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Abstract

Background: Two-sample summary-data Mendelian randomization (MR) incorporating

multiple genetic variants within a meta-analysis framework is a popular technique for

assessing causality in epidemiology. If all genetic variants satisfy the instrumental vari-

able (IV) and necessary modelling assumptions, then their individual ratio estimates of

causal effect should be homogeneous. Observed heterogeneity signals that one or more

of these assumptions could have been violated.

Methods: Causal estimation and heterogeneity assessment in MR require an approxima-

tion for the variance, or equivalently the inverse-variance weight, of each ratio estimate.

We show that the most popular ‘first-order’ weights can lead to an inflation in the chan-

ces of detecting heterogeneity when in fact it is not present. Conversely, ostensibly more

accurate ‘second-order’ weights can dramatically increase the chances of failing to detect

heterogeneity when it is truly present. We derive modified weights to mitigate both of

these adverse effects.

Results: Using Monte Carlo simulations, we show that the modified weights outperform

first- and second-order weights in terms of heterogeneity quantification. Modified

weights are also shown to remove the phenomenon of regression dilution bias in MR

estimates obtained from weak instruments, unlike those obtained using first- and

second-order weights. However, with small numbers of weak instruments, this comes at

the cost of a reduction in estimate precision and power to detect a causal effect com-

pared with first-order weighting. Moreover, first-order weights always furnish unbiased

estimates and preserve the type I error rate under the causal null. We illustrate the utility
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of the new method using data from a recent two-sample summary-data MR analysis to

assess the causal role of systolic blood pressure on coronary heart disease risk.

Conclusions: We propose the use of modified weights within two-sample summary-data

MR studies for accurately quantifying heterogeneity and detecting outliers in the pres-

ence of weak instruments. Modified weights also have an important role to play in terms

of causal estimation (in tandem with first-order weights) but further research is required

to understand their strengths and weaknesses in specific settings.

Key words: Two-sample summary-data Mendelian randomization, inverse-variance weighted estimate, Cochran’s

Q statistic, outlier detection

Introduction

Mendelian randomization (MR)1 is an instrumental vari-

able approach that uses genetic data, typically in the form

of single-nucleotide polymorphisms (SNPs), to assess

whether a modifiable exposure exerts a causal effect on a

health outcome in the presence of unmeasured confound-

ing. A particular MR study design gaining in popularity in-

stead combines publically available summary data on

SNP–exposure and SNP–outcome associations from two

separate studies for large numbers of uncorrelated variants

within the framework of a meta-analysis. These studies

should contain no overlapping individuals (to ensure inde-

pendence) but should also originate from the same source

population. This is referred to as two-sample summary-

data MR.2 Providing the necessary modelling assumptions

are met and the chosen set of SNPs are all valid

instrumental variables, an inverse-variance weighted

(IVW) average of their individual causal ratio estimates

provides an efficient and consistent estimate for the causal

effect. This is referred to as the IVW estimate (see Box 1).

Cochran’s Q statistic, which is derived from the IVW esti-

mate, should follow a v2 distribution with degrees of free-

dom equal to the number of SNPs minus 1. Excessive

heterogeneity is an indication that either the modelling

assumptions have been violated, or that some of the genetic

variants violate the IV assumptions—e.g. by exerting a di-

rect effect on the outcome not through the exposure.3 This

is termed ’horizontal pleiotropy’.4,5 For brevity, we will re-

fer to problematic horizontal pleiotropy simply as pleiot-

ropy from now on.

The presence of heterogeneity due to pleiotropy does

not necessarily invalidate an MR study. If across all

Key Messages

• Two-sample summary-data Mendelian randomization requires the specification of inverse-variance weights for model

fitting, heterogeneity quantification and outlier detection amongst a set of causal estimates.

• Heterogeneity indicates a possible violation of the necessary IV or modelling assumptions of which pleiotropy is a

likely major cause.

• First-order weights can inflate the type I error rate of Cochran’s Q statistic for detecting heterogeneity about the in-

verse-variance weighted (IVW) estimate when the NO Measurement Error (NOME) assumption is strongly violated (as

judged by a low F-statistic) and the true causal effect of interest is non-zero.

• Second-order weights can reduce the power of Cochran’s Q statistic for detecting heterogeneity about the IVW esti-

mate when the NOME assumption is violated.

• Modified weights (developed in this paper) preserve the type I error rate of Cochran’s Q statistic, whilst maintaining

its statistical power.

• ‘Exact’ modified weights should be used for global tests of heterogeneity. ‘Iterative’ modified weights should be used

to assess the outlier status of individual single-nucleotide polymorphisms (SNPs).

• IVW estimates obtained using exact weights are naturally corrected for regression dilution bias, and work well with

large numbers of instruments, but can be imprecise relative to other weighting schemes with small numbers of weak

instruments.

• Regardless of the number or strength of instruments used, first-order weights always furnish unbiased IVW estimates

and preserve the type I error rate under the causal null.

2 International Journal of Epidemiology, 2018, Vol. 0, No. 0
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Box 1. Standard two-sample summary-data MR

The IV assumptions: The canonical approach to MR assumes that a group of SNPs are valid IVs for the purposes of in-

ferring the causal effect of an exposure, X, on an outcome, Y. That is, they are: associated with X (IV1); not associated

with any confounders of X and Y (IV2); and can only be associated with Y through X (IV3). The IV assumptions are rep-

resented by the solid lines in the causal diagram below for a SNP Gj, with unobserved confounding represented by U.

Dotted lines represent dependencies between G and U, and G and Y that are prohibited by the IV assumptions. The

causal effect of a unit increase in X on the outcome Y, denoted by b, is the quantity we are aiming to estimate.

