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This paper describes the design and comparative evaluation of three methods
that aid the acquisition of small targets. The first method, called ‘bubble
targets’, increases the effective width of the target as the pointer approaches.
The second method uses a form of ‘stickyness’ to restrict movement as the
pointer passes over an object. In the third method, called ‘goal-crossing’, the
user simultaneously presses two mouse buttons before passing the pointer
over the item. Goal-crossing overcomes the need for the user to decelerate the
mouse when acquiring the target. Two evaluations were conducted, with the
first (n=37) based on the acquisition of abstract targets for Fitts’ Law
modelling, and the second based on an ecologically oriented window resizing
task (n=11). Both showed that goal-crossing allowed the fastest target
acquisition, but that it produced high error rates and was unpopular with
participants. The ‘bubble’ and ‘sticky’ techniques also allowed faster target
acquisition than the traditional approach, and users were enthusiastic about
them. Fitts’ Law accurately modelled all techniques. Implications of the
results for general user interface design are briefly discussed.

Keywords: Target acquisition, Fitts’ Law, expanding targets, sticky icons, goal-
crossing.

1 Introduction

As the resolution of computer displays increases, designers of graphical user
interfaces can increasingly rely on accurate and precise depiction of small user

interface components. It is now common to find direct manipulation interface

controls such as window borders, drop-down menus, and margin-markers that are

smaller than 10 pixelssemm on typical displays) on one or both dimensions.
Although small components may be readily discernible (by those with normal
eyesight), acquiring them with a mouse-driven cursor can be slow and frustrating.

Making interface components larger decreases the acquisition time but reduces the
number of items that can be placed in the display and adversely affects visual

design.
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Recently three separate schemes have been proposed for reducing target
acquisition time without demanding increased screen space: expanding targets,
sticky icons, and goal-crossing. McGufin and Balakrishnan (2002) showed that
expanding targets, which enlarge as the cursor moves towards them, improve
performance even when the expansion begins very late in the overall movement
towards a target. Sticky icons effectively ‘grab’ the cursor as it moves over them
(Worden et al 1997). Large movements ‘snap’ away from the icon, but small
movements remain inside the item. Worden et al's evaluation suggested that sticky
icons were particularly effective for older users when targeting small items. Goal-
crossing interfaces (Accot and Zhai 1997, 2002) allow items to be selected by
passing the cursor over the target area. They improve selection times because users
do not need to decelerate and stop the cursor over the item. Details of these studies,
and other related work, are provided in Section 2.

This paper describes the design and comparative evaluation of variants of these
three schemes for aiding mouse-driven selection of small targets. The evaluation
focuses on three factors: the comparative efficiency of the techniques, the degree to
which Fitts’ Law models their use, and the subjective preferences for the schemes.
Although we expect our results to support those of related prior studies, direct
comparison of the methods has not been possible due to differences in
experimental methods. In particular, subjective preferences for the methods have
not previously been compared.

Two separate evaluations were conducted. The first used an abstract selection
task to generate data independent of any particular usage scenario. The second is
more ecologically oriented, using a realistic window-resizing task to investigate the
limitations of each technique in a more natural setting.

The following section describes related work on modelling and enhancing target
acquisition in graphical user interfaces. Section 3 then describes the three targeting
interfaces evaluated. Section 4 describes the first evaluation based on abstract
target acquisition tasks, and Section 5 details the window resizing evaluation.
Results are discussed and directions for further work are presented in Section 6.
Section 7 concludes the paper.

2 Related Work

2.1 Fitts’ law

Fitts’ Law (1954) is commonly used to predict the time to move a mouse pointer
from one location to another. Using the “Shannon formulation” of Fitts’ Law
(MacKenzie 1992), cursor movement tilT increases linearly with the Index of
Difficulty (loD), which relies on the logarithm of the distance moved (the
amplitude),A, over the width of the targetV. The two constantg andb, are
determined experimentally and depend on cognition and motor preparation time,
and on hand-eye coordination, respectively. Fitts’ Law also provides a measure of
human processing of movement tasks, called the ‘Index of Performance’ (IoP) or
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‘bandwidth’ (measured in ‘bits/second’) which is calculated from the reciprocal of
the constanb.
MT =a+bxloD whereloD = |092§WA +1H. Also, IoP :% Equation 1.
0
Fitts’ law was originally proposed for one-dimensional motion tasks. For
movements in two dimensions, the target widtis normally measured using the
smallest value of the width and height dimensions (MacKenzie and Buxton 1992).

