
 Open access Journal Article DOI:10.1007/S10472-011-9235-0

Improving the anytime behavior of two-phase local search — Source link

Jérémie Dubois-Lacoste, Manuel López-Ibáñez, Thomas Stützle

Institutions: Université libre de Bruxelles

Published on: 01 Feb 2011 - Annals of Mathematics and Artificial Intelligence (Springer Netherlands)

Topics: Local search (optimization)

Related papers:

 Performance assessment of multiobjective optimizers: an analysis and review

 Two-phase Pareto local search for the biobjective traveling salesman problem

 A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems

 Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study

 Improving the Anytime Behavior of

Share this paper:

View more about this paper here: https://typeset.io/papers/improving-the-anytime-behavior-of-two-phase-local-search-
zhvil0mxdh

https://typeset.io/
https://www.doi.org/10.1007/S10472-011-9235-0
https://typeset.io/papers/improving-the-anytime-behavior-of-two-phase-local-search-zhvil0mxdh
https://typeset.io/authors/jeremie-dubois-lacoste-9kto666dcc
https://typeset.io/authors/manuel-lopez-ibanez-3adm4k1rqt
https://typeset.io/authors/thomas-stutzle-16ocxpccry
https://typeset.io/institutions/universite-libre-de-bruxelles-2us6zg8h
https://typeset.io/journals/annals-of-mathematics-and-artificial-intelligence-1cj7xmhq
https://typeset.io/topics/local-search-optimization-2aqlqiz8
https://typeset.io/papers/performance-assessment-of-multiobjective-optimizers-an-wf8l3c8h73
https://typeset.io/papers/two-phase-pareto-local-search-for-the-biobjective-traveling-1moy881z1c
https://typeset.io/papers/a-hybrid-tp-pls-algorithm-for-bi-objective-flow-shop-3t9m9gxj9s
https://typeset.io/papers/pareto-local-optimum-sets-in-the-biobjective-traveling-2mro1lql3z
https://typeset.io/papers/improving-the-anytime-behavior-of-3cp4hvot1n
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/improving-the-anytime-behavior-of-two-phase-local-search-zhvil0mxdh
https://twitter.com/intent/tweet?text=Improving%20the%20anytime%20behavior%20of%20two-phase%20local%20search&url=https://typeset.io/papers/improving-the-anytime-behavior-of-two-phase-local-search-zhvil0mxdh
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/improving-the-anytime-behavior-of-two-phase-local-search-zhvil0mxdh
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/improving-the-anytime-behavior-of-two-phase-local-search-zhvil0mxdh
https://typeset.io/papers/improving-the-anytime-behavior-of-two-phase-local-search-zhvil0mxdh

Improving the Anytime Behavior of

Two-Phase Local Search

Jérémie Dubois-Lacoste, Manuel López-Ibáñez and
Thomas Stützle

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2010-022

October 2010

Submitted to Annals of Mathematics and Artificial Intelligence

IRIDIA – Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles

Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2010-022

The information provided is the sole responsibility of the authors and
does not necessarily reflect the opinion of the members of IRIDIA. The
authors take full responsibility for any copyright breaches that may
result from publication of this paper in the IRIDIA – Technical Report
Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

Improving the Anytime Behavior of Two-Phase

Local Search

Jérémie Dubois-Lacoste jeremie.dubois-lacoste@ulb.ac.be

Manuel López-Ibáñez manuel.lopez-ibanez@ulb.ac.be

Thomas Stützle stuetzle@ulb.ac.be

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

October 2010

Abstract

Algorithms based on the two-phase local search (TPLS) framework
are a powerful method to efficiently tackle bi-objective combinatorial op-
timization problems. TPLS algorithms solve a sequence of scalarizations,
that is, weighted sum aggregations, of the bi-objective problem. Each
successive scalarization uses a different weight from a predefined sequence
of weights. TPLS requires defining the stopping criterion (the number of
weights) a priori, and it does not produce satisfactory results if stopped
before completion. Therefore, TPLS has poor “anytime” behavior. This
article examines variants of TPLS that improve its “anytime” behavior by
adaptively generating the sequence of weights while solving the problem,
with the aim of filling the “largest gap” in the current approximation to
the Pareto front. The experimental setup considers problems with strong
differences in the shape of the Pareto front, and the analysis indicates
which adaptive strategy is the best for each shape. The results presented
here show that the best adaptive TPLS variants are superior to the “clas-
sical” TPLS strategies in terms of anytime behavior, and also match, and
often surpass, them in terms of final quality, even if the latter run until
completion.

1 Introduction

Two-phase local search (TPLS) [16] is a stochastic local search (SLS) method
for tackling multi-objective combinatorial optimization problems in terms of
Pareto-optimality [17]. TPLS is an essential component of state-of-the-art al-
gorithms for a number of problems such as the bi-objective traveling salesman
problem (bTSP) [14], its variant with three objectives [18], and the bi-objective
permutation flow-shop scheduling problem (bPFSP) [4].

1

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 2

The central idea of TPLS is to start with a high quality solution for a single
objective (first phase) and then to solve a sequence of scalarizations of the
multi-objective problem (second phase). In TPLS, each successive scalarization
uses a slightly different weight and starts from the best solution found by the
previous scalarization. Originally, the set of weights and, hence, the number
of scalarizations, is defined before the execution of TPLS in order to equally
distribute the computational effort along the Pareto front [16]. This strategy
implies that stopping TPLS at an arbitrary time before it has performed the
predefined number of scalarizations would produce a poor approximation to the
Pareto front in some regions. In this sense, TPLS does not have a good anytime

behavior.
Anytime algorithms [20] aim at producing an as high as possible performance

at any moment of their execution, without assuming a predefined termination
criterion. Recently, we proposed two variants of TPLS that improve its anytime

performance [5]. The first variant, Regular Anytime TPLS (RA-TPLS), uses
a regular distribution of the weight vectors, equally distributing the effort in
all directions of the objective space. We tested this variant on two bPFSPs,
where the objectives result in a different algorithm behavior for the underlying
single-objective algorithms since, in some sense, they are not equally hard. For
these problems, we found that an adaptive TPLS, which adapts the weights in
dependence of the shape of the Pareto front, performed better than a regular
strategy.

In this paper, we re-examine RA-TPLS and the adaptive TPLS algorithms
for the bTSP. Our intuition suggests that the performance of the different vari-
ants depends strongly on the shape of the Pareto front and the distribution of
solutions along it. We therefore study two classes of bTSP instances. In iso-
metric bTSP instances, the distance matrices of both objectives are generated
in the same way and have a similar range of values. Hence, the distribution of
solutions along the Pareto front is similar in both objectives. In anisometric
bTSP instances, the two distance matrices are of different type and with very
different range of values. As a result, both objectives are not equally difficult,
and the distribution of solutions varies strongly along the Pareto front. Our
experiments demonstrate the importance of dynamically adapting the weights
when the difficulty of the objectives is not similar and the shapes of the resulting
Pareto fronts show strong “tails” in the distribution of the solutions.

In addition, we propose new design alternatives of adaptive TPLS. First,
we study the effect of performing one or two scalarizations per weight (with
different seeds), and we give evidence when each approach may be beneficial.
Second, we propose a new method to choose the region of the objective space
where the search should be intensified, that is, how to define the largest gap in
the current approximation of the Pareto front. This new method is based on an
optimistic estimate of the improvement in the hypervolume indicator, instead of
using the Euclidean distance between solutions as in [5], and it further improves
the results of the adaptive TPLS strategy in the bTSP, no matter the shape of
the front.

The main conclusion of our study is that the adaptive TPLS variants show a

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 3

much better anytime behavior than the original TPLS algorithms, and the best
performing adaptive variants typically return better quality approximations to
the Pareto front, as indicated by the hypervolume indicator.