The ratio estimate: Assume that exposure X causally affects outcome Y linearly across all values of X, so that a hypo-

thetical intervention that induced a 1-unit increase in X would induce a b increase in Y. Suppose also that all L SNPs

predict the exposure via an additive linear model with no interactions. If SNP j is a valid IV, and the two study samples

are homogeneous, then the underlying SNP–outcome association from Sample 1, Cj, should be a scalar multiple of the

underlying SNP–exposure association estimate from Sample 2, cj, the scalar multiple being the causal effect b. That is:

Cj ¼ bcj:

The ratio estimate for the causal effect of X on Y using SNP j (out of L), b̂ j ¼ Ĉ j=ĉ j , where Ĉ j is the estimate for SNP j’s

association with the outcome (with standard error rY j) and ĉ j is the estimate for SNP j’s association with the exposure

(with standard error rXj).

The IVW estimate: The overall inverse-variance weighted (IVW) estimate for the causal effect obtained across L uncor-

related SNPs is then given by

b̂IVW ¼

P

L

j¼1

wjb̂j

P

L

j¼1

wj

;

where wj is the inverse-variance of b̂j . Cochran’s Q statistic:

Q ¼
X

L

j¼1

Qj ¼
X

L

j¼1

wjðb̂j � b̂IVWÞ2; (1)

can then be used to test for the presence of heterogeneity. If heterogeneity is detected, this provides evidence of hori-

zontal pleiotropy. Two popular choices for the inverse-variance weights used to calculate the IVW estimate and

Cochran’s Q statistic are:

1st order ðfixed effectÞweights : wj ¼
ĉ2j

r2Yj

International Journal of Epidemiology, 2018, Vol. 0, No. 0 3
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variants (i) the amount of pleiotropy is independent of in-

strument strength (the InSIDE assumption6) and (ii) it has

a zero mean, then a standard random-effects meta-analysis

will still yield reliable inferences.6,7 Although many MR

methods now exist that offer robustness to pleiotropy, in

this paper, we focus solely on the standard IVW estimate.

Choice of weights in two-sample summary-data

MR

Typically, ‘first-order’ inverse-variance weights are used to

calculate both the IVW estimate and Cochran’s Q. First-or-

der weights ignore uncertainty in the denominator of the ra-

tio estimate, which is equivalent to making the ‘NO

Measurement Error’ (NOME) assumption, as defined in

Refs.7,8 This nomenclature is chosen to remind the practi-

tioner that the SNP–exposure association estimates are only

equal to the true associations when measured with infinite

precision (or without error). The NOME assumption does

not relate to absence of measurement error in the exposure

itself, which can also be problematic for MR studies.9

Although the NOME assumption is never completely satis-

fied, strong violation (via the use of weak genetic instru-

ments) induces classical regression dilution bias in the IVW

estimate towards the null. So-called ‘second-order’ weights

attempt to better acknowledge the full uncertainty in the ra-

tio estimate of causal effect from each SNP10,11 (see Box 1).

It may appear obvious that second-order weights should be

used as standard within an MR study to calculate the IVW

estimate and Cochran’s Q. In fact, Thompson et al.12

showed that second-order weighting produces causal esti-

mates that are generally more biased than first-order weight-

ing. The ability of first- and second-order weighting to

furnish reliableQ statistics has yet to be fully explored.

Methods

It is possible to view Cochran’s Q statistic not just as a

method for quantifying heterogeneity, but as a tool for di-

rectly estimating the causal effect. That is, the IVW estimate

actually minimizes Cochran’sQ. We use this fact to derive a

generalized estimating equation based on an extended

version of Cochran’s Q statistic (see Box 2), where its

weight term is allowed to be a function of the causal-effect

parameter. We show that first-order and second-order

weighting are special cases of this general weight function.

Using this formulation, we propose two new procedures for

causal-effect estimation and heterogeneity quantification.

Our first procedure is termed the ‘iterative’ approach. It

iteratively updates the weight term with improved guesses

for the causal parameter, using the first-order IVW esti-

mate as a starting point. This procedure is closely related

to the ‘two-step generalized method of moments (GMM)’

estimator13 used in econometrics. Our contribution has

been to describe how it can be implemented using

Cochran’s Q statistic in the two-sample summary-data

MR setting. It will be shown that the iterative IVW ap-

proach improves causal-effect estimation and heterogene-

ity detection compared with first- and second-order

weighting. However, regardless of the number of iterations

performed, this procedure will not in general yield the

same results as that obtained from directly minimizing

Cochran’s Q, where the weight term is allowed to be a

proper function of the causal-effect parameter b. We refer

to this second procedure as the ‘exact’ approach. The exact

IVW estimate can be viewed as analogous to the limited-

information maximum-likelihood (LIML) estimate, trans-

lated to the two-sample summary-data MR setting.14 For

further details, see Box 2.

Estimation and inference after detection of

pleiotropy

Box 2 describes how to useQ statistics to calculate the IVW

estimate under a fixed-effect model and to test for the pres-

ence of heterogeneity due to pleiotropy. If substantial het-

erogeneity is detected, inferences about the causal effect

need to be adjusted to take this additional uncertainty into

account, by assuming a random-effects model.15,16 In

Supplementary Appendix 1 (available as Supplementary

data at IJE online), we describe in detail how to generalize

the Q statistics to obtain point estimates, standard errors

and confidence intervals for the first-order, second-order, it-

erative and exact IVW estimate under both fixed and

2ndorder ðfixedeffectÞweights: wj ¼
r2Yj

ĉ2j
þ
Ĉ

2

j r
2
Xj

ĉ4j

0

@

1

A

�1

In the two-sample setting, second-order weights are simplified because it is not necessary to include terms involving

the covariance of ĉ j and Ĉ j , since they are obtained from independent samples. For a more detailed description of the

assumptions required by two-sample summary-data MR, see Bowden et al. [ 7 ].