2.2 Expanding targets

One approach to easing acquisition of small targets is to enlarge targets when they
are needed. The commercial MacOs X Dodemonstrates the technique,
providing an icon panel in which the icons expand as the cursor approaches.
Unfortunately, the MacOs X implementation can frustrate targeting because the
expansion causes the icons to move if the cursor approaches the panel from a non-
perpendicular angle. This problem is eased if expanded icons overlap one another
(McGuffin and Balakrishnan 2002) or if the expansion only takes effect when the
cursor velocity decreases on final target approach (Gutwin 2002).

McGuffin and Balakrishnan (2002) closely examined the degree to which Fitts’
Law modelled targeting expanding targets in one-dimensional tasks. They found
that Fitts’ Law accurately models performance, and that movement time is
primarily governed by the final expanded target size. This result held even when
the targets began expanding after most (90%) of the movement towards the target
was complete. McGuffin and Balakrishnan’s study examined selection of a single
object with no surrounding objects, so the influence of distraction due to
neighbour-object motion was not examined.

2.3 Sticky targets

Another approach to aiding target acquisition uses a metaphor based on gravity,
magnetism, or stickiness. Worden et al (1997) implemented ‘Sticky Icons’ by
decreasing the mouse control-display gain (MacKenzie and Riddersma 1994) when
the cursor enters the icon (control-display gain determines the mapping between
physical mouse movement and resultant cursor movement). In this way, the user
must move the mouse further to escape the boundary of the icon, effectively
making the icon larger without using extra screen space. Worden et al's evaluation
showed Sticky Icons to be efficient for selecting small targets.

Langdon et al (2000) performed an evaluation of a similar ‘force feedback’
concept. Users were required to select the inner circle of a pair of concentric
circles, either using or not using force feedback. In the force feedback condition,
when the cursor entered the outer circle, a ‘force’ warped the pointer toward the
inner one. The force feedback condition was 30% to 50% faster than the normal
condition. The utility of this technique is limited because of the undesirable impact
on selectging near-neighbour interface components. A scrollbar, for example,

! www.apple.com/macosx/theater/dock.html
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would be difficult to use if the pointer continually warped toward the window
border.

2.4 Goal-crossing targets

With goal-crossing (Accot and Zhai 1997, 2002) the user selects an item by
passing the pointer over the target area with some modifier key pressed. The
motion is fluid and rapid in comparison to the normal selection process of moving
the cursor, decelerating on approach to the target, stopping on the target, and
finally clicking. Their studies were based on input using a stylus rather than a
mouse.

Accot and Zhai (1997) found that selection through goal-crossing conforms to
Fitts’ Law, but differs from pointing techniques in the valu&\bfwhich is
effectively infinite because there is no need to stop the cursor within the target’s
border. Rather than using a ‘Smallest-of’ model (see Section 2.1) for width, goal-
crossing moves toward a ‘Largest-of’ model. For elongated interface controls such
as window borders, the ‘Largest-of’ model is many magnitudes larger than
‘Smallest-of'.

MacKenzie (1992) described a ‘Stoke-through’ technique similar to goal-
crossing, where an icon is selected by depressing the mouse beside the icon,
followed by a dragging motion over the icon, finishing with a button release on the
other side. This technique was shown to be 40% faster than a standard point and
select approach.