The paper is structured as follows. In Section 2 we introduce some for-
mal definitions on bi-objective optimization and we present the original TPLS
algorithms. In Section 3, we present our first proposal, an alternative to the
original weight setting strategies of TPLS that fulfills the anytime property.
In Section 4 we propose an adaptive TPLS framework that not only satisfies
the anytime property, but that also adapts to the shape of the Pareto front
to maximize the performance. We perform in Section 5 a detailed statistical
analysis to compare all these strategies. In Section 6, we propose the use of an
optimistic estimation of the hypervolume to direct the search of adaptive TPLS,
and we show that it leads to further improvements in the bTSP. In Section 7,
we graphically examine the differences in quality of the algorithms. Finally, we
conclude in Section 8.

2 Preliminaries

In this paper, we focus on bi-objective combinatorial optimization problems and
here we describe relevant background for the remainder of the paper focusing
on two objective function.

2.1 Bi-objective Combinatorial Optimization

In bi-objective combinatorial optimization problems, candidate solutions are
evaluated according to an objective function vector ~f = (f1, f2). Assuming,
without loss of generality, that both objective functions must be minimized, the
dominance criterion defines a partial order among objective vectors as follows.
Given two vectors ~u,~v ∈ R2, we say that ~u dominates ~v (~u ≺ ~v) iff ~u 6= ~v and
ui ≤ vi, i = 1, 2. When ~u ⊀ ~v and ~v ⊀ ~u, we say that ~u and ~v are mutually
non-dominated. For simplicity, we extend the dominance criteria to solutions,
that is, a solution s dominates another one s′ iff ~f(s) ≺ ~f(s′). If no s′ exists

such that ~f(s′) ≺ ~f(s), the solution s is called Pareto optimal. In a bi-objective
optimization problem where no a priori assumptions upon the decision maker’s
preferences are made, the problem becomes to find a set of feasible solutions that
“minimize” ~f in the sense of Pareto optimality. Hence, the goal is to determine
the set of all Pareto-optimal solutions, called the Pareto front. From this Pareto
optimal set, the decision maker may choose a final solution a posteriori. Since
this goal is in many cases computationally intractable [7], in practice the goal
becomes to find the best possible approximation to the Pareto-optimal set within
a specific time limit. Any set of mutually non-dominated solutions provides such
an approximation, but some approximations are better than others.

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 4

Algorithm 1 Two-Phase Local Search

1: π1 := SLS1()
2: π2 := SLS2()
3: Add π1, π2 to Archive
4: if 1to2 then π′ := π1 else π′ := π2

5: for each weight λ do
6: π′ := SLSΣ(π′, λ)
7: Add π′ to Archive
8: end for
9: Filter(Archive)

10: Output: Archive

2.2 Two-Phase Local Search

Two-phase local search (TPLS) [16] is a general algorithmic framework that,
as the name suggests, is composed of two phases. In the first phase, a single-
objective algorithm generates a high-quality solution for one of the objectives.
This high-quality solution serves as the starting point of the second phase, where
a sequence of scalarizations, that is, weighted sum aggregations of the multiple
objective functions into single scalar functions, are tackled. Each scalarization
uses the best solution found by the previous scalarization as the initial solution.
TPLS will be successful if effective single-objective algorithms are available, and
solutions that are close to each other in the solution space are also close in the
objective space.

The scalarizations in TPLS are defined by a sequence of weight vectors. In
a bi-objective problem, a normalized weight vector is of the form ~λ = (λ, 1−λ),
λ ∈ [0, 1] ⊂ R, and the scalar value of a solution s with objective function vector
~f(s) = (f1(s), f2(s)) is computed as

fλ(s) = λ · f1(s) + (1 − λ) · f2(s). (1)

Depending on the sequence of weight vectors considered, there are two main
TPLS strategies in the literature:
Single direction (1to2 or 2to1). The simplest way to define a sequence
of scalarizations is to use a regular sequence of weight vectors from the first
objective to the second or from the second objective to the first one. We call
these alternatives 1to2 or 2to1, depending on the direction followed. For ex-
ample, the successive scalarizations in 1to2 are defined by the weights λi =
1− (i−1)/(Nscalar−1), i = 1, . . . , Nscalar, where Nscalar is the number of scalar-
izations. (For simplicity, we henceforth denote weight vectors by their first
component, the second component can be easily derived from Eq. 1.) In 2to1

the sequence is reversed. Two drawbacks of this simple strategy are that (i)
the direction chosen can give a clear advantage to the starting objective, that
is, the Pareto front approximation will be better on the starting side; and that
(ii) one needs to know in advance the computation time that is available in
order to define appropriately the number of scalarizations and the time spent

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 5

on each scalarization. Algorithm 1 gives the pseudo-code of the single direction
TPLS. We denote by SLS1 and SLS2 the SLS algorithms to minimize the first
and the second single objectives, respectively. SLSΣ is the SLS algorithm to
minimize the scalarized problem. Different from the initial proposal [16], in our
implementation we first generate a very good solution for each single objective
problem because we have high performing algorithms for them. However, we
use only one of the solutions as a starting solution for further scalarizations.
Double strategy. We denote as Double TPLS (D-TPLS) [16] the strategy
that first goes sequentially from one objective to the other one, as in the usual
TPLS. Then, another sequence of scalarizations is generated starting from the
second objective back to the first one. This is, in fact, a combination of 1to2 and
2to1, where half of the scalarizations are defined sequentially from one objective
to the other, and the other half in the opposite direction. This approach tries to
avoid the bias of a single starting objective. To introduce more variability, in our
D-TPLS implementation, the weights used in the first TPLS pass are alternated
with the weights used for the second TPLS pass. D-TPLS still requires to define
the number of weights, and, hence, the computation time, in advance.

3 Regular Anytime TPLS

The original strategy of TPLS, which is based on defining successive weight
vectors with minimal weight changes, generates very good approximations to
the areas of the Pareto front “covered” by the weight vectors [16, 18]. However,
if TPLS is stopped prematurely, it leaves areas of the Pareto front unexplored.
In this section, we present our first proposal to improve the anytime behavior
of TPLS.

3.1 Regular Anytime Strategy

We have proposed a TPLS-like algorithm, called regular anytime TPLS (RA-
TPLS), in which the weight for each new scalarization is defined in the middle
of the interval of two previous consecutive weights [5]. This strategy provides
a finer approximation to the Pareto front as the number of scalarizations in-
creases, ensuring a fair distribution of the computational effort along the Pareto
front and gradually intensifying the search. The set of weights is defined as a
sequence of progressively finer “levels” of 2k−1 scalarizations with maximally
dispersed weights Λk in the following manner: Λ1 = {0.5}, Λ2 = {0.25, 0.75},
Λ3 = {0.125, 0.375, 0.625, 0.875}, and so on. Successive levels intensify the ex-
ploration of the objective space, in some sense filling the gaps in the Pareto
front. Once RA-TPLS completes one level, the computational effort has been
equally distributed in all directions. However, if the search stops before explor-
ing all scalarizations at a certain level, the search would explore some areas of
the Pareto front more thoroughly than others. In order to minimize this effect,
RA-TPLS considers the weights within one level in a random order.

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 6

Algorithm 2 RA-TPLS

1: s1 := SLS1()
2: s2 := SLS2()
3: Add s1, s2 to Archive

4: L0 := {(1, 0)}; Li := ∅ ∀i > 0
5: Sd := {(s1, 1), (s2, 0)}
6: i := 0
7: while not stopping criterion met do
8: (λsup, λinf) := extract randomly from Li

9: Li := Li \ (λsup, λinf)
10: λ := (λsup + λinf)/2
11: s := ChooseSeed(Sd, λ)
12: s′ := SLSΣ(s, λ)
13: Add s′ to Archive

14: Sd := Sd ∪ (s′, λ)
15: Filter(Sd)
16: Li+1 := Li+1 ∪ (λsup, λ) ∪ (λ, λinf)
17: if Li = ∅ then i := i + 1
18: end while
19: Filter(Archive)
20: Output: Archive

In order to be an alternative to TPLS, RA-TPLS starts each new scalariza-
tion from a solution obtained from a previous scalarization. In particular, the
initial solution of the new scalarization (using a new weight) is one of the two
solutions that were obtained using the two weight vectors closest to the new
weight. The algorithm computes the weighted sum scalar values of these two
solutions according to the new weight, and selects the one with the better value
as the initial solution of the new scalarization.