4 International Journal of Epidemiology, 2018, Vol. 0, No. 0
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Box 2. Accounting for weak instruments under a fixed-effect model and testing for pleiotropy

We start by writing down two models: first, the underlying data-generating model for the SNP–outcome association

estimates under the assumption of no pleiotropy, which is a function of the causal effect and the true SNP–exposure as-

sociation; and, second, the model that we actually fit to the data, which is a function of the causal effect and the SNP–

exposure association estimate:

Underlyingmodel: Ĉj ¼ bcj þ rYj�j; �j � Nð0;1Þ (2)

Fittedmodel given ð2Þ: Ĉj ¼ bĉj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2r2Xj þ r2Yj

q

�0j; �0j � Nð0;1Þ: (3)

Note that the variance of the error term in the fitted model has been inflated by a factor of b2r2Xj by virtue of replacing

cj with its estimate in Equation (3). Dividing both sides of the fitted model by ĉ j , we can obtain a model for the jth ratio

estimate, and from that an expression for its variance:

b̂j ¼ bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2r2Xj þ r2Yj

ĉ2j

v

u

u

t �0j ) Varðb̂jÞ ¼
b2r2Xj þ r2Yj

ĉ2j
: (4)

The variance term Varðb̂ j Þ in Equation (4) is a function of the true causal effect b. Let its reciprocal inverse-variance

weight be denoted as wjðbÞ ¼ 1=Varðb̂ j Þ. Using this weight, we now define the following modfied Q statistic and IVW

estimate:

QmðwðbÞ;bÞ ¼
X

L

j¼1

wjðbÞðb̂j � bÞ2; (5)

b̂IVW ¼

P

L

j¼1

wjðbÞb̂j

P

L

j¼1

wjðbÞ

: (6)

The IVW estimate using first-order weights is obtained by replacing wjðbÞ with wjð0Þ in Equation (6). Likewise, its asso-

ciated heterogeneity statistic is Qmðw ð0Þ;bÞ. The IVW estimate using second-order weights is obtained by replacing

wj ðbÞ with wj ðb̂j Þ in Equation (6). Likewise, its associated heterogeneity statistic is Qmðw ðb̂ jÞ; bÞ.

We now introduce two new fixed-effect IVW estimates (and associated heterogeneity statistics) obtained via different

weighting schemes.

The ‘iterative’ IVW estimate

Briefly, let b̂IVW ð0Þ be the IVW estimate obtained using first-order weights. Now define b̂ IVW ð1Þ as the IVW estimate

obtained from plugging wj ðb̂IVW ð0ÞÞ into Equation (6). Lastly, define b̂IVW ðiÞ as the IVW estimate obtained from plugging

wj ðb̂ IVW ði�1ÞÞ into Equation (6). We call b̂ IVW ðiÞ the ith ‘iterative’ IVW estimate and Qmðw ðb̂ IVW ðiÞÞ;bÞ its associated hetero-

geneity statistic. This iterative procedure should be repeated until the IVW estimate is stable.

The ‘exact’ IVW estimate

Although we obtain the first-order, second-order and iterative IVW estimates directly from Equation (6), each one has

the property that it minimizes its equivalent Q statistic in Equation (5). Crucially, the weights of these Q statistics do not

depend on b because a value (or estimate) has been substituted in its place.

In contrast, the exact IVW estimate is the value obtained from directly minimizing the generalized Q statistic

QmðwðbÞ; bÞ in Equation (5) with respect to b. Here, the weights are now allowed to be a proper function of b and affect

the minimization. Letting b̂ IVW now represent the exact IVW estimate derived in this manner, Qmðw ðb̂IVW Þ; b̂IVW Þ is then

its associated heterogeneity statistic.

International Journal of Epidemiology, 2018, Vol. 0, No. 0 5
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random-effects models (the multiplicative model is currently

preferred for MR studies). This task is straightforward for

the first-order, second-order and iterative weighting

approaches because they can be fitted using standard regres-

sion software. Bespoke methods are needed for exact

weighting, however, and a short summary of this particular

approach is provided in Box 3. Specifically, in the fixed-

effect case, we describe how to invert the exactQ statistic to

get a 95% confidence interval for the exact weighted IVW

estimate. In the random-effects case, we describe how to

jointly estimate the causal effect and multiplicative

over-dispersion parameter using a system of two estimating

equations. A non-parametric bootstrap algorithm is then

proposed to obtain a confidence interval for the causal

effect.

Performance of the Q statistics under no

pleiotropy

We now assess the extent to which Q statistics derived us-

ing first-order, second-order, iterative and exact weighting

erroneously detect heterogeneity due to pleiotropy when it

is not present (i.e. its type I error rate). To assess this,

two-sample summary-data MR studies comprising 25

SNP–exposure and SNP–outcome association estimates

were generated from models with no heterogeneity due to

pleiotropy. This furnished a set of ratio estimates between

which no additional variation should exist as their instru-

ment strength grows large (because NOME is satisfied) or

if the causal effect (b) equals zero. To highlight this, we

simulated MR studies with a range of instrument

strengths—from weak (a mean F-statistic of 10) to strong

(a mean F-statistic of 100). Further details of the simula-

tion study set up are described in Supplementary Appendix

2 (available as Supplementary data at IJE online).

Table 1 (columns 2–9) show the mean Q statistic and

the probability of the Q statistic detecting heterogeneity at

the 5% significance level (the type I error rate), when using

first-order, second-order, iterative and exact weights. Five

different mean F-statistic values were considered for b¼ 0

(no causal effect), b¼ 0.05 and b¼0.1, giving 15 scenarios

in total. Four iterations were used for the iterative weight-

ing method, as this was sufficient to ensure convergence.

