
IMPROVING THE ACCURACY, SCALABILITY, AND PERFORMANCE OF

GRAPH NEURAL NETWORKS WITH ROC

Zhihao Jia 1 Sina Lin 2 Mingyu Gao 3 Matei Zaharia 1 Alex Aiken 1

ABSTRACT

Graph neural networks (GNNs) have been demonstrated to be an effective model for learning tasks related to graph

structured data. Different from classical deep neural networks that handle relatively small individual samples,

GNNs process very large graphs, which must be partitioned and processed in a distributed manner. We present

ROC, a distributed multi-GPU framework for fast GNN training and inference on graphs. ROC is up to 4× faster

than existing GNN frameworks on a single machine, and can scale to multiple GPUs on multiple machines. This

performance gain is mainly enabled by ROC’s graph partitioning and memory management optimizations. Besides

performance acceleration, the better scalability of ROC also enables the exploration of more sophisticated GNN

architectures on large, real-world graphs. We demonstrate that a class of GNN architectures significantly deeper

and larger than the typical two-layer models can achieve new state-of-the-art classification accuracy on the widely

used Reddit dataset.

1 INTRODUCTION

Graphs provide a natural way to represent real-world data

with relational structures, such as social networks, molecular

networks, and webpage graphs. Recent work has extended

deep neural networks (DNNs) to extract high-level features

from data sets structured as graphs, and the resulting archi-

tectures, known as graph neural networks (GNNs), have

recently achieved state-of-the-art prediction performance

across a number of graph-related tasks, including vertex

classification, graph classification, and link prediction (Kipf

& Welling, 2016; Hamilton et al., 2017; Xu et al., 2019).

GNNs combine DNN operations (e.g., convolution and ma-

trix multiplication) with iterative graph propagation: In each

GNN layer, the activations of each vertex are computed

with a set of DNN operations, using the activations of its

neighbors from the previous GNN layer as inputs. Figure 1

illustrates the computation of one vertex (in red) in a GNN

layer, which aggregates the activations from its neighbors

(in blue), and then applies DNN operations to compute new

activations of the vertex.

Existing deep learning frameworks do not easily support

GNN training and inference at scale. TensorFlow (Abadi

et al., 2016), PyTorch (PyTorch), and Caffe2 (Caffe2) were

originally designed to handle situations where the model

and data collection can be large, but each sample of the

1Stanford University 2Microsoft 3Tsinghua University. Corre-
spondence to: Zhihao Jia <zhihao@cs.stanford.edu>.

Proceedings of the 3
rd MLSys Conference, Austin, TX, USA,

2020. Copyright 2020 by the author(s).

Aggr

Neighbor Aggregation DNN Operations

Figure 1. Computation of one vertex (in red) in a GNN layer by

first aggregating its neighbors’ activations (in blue), and then ap-

plying DNN operations.

collection is relatively small (e.g., a single image). These

systems typically leverage data and/or model parallelism by

partitioning the batch of input samples or the DNN models

across multiple devices, such as GPUs, while each input

sample is still stored on a single GPU and not partitioned.

However, GNNs typically use small DNN models (a cou-

ple of layers) on very large and irregular input samples —

graphs. These large graphs do not fit in a single device

and so must be partitioned and processed in a distributed

manner. Recent GNN frameworks such as DGL (DGL,

2018) and PyG (Fey & Lenssen, 2019) are implemented

on top of PyTorch (PyTorch), and have the same scalability

limitation. NeuGraph (Ma et al., 2019) stores intermediate

GNN data in the host CPU DRAM to support multi-GPU

training, but it is still limited to the compute resources of

Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with ROC

a single machine. AliGraph (Yang, 2019) is a distributed

GNN framework on CPU platforms, which does not exploit

GPUs for performance acceleration.

The current lack of system support has limited the potential

application of GNN algorithms on large-scale graphs, and

has also prevented the exploration of larger and more sophis-

ticated GNN architectures. To alleviate these limitations,

various sampling techniques (Hamilton et al., 2017; Ying

et al., 2018) were introduced to first down-sample the origi-

nal graphs before applying the GNN models, so that the data

fit in a single device. Sampling allows existing frameworks

to train larger graphs at the cost of potential model accuracy

loss (Hamilton et al., 2017).

In this paper, we propose ROC, a distributed multi-GPU

framework for fast GNN training and inference on large-

scale graphs. ROC leverages the compute resources of mul-

tiple GPUs on multiple compute nodes to train large GNN

models on the full real-world graphs, achieving up to 4× per-

formance over existing GNN frameworks. Despite its use of

full graphs, ROC also achieves better time-to-accuracy per-

formance compared to existing sampling techniques. More-

over, the better scalability allows ROC to easily support

larger and more sophisticated GNNs than those possible in

existing frameworks. To demonstrate ROC’s scalability and

improved accuracy, we design a class of deep GNN archi-

tectures by stacking multiple GCN layers (Kipf & Welling,

2016). By using significantly larger and deeper GNN ar-

chitectures, we improve the classification accuracy over

state-of-the-art sampling techniques by 1.5% on the widely

used Reddit dataset (Hamilton et al., 2017).

To achieve these results, ROC tackles two significant system

challenges for distributed GNN computation.

Graph partitioning. Real-world graphs could have arbi-

trary sizes and variable per-vertex computation loads, which

are challenging to partition in a balanced way (Gonzalez

et al., 2014; Zhu et al., 2016). GNNs mix compute-intensive

DNN operations with data-intensive graph propagation,

making it hard to statically compute a good load-balancing

partitioning. Furthermore, GNN inference requires parti-

tioning new input graphs that only run for a few iterations,

such as predicting the properties of newly discovered pro-

teins (Hamilton et al., 2017), in which case existing dynamic

repartitioning approaches do not work well (Venkataraman

et al., 2013). ROC uses an online linear regression model to

optimize graph partitioning. During the training phase of a

GNN architecture, ROC learns a cost model for predicting

the execution time of performing a GNN operation on an

input (sub)graph. To capture the runtime performance of a

GNN operation, the cost model includes both graph-related

features such as the number of vertices and edges in the

graph, and hardware-related features such as the number of

GPU memory accesses to perform the operation. During

each training iteration of a GNN architecture, ROC com-

putes a graph partitioning using the run time predictions

from the cost model, and uses the graph partitioning to

parallelize training. At the end of each training iteration,

the actual run time of the subgraphs is sent back to the

ROC graph partitioner, which updates the cost model by

minimizing the difference between the actual and predicted

run times. We show that this linear regression-based graph

partitioner outperforms existing static and dynamic graph

partitioning strategies by up to 1.4×.