The implementation of RA-TPLS requires three main data structures: Li is
the set of pairs of weights used in previous scalarizations, where i determines
the level of the search; Sd is a set of potential initial solutions, each solution
being associated with the corresponding weight that was used to generate it;
Archive is the archive of non-dominated solutions.

Algorithm 2 describes RA-TPLS in detail. In the initialization phase, an
initial solution is obtained for each objective using appropriate single-objective
algorithms, SLS1() and SLS2(). These new solutions and their corresponding
weights, λ = 1 and λ = 0, respectively, are used to initialize L0 and Sd. In the
next phase, the following loop is iterated until a stopping criterion is met. At
each iteration, a pair of consecutive weights (λsup, λinf) is subtracted randomly
from Li and used to calculate the new weight λ = (λsup + λinf)/2. Then,
procedure ChooseSeed uses this weight λ to choose a solution from the set of
initial solutions Sd. To do so, first ChooseSeed finds the two non-dominated

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 7

solutions that were obtained from scalarizations using the weights closest to λ:

sinf =
{

si | max
(si,λi)∈S

{λi : λi < λ}
}

ssup =
{

si | min
(si,λi)∈S

{λi : λi > λ}
} (2)

Next, ChooseSeed calculates the scalar value of ssup and sinf according to
the new weight λ following Eq. 1, and returns the solution with the smaller
scalar value. This solution is the initial solution for SLSΣ, the SLS algorithm
used to tackle the scalarizations. This algorithm produces a new solution s′,
which is added to both the global Archive and (together with its corresponding
weight) to the set of initial solutions Sd, which is filtered to keep only non-
dominated ones. Finally, the set of weights for the next level Li+1 is extended
with the new pairs (λsup, λ) and (λ, λinf). This completes one iteration of the
loop. If the current set of weights Li is empty, a level of the search is complete,
and the algorithm starts using pairs of weights from the next level Li+1. In
principle, this procedure may continue indefinitely, although larger number of
scalarizations will lead to diminishing improvements in the approximation to
the Pareto front.

3.2 Experimental Analysis

In the original publication, we applied RA-TPLS to two bPFSPs [5]. In this
paper, we perform a more comprehensive study by repeating the experiments on
a larger set of instances for the bPFSPs and including results on the bTSP. The
latter allows us to show that the shape of the Pareto front plays a fundamental
role in the performance of the RA-TPLS strategy.

All algorithms evaluated in this paper were implemented in C++, compiled
with gcc 4.4, and the experiments were run on a single core of Intel Xeon E5410
CPUs, running at 2.33 Ghz with 6MB of cache size under Cluster Rocks Linux
version 4.2.1/CentOS 4.

3.2.1 Case Study: Bi-objective Traveling Salesman Problem (bTSP)

Given a complete graph G = (V,A) with n = |V | nodes {v1, . . . , vn}, a set of
arcs A, and a cost associated to each arc c(vi, vj), the goal in the single-objective
TSP is to find a Hamiltonian tour p = (p1, . . . , pn) that minimizes the total tour
cost:

minimize f(p) = c (vpn
, vp1

) +

n−1
∑

i=1

c
(

vpi
, vpi+1

)

The single objective TSP may be directly extended to a multi-objective
formulation by assigning a vector of costs to each arc, where each component
corresponds to the cost of each objective. The goal then becomes to find the set
of Hamiltonian tours that “minimizes” a vector of objective functions, where
each objective is defined as above for each cost component.

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 8

Here we focus on the bi-objective TSP (bTSP). We assume that the prefer-
ences of the decision maker are not known a priori. Hence, the goal is to find
a set of feasible solutions that “minimizes” the bTSP in the sense of Pareto
optimality. The bTSP is frequently used for testing algorithms and comparing
their performance [7, 18]. Moreover, TPLS is a main component of the current
state-of-the-art algorithm [14] for the bTSP.

Isometric and Anisometric bTSP Instances

We created 10 Euclidean bTSP instances by generating two sets of 1000 points
with integer coordinates uniformly distributed in a square of side-length 105.
We call these instances isometric because both distance matrices have similar
range.

In addition, we generated several other bTSP instances, where the first dis-
tance matrix (corresponding to the first objective) is Euclidean whereas the
second matrix (corresponding to the second objective) is randomly generated
with distance values in the range [1,maxdist], with maxdist ∈ {5, 10, 25, 100},
as in [18]. Given the different range of both distance matrices, we call these
instances anisometric. We generated 10 instances of 1000 nodes for each value
of maxdist, that is, 40 anisometric bTSP instances in total.

Experimental Setup for the bTSP

The underlying single-objective algorithm for the TSP is an iterated local search
(ILS) based on a first-improvement 3-opt algorithm [11].1 In order to speed up
the algorithm, we compute a new distance matrix for each scalarization and we
recompute the candidate sets used by the speed-up techniques of this ILS algo-
rithm. Each scalarization runs for 1000 ILS iterations (equal to the number of
nodes in the instance). With our implementation and computing environment,
1000 ILS iterations require roughly 0.5 CPU seconds. Each of the two initial
solutions is generated by running ILS for 2000 iterations. Finally, each run of
the multi-objective algorithms performs 30 scalarizations after generating the
two initial solutions. The normalization of the objectives, necessary when solv-
ing a scalarization or calculating a weighted sum of the objectives, is performed
by normalizing the two distance matrices to the same range.

We measure the quality of the results by means of the hypervolume unary
measure [8, 21]. In the bi-objective space, the hypervolume measures the area
of the objective space weakly dominated by the solutions in a non-dominated
set. This area is bounded by a reference point that is worse in all objectives
than all points in all non-dominated sets measured. The larger is this area,
the better is a non-dominated set. To compute the hypervolume, the objective
values of all non-dominated solutions are normalized to the range [1, 2], the
values corresponding to the limits of the interval being the minimum and the
maximum values ever found for each objective. We use (2.1, 2.1) as the reference
point for computing the hypervolume.

1This algorithm is available online at http://www.sls-book.net/

http://www.sls-book.net/

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 9

We first study how the different TPLS strategies satisfy the anytime prop-
erty by examining the quality of the Pareto front as the number of scalarizations
increases. For each TPLS strategy, we plot the hypervolume value after each
scalarization averaged across 15 independent runs. Figure 1 shows four exem-
plary plots comparing RA-TPLS, 1to2 and D-TPLS on two isometric bTSP
instances, and two anisometric bTSP instances. We do not show the strategy
2to1 for isometric instances because it performs almost identical to 1to2 w.r.t.
the hypervolume; however, for anisometric instances we include 2to1 due to its
rather different behavior when compared to 1to2. These plots are representa-
tive of the general results on other instances; the complete results are given as
supplementary material [6]. For isometric bTSP instances, according to these
plots, the three strategies reach similar final quality. However, there are strong
differences in the development of the hypervolume during the execution of the
algorithms. The hypervolume of the Pareto front approximations generated
by RA-TPLS shows a quick initial increase, and for few scalarizations a much
higher value than D-TPLS and 1to2. Hence, if the algorithms are interrupted
before completing the pre-defined number of scalarizations, RA-TPLS would
clearly produce the best results.

For anisometric bTSP instances, there is a clear difference between strategies
1to2 and 2to1, and the smaller the value of maxdist, the larger is the difference.
The value of maxdist also affects the anytime behavior and final performance
of RA-TPLS. For small maxdist, both 1to2 and D-TPLS seem to outperform
RA-TPLS at various times. Smaller values of maxdist result in a larger number
of optimal solutions for the second objective. Hence, the first scalarization of
2to1 will return one of these optima and a very good value of the first objective,
producing a huge initial improvement of the hypervolume. Several subsequent
scalarizations of 2to1 will only slightly improve the value of the first objective,
while keeping the optimal value of the second objective; therefore, the hypervol-
ume improves very slowly. Only when the weight for the first objective grows
large enough, a solution with a non-optimal value of the second objective is
accepted, and the hypervolume starts improving in larger steps. On the other
hand, when starting from the first objective in 1to2, every scalarization finds
non-dominated solutions closer to each other, and the hypervolume grows ini-
tially slower than what is observed for the first huge step in 2to1. However,
as soon as the weight of the second objective is large enough that only op-
timal values of the second objective solutions are accepted, the hypervolume
quickly reaches its maximum. Finally, D-TPLS obtains better results because
it progresses faster towards the second objective. All these behaviors show that
equally distributing the computational effort in all directions does not pay off
in these instances. It leads to a waste of scalarizations when being close to the
minimum of the second objective, and very slow progress when being close to
the minimum of the first objective. This effect will be even stronger in the case
of the bPFSP.