We note that, in the absence of a causal effect (b¼ 0), first-

order weights are exactly correct. Furthermore, in the pres-

ence of a causal effect, when the mean F-statistic is 100, all

weighting methods are near-exact. Under the causal null,

all weighting schemes control the type I error rate for

detecting heterogeneity. Second-order weighting is ex-

tremely conservative in this respect with weak instruments,

however (e.g. a type I error rate near zero when F¼ 10).

In the presence of a causal effect, first-order weights

underestimate the true variability amongst the ratio esti-

mates as the mean F-statistic reduces. The associated Q sta-

tistics are then too large on average (i.e. positively biased

beyond their expected value of 24). This inflates the type I

error rate for detecting pleiotropy beyond nominal levels

(e.g. a type I error rate of �80% when F¼ 10 and b¼ 0.1).

Second-order weighting continues to over-correct the Q sta-

tistic so that it is negatively biased, thereby removing any

ability to detect heterogeneity at all. In contrast, iterative

weights are much more effective at preserving the type I er-

ror rate of the Q statistic at its nominal level, unless the

mean F-statistic is very low (indicating weak instruments).

Exact weighting perfectly controls the type I error rate of

Cochran’s Q across all the scenarios considered.

Supplementary Appendix 2 (available as Supplementary

data at IJE online) shows equivalent results for MR studies

of 10 and 100 variants, with highly similar results.

Figure 1 (left and right) shows the distribution of Q sta-

tistics using first-order, second-order and exact weights for

b¼ 0.1 and when the mean F-statistic is 100 and 10. This

illustrates how exact weighting ensures Cochran’s Q statis-

tic is faithful to its correct null distribution.

Power to detect pleiotropy

In Table 1, the type I error rate of Cochran’s Q statistic for

detecting heterogeneity using second-order weights was be-

low its nominal level. This is detrimental if it translates

into a low statistical power to detect heterogeneity when it

is truly present. Figure 2 (left) shows the power of

Cochran’s Q to detect heterogeneity at the 5% significance

level as a function of first-order, second-order, iterative

and exact weights when data are simulated under a multi-

plicative random-effects model with heterogeneity due to

pleiotropy of increasing magnitude [specifically, Equation

(2) in Supplementary Appendix 1 (available as

Supplementary data at IJE online) was used].

The simulation is repeated for MR analyses with 10, 25

and 100 SNPs. For all simulations, the causal effect

equalled 0.05 and the mean F-statistic equalled 61. We see

that the power of Cochran’s Q to detect heterogeneity

approaches 100% for all weighting schemes as the pleiot-

ropy variance increases. Power also increases with the

number of SNPs. The power of iterative or exact weights is

near identical, so we only show results for the exact

weights for clarity. The most striking result in this plot is

that the power of second-order weighting always lags con-

siderably behind that of first-order or exact weights.

Figure 2 (right) shows the results of a near identical sim-

ulation for the case L¼25, except that the causal effect is

set to 0.1 and the mean F-statistic is equal to 25. We see

6 International Journal of Epidemiology, 2018, Vol. 0, No. 0
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Box 3. Accounting for weak and pleiotropic instruments using exact weighting

First define the following generalized Q statistic and weight function for the multiplicative random-effects model:

Qðwðb;/Þ; bÞ ¼
X

L

j¼1

wjðb;/Þðb̂j � bÞ2; (7)

wjðb;/Þ ¼
/r2Yj þ b2r2Xj

ĉ2j

0

@

1

A

�1

: (8)

Here, / (which is greater than or equal to 1) is the multiplicative scale factor that quantifies the degree of

heterogeneity.

Inference for exact weighting under a fixed-effect model

When / is set to 1 in Equations (7) and (8), this is equivalent to assuming a fixed-effect model, and minimizing

Equation (7) with respect to b gives the fixed-effect exact IVW estimate, as described in Box 2. We explore two ways to

calculate the standard error of the fixed exact IVW estimate, denoted by b̂IVW . The first method uses the standard error

formula:

SEðb̂IVWÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

P

L

j¼1

wjðb̂IVW ;1Þ

v

u

u

u

u

t

; (9)

to construct symmetric 95% confidence intervals for the causal effect as b̂ IVW6t:975;L�1 � SEðb̂IVW1Þ. Here, t:975;L�1 is the

97.5th percentile of Student’s t-distribution with L – 1 degrees of freedom. This same procedure is used to derive confi-

dence intervals for the IVW estimate under first-order, second-order and iterative weighting.

The second method directly inverts the Q statistic to find the confidence set:

CIðb̂IVW ;0:95Þ ¼ fb : Qðwðb;1Þ;bÞ � v2L�1ð0:95Þg; (10)

where v2L�1ð0:95Þ is the 95th percentile of a chi-squared distribution with L – 1 degrees of freedom. In order to improve

the properties of this approach with few instruments, we additionally replace the value 0.95 in Equation (10) with the

value 2UðzÞ � 1, where z is the 97.5th percentile of a t-distribution with L – 1 degrees of freedom and UðÞ is the cumula-

tive distribution function of a standard normal distribution. As L increases, 2UðzÞ � 1 tends to 0.95 from above.

Inference for exact weighting under a random-effects model

The fixed-effect exact IVW estimate and its associated confidence intervals will only give reliable estimates if the fixed-

effect model holds. In practice, substantial heterogeneity is generally present in MR studies, in which case a random-

effects model should be adopted. The random-effects exact IVW estimate is obtained by finding the joint value of (b,/)

that solves:

Qðwðb;/Þ;bÞ � ðL� 1Þ ¼ 0; (11)

subject to the constraint that

@Qðwðb;/Þ; bÞ

@b
¼ 0: (12)

It is not straightforward to obtain a reliable confidence interval for the causal parameter b using the inversion method—

as in Equation 10—when over-dispersion is allowed. This is because it ignores uncertainty in the estimation of /.