Memory management. In GNNs, computing even a sin-

gle vertex requires accessing a potentially large number of

neighbor vertices that may span multiple GPUs and com-

pute nodes. These data transfers have a high impact on

overall performance. The framework thus must carefully

decide in which device memory (CPU or GPU) to store each

intermediate tensor, in order to minimize data transfer costs.

The memory management is hard to optimize manually as

the optimal strategy depends on the input graph size and

topology as well as the device constraints such as memory

capacity and communication bandwidth. We formulate the

task of optimizing data transfers as a cost minimization

problem, and introduce a dynamic programming algorithm

to quickly find a globally optimal strategy that minimizes

data transfers between CPU and GPU memories. We com-

pare the ROC memory management algorithm with existing

heuristic approaches (Ma et al., 2019), and show that ROC

reduces data transfer costs between CPU and GPU by 2×.

Overall, compared to NeuGraph, ROC improves the runtime

performance by up to 4× for multi-GPU training on a single

compute node. Beyond improved partitioning and memory

management, ROC sees other smaller performance improve-

ments from a more efficient distributed runtime (Jia et al.,

2019) and the highly optimized kernels adopted from Lux

for fast graph propagation on GPUs (Jia et al., 2017).

Besides performance acceleration, ROC also enables exact

GNN computation on full original graphs without using

sampling techniques, as well as the exploration of more

sophisticated GNN architectures beyond the commonly used

two-layer models. For large real-world graphs, we show that

performing exact GNN computation on the original graphs

and using larger and deeper GNN architectures can increase

the model accuracy by up to 1.5% on the widely used Reddit

dataset compared to existing sampling techniques.

To summarize, our contributions are:

• On the systems side, we present ROC, a distributed

multi-GPU framework for fast GNN training and in-

ference on large-scale graphs. ROC uses a novel on-

line linear regression model to achieve efficient graph

partitioning, and introduces a dynamic programming

algorithm to minimize data transfer cost.

Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with ROC

Table 1. The graph partitioning strategies used by different frame-

works. Balanced training/inference indicates whether an approach

can achieve balanced partitioning for GNN training/inference.
Frameworks Partitioning Balanced Balanced

Strategies Training Inference

TensorFlow, NeuGraph Equal

GraphX, Gemini Static

Presto, Lux Dynamic X

ROC (ours) Online learning X X

• On the machine learning side, ROC removes the ne-

cessity of using sampling techniques for GNN training

on large graphs, and also enables the exploration of

more sophisticated GNN architectures. We demon-

strate this potential by achieving new state-of-the-art

classification accuracy on the Reddit dataset.

2 BACKGROUND AND RELATED WORK

2.1 Graph Neural Networks

A GNN takes graph-structured data as input, and learns

a representation vector for each vertex in the graph. The

learned representation can be used for down-stream tasks

such as vertex classification, graph classification, and link

prediction (Kipf & Welling, 2016; Hamilton et al., 2017; Xu

et al., 2019).

As shown in Figure 1, each GNN layer gathers the activa-

tions of the neighbor vertices from the previous GNN layer,

and then updates the activations of the vertex, using DNN

operations such as convolution or matrix multiplication. For-

mally, the computation in a GNN layer is:

a(k)v = AGGREGATE
(k)

(
{h(k−1)

u |u ∈ N (v)}
)

(1)

h(k)
v = UPDATE

(k)(a(k)v , h(k−1)
v) (2)

where h
(k)
v is the learned activation of vertex v at the k-th

layer, h
(0)
v is the input features of v. N (v) denotes v’s neigh-

bors in the graph. For each vertex, AGGREGATE gathers the

activations of its neighbors using an accumulation function

such as average or summation. For each vertex v, UPDATE

computes its new activations h
(k)
v by combining its previous

activations h
(k−1)
v and the neighborhood aggregation a

(k)
v .

The activations of the last layer h
(K)
v capture the structural

information for all neighbors within K hops of v, and can

be used as the input for down-stream prediction tasks.

2.2 Related Work

Distributed DNN training. In the terminology of Jia et al.

(2019), DNN computations can be partitioned in the sample,

operator, attribute and parameter dimensions for parallel

and distributed execution. The vast majority of existing

deep learning frameworks (Abadi et al., 2016; PyTorch) use

the sample (i.e., data parallelism) and operator dimensions

(i.e., model parallelism) to parallelize training, but some

recent works exploit multiple dimensions (Jia et al., 2019).

One of the key differences with GNNs is that partitioning

in the attribute dimension (i.e., partitioning large individual

samples) is necessary for supporting GNN training on large

graphs. The lack of system support for parallelizing in the at-

tribute dimension prevents most existing DNN frameworks

from training GNNs on large graphs.

GNN frameworks. Most of the existing GNN frameworks,

such as DGL (DGL, 2018) and PyG (Fey & Lenssen, 2019)

that extend PyTorch (PyTorch), do not support graphs where

the data cannot fit in a single device. NeuGraph (Ma et al.,

2019) supports GNN computation on multiple GPUs in a

single machine. AliGraph (Yang, 2019) is a distributed

GNN framework but only uses CPUs rather than GPUs.

Sampling in GNNs. As discussed in Section 2.1, due to

the highly connected nature of real-world graphs, comput-

ing h
(k)
v may require accessing more data than the GPU

memory capacity. A number of sampling techniques have

been proposed to support GNN training on large graphs,

by down-sampling the neighbors of each vertex (Hamil-

ton et al., 2017; Ying et al., 2018; Chen et al., 2018). The

sampling techniques can be formalized as follows.

a(k)v = AGGREGATE
(k)

(
{h(k−1)

u |u ∈ N̂ (v)}
)

(3)

where N̂ (v) is the sampled subset of N (v) with a size limit.