The main difference between moving the mouse for pointing tasks and for goal-
crossing is that the mouse buttons are depressed, resulting in a dragging state.
MacKenzie (1991) found that dragging times are slower than pointing times, and
concluded that this was caused by interference from the additional task of holding
down a mouse button. Thus, the Fitts’ law values afdb are increased for goal-
crossing, but they would need to increase considerably to counteract the additional
efficiency arising from a higher effective width vahé

3 Three Targeting Interfaces

The purpose of our evaluation is to directly compare the efficiency and subjective
preferences for sticky, goal-crossing and expanding techniques in acquiring small
targets. This section describes the three techniques evaluated.

All three interfaces, and the control ‘normal’ setting, were implemented in
Tcl/Tk for Experiment 1 and Java Swing for Experiment 2. The experiments were
run on a 1.4 GHz AMD Athlon computer running the Linux operating system, with
a 19-inch display of 1600x1200 pixels. Control-display gain was set to a constant
ratio of approximately 1:1.6 in both experiments. Input was provided through a
three-button Logitech mouse.
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(a) Exp. 1, bubble on line. (b) Exp. 2, edge bubble. (c) Exp. 2, corner bubble.
Figure 1: Bubble targets used in Experiments one and two. The target line or edge expands.

3.1 Bubble targets implementation

Based on expanding targets, bubble targets increase their effective size as the
cursor approaches. In experiment one (Figure 1a), the bubble appeared as a circle
centred on the x-axis of the line and on the y-axis of the cursor location. In
Experiment two, the bubble appeared on the outside edge (Figure 1b) or corner
(Figure 1c) of the target window.

Two design decisions with bubble targets involve trade-offs between visual
distraction and the timing and size of the bubble display. McGuffin and
Balakrishnan's (2002) showed that expanding targets remain efficient even when
the expansion starts very late in the movement towards the target. This means that
the bubbles need not be displayed until the cursor is very close to the target,
reducing visual distraction. In our implementations, bubbles were only displayed
when the cursor came within 15 pixels (experiment one) and 50 pixels (experiment
two) of the targeted item. Similarly, larger bubbles are theoretically faster, but they
are likely to increase visual distraction. Experiment one used a circular bubble with
a 10-pixel radius, and experiment two used a radius of 40 pixels.

3.2 Sticky targets implementation

To provide a sense of ‘stickyness’, cursor motion must be constrained while within
a sticky target. The primary design decision is in calibrating the level of
‘stickyness’ so that it aids targeting while not interfering with pointing elsewhere,
including passing the cursor over the top of a sticky item.

We implemented sticky targets differently in experiments one and two, but the
resultant interaction was similar in both implementations. In experiment one we
used the Tcl/Tk motion event bindings to determine whether the pointer had moved
sufficiently far to ‘snap out’ of a sticky target. When inside a sticky target, each
time the movement event was registered (at most, once every 20ms on our
machine), the software would calculate whether the cursor had moved more than a
threshold distance (20 pixels) since the last motion event. If not, the cursor would
warp back to the centre of the item. The cursor snapped out of the item once the
threshold was exceeded. The resultant effect was that the cursor would stay
motionless in the middle of the target when the mouse is moved slowly, but a slight
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acceleration would snap out of the target. Calibrating a threshold level that
provided a seemingly subtle and natural behaviour was straightforward.

In experiment two, like Worden et al (1997), we implemented sticky targets by
reducing the mouse control-display gain to approximately 10% (1:0.16) of its
original value when inside a sticky target. The interaction difference of this
implementation to experiment one’s is that continual slow maotion within a sticky
target will eventually leave the target’s boundary.

The primary theoretical disadvantage of sticky targets stems from the risk of the
cursor being ‘grabbed’ en-route to another target. One way to reduce this problem
is to implement stickyness on only one axis. In experiment two, for example,
where the tasks involved window resizing, the sticky effect was implemented
across the window border, but not along it. Consequently, vertical window edges
were horizontally sticky, and horizontal edges were vertically sticky. Beyond this,
we have found that small sticky targets are surprisingly effective in coincidentally
discriminating between ballistic motion to a different target (when stickyness is not
desirable) and the decelerated motion of final acquisition (when it is). The reason is
that when the cursor passes rapidly over an interface component, the motion is
often too rapid for the window system’s event model to trigger an event on the
underlying widget. The resultant effect, from our anecdotal experience, is a very
natural effect that the cursor snaps onto targeted items, but passes over untargeted
ones without disruption.