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 10

0 5 10 15 20 25 30

0
.5

0
.7

0
.9

1
.1

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

1to2

D−TPLS

RA−TPLS

(maxdist = 5)

0 5 10 15 20 25 30

0
.9

1
.0

1
.1

1
.2

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

1to2

2to1

D−TPLS

RA−TPLS

0 5 10 15 20 25 30
0

.5
0

.7
0

.9
1

.1

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

1to2

D−TPLS

RA−TPLS

(maxdist = 100)

0 5 10 15 20 25 30

0
.7

0
.8

0
.9

1
.0

1
.1

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

1to2

2to1

D−TPLS

RA−TPLS

Figure 1: Development of the hypervolume over the number of scalarizations for
1to2, D-TPLS and RA-TPLS for two isometric (top plots) and two anisometric
(bottom plots) bTSP instances. For anisometric instances we also plot the
results of 2to1, since they differ strongly from 1to2. For isometric instances,
there is almost no difference between 1to2 and 2to1. Anisometric instances
with intermediate values of maxdist (equal to 10 or 25) show a compromise trend
between the two extreme values 5 and 100 (see supplementary material [6]).

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 11

3.2.2 Case Study: Bi-objective Permutation Flow-shop Scheduling
Problem

The flow-shop scheduling problem [12] models a very common type of environ-
ment in the industry and is therefore one of the most widely studied scheduling
problems. In the flow-shop scheduling problem, a set of n jobs (J1, . . . , Jn) is to
be processed on m machines (M1, . . . ,Mm). All jobs go through the machines
in the same order, i.e., all jobs have to be processed first on machine M1, then
on machine M2, and so on until machine Mm. A typical additional constraint
is to forbid job passing, and as a result, the processing sequence of the jobs is
the same on all machines. Thus, any permutation of the jobs is a candidate
solution. This formulation is called permutation flow-shop scheduling problem
(PFSP).

In the PFSP, all processing times pij for a job Ji on a machine Mj are fixed,
known in advance, and non-negative. Furthermore, we assume that all jobs are
available at time 0. Ci denotes the completion time of a job Ji on the last
machine Mm. The makespan (Cmax) is the completion time of the last job in
the permutation. The PFSP with makespan minimization for more than two
machines is NP-hard in the strong sense [9].

The other objectives studied in this paper are the minimization of the sum

of completion times and the minimization of the total tardiness. The sum of
completion times is given by

∑n

i=1 Ci. The PFSP with sum of completion times
minimization is strongly NP-hard already for two machines [9]. Each job may
have an additional associated due date di. The tardiness of a job Ji is defined
as Ti = max{Ci − di, 0}, and the total tardiness is given by

∑n

i=1 Ti. The
PFSP with total tardiness minimization is strongly NP-hard even for a single
machine [3].

As a case study, in this paper we focus on bPFSP variants:

1. PFSP-(Cmax,
∑

Ci) denotes the minimization of the makespan and the
sum of completion times, and

2. PFSP-(Cmax,
∑

Ti) denotes the minimization of the sum of completion
times and the total tardiness.

Experimental Setup for the bPFSP

Recently, we developed a new, hybrid state-of-the-art SLS algorithm for these
two bPFSPs [4]. A crucial component in this hybrid algorithm is TPLS using
effective iterated greedy (IG) algorithms [19] adapted to each objective and
combinations thereof. We use here the same IG algorithms to implement the
various TPLS variants. Concretely, each TPLS algorithm generates two initial
solutions for each objective (λ = 1 and λ = 0) by running 1 000 iterations
of the corresponding IG algorithm. Then, it performs 30 scalarizations, each
scalarization running for 500 IG iterations.

We generate 10 benchmark instances with n = 50 and m = 20 (50x20),
and 10 instances with n = 100 and m = 20 (100x20), following the procedure

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 12

described by Minella et al. [15]. These instances are available as supplementary
material [6]. Given the large discrepancies in the range of the various objectives,
all objectives are dynamically normalized using the maximum and minimum
values found during each run for each objective. We compute and plot the
evolution of the hypervolume as done earlier for the bTSP.

Experimental Evaluation of RA-TPLS on bPFSP Instances

As for the bTSP, we examine the quality of the result of each TPLS variant,
1to2, 2to1, D-TPLS, and RA-TPLS during the run of the algorithm. Figure 2
shows the development of the hypervolume of each TPLS variant, averaged
across 15 independent runs. The plots show that the hypervolume value of 1to2,
2to1, and D-TPLS is rather poor up to the point that the sequence of weights
reaches the other objective. On other hand, RA-TPLS quickly reaches a high
hypervolume in very few scalarizations. In terms of final quality, however, D-
TPLS clearly performs better than RA-TPLS as soon as the former reaches half
of its scalarizations and starts performing scalarizations back from the second
to the first one. This fact and the differences between 1to2 and 2to1 strongly
indicate that for the bPFSPs considered here the starting objective plays a
significant role on both the anytime behavior and the final solution quality.

4 Adaptive TPLS

The TPLS variants discussed so far generate a sequence of weights that is de-
termined by the number of scalarizations, and aims to allocate the same com-
putational effort to all regions of the Pareto front. This strategy, however, may
not be adequate when the two objectives have different difficulty and the shape
of the Pareto front is not regular in all search directions. Recently, we proposed
an adaptive TPLS variant that dynamically generates weights in order to adapt
the search to the shape of the Pareto front [5]. In this section, we explain this
adaptive TPLS variant and discuss possible improvements that have not been
considered before.

4.1 Adaptive Anytime Strategy

Our adaptive TPLS [5] is inspired by the dichotomic scheme proposed by Aneja
and Nair [1] for exact algorithms and recently used for the approximate case
by Lust and Teghem [14]. The dichotomic scheme does not define the weights
in advance but determines them in dependence of the solutions already found.
More formally, given a pair of solutions (s1, s2), the new weight λ is perpen-
dicular to the segment defined by s1 and s2 in the objective space, that is:

λ =
f2(s1) − f2(s2)

f2(s1) − f2(s2) + f1(s2) − f1(s1)
(3)

The dichotomic scheme used in these two earlier papers has a natural stop-
ping criterion, and it progresses recursively depth-first. As a result, if stopped

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 13

PFSP-(Cmax,
P

Ci) 50x20

0 5 10 15 20 25 30

0
.6

0
.7

0
.8

0
.9

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

1to2

2to1

D−TPLS

RA−TPLS

PFSP-(Cmax,
P

Ti) 50x20

0 5 10 15 20 25 30

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

1to2

2to1

D−TPLS

RA−TPLS

PFSP-(Cmax,
P

Ci) 100x20

0 5 10 15 20 25 30

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

1to2

2to1

D−TPLS

RA−TPLS

PFSP-(Cmax,
P

Ti) 100x20

0 5 10 15 20 25 30

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

1to2

2to1

D−TPLS

RA−TPLS

Figure 2: Development of the average hypervolume over the number of scalar-
izations for 1to2, 2to1, D-TPLS, and RA-TPLS for bPFSP. Results are given
for one instance of size 50x20 (left column) and one instance of size 100x20

(right column). The problems are PFSP-(Cmax,
∑

Ci) (top plots) and PFSP-

(Cmax,
∑

Ti) (bottom plots).