For example, GraphSAGE (Hamilton et al., 2017) samples

at most 25 neighbors for each vertex (i.e., |N̂ (v)| ≤ 25),

while a vertex may actually contain thousands of neighbors.

Our evaluation shows that existing sampling techniques

come with potential model accuracy loss for large real-

world graphs. This observation is consistent with previous

work (Hamilton et al., 2017). ROC provides an orthogonal

approach to support GNN training on large graphs. Any

existing sampling technique can be additionally applied in

ROC to further accelerate large-scale GNN training.

Graph frameworks and graph partitioning. A number of

distributed graph processing frameworks (Malewicz et al.,

2010; Gonzalez et al., 2014; Jia et al., 2017) have been

proposed to accelerate data-intensive graph applications.

These systems generally adopt the Gather-Apply-Scatter

(GAS) (Gonzalez et al., 2012) vertex-centric programming

model. GAS can naturally express the data propagation in

GNNs, but cannot support many neural network operations.

For example, computing the attention scores (Veličković

et al., 2018) between vertices not directly connected cannot

be easily expressed in the GAS model.

Table 1 summarizes the graph partitioning strategies used

in existing deep learning and graph processing frameworks.

Deep learning frameworks (Abadi et al., 2016; Ma et al.,

Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with ROC

Input GraphGNN Architecture

Learning-based Graph Partitioner

Partitioned Subgraphs

CPU DRAM

Compute Node

GPU GPU

…
…

Performance Measurements

DPMM DPMM

CPU DRAM

Compute Node

GPU GPU

…
DPMM DPMM

Figure 2. ROC system overview. DPMM represents dynamic-

programming-based memory manager.

2019) typically partition data (e.g., tensors) equally across

GPUs. On the other hand, graph processing frameworks use

more complicated strategies to achieve load balance. For

example, GraphX (Gonzalez et al., 2014) and Gemini (Zhu

et al., 2016) statically partition input graphs by minimizing

a heuristic objective function, such as the number of edges

spanning different partitions. These simple objective func-

tions can achieve good performance for data-intensive graph

processing, but they do not work well for compute-intensive

GNNs due to the highly varying per-vertex computation

loads. Dynamic repartitioning (Venkataraman et al., 2013;

Jia et al., 2017) exploits the iterative nature of many graph

applications and rebalances the workload in each iteration

based on the measured performance of previous iterations.

This approach converges to a balanced workload distribution

for GNN training, but is much less effective for inference

which computes the GNN model only once for each new

graph. ROC uses an online-linear-regression-based algo-

rithm to achieve balanced partitioning for both GNN train-

ing and inference, through jointly learning a cost model to

predict the execution time of the GNN model on arbitrary

graphs.

3 ROC OVERVIEW

Figure 2 shows an overview of ROC, which takes a GNN

architecture and a graph as inputs, and distributes the GNN

computations across multiple GPUs (potentially on differ-

ent compute nodes) by partitioning the input graph into

multiple subgraphs. Each GPU worker executes the GNN

architecture on a subgraph, and communicates with CPU

DRAM to obtain input tensors and save intermediate results.

The communication is optimized by a per-GPU dynamic-

programming-based memory manager (DPMM) to mini-

mize data transfers between CPU and GPU memories.

ROC uses an online-linear-regression-based graph parti-

tioner to address the unique load imbalance challenge of

distributed GNN inference, where a trained GNN model

is used to provide inference service on previously unseen

graphs (Section 4). This problem exists today in real-world

GNN inference services (Hamilton et al., 2017), and our

partitioning technique improves the inference performance

by up to 1.4× compared to existing graph partitioning strate-

gies. The graph partitioner is trained jointly with the training

phase of the GNN architecture, and is also used to partition

inference workloads on new input graphs that are not in the

training dataset.

After graph partitioning, all subgraphs are sent to different

GPUs to perform GNN computations in parallel. Instead

of requiring all the intermediate results related to each sub-

graph to fit in GPU device memory, ROC uses the much

larger CPU DRAM on the host machines to hold all the

data, and treats the GPU memories as caches. Such a design

allows us to support much larger GNN architectures and

input graphs. However, transferring tensors between a GPU

and the host DRAM has a major impact on runtime perfor-

mance. ROC introduces a dynamic programming algorithm

to quickly find a memory management strategy to minimize

these data transfers (Section 5).

4 GRAPH PARTITIONER

The goal of the ROC graph partitioner is discovering bal-

anced partitioning for GNN training and inference on ar-

bitrary input graphs, which is especially challenging for

distributed inference on new graphs where no existing per-

formance measurements are available. We introduce an

online-linear-regression-based graph partitioner that takes

the runtime performance measurements of previously pro-

cessed graphs as training samples for a cost model, which

is then used to predict performance on arbitrary new graphs

and enable efficient partitioning.

We formulate graph partitioning for GNNs as an online

learning task. The performance measurements on parti-

tioned graphs are training samples. Each training iteration

produces new data points, and the graph partitioner com-

putes a balanced graph partitioning based on all existing

data points.

4.1 Cost Model

The key component of the ROC graph partitioner is a cost

model that predicts the execution time of computing a GNN

layer on an arbitrary graph, which could be the whole or any

subset of an input graph. Note that the cost model learns

to predict the execution time of a GNN layer instead of an

entire GNN architecture for two reasons. First, ROC exploits

the composability of neural network architectures and the

Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with ROC

Table 2. The vertex features used in the current cost model. The

semantics of the features are described in Section 4.1. WS is the

number of GPU threads in a warp, which is 32 for the V100 GPUs

used in the experiments.

Definition Description

x1 1 the vertex itself

x2 |N (v)| number of neighbors

x3 |C(v)| continuity of neighbors

x4

∑
i
⌈ ci(v)

WS
⌉ # mem. accesses to load neighbors

x5
∑

i
⌈ ci(v)×din

WS
⌉

mem. accesses to load the

activations of all neighbors

learned cost model can be directly applied to a variety of

GNN architectures. Second, this approach allows ROC to

gather much more training data in each training iteration.