3.3 Goal crossing targets implementation

In our implementations, goal-crossing selection was achieved by dragging the
cursor over a target while holding down the left and right mouse buttons. In
experiment one, acquiring the target caused the cursor to lock onto the stationary
target (by warping) until either mouse button was released. In the window resizing
tasks of experiment two, the target window border followed the cursor, continually
resizing the window border, until either mouse buttons was released. Two
simultaneous mouse buttons were used because dragging tasks with one mouse
button are commonly used by applications.

Theoretically, goal-crossing should allow the fastest target acquisition of the
three techniques because the user does not have to decelerate the cursor on target
approach. However, we wanted to inspect subjective preferences for a technique
that we believed felt awkward with the mouse due to the unusual rapidly dragging
action.

4 Experiment One: Abstract Task

The first experiment compared the three methods and the traditional method in an
abstract one-dimensional task similar to that used by Accot and Zhai (2002). The
experimental interface consisted of a six-pixel diameter dot placed some distance
from the six-pixel wide grey target line in the middle of the window (Figure 1a).
Participants clicked on the dot to start each task and then acquired the line as
quickly as possible. Software logged the time between clicking the dot and
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acquiring the target. Acquiring the target involved clicking on the line (for normal
and sticky targets), clicking on the line or expanded bubble (for bubble targets), or
goal-crossing the line with the left-mouse button held down. Software also logged
all missed clicks and all mouse movement.

All participants used all four interfaces, with the order of exposure randomised
to control learning effects. Five training selections and thirty-five logged selections
were used per interface, with the same randomly determined distances to the left
and right of the target line reused with each interface. The amplitudes between the
starting circle and the line were between 10 and 390 pixels.

After using each interface the participants were asked to respond to the questions
“Selecting the line was physically demanding (high effort)” and “Selecting the line
was efficient (fast)” using five point Likert scales, from one (disagree) to five
(agree). After completing the tasks with all of the interfaces, they were asked to
rank the four methods, from their favourite to their least preferred, and to provide
any additional comments.

Thirty-seven undergraduate Computer Science students took part in the
experiment. They were rewarded with a $5 shopping voucher. Participants were
encouraged to rest and flex their wrists between tasks.

4.1 Data Analysis

The experimental data is inspected in two ways. First, regression analysis is used to
determine whether Fitts’ Law holds for each of the techniques. ‘Bandwidth’
measures (Section 2.1) are also calculated from the regression analysis to
determine the psychophysical throughput of each method. Second, a 4x4 repeated-
measures analysis of variance (ANOVA) is conducted for factors ‘interface type’
and ‘distance’. The factor ‘distance’ allows us to inspect whether any of the
techniques favoured short or long distances. Its four levels are ‘short’ (10-100
pixels), ‘low-medium’ (101-200 pixels), ‘high-medium’ (201-300 pixels) and
‘high’ (301-390 pixels). Error rates are also inspected.

4.2 Results

4.2.1. Conformity to Fitts’ Law

In calculating the Index of Difficulty of each task, we used the visible thickness of
line target, which was constant at 6-pixels. It is important to note, however, that the
three new selection schemes are designed to increase the actual target size, through
expansion, stickyness or goal-crossing, reducing the loD.
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Figure 2: Movement time plotted against Index of Difficulty for the four interfaces. Linear
regression lines of best fit are shown.

Linear regression analysis of the relationship between movement time and loD
shows that Fitts’ Law accurately models all four methods—Iines of best fit are
shown in Figure 2. The values for the four techniques were 0.96, 0.97, 0.94 and
0.81 for the normal, bubble, sticky and goal-crossing technigfeal(ies
exceeding 0.8 are normally deemed to be accurate in experiments involving human
participants). The lines of best fit,values, and Index of Performance measures
for the four techniques are shown in Table 1.