Instead, we obtain an estimate for the variance of b̂ IVW using a standard non-parametric bootstrap algorithm. For fur-

ther details, please see Supplementary Appendix 1 (available as Supplementary data at IJE online).
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that the power to detect heterogeneity is always greatest

when using first-order weights, but only because its power

curve starts at a baseline level of 28% when there is no

pleiotropy. This corresponds to the type I error rate ob-

served in row 14 of Table 1. The power of iterative and ex-

act weighting starts at the correct 5% level and rapidly

increases to 100% as the pleiotropy variance increases.

The two implementations of our modified weights can be

differentiated in this simulation, with the iterative ap-

proach being slightly more powerful. The power of

second-order weighting, unsurprisingly, lags considerably

behind the rest. Equivalent plots for data simulated under

an additive pleiotropy model are shown in Supplementary

Appendix 3 (available as Supplementary data at IJE on-

line) and are highly similar.

Detecting outliers using individual components

of Q

When heterogeneity is detected by the IVW model, it is in-

teresting to investigate whether this is contributed to by all

SNPs or whether instead a small number of SNPs are re-

sponsible. Under the null hypothesis of no heterogeneity,

Q should follow an appropriate v2L�1 distribution, with L

being the number of SNPs. Likewise, each individual

component of Q can be approximated by a v21 distribution.

If an individual SNP’s Q contribution is extreme (e.g.

above the 5% threshold of 3.84 or instead a Bonferroni-

corrected threshold), then it may be desirable to exclude

the SNP in a sensitivity analysis. Although we do not want

to advocate a rigid, blanket policy of outlier removal, in

Supplementary Appendix 4 (available as Supplementary

data at IJE online), we illustrate via simulation how the re-

liability of such a procedure depends on the choice of

weights. The simulation (with 26 SNPs and a single larger

outlier) is motivated by the real data example in the fol-

lowing section. In this instance, our simulation suggests

that iterative rather than exact weights are best at correctly

identifying outliers due to pleiotropy.

Estimator performance with and without

pleiotropy

Table 2 shows the performance of the first-order, second-

order, iterative and exact weigthing in providing accurate

point estimates, standard errors and confidence intervals

for the causal effect under a fixed-effect (no heterogeneity)

model for MR analyses of 25 variants. For exact weight-

ing, we show the empirical coverage using two different

methods: a symmetric 95% confidence interval (labelled

Table 1.Mean Q statistic and type I error rate (T1E) of first-order, second-order, iterative (four iterations were performed) and ex-

act weighting

Mean First-order wj Second-order wj Modified wj

Iterative Exact

F Q T1E(Q) Q T1E(Q) Q T1E(Q) Q T1E(Q)

No heterogeneity, b¼0

100 23.9 0.044 22.8 0.022 23.9 0.044 23.9 0.044

61 24.1 0.052 21.9 0.016 24.1 0.051 24.1 0.051

40 23.9 0.049 20.3 0.006 23.9 0.048 23.9 0.048

25 24.0 0.052 17.7 0.002 23.9 0.051 23.9 0.051

10 24.0 0.052 12.3 0.000 23.6 0.047 23.4 0.042

No heterogeneity, b¼0.05

100 24.2 0.053 22.9 0.028 24.0 0.049 24.0 0.049

61 24.4 0.058 21.9 0.017 24.0 0.051 24.0 0.051

40 24.7 0.064 20.3 0.007 23.9 0.050 23.9 0.049

25 25.9 0.092 17.8 0.002 24.1 0.052 23.9 0.048

10 31.4 0.272 13.4 0.000 25.6 0.095 23.7 0.043

No heterogeneity, b¼0.1

100 24.7 0.065 22.8 0.027 23.9 0.052 23.9 0.051

61 25.6 0.084 21.8 0.017 23.9 0.048 23.9 0.047

40 27.3 0.132 20.5 0.009 24.1 0.053 24.0 0.050

25 31.7 0.282 18.2 0.003 24.4 0.060 23.9 0.048

10 53.9 0.792 15.8 0.004 27.8 0.166 23.9 0.051

Results are the average of 10 000 simulated data sets. Type I error rate (T1E(Q)) refers to the proportion of times Q is greater than the upper 95th percentile of

a v224 distribution.
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‘CF1’) and a 95% confidence interval obtained from invert-

ing its Q statistic (labelled ‘CF2’), as described in Box 3.

Importantly, all methods give reliable unbiased estimates

with correct coverages under the causal null hypothesis. In

the presence of a non-zero causal effect, first-order and

second-order IVW estimates are increasingly affected by

regression dilution bias (and consequently worsening cov-

erage) as the instrument strength decreases. Iterative

weights also produce IVW estimates that suffer from re-

gression dilution bias and sub-optimal coverage, but to a

lesser extent than first- or second-order weighting. Exact

weighting perfectly removes the effect of regression dilu-

tion bias (although the precision of the estimate is reduced)

and confidence intervals obtained via the inversion method

have the correct coverage. Equivalent results for MR stud-

ies with 10 and 100 SNPs are shown in Supplementary

Appendix 5 (available as Supplementary data at IJE on-

line). When only 10 SNPs are available and they are all

weak, the coverage of the inverted confidence interval for

the exact IVW estimate is slightly conservative (e.g. 96–

98% instead of 95%). As the number of SNPs increases to

100, coverage is very close to the nominal 95% level irre-

spective of instrument strength.