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 14

Algorithm 3 Adaptive “Anytime” TPLS Strategy

1: s1 := SLS1()
2: s2 := SLS2()
3: Add s1, s2 to Archive

4: S := {(s1, s2)}
5: while not stopping criteria met do
6: (ssup, sinf) := arg max(s,s′)∈S ‖(s, s′)‖

7: Calculate λ perpendicular to ~f(ssup)~f(sinf) following Eq. 3
8: if one seed case then
9: s := ChooseRandomly(ssup, sinf)

10: s′ := SLSΣ(s, λ)
11: Add s′ to Archive

12: Update(S, s′)
13: else
14: s′sup := SLSΣ(ssup, λ)
15: s′inf := SLSΣ(sinf, λ)
16: Add s′sup and s′inf to Archive

17: Update(S, s′sup)
18: Update(S, s′inf)
19: end if
20: end while
21: Filter(Archive)
22: Output: Archive

early, it would assign an uneven computational effort along the front, leading
to a poor distribution of solutions and, hence, to poor anytime behavior. More-
over, Lust and Teghem [14] apply the dichotomic scheme as a Restart strategy
that starts each scalarization from a newly generated initial solution. In the
exact case, the algorithm of Aneja and Nair [1] is deterministic, and, hence,
applying the same weight results in the same solution. Also, the concept of
seeding a scalarization is not considered. Our extension of the dichotomic strat-
egy to the TPLS framework makes effective use of solutions found by previous
scalarizations to seed later scalarizations and satisfies the anytime property [5].
We describe this adaptive TPLS strategy as Algorithm 3.

The main data structure is a set S of pairs of solutions found in previous
scalarizations. This set is initialized with the solutions found by optimizing each
single-objective using SLS1() and SLS2(). At each iteration, the algorithm selects
the pair of solutions (ssup, sinf) ∈ S that defines the “largest gap” in the objective
space, using a given norm ‖(s, s′)‖ to compare every pair of solutions. The idea
is to focus the search on the largest gap in the Pareto front in order to obtain
a well-spread set of non-dominated solutions. This is different from the original
dichotomic scheme, which explores segments recursively. We originally proposed
to use as norm the Euclidean distance in the normalized objective space [5], and
we use this norm in the following. However, we propose a new alternative in

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 15

Figure 3: Only solutions in the gray area are accepted as initial solutions for
further scalarizations
(See the text for details).

Section 6. After choosing the pair of solutions (ssup, sinf) according to the norm,
the algorithm calculates a new weight λ perpendicular to the segment defined
by ssup and sinf in the objective space, following Eq. 3. Next, the underlying
single-objective SLS algorithm, SLSΣ, is run either once, using the weight λ
and starting from either ssup and sinf, or twice, starting one time from solution
ssup and one time from solution sinf. Which of these two possibilities is chosen,
depends on the parameter one seed case.

In the last step of an iteration, procedure Update updates the set of initial
solutions S using the new solutions found. If s′ is a new solution, any single
solution in S dominated by s′ is replaced with s′, and any pair of solutions
(weakly) dominated by s′ is removed. The dichotomic scheme [1, 14] only
accepts solutions for inclusion in S if they lie within the triangle defined by
the solutions ssup and sinf, and their local ideal point (see Figure 3). Solutions
outside the gray area are either dominated or not supported (not optimal for any
scalarization). Heuristic algorithms may, however, generate supported solutions
that are in the gray area outside the triangle; therefore, our adaptive strategy
accepts all solutions in the gray area for inclusion in S. If a solution s′ is
accepted for inclusion in S, then the segment (s1, s2) ∈ S with f1(s1) < f1(s

′) <
f1(s2) is removed, and two new segments (s1, s

′) and (s′, s2) are added to S.
Since each iteration produces at most two new solutions (s′sup and s′inf, or simply
s′1 in the one seed variant), a maximum of three new segments are added to
S every iteration. Figure 4 shows an example of the update of S after one
iteration of the adaptive algorithm. We call this algorithm AN-TPLS-2seed
in what follows (for adaptive normal TPLS), and we call AN-TPLS-1seed its
variant using only one initial solution.

4.2 Experimental Evaluation of Adaptive TPLS on bTSP

Instances

To evaluate the performance of AN-TPLS-2seed and its variant AN-TPLS-1seed,
we use the same experimental setup described in Section 3. We present the aver-
age hypervolume evolution of AN-TPLS-2seed and AN-TPLS-1seed in Figure 5,

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 16

Figure 4: A single iteration of the AN-TPLS-2seed algorithm. On the left the
state before the iteration and on the right after S has been updated. The next
segment that will be considered is (s′1, s

′
2) because of its larger distance.

comparing it to D-TPLS and RA-TPLS.
For the two isometric instances, AN-TPLS-1seed appears to be better than

AN-TPLS-2seed. By checking carefully the output, we noticed that the under-
lying ILS algorithm usually finds two solutions that are very close to each other
or possibly even the same. Hence, using two initial solutions gives a negligible
improvement with respect to the hypervolume in comparison to using a single
one.

For the two anisometric instances, AN-TPLS-1seed is again the best strategy.
Interestingly, one can see that the higher the value of maxdist, the closer is the
performance of RA-TPLS to AN-TPLS-1seed. This is due to the fact that by
increasing maxdist, instances are “smoother” in the sense they resemble more
the isometric ones and, therefore, there is less need to adapt the weights to the
particular shape of the Pareto front.

4.3 Experimental Evaluation of Adaptive TPLS on bPFSP

Instances

To test on a problem that has a front resulting from objectives with differ-
ent properties, we use again the bPFSPs that were already described in Sec-
tion 3.2.2. Results are presented in Figure 6. For the bPFSP, AN-TPLS-2seed
clearly outperforms RA-TPLS and it is also significantly better than AN-TPLS-
1seed. Still, D-TPLS shows on several instances better final performance than
AN-TPLS-2seed according to the hypervolume indicator.

4.4 Further Analysis of AN-TPLS-1seed and AN-TPLS-

2seed

We examine the differences between AN-TPLS-1seed and AN-TPLS-2seed in
more detail. In particular, we examine the distribution of the objective vec-
tors obtained after each scalarization in AN-TPLS-2seed for the bTSP and the
bPFSP.

We first run AN-TPLS once and record the solutions and weights generated.

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 17

0 5 10 15 20 25 30

0
.6

0
.7

0
.8

0
.9

1
.0

1
.1

Number of scalarizations

H
y
p
e
rv

o
lu

m
e

D−TPLS

RA−TPLS

AN−TPLS−1seed

AN−TPLS−2seed

(maxdist = 5)

0 5 10 15 20 25 30

1
.0

0
1
.0

5
1
.1

0
1
.1

5
1
.2

0

Number of scalarizations

H
y
p
e
rv

o
lu

m
e

D−TPLS

RA−TPLS

AN−TPLS−1seed

AN−TPLS−2seed

0 5 10 15 20 25 30

0
.6

0
.7

0
.8

0
.9

1
.0

1
.1

Number of scalarizations

H
y
p
e
rv

o
lu

m
e

D−TPLS

RA−TPLS

AN−TPLS−1seed

AN−TPLS−2seed

(maxdist = 100)

0 5 10 15 20 25 30

0
.8

5
0
.9

5
1
.0

5
1
.1

5

Number of scalarizations

H
y
p
e
rv

o
lu

m
e

D−TPLS

RA−TPLS

AN−TPLS−1seed

AN−TPLS−2seed

Figure 5: Development of the hypervolume over the number of scalarizations
for D-TPLS, RA-TPLS, AN-TPLS-2seed and AN-TPLS-1seed for two isomet-
ric TSP instances and two anisometric TSP instances. Anisometric instances
with intermediate value of maxdist show a compromise trend between the two
extremes shown here (see supplementary material [6]).

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 18

PFSP-(Cmax,
P

Ci) 50x20

0 5 10 15 20 25 30

0
.6

0
.7

0
.8

0
.9

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

D−TPLS

RA−TPLS

AN−TPLS−1seed

AN−TPLS−2seed

PFSP-(Cmax,
P

Ti) 50x20

0 5 10 15 20 25 30

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

D−TPLS

RA−TPLS

AN−TPLS−1seed

AN−TPLS−2seed

PFSP-(Cmax,
P

Ci) 100x20

0 5 10 15 20 25 30

0
.7

5
0

.8
5

0
.9

5
1

.0
5

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

D−TPLS

RA−TPLS

AN−TPLS−1seed

AN−TPLS−2seed

PFSP-(Cmax,
P

Ti) 100x20

0 5 10 15 20 25 30

0
.8

0
0

.9
0

1
.0

0
1

.1
0

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

D−TPLS

RA−TPLS

AN−TPLS−1seed

AN−TPLS−2seed

Figure 6: Development of the hypervolume over the number of scalarizations for
D-TPLS, RA-TPLS, AN-TPLS-2seed and AN-TPLS-1seed for bPFSP. Results
are given for one instance of size 50x20 (left column) and one instance of size
100x20 (right column). The problems are PFSP-(Cmax,

∑

Ci) (top plots) and
PFSP-(Cmax,

∑

Ti) (bottom plots).