4.2.2. Differences between the methods

All three of the new target selection techniques were significantly faster than the
traditional approach, as shown in Figure 3a. The mean target acquisition times for
normal, bubble, sticky and goal-crossing interfaces were 810ms (standard deviation
185), 607ms (s.d. 186), 585ms (s.d. 180ms) and 298ms (s.d. 216) respectively,
producing a reliable difference; frg=199.8, p<0.001. In pairwise comparison, a
Tukey test produces an Honest Significant difference of 111ms, revealing a reliable
difference (p<.05) between all interface types except bubble and sticky targets,
which performed similarly. It is telling that the slowest of the new techniques,
bubble targets, reduced targeting time by 25% of the normal method.

There was a marginal interaction between interface type and distance
(Fo.32+72.16, p=0.024), meaning that performance with at least one interface
deteriorated differently to the others as distance increased. One probable
explanation is the comparatively high performance deterioration with goal-crossing
between high-medium (201-300 pixels) and long (301-390 pixel) amplitudes of
motion. We believe this effect is due to the difficulty of maintaining a dragging

Table 1: Linear regression equatiorfsjalues, and Indexes of Performance for the four

techniques.
Method Line of best fit r? loP (bits/sec)
Normal MT= 74 + 152xloD 0.96 6.59
Bubble MT= -115 + 149xloD 0.97 6.70
Sticky MT= -53 + 132xloD 0.94 7.55
Goal MT= -282 + 121xloD 0.81 8.26
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Figure 3: Mean movement times and error counts for the four interfaces by distance. Error bars show
+1 standard error around the mean.

state over long distances. This explanation is supported by the analysis of errors,
reported below.

The number of off-target clicks was also analysed. Any mouse press between
selecting the initial dot and clicking the target line was added to the ‘missed clicks’
total. The mean number of misses across the 35 logged tasks were significantly
different (R 106=7.8, p<0.001) at 10.4 (s.d. 15.7) with the normal method, 7.9 (s.d.
11.9) with bubble targets, 6.1 (s.d. 7.3) with sticky targets, and 16.3 (s.d. 15.7) with
goal-crossing, as shown in Figure 3b.

The ‘miss’ count for goal-crossing is an upper-bound measure because the
software logged any mouse press after selecting the initial dot as a miss. With goal-
crossing, however, it is legitimate for the user to initiate the task by clicking the
dot, but only acquire goal-crossing mode (by pressing both mouse-buttons) on final
approach to the target. The fastest goal-crossing users initiated goal crossing mode
at the same time as selecting the initial dot, but many users moved most of the
distance towards the target before pressing both buttons. Consequently, the high
‘error’ count for goal-crossing is suspect.

One final measure suggests that goal-crossing became more difficult and error
prone than other methods as the distance increased. When analysing errors using
the same two-factor ANOVA as that used for movement time, there is a marginal
interaction between interface type and distangg:#1.9, p=0.05. This interaction
is visible in the comparatively large step between goal-crossing errors in the short
to low-medium distances versus the high-medium and long distances. The
participants’ comments support the explanation that this is due to the difficulty of
maintaining two-button dragging states over long distances. Possibly, with more
experience users would learn to only initiate the goal-crossing mode when finally
approaching the target.

4.2.3 Subjective preferences

The participants indicated that targeting with all of the methods demanded
relatively low effort. Responses to question one “Selecting the target was
physically demanding (high effort)” ranged from low values with bubble and sticky
targets (both means 2.5, s.d. 1,1) through goal-crossing (3.0, s.d. 1.5) to the most
demanding normal interface (3.1, s.d. 1.3). Although these ratings do not produce a
reliable difference (Friedmaxf=6.5, p=0.09), the participants’ comments reflected

the trend in the ratings. For example, one participant commented “goal-crossing is
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Table 2: Preference rankings for the four interface types.

Preference Ranking
Method 1 2™ 3¢ 4"
Normal 4 6 12 15
Bubble 8 12 13 4
Sticky 17 12 6 2
Goal 8 7 6 16

more physically demanding because holding down the mouse buttons locks up
your wrist more making it harder to scroll around with the mouse, reducing fine
control and increasing fatigue.”