For a GNN architecture with N layers and P partitions,

ROC collects (N × P) training data points, while modeling

the entire GNN architecture only provides P data points.

As collecting new training data points is expensive, requir-

ing measuring GNN computations on GPU devices, we

employ a simple linear regression model to minimize the

number of trainable parameters. Our model assumes that

the cost to perform a DNN operation on a vertex is linear in

a collection of vertex features, such as number of neighbors,

and the cost to run an arbitrary graph is the summation of

the cost of all its vertices.

We formalize the cost for running a GNN layer l on an input

graph G as follows.

t(l, v) =
∑

i

wi(l)xi(v) (4)

t(l,G) =
∑

v∈G

t(l, v) =
∑

v∈G

∑

i

wixi(v) (5)

=
∑

i

wi

∑

v∈G

xi(v) =
∑

i

wixi(G) (6)

where v denotes a vertex in the input graph G, wi(l) is a

trainable parameter for layer l, xi(v) is the i-th feature of v,

and xi(G) sums up the i-th feature of all vertices in G.

Our model minimizes the mean square error over all avail-

able data points.

Loss(l) =
1

N

N∑

i=1

(
t(l,Gi)− y(l,Gi)

)2
(7)

where N is the total number of available data points for the

GNN layer l, and y(l,Gi) is the performance measurement

for the i-th data point.

Table 2 lists the vertex features used in the cost model;

x1(v) and x2(v) capture the computation workload associ-

ated with vertex v and its edges, respectively. The remaining

features estimate the required memory accesses to GPU de-

vice memory. Recall that when multiple threads in a GPU

warp issue memory references to consecutive memory ad-

dresses, the GPU automatically coalesces these references to

a single memory access that is handled more efficiently. To

describe continuity of a vertex’s neighbors, we partition all

neighbors of v as C(v) = {c1(v), ..., c|C|(v)}, where each

ci(v) is a range of consecutively numbered vertices. For

example, for vertex v1 with neighbors {v3, v4, v6, v8}, we

have c1(v1) = {v3, v4}, c2(v) = {v6}, and c3(v) = {v8}.

The feature x3(v) is the number of consecutive blocks in

v’s neighbors, which is 3 in the example. In addition, x4(v)
and x5(v) estimate the number of GPU memory accesses to

load all neighbors and their input activations.

The cost model can be easily extended to include new fea-

tures to capture additional model- and hardware-specific

information if needed.

4.2 Partitioning Algorithm

Using the learned cost model, the ROC graph partitioner

computes a graph partitioning that achieves balanced work-

load distribution under the cost model.

ROC uses the graph partitioning strategy proposed by

Lux (Jia et al., 2017) to maximize coalesced accesses to

GPU device memory, which is critical to achieve optimized

GPU performance. Each vertex in a graph is assigned a

unique number between 0 and V − 1, where V is the num-

ber of vertices in the graph. In ROC, each partition holds

consecutively numbered vertices, which allows us to use

N−1 numbers {p0, p1, ..., pN−1} to partition the graph into

N subgraphs where the i-th subgraph contains all vertices

ranging from pi−1 to pi − 1 and their in-edges.

ROC preprocesses an input graph by computing the partial

sums of each vertex feature, which allows ROC to estimate

the runtime performance of a subgraph in O(1) time. In

addition, ROC uses binary search to find a splitting point pi
in O(log V), and therefore computing balanced partitioning

only takes O(N log V) time, where N and V are the number

of partitions and input vertices, respectively.

5 MEMORY MANAGER

As discussed in Section 3, ROC performs all GNN computa-

tions on GPUs to optimize runtime performance, but only

requires all the GNN data to fit in the host CPU DRAM

to support large GNN architectures and input graphs. The

device memory of each GPU therefore only needs to cache

a subset of intermediate tensors, whose corresponding data

transfers between CPU and GPU memories can be saved

to reduce communication cost. How to select this subset

of tensors to minimize the data transfers within the limited

GPU memory is a critical memory management problem.

Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with ROC

softmax𝒉𝟎
Gather

Forward
𝒂

𝒘𝟏

Linear

Forward

𝜵𝑳 𝒂
Linear+ReLU

Backward

Linear

Backward

Back Propagation

Forward Processing

𝒈

① ③ ④

⑤⑥

Linear+ReLU

Forward

𝜵𝑳 𝒉𝟎 Gather

Backward
⑦

②
𝒃

𝜵𝑳 𝒃

𝒉𝟏

𝜵𝑳 𝒉𝟏

𝒘𝟐

Figure 3. The computation graph of a toy 1-layer GIN architecture (Xu et al., 2019). A box represents an operation, and a circle represents

a tensor. Arrows indicate dependencies between tensors and operations. The gather operation performs neighborhood aggregation. The

linear and the following ReLU are fused into a single operation as a common optimization in existing frameworks. h0 and g denote

the input features and neighbors of all vertices, respectively. w1 and w2 are the weights of the two linear layers.

Table 3. All the valid states and their activation tensors for the

GNN architecture in Figure 3.

Valid State S Activation Tensors A(S)
{①} {g, a}
{①, ②} {g, a, b, w1}
{①, ②, ③} {g, a, b, h1, w1, w2}
{①, ②, ③, ④} {g, a, b, w1, w2,▽L(h

1)}
{①, ②, ③, ④, ⑤} {g, a, b, w1,▽L(b)}
{①, ②, ③, ④, ⑤, ⑥} {g, a,▽L(a)}
{①, ②, ③, ④, ⑤, ⑥, ⑦} {}

The optimal strategy depends not only on the GPU device

memory capacity and the sizes of the input graph and GNN

tensors, but also on the topology of the GNN architecture,

which determines the reuse distance for each tensor.