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 19

Then, we use the two initial solutions and the first weight to perform 15 inde-
pendent scalarizations starting from each of the two initial solutions. Results
are plotted on the left column of Figure 7. The line indicates the direction of the
scalarization (defined by the weight). The initial solutions of the scalarizations
are shown in gray, and the symbols indicate the initial solution from which each
new candidate solution was obtained. Next, we use the second and third weight
and the third and fourth initial solution pairs to simulate 15 scalarizations for
each combination of initial solution and weight. The resulting solutions after
tackling the scalarized problems are shown on the right column of Figure 7.
Solutions that have an additional small cross inside originate from the scalar-
ization shown with a dotted line. These plots clearly show that for the bTSP,
all resulting objective vectors for the same scalarization fall into a very narrow
area of the objective space, independent from which initial solution they started.
Hence, there is no evident advantage in using two different initial solutions with
the same weight. The situation is very different for the bPFSP. As it is clearly
visible, there is a large variability of the resulting objective vectors even for the
same initial solution. More importantly, the objective vectors resulting from
two different initial solutions, even when tackling the same scalarized problem,
result in two clearly distinct clusters. Hence, tackling a scalarization from two
different initial solutions, is advantageous in the case of the bPFSP.

This insight might be used to define when it is better to use one or two initial
solutions by, for example, taking into account the distance among objective
vectors after the first scalarization of AN-TPLS-1seed, and dynamically deciding
whether to perform an additional scalarization starting from the other initial
solution. However, we do not explore these possibilities in this paper.

4.5 Adaptive Focus TPLS

If two adjacent segments in S are almost parallel, in AN-TPLS-2seed two scalar-
izations will be solved using the same initial solution (the solution shared by
the two segments) and very similar weights (because the two vectors perpen-
dicular to the segments will again be almost parallel). A careful analysis of
AN-TPLS-2seed showed that such situations actually occur and may result in
negligible progress of the search. In order to avoid this problem, one can focus
the search direction of each scalarization towards the center of each segment and
further improve the results of AN-TPLS-2seed. We call this variant Adaptive

focus (AF-TPLS).
Given a segment (s1, s2) ∈ S, with f1(s1) < f1(s2), AF-TPLS generates two

weights λ1 and λ2 as

λ1 = λ − θ · λ and λ2 = λ + θ(1 − λ), (4)

where λ is the weight perpendicular to the segment computed by Eq. 3, and θ
is a parameter that modifies λ towards the center of the segment (see Figure 8).

These two new weights replace the weight λ in Algorithm 3, that is, the
run of the SLS algorithm that uses s1 as initial solution solves a scalarization

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 20

Isometric TSP

1e+07 2e+07 3e+07 4e+07 5e+07

1
e

+
0

7
2

e
+

0
7

3
e

+
0

7
4

e
+

0
7

5
e

+
0

7

1e+07 2e+07 3e+07 4e+07 5e+07

1
e

+
0

7
2

e
+

0
7

3
e

+
0

7
4

e
+

0
7

5
e

+
0

7

PFSP-(Cmax,
P

Ci)

3900 3950 4000 4050 4100 4150

1
3

0
0

0
0

1
3

2
0

0
0

1
3

4
0

0
0

1
3

6
0

0
0

3900 3950 4000 4050 4100 4150

1
3

0
0

0
0

1
3

2
0

0
0

1
3

4
0

0
0

1
3

6
0

0
0

Figure 7: Distribution of solutions in the objective space after the first (left
plots), and the second and third (right plots) scalarizations. The top plots show
an isometric bTSP instance, and the bottom ones show an instance for the
PFSP-(Cmax,

∑

Ci). Other instances show the same trend, which demonstrate
strong differences between the two problems.

according to weight λ1, while the run starting from with s2 uses the weight λ2.
A value of θ = 0 would reproduce the AN-TPLS-2seed strategy.

4.6 Experimental Evaluation of Adaptive Focus on bPFSP

Instances

We test AF-TPLS on the bPFSP using different values of θ = {0.05, 0.15, 0.25, 0.5}.
Plots that present a comparison of AF-TPLS using these values are provided
as supplementary material [6]. The values 0.25 and 0.15 show a similar perfor-
mance, indicating a relative robustness of AF-TPLS with respect to the setting
of θ. For the following comparisons, we consider only AF-TPLS using 0.25. In
Figure 9, we present a comparison of AF-TPLS, AN-TPLS-2seed and D-TPLS.
AF-TPLS is at least as good as AN-TPLS-2seed, and it is often able to out-

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 21

Figure 8: AF-TPLS strategy: the two
weights are “focused” to the center of
the segment.

perform it. Furthermore, AF-TPLS reaches a final quality often equal to or
better than the one reached by D-TPLS. (The instance 100x20 1 of problem
PFSP-(Cmax,

∑

Ti) (bottom-right in Fig. 9) is actually the only instance where
D-TPLS performs clearly better than AF-TPLS.)

5 Statistical Analysis

We have examined so far the results of the different approaches by comparing
their performance in each instance. In order to assess the performance over the
whole set of instances, we perform the following statistical analysis on each prob-
lem. The analysis is based on the Friedman test for analyzing non-parametric
unreplicated complete block designs, and its associated post-test for multiple
comparisons [2]. First, we calculate the mean hypervolume of the 15 runs of
each algorithm for each instance. Then, we perform the Friedman test using the
ten instances as the blocking factor, and the different strategies as the treat-
ment factor. In most cases, the Friedman test rejects the null hypothesis with a
p-value lower than 0.05. Then, we rank the strategies per instance according to
the mean hypervolume, the lower rank the better, and we calculate the differ-
ence (∆R) between the sum of ranks of each strategy and the best ranked one
(with the lowest sum of ranks). Finally, we calculate the minimum difference
between the sum of ranks of two strategies that is statistically significant (∆Rα),
given a significance level of α = 0.05. We indicate in bold face the best strategy
(the one having the lowest sum of ranks) and those that are not significantly
different from the best one.

5.1 Results on the bTSP

We perform the statistical tests after the algorithms have performed 10, 20 and
30 scalarizations. We compare the strategies 1to2, D-TPLS, RA-TPLS, AN-
TPLS-2seed and AN-TPLS-1seed. We do not consider AF-TPLS since it leads
to poor performance for bTSP instances (see the supplementary material [6]).

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 22

PFSP-(Cmax,
P

Ci) 50x20

0 5 10 15 20 25 30

0
.6

0
.7

0
.8

0
.9

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

D−TPLS

AN−TPLS−2seed

AF−025−TPLS

PFSP-(Cmax,
P

Ti) 50x20

0 5 10 15 20 25 30

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

D−TPLS

AN−TPLS−2seed

AF−025−TPLS

PFSP-(Cmax,
P

Ci) 100x20

0 5 10 15 20 25 30

0
.7

5
0

.8
5

0
.9

5
1

.0
5

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

D−TPLS

AN−TPLS−2seed

AF−025−TPLS

PFSP-(Cmax,
P

Ti) 100x20

0 5 10 15 20 25 30

0
.8

0
0

.9
0

1
.0

0
1

.1
0

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

D−TPLS

AN−TPLS−2seed

AF−025−TPLS

Figure 9: Development of the hypervolume over the number of scalarizations
for D-TPLS, AN-TPLS-2seed and AF-TPLS. Results are given for one instance
of size 50x20 (left column) and one instance of size 100x20 (right column). The
problems are PFSP-(Cmax,

∑

Ci) (top plots) and PFSP-(Cmax,
∑

Ti) (bottom
plots).