Interestingly, despite the substantially faster performance with goal-crossing, the
participants rated it relatively poorly for efficiency. Mean responses to question 2
“Selecting the line was efficient (fast)” for the bubble, sticky, goal-crossing and
normal interfaces were 3.8 (s.d. 1.2), 3.9 (s.d. 0.9), 3.4 (1.6) and 2.6 (1.1)
respectively, producing a reliable difference: Frieda®23.8, p<0.01.

The overall rankings of the four techniques show a strong preference for the
sticky technique, as shown in Table 2. Forty-six percent of the participants ranked
sticky targets first, and a further 32% ranked it second. Goal-crossing, in contrast,
was ranked first by 22% of the participants, and last by 43%.

Bubble targets were consistently in the middle rankings. Negative comments
about bubble targets concerned the visual distraction that they caused and the fact
that they encouraged the participants to become sloppy in their targeting. For
example, one participant commented: “I became over-confident and sometimes
missed even the bubble” and another stated “I wonder if my times were actually
worse with bubbles because | changed my attitude. | didn’t worry about accuracy
because the target was so big, so | often overshot”.

4.3 Summary

The results support prior work showing that Fitts’ Law accurately models all four
techniques. Although goal-crossing allowed extremely rapid performance, the
subjective responses, comments, and error rates suggest that the users found it
awkward and clumsy. It must be stressed that this finding applies only to mouse-
driven goal-crossing, and does not apply to stylus input methods.

Sticky targets were extremely popular, rated first or second favourite by 78% of
participants. They also performed well, with mean selection times 28% faster than
the normal method, and with 41% fewer target misses.

5 Experiment Two: Window Resizing Evaluation

The second experiment examines how the four techniques compare in a more
ecologically oriented task. The aim is to explore the design decisions necessary to
deploy the methods in support of real tasks, and to validate the results of the
abstract tasks in experiment one.
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5.2 Window Resizing

Resizing windows is a common action in graphical desktop environments—Gaylin
(1986) found that it comprised 2% of all windows commands and 12.4% of
commands when a user logs onto a computer. Despite the frequency of window
resizing, the traditional method requires a high level of precision in acquiring and
dragging the window border (normally only a few pixels wide). Some window
management systems, such as SaWwfislow customisable key-hindings to
remove the need to acquire the window border, but this approach suffers the
disadvantages that the user must customise and memorise the keybinding, and that
the keybindings can clash with those used by application software.

5.2 Interface modifications

The bubble and goal-crosssing methods were modified for the resizing task, based
on the design decisions that we felt would be necessary to create commercially
viable implementations.

Bubbles only appeared on the outside window edges (see Figure 1b,c). This
change would be necessary in commercial deployment to avoid targeting collisions
between bubbles and interface controls such as scrollbars that are close to the
window edge. Also, to reduce visual distraction, the bubbles only appear when the
cursor is inside the window. Consequently, when resizing a window that the cursor
is initially outside, the user would have to sweep the cursor inside the window,
then move outwards towards its edge. The radius of the part-bubble was 40 pixels,
and the bubbles appeared when the cursor was less than 50 pixels from the window
edge.

Like bubble borders, goal-crossing mode could only be initiated from inside the
window being resized. This meant that when the cursor was initially outside the
target window, the user would have to sweep the cursor inside the window to
acquire goal-crossing mode, and then move outwards across the border with mouse
buttons one and three held down. We felt that this design decision would be
necessary in a commercial implementation to avoid problems associated with
passing the cursor over other windows in the display. If goal-crossing mode could
be acquired from outside a window boundary, then the user would need to
carefully coordinate the timing of their mouse button presses to ensure that
windows lying between the initial cursor location and the target window were not
mistakenly resized.

5.3 Method

Five window-resizing tasks were carried out with each of the four interfaces. The

window borders used to resize the windows were 6 pixels wide, and the corners
extended 25 pixels along the border. The tasks differed by whether the window
was being enlarged or diminished, whether a side border or corner was used, and

2 sawmill.sourceforge.net
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Table 3: Window resizing tasks used in Experiment 2.