The page replacement algorithms for memory management

in operating systems (Aho et al., 1971) assume pages are all

the same size and that pages are accessed sequentially. Nei-

ther assumption holds for GNN computations since tensors

generally have different sizes, and an operator may access

multiple tensors simultaneously.

ROC formulates GPU memory management as a cost mini-

mization problem: given an input graph, a GNN architecture,

and a GPU device, find the subset of tensors to cache in the

GPU memory that minimizes data transfers between the

CPU and GPU. ROC introduces a dynamic programming

algorithm to quickly find a globally optimal solution.

The key insight of the dynamic programming algorithm

is that, at each stage of the computation, we only need

to consider caching tensors that will be reused by future

operations. For a GNN architecture G, we define a state S to

be the set of operations that have already been performed in

G. A state is valid only if the operations it contains preserve

all the data dependencies in G, i.e., for any operation in S,

all its predecessor operations in G must be also in S. Such

a definition allows the valid states to capture all possible

execution orderings of the operators in G. For each state S ,

we define its active tensors A(S) to be the set of tensors that

were produced by the operations in S and will be consumed

as inputs by the operations outside of S. Intuitively, A(S)
captures all the tensors we can cache in the GPU to eliminate

future data transfers at the stage S .

Figure 3 shows the computation graph of a toy 1-layer Graph

Isomorphism Network (Xu et al., 2019), whose computation

can be formalized as following.

h(1)
v = W2 × RELU(W1 ×

∑

u∈N (v)

h(0)
u) (8)

For this GNN architecture, all the valid states and their

active tensors are listed in Table 3.

Since the valid states represent all the possible execution

orderings of the GNN, we can use dynamic programming

to compute the optimal memory management strategy as-

sociated with each execution state. Algorithm 1 shows

the pseudocode. COST(S, T) computes the minimum data

transfers required to compute all the operations in a state S ,

with T being the set of tensors cached in the GPU memory;

T should be a subset of A(S). We reduce the task of com-

puting COST(S, T) to smaller tasks by enumerating the last

operation to perform in S (Line 11). The cost is the specific

data transfers to perform this last operation (xfer in Line 15)

adding the cost of the corresponding previous state (S ′, T ′).
To improve performance, we leverage memoization to only

evaluate COST(S, T) once for each (S, T) pair.

Time and space complexity. Overall, the time and space

complexity of Algorithm 1 are O(S2T) and O(ST), respec-

tively, where S is the number of possible execution states

for a GNN architecture, and T is the maximum number of

available tensor sets for a state. We observed that S and

T are at most 16 and 4096 for all GNN architectures in

our experiments, making it practical to use the dynamic

Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with ROC

Algorithm 1 A recursive dynamic programming algorithm

for computing minimum data transfers. IN(oi) and OUT(oi)
return the input and output tensors of the operation oi, re-

spectively, and size(T) returns the memory space required

to save all tensors in T .

1: Input: An input graph g, a GNN architecture G, and the GPU
device memory capacity cap.

2: Output: Minimum data transfers required to compute G on g
within capacity cap.

3: ⊲ D is a database storing all computed COST functions.
4:
5: function COST(S, T)
6: if (S, T) ∈ D then
7: return D(S, T)

8: if S is ∅ then
9: return size(T)

10: cost←∞
11: for oi ∈ S do
12: if (S \ oi) is a valid state then
13: S ′ ← S \ oi
14: T ′ ←

(

T \ OUT(oi)
)

∩ A(S ′)

15: xfer← size
(

IN(oi) \ T
′
)

16: if size
(

T ∪ IN(oi) ∪ OUT(oi)
)

≤ cap then

17: cost = min{cost, COST(S ′, T ′) + xfer}

18: D(S, T)← cost
19: return D(S, T)

programming algorithm to minimize data transfer cost.

6 IMPLEMENTATION

ROC is implemented on top of FlexFlow (Jia et al., 2019), a

distributed multi-GPU runtime for high-performance DNN

training. We extended FlexFlow in the following aspects

to support efficient GNN computations. First, we have re-

placed the equal partitioning strategy in FlexFlow with a

fine-grained partitioning interface that supports splitting ten-

sors at arbitrary points. This extension is critical to efficient

partitioning for GNN computations. Second, we have added

a graph propagation engine to support neighborhood aggre-

gation operations in GNNs, such as the gather operation

in Figure 3. We have reused the highly optimized CUDA

kernels in Lux (Jia et al., 2017) to perform graph propaga-

tion on GPUs. This allows ROC to directly benefit from all

kernel-level optimizations in Lux.

7 EVALUATION

In this section, we aim to evaluate the following points:

• Can ROC achieve comparable runtime performance

compared to state-of-the-art GNN frameworks on a

single GPU?

• Can ROC improve the end-to-end performance of dis-

tributed GNN training and inference?

Table 4. Graph datasets used in our evaluation.

Dataset Vertex Edge Feature Label

Pubmed 19,717 108,365 500 3

PPI 56,944 1,612,348 700 121

Reddit 232,965 114,848,857 602 41

Amazon 9,430,088 231,594,310 300 24

• Can we improve the model accuracy on existing

datasets by using larger and more sophisticated GNNs?

7.1 Experimental Setup

GNN architectures. We use three real-world GNN archi-

tectures to evaluate ROC. GCN is a widely used graph

convolutional network for semi-supervised learning on

graph-structured data (Kipf & Welling, 2016). GIN is

provably the most expressive GNN architecture for the

Weisfeiler-Lehman graph isomorphism test (Xu et al., 2019).

CommNet consists of multiple cooperating agents that

learn to communicate amongst themselves before taking

actions (Sukhbaatar et al., 2016).

Datasets. We use four real-world graph datasets in our

evaluation, listed in Table 4. Pubmed is a citation network

dataset (Sen et al., 2008), containing sparse bag-of-words

feature vectors for each document (i.e., vertex), and cita-

tion links between documents (i.e., edges). PPI contains a

number of protein-protein interaction graphs, each of which

represents a human tissue (Hamilton et al., 2017). Reddit

is a dataset for online discussion forum, with each node

being a post, and each edge being a comment between

posts (Hamilton et al., 2017). Amazon is the product dataset

from Amazon (He & McAuley, 2016). Each node is a

product, and each edge represents also-viewed information

between products. The task is to categorize a product using

its description and also-viewed relations.