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 23

Table 1: Statistical analysis for the isometric bTSP. For each number of scalar-
izations, strategies are ordered according to the rank obtained. The numbers
in parenthesis are the difference of ranks relative to the best strategy. The
strategy significantly better than the other ones is indicated in bold face. For
isometric bTSP the ordering of all strategies is the same on all instances and,
hence, ∆Rα = 0.

Nscalar ∆Rα Strategies (∆R)

10 0 AN-TPLS-1seed, RA-TPLS (10), AN-TPLS-2seed (20), D-TPLS (30), 1to2 (40)
20 0 AN-TPLS-1seed, RA-TPLS (10), D-TPLS (20), AN-TPLS-2seed (30), 1to2 (40)
30 0 1to2 , RA-TPLS (10), AN-TPLS-1seed (20), D-TPLS (30), AN-TPLS-2seed (40)

Results are given in Table 1 for isometric instances and in Table 2 for aniso-
metric ones. When the value of the critical difference (∆Rα) is equal to 0, the
strategies have the same ranking over all instances. The numbers in parenthesis
are the difference of ranks relative to the best strategy. For isometric instances,
AN-TPLS-1seed is the best strategy before completion. However, when algo-
rithms run until completion, 1to2 is significantly better than the other ones.
For anisometric instances, we performed independent tests for each value of
maxdist and we found that the results are consistent across the different values
for maxdist. AN-TPLS-1seed is always significantly better than all the other
strategies. Hence, it is the strategy that should be used for anisometric in-
stances, no matter the value of maxdist.

5.2 Results on the bPFSPs

For the bPFSP, we perform the same procedure separately for each combination
of objectives, each instance size 50x20 and 100x20, and we measure the hyper-
volume after 10, 20 and 30 scalarizations. We compared D-TPLS, RA-TPLS,
AN-TPLS-2seed, AN-TPLS-1seed and AF-TPLS (using θ = 0.25). The results
are given in Table 3.

For a low number of scalarizations, the adaptive strategies (AN-TPLS-2seed
and AF-TPLS) are always superior to the classical TPLS strategies. More-
over, AF-TPLS is never significantly worse than D-TPLS, when the latter runs
until completion (30 scalarizations), while the opposite is true two times. In
conclusion, AF-TPLS would be the strategy of choice for bPFSP problems.

6 Optimistic Hypervolume Improvement as Se-

lection Criterion

The main idea of the adaptive anytime strategies is to focus the search on the
most promising region of the objective space for improving the quality of the
Pareto front approximation. In this sense, the algorithm aims at filling the
“largest gaps” in the Pareto front approximation. In order to measure the “size

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 24

Table 2: Statistical analysis for the anisometric bTSP. For each number of
scalarizations, strategies are ordered according to the rank obtained. The num-
bers in parenthesis are the difference of ranks relative to the best strategy. The
strategy significantly better than the other ones is indicated in bold face.

Nscalar ∆Rα Strategies (∆R)

maxdist = 5
10 3.31 AN-TPLS-1seed, AN-TPLS-2seed (14), 1to2 (16), D-TPLS (30), RA-TPLS (40)
20 2.03 AN-TPLS-1seed, AN-TPLS-2seed (10), 1to2 (20), RA-TPLS (31), D-TPLS (39),
30 3.31 AN-TPLS-1seed, AN-TPLS-2seed (10), 1to2 (24), RA-TPLS (26), D-TPLS (40)

maxdist = 10
10 0 AN-TPLS-1seed, D-TPLS (10), AN-TPLS-2seed (20), RA-TPLS (30), 1to2 (40)
20 2.03 AN-TPLS-1seed, AN-TPLS-2seed (11), 1to2 (19), RA-TPLS (30), D-TPLS (40)
30 0 AN-TPLS-1seed, AN-TPLS-2seed (10), 1to2 (20), RA-TPLS (30), D-TPLS (40)

maxdist = 25
10 0 AN-TPLS-1seed, AN-TPLS-2seed (10), RA-TPLS (20), D-TPLS (30), 1to2 (40)
20 3.31 AN-TPLS-1seed, AN-TPLS-2seed (10), RA-TPLS (24), D-TPLS (26), 1to2 (40)
30 4.11 AN-TPLS-1seed, AN-TPLS-2seed (14), 1to2 (17), RA-TPLS (29), D-TPLS (40)

maxdist = 100
10 0 AN-TPLS-1seed, AN-TPLS-2seed (10), RA-TPLS (30), D-TPLS (20), 1to2 (40)
20 3.31 AN-TPLS-1seed, AN-TPLS-2seed (10), RA-TPLS (24), D-TPLS (26), 1to2 (40)
30 4.11 AN-TPLS-1seed, AN-TPLS-2seed (14), 1to2 (17), RA-TPLS (29), D-TPLS (40)

of the gap”, we use a norm as described in line 6 of Algorithm 3 (Section 4),
where the pair of solutions that maximizes it are selected as seeds for the next
scalarization.

For all experiments presented so far, we have used as norm the Euclidean
distance on the normalized objective space. Although this distance leads to a
good “visual” distribution of solutions, it may not lead to the selection of the
seeds with the maximum potential quality improvement. A measure of the qual-
ity of the current Pareto front approximation is the hypervolume, and therefore,
selecting the pair of seeds that may lead to the largest improvement of hyper-
volume should intuitively lead to improving the quality of the approximation.
Assuming that the new solution found is within the square defined by the two
seeds, the maximum improvement in terms of hypervolume is proportional to
the area of the square. Hence, using normalized objective values, we compute
this norm as follows:

‖(s, s′)‖HV = |((f1(s) − f1(s
′)) · ((f2(s) − f2(s

′))| (5)

We compare this optimistic hypervolume improvement with the Euclidean
distance as the selection criterion in AN-TPLS-1seed, which is the best adaptive
TPLS strategy for the isometric and the anisometric bTSP, and AF-TPLS,
which is the best adaptive TPLS strategy for the bPFSP.

Figure 10 shows the development of the hypervolume of the resulting adap-
tive TPLS variants. The version of AN-TPLS-1seed that uses the ‖(s, s′)‖HV

norm is slightly, however consistently, better than the one that uses the Eu-

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 25

Table 3: Statistical analysis for the bPFSP. For each number of scalarizations,
strategies are ordered according to the rank obtained. The numbers in paren-
thesis are the difference of ranks relative to the best strategy. Strategies which
are not significantly different to the best one are indicated in bold face. See the
text for details.
Nscalar ∆Rα Strategies (∆R)

(Cmax,
∑

Ci) 50x20
10 5.41 AF-TPLS, AN-TPLS-2seed (6), AN-TPLS-1seed (12), RA-TPLS (26), D-TPLS (36)
20 7.65 AN-TPLS-2seed, AF-TPLS (2), AN-TPLS-1seed (20), D-TPLS (21), RA-TPLS (32)
30 9.63 AN-TPLS-2seed, AF-TPLS (3), D-TPLS (4), AN-TPLS-1seed (13), RA-TPLS (30)

(Cmax,
∑

Ci) 100x20
10 6.51 AF-TPLS, AN-TPLS-2seed (4), AN-TPLS-1seed (5), RA-TPLS (23), D-TPLS (33)
20 9.91 AF-TPLS, AN-TPLS-2seed (2), AN-TPLS-1seed (11), D-TPLS (18), RA-TPLS (29)
30 9.44 D-TPLS, AF-TPLS (8), AN-TPLS-2seed (16), AN-TPLS-1seed (27), RA-TPLS (29)

(Cmax,
∑

Ti) 50x20
10 3.88 AF-TPLS, AN-TPLS-2seed (5), AN-TPLS-1seed (16), RA-TPLS (27), D-TPLS (37)
20 5.36 AF-TPLS, AN-TPLS-2seed (13), D-TPLS (23), AN-TPLS-1seed (24), RA-TPLS (40)
30 5.76 AF-TPLS, D-TPLS (1), AN-TPLS-2seed (11), AN-TPLS-1seed (25), RA-TPLS (33)

(Cmax,
∑

Ti) 100x20
10 4.97 AF-TPLS, AN-TPLS-2seed (14), AN-TPLS-1seed (14), RA-TPLS (28), D-TPLS (39)
20 10.36 AF-TPLS, AN-TPLS-2seed (13), D-TPLS (19), AN-TPLS-1seed (22), RA-TPLS (31)
30 8.42 D-TPLS, AF-TPLS (2), AN-TPLS-2seed (21), RA-TPLS (23), AN-TPLS-1seed (29)

Table 4: Statistical analysis for the isometric bTSP. For each number of scalar-
izations, strategies are ordered according to the rank obtained. For this problem,
the first strategy is always the first one, the second is always the second one,
and so on.