Table 3 shows equivalent results when summary-data

sets of 25 SNPs are simulated under a multiplicative ran-

dom-effects model allowing for pleiotropy. The data are

simulated so that the variability of the ratio estimates is

twice that expected in the absence of pleiotropy (i.e. the

variance inflation parameter /¼ 2). The performance of

each approach follows a similar pattern to that presented

for the fixed-effect case in Table 2, with first-order,

second-order and iterative weights adversely affected by

weak instrument bias and under coverage. The exact IVW

estimate and its corresponding variance inflation parame-

ter estimate are approximately unbiased. The non-

parametric bootstrap procedure yields confidence intervals

with approximately correct coverage. As before, confi-

dence intervals have a tendency to be slightly conservative

when the instruments are weak. Equivalent results for MR

studies with 10 and 100 SNPs are shown in Supplementary

Appendix 6 (available as Supplementary data at IJE on-

line). As the number of SNPs increases, the coverage of the

exact IVW estimate’s confidence interval is increasingly

closer to the nominal level.

Power to detect a causal effect

In Supplementary Appendix 7 (available as Supplementary

data at IJE online), we show the power of first-order,

second-order, iterative and exact weighting to detect a

causal effect for MR studies of 10, 25 and 100 SNPs when

the data are generated from the same multiplicative ran-

dom-effects model. These simulations highlight a downside

of exact weighting for causal estimation: when there are

only a small number of weak instruments, its power can be

considerably lower. For example, when F¼ 10 and the

causal effect is 0.05, its power is just under half that of the

first-order IVW estimate (29 vs 13%). However, the power

difference reduces considerably for 25 SNPs (e.g. 60 vs

40%) and is effectively zero for 100 SNPs. The power of
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Figure 1. Distribution of Q statistics (with 25 degrees of freedom) using first-order, second-order and exact weights. The causal effect b¼ 0.1 and the

mean F-statistic equals 100 (left) and 10 (right) respectively.
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iterative weighting is much more comparable to that of

first-order weighting, but always slightly lower.

Applied example

Figure 3 (top) shows a scatter plot of summary-data esti-

mates for the associations of 26 genetic variants with sys-

tolic blood pressure (SBP, the exposure) and coronary

heart disease (CHD, the outcome). SNP–exposure associa-

tion estimates were obtained from the International

Consortium for Blood Pressure consortium (ICBP).17 SNP–

CHD association odds ratios were collected from

Coronary ARtery Disease Genome-Wide Replication And

Meta-Analysis (CARDIoGRAM) consortium,18 which are

plotted (and subsequently modelled) on the log-odds ratio

scale by making a normal approximation. These data have

previously been used in a two-sample summary-data MR

analysis by Ference et al.19 and Lawlor et al.,20 but we ex-

tend their original analysis here by applying our modified

weights and conducting a more in-depth inspection of each

variant’s contribution to the overall heterogeneity. The

mean F-statistic for these data is 61. Using first-order

weights, the IVW estimate, which represents the causal ef-

fect of a 1-mmHg increase in SBP on the log-odds ratio of

CHD, is 0.053. This is shown as the slope of a solid black

line passing through the origin. Cochran’s Q statistic based

on first-order weights is equal to 67.1, indicating the pres-

ence of substantial heterogeneity. For this reason, only ran-

dom-effects models were used to derive point estimates,

confidence intervals and p-values for the causal effect.

Table 4 shows the results of further IVW analyses using

all weighting schemes. All schemes detect significant hetero-

geneity. As expected, the observed heterogeneity is largest

when using first-order weights, smallest when using second-

order weights and in between the two when using modified

weights. Point estimates and standard errors are in good

agreement across the different weights, because the mean in-

strument strength is high. Exact weighting gives the largest

point estimate 0.054 under a random-effects model. This is

followed by first-order and then second-order weights, re-

spectively. This ordering is as expected, given their relative

susceptibility to regression dilution bias.

For comparison, we also report the weighted median,21

b̂WM, that can identify the causal effect when up to (but not

including) half of the information in the analysis stems from

genetic variants that are invalid IVs. Its estimate, which is

calculated using first-order weights, is 0.063. Although all

approaches provide strong evidence in favour of a non-zero

causal effect, the exact random-effects IVW estimate is the

least precise of all estimates. Consequently, its p-value for

testing the causal null hypothesis is the largest of all.

Figure 3 (bottom-left) shows the individual contribu-

tion to Cochran’s Q statistic under each weighting

scheme. Horizontal lines have been drawn to indicate the

location of the 5th, 1st and 0.19th percentiles of a v21 in

order to help assess the magnitude of the contributions.

The 0.19th percentile is derived as a 0.05 threshold ad-

justed for multiple testing using the Bonferroni correc-

tion. We see that the eighth SNP in our list (rs17249754)

is responsible for the vast majority of the excess
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Figure 2. Left: Power of Cochran’s Q statistic to detect heterogeneity as a function of the pleiotropy variance and number of SNPs (L) using first-order,

second-order and exact weights. Pleiotropy is simulated under a multiplicative random-effects model. The causal effect is equal to 0.05 and the mean

F-statistic is 61. Top group: L¼100; middle group: L¼25; bottom group: L¼10. Right: Equivalent power plot except the causal effect is equal to 0.1 and

the mean F-statistic is 25.
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heterogeneity. Its contribution, Q8, ranges from approxi-

mately 24.5 to 28, depending on weighting. Variant

rs17249754 sits in the ATPase plasma membrane Ca2þ

transporting 1 (ATP2B1) gene, which is involved in intra-

cellular calcium homeostasis, and is strongly associated

with higher SBP. However, in the CARDIoGRAM con-

sortium, it is associated with reduced risk of CHD.