All experiments were performed on a GPU cluster with 4

compute nodes, each of which contains two Intel 10-core E5-

2600 CPUs, 256GB DRAM, and four NVIDIA Tesla P100

GPUs. GPUs on the same node are connected with NVLink,

and nodes are connected with 100Gb/s EDR Infiniband.

For each training experiment, the ROC graph partitioner

learned a new cost model by only using performance mea-

surements obtained during the single experiment. For each

inference experiment, the graph partitioner used the learned

cost model from the training phase on the same dataset.

Unless otherwise stated, all experiments use the same train-

ing/validation/test splits as prior work (Hamilton et al., 2017;

Kipf & Welling, 2016; He & McAuley, 2016). All train-

ing throughput and inference latency were measured by

averaging 1,000 iterations.

Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with ROC

GCN GIN CommNet
Pubmed

0

50

100

150

200

250

GCN GIN CommNet
Reddit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(e
po

ch
s/

s) TensorFlow DGL PyG Roc

Figure 4. End-to-end training throughput comparison between ex-

isting GNN frameworks and ROC on a single P100 GPU (higher is

better).

7.2 Single-GPU Results

First, we compare the end-to-end training performance of

ROC with existing GNN frameworks on a single GPU. Due

to the small device memory on a single GPU, we limited

these experiments to graphs that can fit in a single GPU.

Figure 4 shows the results among TensorFlow (Abadi et al.,

2016), DGL (DGL, 2018), PyG (Fey & Lenssen, 2019),

and ROC. We expected that ROC would be slightly slower

than the other frameworks on a single GPU, since it writes

the output tensors of each operator back to CPU DRAM

for distributed computation, while other frameworks keep

all tensors in a single GPU, and do not involve such data

transfers. However, for these graphs, ROC reuses cached

tensors on the GPU to minimize data transfers from DRAM

to GPU, and overlaps the data transfers back to DRAM with

subsequent GNN computations.

TensorFlow, DGL, and PyG were not able to run the Reddit

dataset due to out-of-device-memory errors. ROC can still

train Reddit on a single GPU, by using DRAM to save some

of the intermediate tensors.

7.3 Multi-GPU Results

Second, we compare the end-to-end training performance

of ROC with NeuGraph. NeuGraph supports GNN training

across multiple GPUs on a single compute node.

A NeuGraph implementation is not yet available publicly,

so we ran ROC using the same GPU version and software

library versions cited in Ma et al. (2019) and directly com-

pares with the performance numbers reported in the paper.

We also disabled NVLink for this experiment to rule out the

effect of NVLink, which was not used in Ma et al. (2019).

We do not claim that these comparisons control for all pos-

sible differences as well as directly executing both systems

on the same machine, but that preferred approach is simply

not possible at this time.

1(1) 2(1) 4(1) 8(2) 16(4)
Reddit

0

2

4

6

8

1(1) 2(1) 4(1) 8(2) 16(4)
Amazon

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(e
po

ch
s/

s)

Number of GPU devices

NeuGraph Roc

Figure 5. Training throughput comparison between NeuGraph and

ROC using different numbers of GPUs (higher is better). Num-

bers in parenthesis are the number of compute nodes used in the

experiments.

Figure 5 shows the results. For experiments on a single

compute node, ROC outperforms NeuGraph by up to 4×.

The speedup is mainly because of the graph partitioning

and memory management optimizations that are not avail-

able in NeuGraph. First, NeuGraph uses the equal vertex

partitioning strategy that equally distributes the vertices

across multiple GPUs. Section 7.6 shows that the linear

regression-based graph partitioner in ROC improves train-

ing throughput by up to 1.4× compared to the equal vertex

partitioning strategy. Second, NeuGraph uses a stream pro-

cessing approach that partitions each GNN operation into

multiple chunks, and sequentially streams each chunk along

with its input data to GPUs. Therefore, it does not consider

the memory management optimization used in ROC, and

Section 7.7 shows that the ROC memory manager improves

training throughput by up to 2×.

The remaining performance improvement is likely due to

other aspects of ROC, such as the use of the highly optimized

CUDA kernels in Lux for fast graph propagation, and the

performance of the underlying Legion runtime (Bauer et al.,

2012). However, we were not able to further investigate

the performance difference due the absence of a publicly

available implementation of NeuGraph.

7.4 Comparison with Graph Sampling

We compare the training performance of ROC with state-

of-the-art graph sampling approaches on the Reddit dataset.

All frameworks use the same GCN model (Kipf & Welling,

2016). ROC performs full-batch training on the entire graph

as in Kipf & Welling (2016), while GraphSAGE and Fast-

GCN uses mini-batch sampling with a batch-size of 512.

Figure 6 shows the time-to-accuracy comparison on a single

P100 GPU, where the x-axis shows the end-to-end training

time for each epoch, and the y-axis shows the test accu-

racy of the current model at the end of each epoch. For

Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with ROC

0 60 120 180
Time (second)

0.75

0.8

0.85

0.9

0.95
Te

st
 A

cc
ur

ac
y

Roc
GraphSAGE
FastGCN

Figure 6. Time-to-accuracy comparison between state-of-the-art

sampling techniques and ROC on the Reddit dataset (Hamilton

et al., 2017). All experiments used the same GCN model. ROC per-

formed full-batch training on the entire graph, while GraphSAGE

and FastGCN performed mini-batch sampling. Each dot indicates

one training epoch for GraphSAGE and FastGCN, and five epochs

for ROC.

16 32 64 128 256 512
Number of Activations Per Layer

93

94

95

96

97

Te
st

 A
cc

ur
ac

y
on

 R
ed

di
t

(%
)

GraphSAGE

FastGCN

Original GCN

96.9

2 GCN Layers
3 GCN Layers
4 GCN Layers

Figure 7. Test accuracy on the Reddit dataset using deeper and

larger GNN architectures. The dotted lines show the best test

accuracy achieved by GraphSAGE (95.4%), FastGCN (93.7%),

and the original GCN architecture (94.7%), respectively.

