalize
the values to the range [0, 1].

The first stage was to determine which of the features had values that fol-
lowed a Gaussian distribution. Observing the histograms of each coefficient, the
MFCCs and their deltas were the only ones that matched that distribution.
The mean and standard deviation were computed for each one of them, and the
normalization was then performed, using the equation:

xi =
1
2

+
Xi − µi

2σi
(1)

where xi, Xi, µi and σi are the normalized value, the non-normalized value,
the mean value, and the standard deviation of the ith MFCC, respectively. The
LSF values were divided by π. Since the zero crossing rate was computed by
evaluating the ratio between the number of times the speech signal crosses the
zero magnitude and the number of signal samples existing in a fixed size window
(some milliseconds), its values have already the right magnitude (between 0 and
1). For the energy, its delta and for the formants, maximum and minimum values
were found for each utterance, and their mean values were computed (Yimax and
Yimin). The normalized values were calculated using the following equation:

yi =
Yi − Yimin

Yimax − Yimin

(2)

3.2 Feature Selection Procedure

Having all the features normalized, the next goal was to find which were more
relevant in a given phonetic context. That is, which feature allowed us to locate
the boundary with greater precision. For this purpose we had a set of 300 man-
ually aligned utterances that we use to evaluate the relevance of each feature.
These utterances were spoken by a different speaker than the one used to record
the diphone inventory. The waveform generator previously described was used
to produce reference synthetic signals for the phonetic sequences of these utter-
ances and sets of feature vectors were computed every 5 milliseconds for both
the reference and spoken signals.

Using the Euclidean distance, a matrix was computed with the distances
between all the feature vectors of the two series. Figure 1 shows a rough rep-
resentation of this matrix. We then evaluated each distance on its capacity to
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Fig. 1. Graphical representation of the distance matrix regions used for choosing the
best feature / pair of features to align the different pairs of phonetic segments

discriminate the difference between two consecutive phones. This was achieved
by computing the average distance between feature vectors of the same phone
(dists), and of different phones (distd). Using the example in Fig. 1, if we want
to choose an acoustic feature to distinguish the silence (#) and the vowel u, the
dists is the average of the values in regions 1 and 6 on that matrix, while the
distd is the average of the values on regions 2 and 5.

This procedure was performed for every pair of phones and for every utter-
ance on the training set, and its resulting values were saved at the end of each
iteration. Finally, we computed an average value of the ratio between dists and
distd for each pair of phonetic segments and for each acoustic feature. The chosen
feature is the one that gives a minimal value for this ratio using the equation:

Fk = min
x

Nk∑

i=1

dists(k, x, i)
distd(k, x, i)

(3)

where, x is one of the tested features, k represents the pair of phones that is being
analyzed, Nk is the number of instances of this pair in our set of utterances, Fk is
the best feature for this type of transition, and dists(k, x, i) and distd(k, x, i) are
the mean distances for the instance i using the acoustic feature x. The smaller
is that ratio, the greater is probability of having well aligned frames, locally
at least. With this approach, we are trying to use the features that assign the
greatest penalty for the alignment paths when they fall out of the darkest regions
of Fig. 1 (regions 1, 6, 11 and 16).

Given the reduced amount of training data, we soon realized that it would be
impossible to have a large enough number of instances, for each pair of segments
to produce confident results. Thus the different phonetic segments were grouped
into phonetic classes: vowels, fricatives, plosives, nasals, liquids and silence. The



36 S. Paulo and L.C. Oliveira

Table 1. Best feature pairs for the multiple phonetic segment class transitions

Nasals Fricatives Liquids Plosives # Vowels
Nasals frm+lsf mfcc+zcrs frm+en lsf+en frm+en mfcc+mfcc

Fricatives lsf+lsf mfcc+en en+zcrs lsf+en zcrs+en lsf+lsf
Liquids lsf+en lsf+en lsf+lsf mfcc+en mfcc+en frm+mfcc
Plosives lsf+en lsf+lsf lsf+en mfcc+mfcc lsf+zcrs mfcc+en

# lsf+en lsf+en lsf+en lsf+en x lsf+en
Vowels mfcc+en zcrs+lsf mfcc+en lsf+en mfcc+en frm+mfcc

semi-vowels were grouped into the class of the vowels. The described procedure
for differentiating the phones was then repeated using phone class transitions
(vowel-vowel, fricative-vowel, etc.).