Since rs17249754 is also a strong instrument and is po-

tentially pleiotropic, its presence in the data could lead to the

InSIDE assumption being violated. We therefore opt to re-

move it in a further sensitivity analysis and Table 4 show the

results. All IVW estimates increase by around 20% (lying be-

tween 0.063 and 0.067) but are ordered as before. Removal

of rs17249754 leads to a dramatic reduction in the amount

of heterogeneity present in the data, as referenced by Q sta-

tistics between 30 and 35 for all methods. Figure 3 (bottom-

right) shows the updated contributions of each SNP to the

various Q statistics after removing rs17249754. If only first-

order weighting were available, it might be tempting to

exclude further variants from the analysis, but this signal is

appropriately tempered when using exact weights. The

weighted median estimate without rs17249754 is 0.065

(compared with 0.063 with). This highlights its inherent ro-

bustness to outliers, which is a major strength.

Discussion

In this paper, we have demonstrated the limitations of first-

and second-order weighting when used for IVW analysis in

two-sample summary-data MR. Most importantly, we

highlight the potential for serious type I error inflation of

Cochran’s Q statistic when using standard first-order

weights with weak instruments. In recent work, Verbanck

et al.22 also noted this same tendency and proposed a

simulation-based alternative to first-order weighting

named ‘MR-PRESSO’. Our simulations show that modi-

fied weights can deliver much more reliable tests for het-

erogeneity than either first- or second-order weighting, and

offer a simple alternative to MR-PRESSO.

Modified weights were also shown to be a more reliable

tool for the detection and removal of outliers in a given data

set, as apposed to first-order weights (which may detect too

many outliers) and second-order weights (that may detect

too few). Our simulations suggest that the exact weights

should be used when testing for the overall presence of het-

erogeneity (referred to as the ‘global’ test by Verbanck et

al.22) but that iterative weights are preferable if looking at

the individual outliers. We suspect this is because exact

weighting makes a more aggressive correction for regression

dilution bias than iterative weighting. Its resulting estimate

Table 2.Mean causal estimate b̂ IVW , standard error (SE) and coverage frequency (CF) of the 95% confidence interval when using

first-order, second-order, iterative and exact weights

Mean First-order wj Second-order wj Modified wj

Iterative Exact

F b̂IVW (SE); CF b̂IVW (SE); CF b̂IVW (SE); CF b̂IVW (SE); CF1 CF2

No heterogeneity, b¼0

100 0.000 (0.011); 0.952 0.000 (0.011); 0.951 0.000 (0.011); 0.952 0.000 (0.011); 0.961 0.948

61 0.000 (0.011); 0.947 0.000 (0.011); 0.947 0.000 (0.011); 0.948 0.000 (0.011); 0.956 0.946

40 0.000 (0.011); 0.954 0.000 (0.010); 0.952 0.000 (0.011); 0.955 0.000 (0.011); 0.957 0.946

25 0.000 (0.011); 0.947 0.000 (0.010); 0.941 0.000 (0.011); 0.949 0.000 (0.011); 0.942 0.949

10 0.000 (0.009); 0.952 0.000 (0.007); 0.928 0.000 (0.009); 0.958 0.000 (0.010); 0.836 0.958

No heterogeneity, b¼0.05

100 0.049 (0.011); 0.952 0.049 (0.011); 0.951 0.049 (0.011); 0.954 0.050 (0.011); 0.962 0.952

61 0.049 (0.011); 0.948 0.047 (0.011); 0.944 0.049 (0.011); 0.952 0.050 (0.011); 0.961 0.953

40 0.048 (0.011); 0.939 0.045 (0.011); 0.918 0.048 (0.011); 0.943 0.050 (0.012); 0.951 0.946

25 0.046 (0.011); 0.910 0.041 (0.010); 0.819 0.046 (0.011); 0.923 0.050 (0.012); 0.940 0.954

10 0.033 (0.010); 0.589 0.027 (0.008); 0.286 0.034 (0.011); 0.670 0.051 (0.012); 0.868 0.957

No heterogeneity, b¼0.1

100 0.099 (0.011); 0.945 0.097 (0.011); 0.945 0.099 (0.012); 0.950 0.100 (0.012); 0.963 0.946

61 0.098 (0.011); 0.932 0.095 (0.011); 0.920 0.098 (0.012); 0.944 0.100 (0.012); 0.956 0.947

40 0.097 (0.012); 0.911 0.091 (0.011); 0.859 0.097 (0.012); 0.933 0.100 (0.013); 0.954 0.951

25 0.092 (0.012); 0.844 0.083 (0.011); 0.649 0.092 (0.013); 0.896 0.101 (0.014); 0.947 0.955

10 0.065 (0.013); 0.348 0.055 (0.010); 0.094 0.072 (0.014); 0.518 0.102 (0.016); 0.895 0.964

Number of variants L¼ 25. CF1¼ coverage of a symmetric 95% confidence interval, CF2¼ coverage of inverted Q statistic confidence interval.
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then makes more variants appear as outliers, because their

ratio estimates are further away from the corrected slope. In

effect, exact weighting leads to the detection of SNPs that

are weak or pleiotropic.

An exciting finding of this paper is that the exact

weighting also yields causal estimates that are remarkably

robust to weak instrument bias. This opens up the poten-

tial for the significance threshold used to select SNPs as

instruments to be set at a less stringent level. For example,

in a specific analysis, there might be four SNPs that are as-

sociated with the exposure with a p-value less than

5� 10–8 (which equates to an F-statistic of approximately

30 and above), but a total of 50 SNPs available that are as-

sociated with the exposure with a p-value less than

5� 10–6 (which equates to an F-statistic of approximately

20 and above). Modified weights would then be potentially

preferable as a tool to more effectively utilize this larger set

of SNPs within an MR analysis.