GraphSAGE and FastGCN, each dot indicates one train-

ing epoch, while for ROC each dot represents five training

epochs for simplicity. Note that GraphSAGE and FastGCN

can achieve relatively high accuracy within a few training

epochs. For example, GraphSAGE achieves 93.4% test ac-

curacy in two epochs. However, ROC requires around 20

epochs to achieve the same test accuracy because ROC uses

full-batch training (following Kipf & Welling (2016)), and

only updates parameters once per epoch, while existing sam-

pling approaches generally perform mini-batch training and

have more frequent parameter updates. Even though ROC

uses more epochs, it is still as fast or faster than GraphSAGE

and FastGCN to any given level of accuracy.

1(1) 2(1) 4(1) 8(2) 16(4)
Number of GPUs

0

1

2

3

4

5

6

7

8 Equal Edge Partition
Equal Node Partition
Roc

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(e
po

ch
s/

s)

Figure 8. Training throughput comparison among different graph

partitioning strategies on the Reddit dataset (higher is better). Num-

bers in parentheses are the number of compute nodes used.

7.5 Deeper and Larger GNN Architectures

ROC enables the exploration of larger and more sophisti-

cated GNN architectures than those possible in existing

frameworks. As a demonstration, we consider a class of

deep GNN architectures formed by stacking multiple GCN

layers (Kipf & Welling, 2016). We add residual connec-

tions (He et al., 2016) between subsequent GCN layers to

facilitate training of deeper GNN architectures by allowing

to preserve information learned from previous layers.

Formally, each layer of our GNN is defined as follows.

H(k+1) =

{
GCN(H(k)) +H(k) d(H(k+1)) = d(H(k))

GCN(H(k)) +WH(k) d(H(k+1)) 6= d(H(k))

where GCN is the original GCN layer (Kipf & Welling,

2016), and d(·) is the number of activations in the input

tensor. When H(k) and H(k+1) have the same number of

activations, we directly insert a residual connection between

the two layers. When H(k) and H(k+1) have different num-

bers of activations, we use a linear layer to transform H(k)

to the desired shape. This design allows us to add residual

connections for all GCN layers.

We increase the depth (i.e., number of GCN layers) and

width (i.e., number of activations per layer) to obtain larger

and deeper GNN architectures beyond the commonly used

2-layer GNNs. Figure 7 shows the accuracy achieved by our

GNN architectures on the Reddit dataset. The figure shows

that improved accuracy can be obtained by increasing the

depth and width of a GNN architecture. As a result, our

GNN architectures achieve up to 96.9% test accuracy on

the Reddit dataset, outperforming state-of-the-art sampling

techniques by 1.5%.

Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with ROC

1(1) 2(1) 4(1) 8(2) 16(4)
Number of GPUs

0

50

100

150

200

250

300 Equal Edge Partition
Equal Node Partition
Roc

En
d-

to
-e

nd
 In

fe
re

nc
e

Ti
m

e
(m

s)

Figure 9. End-to-end inference time for the test graphs in the PPI

dataset (lower is better). The numbers were measured by averaging

the inference time of the four test graphs.

7.6 Graph Partitioning

To evaluate the linear regression-based graph partitioner in

ROC, we compare the performance of the graph partitioning

achieved by ROC with (1) equal vertex partitioning and

(2) equal edge partitioning; (1) is used in NeuGraph to

parallelize GNN training, and (2) has been widely used in

previous graph processing systems. Figure 8 shows the

training throughput comparison on different sets of GPUs.

Neither of these baseline strategies perform as well as the

ROC linear regression-based partitioner.

To evaluate the distributed inference performance on new

graphs not used during training, we used the PPI dataset con-

taining 24 protein graphs. Following prior work (Hamilton

et al., 2017), we trained the GIN architecture on 20 graphs,

and measured the inference latency on the remaining four

graphs, by using the graph partitioner learned during train-

ing. Figure 9 shows that the the learned cost model enables

the graph partitioner to discover efficient partitioning on

new graphs for inference services, by reducing the inference

latency by up to 1.2×. For the PPI graphs, the distributed

inference across multiple compute nodes achieves worse

performance than the inference on a single node, which is

due to the small sizes of the inference graphs.

7.7 Memory Management

We evaluate the performance of the ROC memory manager

by comparing it with (1) the streaming processing approach

in NeuGraph that streams input data along with computation

(i.e., no caching optimization) and (2) the least-recently-

used (LRU) cache replacement policy.

Figure 10 shows the comparison results for training GCN

on the Reddit dataset on a single GPU. The dynamic

programming-based memory manager reduces the data

transfers between GPU and DRAM by 1.4–5× and reduces

the per-epoch training time by 1.2–2× compared with the

No
Cache

LRU Roc
0

1

2

3

4

5

6

7

Pe
r-e

po
ch

 D
at

a
Tr

an
sf

er
s (

GB
)

7.29

2.15
1.45

(a) Data transfers.

No
Cache

LRU Roc
0.0

0.2

0.4

0.6

0.8

1.0

Pe
r-e

po
ch

 R
un

 T
im

e
(s

) 1.01

0.63
0.55

(b) Training time.

Figure 10. Performance comparison among different memory man-

agement strategies (lower is better). All numbers are measured by

training GCN on the Reddit dataset on a single GPU.

baseline memory management strategies.

8 CONCLUSION

ROC is a distributed multi-GPU framework for high-

performance and large-scale GNN training and inference.

ROC partitions an input graph onto multiple GPUs on multi-

ple compute nodes using an online-linear-regression-based

strategy to achieve load balance, and coordinates optimized

data transfers between GPU devices and host CPU memo-

ries with a dynamic programming algorithm. ROC increases

the performance by up to 4× over existing GNN frame-

works, and offers better scalability. The ability to process

larger graphs and GNN architectures additionally enables

model accuracy improvements. We achieve new state-of-

the-art classification accuracy on the Reddit dataset by using

significantly deeper and larger GNN architectures.