Task Resize Border used Cursor location
1 Enlarge Right Inside window
2 Diminish Right Inside window
3 Enlarge Bottom-right corner Inside window
4  Enlarge Left Outside window
5 Diminish Left Outside window

whether the cursor started inside or outside the window (see Table 3). The different
resize directions, borders used and cursor locations were included to illuminate
differences between the techniques—they were not intended to be independent
experimental factors. Each task consisted of five subtasks that varied the distance
the pointer started from the border. The interface order was randomly assigned to
each participant to control learning effects.

Tasks were initiated by clicking on a red dot positioned 20, 50, 100, 200 or 500
pixels from the target border. The participants then acquired and dragged the
window border into a large blue-coloured region that was 50 pixels from the border
in the resizing direction. The software automatically logged task times.

Eleven participants took part in the experiment. All were Computer Science
graduate students.

5.4 Results

Timing data from the experiment was analysed in a 4x5x5 repeated measures
analysis of variance (ANOVA). The three factors (all within subjects) were
Interface type (normal, bubble, sticky and goal-crossing), Task (one to five, as
shown in Table 3), and Distance (20, 50, 100, 200 and 500 pixels).

The results support those of experiment one. Across the 1100 subtasks, the mean
window resizing time was relatively fast at 855ms, with a standard deviation of
438ms. ANOVA revealed a significant main effect for Interface types€27.0, p
<.01), with goal-crossing fastest (678ms, sd 460ms), and progressively slower
through sticky borders (797ms, sd 274ms), bubble borders (907ms, sd 502ms), and
normal borders (1041ms, sd 398ms). Figure 4 shows the mean task times for each
of the interfaces across the five tasks.

As expected, there were significant main effects for factors Tagk@&5, p <
.01) and Distance (44.8, p < .01). Mean task times increased through Tasks
one (mean 779ms, sd 465ms) to five (mean 933ms, sd 441ms). The increasingly
complex movements required to complete the tasks explain this increase (discussed
below). Similarly, mean subtask times increased as the distance increased: from a
mean of 689ms (sd 348ms) at 20 pixels to 1101ms (sd 522ms) at 500 pixels.

There was an interesting interaction between Task and Interface typg~(F.0,

p < .01), visible in Figure 4. Unlike the other interfaces, goal-crossing performance
was dramatically different between tasks that involved window enlarging (one,
three and four) and shrinking (two and five). This effect is explained by the need to
change mouse direction while holding down the mouse button when goal-crossing.
In task two, the cursor begins inside the window, so the user must issue the
crossing action rightwards over the right hand window border before changing
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Figure 4: Mean movement times for the four interfaces by task. Error bars show +1
standard error around the mean.

direction to drag the border leftwards. The advantage of goal-crossing in avoiding
deceleration is reduced, and its performance is similar to the other interfaces. In
Task five, which involves decreasing the window size starting outside the target
window, goal-crossing performs even more poorly. Again, this is explained by the
mouse direction changes required while holding the mouse button down. The user
must first move inside the window, press and hold the mouse button while
sweeping outward to acquire the border, and then change direction for a second
time to shrink the window. Interestingly, goal crossing remained efficient in Task
4, even through a direction change is required. We suspect that the reason for this
is that the mouse button is not held down while changing direction because users
move the cursor into the window before changing direction, pressing the mouse
button, and sweeping outward over the border.

5.5 Comments

Many of the participants were surprised by how poorly they performed with the
normal interface. One stated “you don’t realise how slow the normal technique is
until you try some of these other methods”.

Although seven of the participants stated that they liked the rapid speed of goal-
crossing, several noted that the high speed was at the cost of accuracy. When goal-
crossing, most participants made rapid sweeping motions with the mouse, moving
the cursor much further than the minimum movements required. The experimental
tasks promoted this rapid and crude movement because the participants were
informed that the timing stopped when the window border entered the target blue-
coloured region. The experiment fails to indicate whether goal-crossing would
remain as efficient if specific window sizes were required.