There are two downsides to the use of exact weights

with weak instruments. First, it can produce causal esti-

mates with a reduced precision compared with simple first-

order weighting (although this difference disappears as the

number of instruments increases). Second, if weak instru-

ments are ‘discovered’ and analysed using the same data,

then SNP–exposure estimates are more susceptible to the

‘winner’s curse’ than strong instruments. In preliminary

work conducted in tandem with this paper, Zhao et al.14 in-

vestigate the use of exact weighting for causal estimation

and attempt to address both these issues. Specifically, they

incorporate a penalized weight function within the exact

weights. This reduces the effect of outliers (as apposed to ex-

plicit outlier removal) and increases the precision of the

causal estimate. Sampling splitting is proposed to remove

the effect of winner’s curse. The methods laid out in this pa-

per differ from that of Zhao et al.14 in four important ways.

First, we focus on the case of a multiplicative random-effects

pleiotropy commonly used in summary-data MR, whereas

Zhao et al. assume an additive random-effects model.

Second, Zhao et al. derive and implement their method us-

ing profile-likelihood theory, whereas our approach is moti-

vated and implemented using Cochran’s Q statistic. Third,

we propose two forms of modified weighting (iterative and

exact). Fourth, we describe how both iterative and exact

weighting can be used to test for heterogeneity as well as for

causal estimation. For further details on the link between

our work and that of Zhao et al.,14 see Supplementary

Appendix 1 (available as Supplementary data at IJE online).

Limitations

Our conclusions regarding the use of modified weights are

limited to the two-sample summary setting where SNP–

Table 3.Mean causal estimate b̂ IVW , standard error (SE) and coverage frequency (CF) of the 95% confidence interval when using

first-order, second-order, iterative and exact weights

Mean First-order wj Second-order wj Modified wj

Iterative Exact

F b̂IVW (SE); CF b̂IVW (SE); CF b̂IVW (SE); CF b̂IVW (SE); CF /̂

Heterogeneity, b¼0

100 0.000(0.016); 0.949 0.000 (0.015); 0.950 0.000 (0.016); 0.950 0.000 (0.016); 0.939 2.000

61 0.000 (0.016); 0.950 0.000 (0.015); 0.951 0.000 (0.016); 0.951 0.000 (0.016); 0.940 2.004

40 0.000 (0.016); 0.953 0.000 (0.014); 0.951 0.000 (0.016); 0.955 0.000 (0.016); 0.944 1.999

25 0.000 (0.015); 0.949 0.000 (0.013); 0.945 0.000 (0.015); 0.954 0.000 (0.017); 0.945 2.003

10 0.000 (0.013); 0.952 0.000 (0.009); 0.924 0.000 (0.013); 0.960 0.000 (0.037); 0.970 1.943

Heterogeneity, b¼0.05

100 0.050 (0.016); 0.948 0.048 (0.015); 0.947 0.050 (0.016); 0.949 0.050 (0.016); 0.938 2.002

62 0.049 (0.016); 0.951 0.046 (0.015); 0.943 0.049 (0.016); 0.954 0.050 (0.016); 0.943 1.998

40 0.048 (0.016); 0.949 0.044 (0.014); 0.924 0.048 (0.016); 0.953 0.050 (0.017); 0.943 1.995

25 0.046 (0.015); 0.933 0.039 (0.013); 0.839 0.046 (0.016); 0.940 0.051 (0.018); 0.944 1.987

10 0.033 (0.014); 0.719 0.025 (0.010); 0.378 0.034 (0.015); 0.778 0.051 (0.037); 0.960 1.967

Heterogeneity, b¼0.1

100 0.099 (0.016); 0.947 0.096 (0.016); 0.942 0.099 (0.016); 0.952 0.100 (0.016); 0.942 2.005

61 0.098 (0.016); 0.941 0.092 (0.016); 0.922 0.098 (0.017); 0.951 0.100 (0.017); 0.941 2.004

40 0.097 (0.016); 0.932 0.088 (0.015); 0.862 0.097 (0.017); 0.947 0.101 (0.017); 0.940 2.003

25 0.092 (0.016); 0.888 0.078 (0.015); 0.676 0.093 (0.018); 0.924 0.101 (0.019); 0.942 2.003

10 0.065 (0.016); 0.456 0.051 (0.012); 0.131 0.072 (0.018); 0.639 0.101 (0.042); 0.956 2.023

L¼ 25. /̂ equals the variance inflation factor estimate (true value¼ 2).
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outcome and SNP–exposure associations are estimated in

independent but homogeneous samples. Further research

would be required to extend modified weights to settings

where there is partial overlap between samples or in the

single-sample (total overlap) setting.

When Cochran’s Q statistic detects significant amounts

of heterogeneity, it is prudent to test whether it is meaning-

fully biasing the analysis. This would indeed be the case if

the heterogeneity were caused in part by directional pleiot-

ropy with a non-zero mean. This would lead to bias in the

IVW estimate, unless of course it was caused by a small

number of SNPs that could be identified and removed from

the analysis. MR-Egger regression6,7 could instead be used

to address this. This approach simply regresses SNP–out-

come associations on the SNP–exposure associations, tests

for bias via its intercept and estimates a bias-adjusted

causal effect via its slope. Observed heterogeneity around

the MR-Egger fit can then be quantified using an extended

version of Cochran’s Q statistic, Rücker’s Q0,7,23 and each

variant’s contribution to Q0 can be used as the basis for

outlier detection. Currently, MR-Egger and Rücker’s Q0

statistic use first-order weights. Preliminary work suggests

that modified weighting can be applied to MR-Egger re-

gression to improve its performance—in terms of both
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causal-effect estimation and heterogeneity quantification—

just as for an IVW analysis, but further development and

validation of this method is required.

Software to implement all of the methods introduced in

this paper can be found within the RadialMR package to

perform two-sample summary-data MR, which can be

downloaded from https://github.com/WSpiller/RadialMR.

Supplementary Data

Supplementary data are available at IJE online.
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