The analysis of the results showed that, in general, for each pair of phone
class transition, at least two of the selected features showed good discriminative
capacity. This could suggest some equivalence between the two features but
it could also mean that the two features were complementary. This way we
performed a combined optimization to select the pair of features for each phone
class pair. The process could be extended to a combination of even more features
but the results showed that there was no significant improvement in using more
than a pair of features. The Table 1 shows the results of this procedure, where
mfcc, lsf, frm, en and zcrs are the MFCC coefficients and their deltas, LSFs,
formants, energy and its delta, and the zero crossing rate, respectively. The x
symbol means that this class transition does not exist in the training set. The
best feature pair for a transition x-y, is located on the line of x and column of y.

4 Frame Alignment

Before applying the DTW algorithm the distance measure matrix between the
reference and the spoken signal must be built. Since we know the boundary
locations of the synthetic segments, the distance matrix can be built iteratively,
phone-pair by phone-pair.

Taking the example shown in Fig. 1, to build the distance matrix we start by
computing the matrix values for all the rows that correspond to the phone-pair
#-u using the best pair of features, based on the former results. However, the
phone u also belongs to the next phone-pair (u-i) and the computed distance
is multiplied by a decreasing triangular weighting window. The distance for
the next phone pair (u-i) is then computed using the best pair of features for
the vowel-vowel transition and its value is added to the rows corresponding to
segment u weighted by an increasing triangular window. Figure 2 shows this
weighting triangular windows, where the dotted lines are the weighing factor of
the previous phone-pair distances and the dashed lines are the weights of the
distances for the next phone-pair. After computing all the values of the distance
matrix, the DTW algorithm is applied to find the path that links the top left
corner of the matrix to the lower right corner with a minimum accumulated
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Fig. 2. Graphical representation of the necessary operations for building the distance
matrix

distance. This path will be the alignment function between the time scale of the
synthetic reference signal and the spoken utterance.

5 Results

The procedure described in the previous section was applied to the reference
corpus of 300 manually annotated sentences. The results are depicted in Fig. 3
where the lower solid line is the annotation accuracy when the entire set is
aligned using always a feature vector 12 Mel-frequency cepstrum coefficients
and their differences. Only 46% of the phonetic segments were aligned with an
error less than 20 ms. Using only the best feature for computing the distance
for each phone class pair increases the 20ms accuracy to 59% of the segments
(dashed line). This result can be improved to 70% by combining two features for
computing the distance measure.

The relatively low percentage of agreement for tolerances lower than 20ms
can be partially explained by the fact that the segmentation criteria used in the
annotation of the reference corpus was not exactly the same as the one used in the
segmentation of the logathomes used to produce the synthetic reference. Another
difficulty was that the speech material in the reference corpus was uttered by
a professional speaker with a very rich prosody and large variations in energy,
where several consecutive voiced speech segments become unvoiced. This is, in
our opinion the main reason for about 4% of disagreement within high tolerances
(about 100 milliseconds). We hope to detect this alignment problems with some
confidence measures based on the alignment cost per segment and by phone
duration statistics. As soon as we have more annotated material we also plan to
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Fig. 3. Accuracy of some versions of the proposed algorithm and a classic DTW-based
phonetic alignment algorithm

evaluate the annotation accuracy for a corpus on which we had not optimize the
feature selection in order to test the generality of the selected features

6 Conclusions

In this work we have presented a method for selecting the most relevant pair
of features for aligning two speech signals with the same phone pairs but with
different durations. This features were then used in a DTW-based method for
performing the phonetic alignment of a spoken utterance. The results clearly
show the advantage of selecting the most appropriate features for each class of
segments in the alignment of two utterances: the most commonly used feature,
MFCCs, performed well bellow the proposed method.
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