6 Discussion and Further Work
Although the results show that goal-crossing is a highly efficient method of mouse-

driven target acquisition, the participants’ subjective preferences indicate that it
should be used with caution in mouse driven graphical user interfaces. In general,
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users felt a lack of control with goal-crossing due to the in accuracy of rapid
dragging. It is highly likely that this negative perception only applies to mouse-
driven input and would not be observed with the more dextrous input available
with a stylus. However, stylus input devices remain specialist hardware that is
unusual on everyday desktop computers.

Bubble targets resulted in improved performance when compared to the normal
method, but many participants stated that they found the appearance of the bubbles
distracting. The bubbles also induced a ‘sloppy’ targeting behaviour in some
participants who, anticipating the appearance of the bubble, targeted the region
around the target rather than the target itself. This behaviour adversely affected
their effectiveness due to hunting effects. In the window-resizing tasks of
experiment two, the hunting effect was exacerbated because the bubbles only
appeared on the outside edge of the window that the cursor was inside.
Consequently, having overshot the bubble, it would disappear, and would only
reappear once the cursor had re-entered the window. Due to the risks of visual
distraction and of encouraging hunting, we recommend that expanding targets be
used with caution.

Sticky targets were efficient and popular. Participants liked the fact that they
created no visual distraction, yet simplified targeting. Interestingly, we did not
observe a sticky target learning effect equivalent to that with bubbles, where the
participants became more ‘sloppy’ in anticipation of eased targeting. We suspect
this is explained by the absence of the bubble’s affordance—the participants would
decelerate towards the small target as normal, but the stickyness caused the cursor
to shap to the line, reducing overshooting.

Despite the efficiency and popularity of the sticky method, it should still be used
with caution, and further research is necessary to determine how closely sticky
components can be placed without causing interference between targets. By
‘interference’, we mean situations where the cursor unintentionally locks onto a
sticky target nearby another sticky component. The user would have to ‘snap’ the
cursor away from the item, with the consequent risk of overshooting the target.

We intend to further investigate how sticky targeting can be enhanced through
feedback in other modalities. Brewster et al (1994), for example, showed that
scrollbar use was enhanced through the addition of auditory feedback. Similarly,
Fraser and Gutwin (2000) show that in visually stressed situations, redundant
visual and auditory feedback reduced targeting time. Oakley et al (2001) examined
how haptic feedback affected simple user interface controls, finding that it did not
reliably influence task time, but significantly reduced the number of errors.

We also intend to investigate how targeting aids such as these can be used to
assist users who have visual or motor-coordination impediments.

7 Conclusions

It is increasingly common for graphical user interfaces to contain direct
manipulation controls that measure only a few pixels on one or both dimensions.
Acquiring small targets using a mouse demands a high level of precision and can
be frustratingly error-prone and slow.
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This paper described the design, implementation and evaluation of three
alternative schemes to aid the mouse-driven acquisition of small targets. Bubble
targets increase in size when the cursor is close. Sticky targets either alter the
mouse control-display gain or warp the cursor once the target boundary is crossed
to produce a sense of ‘stickyness’. Goal-crossing targets are acquired by sweeping
the cursor over the item while holding down a modifier key or mouse button.
Although all three techniques are based on prior research, the methods have not
previously been evaluated in direct comparison.

Measurements in an abstract targeting task confirmed that Fitts’ Law accurately
models all three techniques, and that they all reduced the normal target acquisition
time by at least 25%. Although goal-crossing was extremely rapid, many of the
participants felt it was impractical with a mouse due to a lack of accuracy. Sticky
targets were popular due to their natural behaviour and their absence of visual
distraction. Performance measures and subjective preferences in a more
ecologically oriented window-resizing task confirmed the results and preferences
of the abstract task.

The results are promising, and future work will focus on identifying the factors
affecting the commercial deployment of sticky interface components. We also wish
to investigate how these techniques can be used to aid those with visual and motor-
coordination impairments.
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