ACKNOWLEDGEMENT

This work was supported by NSF grant CCF-1409813, the

Exascale Computing Project (17-SC-20-SC), a collaborative

effort of the U.S. Department of Energy Office of Science

and the National Nuclear Security Administration, and is

based on research sponsored by DARPA under agreement

number FA84750-14-2-0006. This research used resources

of the Oak Ridge Leadership Computing Facility, which

is a DOE Office of Science User Facility supported under

Contract DE-AC05-00OR22725. This research was sup-

ported in part by affiliate members and other supporters

of the Stanford DAWN project—Ant Financial, Facebook,

Google, Infosys, Intel, Microsoft, NEC, SAP, Teradata, and

VMware—as well as Cisco and the NSF under CAREER

grant CNS-1651570. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views

of the National Science Foundation.

Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with ROC

REFERENCES

Deep Graph Library: towards efficient and scalable deep

learning on graphs. https://www.dgl.ai/, 2018.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur,

M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,

Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke,

M., Yu, Y., and Zheng, X. Tensorflow: A system for

large-scale machine learning. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and

Implementation, OSDI, 2016.

Aho, A. V., Denning, P. J., and Ullman, J. D. Principles of

optimal page replacement. Journal of the ACM (JACM),

18(1):80–93, 1971.

Bauer, M., Treichler, S., Slaughter, E., and Aiken, A. Le-

gion: Expressing locality and independence with logical

regions. In Proceedings of the International Conference

on High Performance Computing, Networking, Storage

and Analysis, 2012.

Caffe2. A New Lightweight, Modular, and Scalable Deep

Learning Framework. https://caffe2.ai, 2016.

Chen, J., Ma, T., and Xiao, C. FastGCN: Fast learning with

graph convolutional networks via importance sampling.

In International Conference on Learning Representations,

2018.

Fey, M. and Lenssen, J. E. Fast graph representation learning

with PyTorch Geometric. In ICLR Workshop on Repre-

sentation Learning on Graphs and Manifolds, 2019.

Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin,

C. Powergraph: Distributed graph-parallel computation

on natural graphs. In Proceedings of the 10th USENIX

Conference on Operating Systems Design and Implemen-

tation, OSDI’12, 2012.

Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D.,

Franklin, M. J., and Stoica, I. GraphX: Graph process-

ing in a distributed dataflow framework. In Proceedings

of the 11th USENIX Conference on Operating Systems

Design and Implementation, OSDI’14, 2014.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-

sentation learning on large graphs. In Advances in Neural

Information Processing Systems 30. 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

CVPR, 2016.

He, R. and McAuley, J. Ups and downs: Modeling the

visual evolution of fashion trends with one-class collabo-

rative filtering. In Proceedings of the 25th International

Conference on World Wide Web, WWW ’16. International

World Wide Web Conferences Steering Committee, 2016.

Jia, Z., Kwon, Y., Shipman, G., McCormick, P., Erez, M.,

and Aiken, A. A distributed multi-gpu system for fast

graph processing. Proc. VLDB Endow., 11(3), November

2017.

Jia, Z., Zaharia, M., and Aiken, A. Beyond data and model

parallelism for deep neural networks. In Proceedings of

the 2nd Conference on Systems and Machine Learning,

SysML’19, 2019.

Kipf, T. N. and Welling, M. Semi-supervised classifica-

tion with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016.

Ma, L., Yang, Z., Miao, Y., Xue, J., Wu, M., Zhou, L., and

Dai, Y. Neugraph: Parallel deep neural network computa-

tion on large graphs. In 2019 USENIX Annual Technical

Conference (USENIX ATC 19). USENIX Association,

2019.

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C.,

Horn, I., Leiser, N., and Czajkowski, G. Pregel: A sys-

tem for large-scale graph processing. In Proceedings of

the 2010 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’10, 2010.

PyTorch. Tensors and Dynamic neural networks in Python

with strong GPU acceleration. https://pytorch.

org, 2017.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,

and Eliassi-Rad, T. Collective classification in network

data. AI magazine, 29(3):93–93, 2008.

Sukhbaatar, S., szlam, a., and Fergus, R. Learning multia-

gent communication with backpropagation. In Lee, D. D.,

Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett,

R. (eds.), Advances in Neural Information Processing

Systems 29. Curran Associates, Inc., 2016.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,

P., and Bengio, Y. Graph attention networks. Interna-

tional Conference on Learning Representations, 2018.

Venkataraman, S., Bodzsar, E., Roy, I., AuYoung, A., and

Schreiber, R. S. Presto: Distributed machine learning and

graph processing with sparse matrices. In Proceedings of

the 8th ACM European Conference on Computer Systems,

EuroSys ’13, 2013.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful

are graph neural networks? In International Conference

on Learning Representations, 2019.

https://www.dgl.ai/
https://caffe2.ai
https://pytorch.org
https://pytorch.org

Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with ROC

Yang, H. Aligraph: A comprehensive graph neural network

platform. Proceedings of the 25th ACM SIGKDD Inter-

national Conference on Knowledge Discovery & Data

Mining - KDD 19, 2019. doi: 10.1145/3292500.3340404.

URL http://dx.doi.org/10.1145/3292500.

3340404.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,

W. L., and Leskovec, J. Graph convolutional neural

networks for web-scale recommender systems. In Pro-

ceedings of the 24th ACM SIGKDD International Con-

ference on Knowledge Discovery & Data Mining,

KDD ’18, pp. 974–983, New York, NY, USA, 2018.

ACM. ISBN 978-1-4503-5552-0. doi: 10.1145/3219819.

3219890. URL http://doi.acm.org/10.1145/

3219819.3219890.

Zhu, X., Chen, W., Zheng, W., and Ma, X. Gemini: A

computation-centric distributed graph processing system.

In 12th USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI 16). USENIX Associa-

tion, 2016.

http://dx.doi.org/10.1145/3292500.3340404
http://dx.doi.org/10.1145/3292500.3340404
http://doi.acm.org/10.1145/3219819.3219890
http://doi.acm.org/10.1145/3219819.3219890