Nscalar ∆Rα Strategies (∆R)

10 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), 1to2 (20)
20 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), 1to2 (20)
30 0 AN-TPLS-1seedHV , 1to2 (10), AN-TPLS-1seed (20)

clidean distance. For AF-TPLS on the bPFSP, results are not as consistent as
for the bTSP (additional plots are available as supplementary material [6]).

To assess the statistical significance of the differences between the two se-
lection criteria over all instances, we perform the same statistical analysis as
in the previous section. For the isometric bTSP, we compare in Table 4 the
quality of AN-TPLS-1seed, its variant that uses the ‖(s, s′)‖HV norm (AN-
TPLS-1seedHV), and 1to2, which outperformed all other strategies in terms of
final quality. We compare in Table 5 AN-TPLS-1seed, AN-TPLS-1seedHV , and
D-TPLS, for the anisometric bTSP. The results are consistent for the two types
of instances, and all values of maxdist. AN-TPLS-1seedHV is the best-ranked
strategy and it is always significantly better than all the other ones, including
1to2. In the case of the bPFSP, Table 6 compares the two adaptive strategies
AN-TPLS-2seed and AF-TPLS, their variants using the ‖(s, s′)‖HV norm, and

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 26

0 5 10 15 20 25 30

1
.0

0
1

.0
5

1
.1

0

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

AN−TPLS−1seed

AN−TPLS−1seed−HV

PFSP-(Cmax,
P

Ci) 50x20

0 5 10 15 20 25 30

0
.6

5
0

.7
5

0
.8

5
0

.9
5

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

AF−025−TPLS

AF−025−TPLS−HV

(maxdist = 5)

0 5 10 15 20 25 30

1
.1

5
1

.1
7

1
.1

9

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

AN−TPLS−1seed

AN−TPLS−1seed−HV

PFSP-(Cmax,
P

Ti) 50x20

0 5 10 15 20 25 30

0
.7

0
0

.8
0

0
.9

0

Number of scalarizations

H
y
p

e
rv

o
lu

m
e

AF−025−TPLS

AF−025−TPLS−HV

Figure 10: Development of the hypervolume over the number of scalarizations
for AN-TPLS-1seed using Euclidean distance and ‖(s, s′)‖HV for one isomet-
ric TSP instance (top-left), one anisometric TSP instance (top-right), and one
instance of bPFSP with the two different combinations of objectives.

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 27

Table 5: Statistical analysis for the anisometric bTSP. For each number of
scalarizations, strategies are ordered according to the rank obtained. The num-
bers in parenthesis are the difference of ranks relative to the best strategy. The
strategy significantly better than the other ones is indicated in bold face.

Nscalar ∆Rα Strategies (∆R)

maxdist = 5
10 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
20 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
30 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)

maxdist = 10
10 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
20 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
30 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)

maxdist = 25
10 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
20 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
30 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)

maxdist = 100
10 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
20 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)
30 0 AN-TPLS-1seedHV , AN-TPLS-1seed (10), D-TPLS (20)

D-TPLS. The improvement is not as consistent as for the bTSP. However, AF-
TPLSHV is most often the best-ranked strategy, never being significantly worse
than the best ranked one.

7 Graphical analysis based on the EAF differ-

ences

We further explore the differences between RA-TPLS, AF-TPLS and D-TPLS
by examining the empirical attainment functions (EAF) of the final results after
30 scalarizations. The EAF of an algorithm provides the probability, estimated
from several runs, of an arbitrary point in the objective space being attained
by (dominated by or equal to) a solution obtained by a single run of the al-
gorithm [10]. Examining the differences between the EAFs of two algorithms
allows us to identify regions of the objective space where one algorithm per-
forms better than another. Given a pair of algorithms, the differences in favor
of each algorithm are plotted side-by-side and the magnitude of the difference
is encoded in gray levels. For more details, we refer to López-Ibáñez et al. [13].

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 28

Table 6: Statistical analysis for the bPFSP. For each number of scalarizations,
strategies are ordered according to the rank obtained. The numbers in paren-
thesis are the difference of ranks relative to the best strategy. Strategies which
are not significantly different to the best one are indicated in bold face. See the
text for details.

Nscalar ∆Rα Strategies (∆R)

(Cmax,
∑

Ci) 50x20
10 3.87 AF-TPLS, AF-TPLSHV (3), D-TPLS (16.5)
20 6.80 AF-TPLSHV , AF-TPLS (3), D-TPLS (13.5)
30 8.23 AF-TPLSHV , AF-TPLS (4), D-TPLS (11)

(Cmax,
∑

Ci) 100x20
10 3.96 AF-TPLSHV , AF-TPLS (4), D-TPLS (17)
20 7.07 AF-TPLSHV , AF-TPLS (2), D-TPLS (13)
30 pval>0.05 D-TPLS, AF-TPLSHV , AF-TPLS

(Cmax,
∑

Ti) 50x20
10 4.54 AF-TPLSHV , AF-TPLS (4), D-TPLS (17)
20 4.54 AF-TPLSHV , AF-TPLS (4), D-TPLS (17)
30 pval>0.05 AF-TPLSHV , AF-TPLS, D-TPLS

(Cmax,
∑

Ti) 100x20
10 3.96 AF-TPLS, AF-TPLSHV (6), D-TPLS (18)
20 6.86 AF-TPLS, AF-TPLSHV (10), D-TPLS (14)
30 pval>0.05 AF-TPLS, D-TPLS, AF-TPLSHV

7.1 Graphical analysis on bTSP Instances

For the isometric bTSP, we compare the best strategy AN-TPLS-1seed, with
the second best, 1to2. Figure 11 shows the differences in the EAFs of these two
strategies for one isometric instance. In the top plot, we show the differences
after 15 scalarizations out of 30, whereas the bottom plot compares the final
quality. The EAF differences after 15 scalarizations show that 1to2 simply does
not cover a significant part of the objective space, whereas AN-TPLS-1seed
covers the front equally in all directions. Here we color in black the region of
the objective space attained by more than 80% of the runs of each algorithm,
to help to visualize this behavior. This plot and the ones for other instances [6]
show very clearly the lack of the anytime property in 1to2, and the much better
anytime behavior of AN-TPLS-1seed. The EAF differences after completion
of the 30 scalarizations show differences in favor of both algorithms along the
whole Pareto front. In this case, 1to2 appears to be better in the center of
the Pareto front, whereas the adaptive TPLS finds better solutions along the
extremes. Similar results are observed for other instances [6].

For anisometric instances, we first give in Fig. 12 plots that show the EAF
differences between AN-TPLS-2seed and AN-TPLS-1seed. These plots support
the conclusion from the statistical test, namely that AN-TPLS-1seed is better
than AN-TPLS-2seed for this problem, which is true also when varying maxdist.
In comparison with 1to2 (the best among the classical TPLS strategies for this

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 29

After 15 scalarizations out of 30

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

1
e

+
0

7
3

e
+

0
7

5
e

+
0

7

o
b

je
c
ti
ve

 2

1to2

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

1
e

+
0

7
3

e
+

0
7

5
e

+
0

7

o
b

je
c
ti
ve

 2

AN−TPLS−1seed

After completion of 30 scalarizations

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

1
e

+
0

7
3

e
+

0
7

5
e

+
0

7

o
b

je
c
ti
ve

 2

1to2

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

1
e

+
0

7
3

e
+

0
7

5
e

+
0

7

o
b

je
c
ti
ve

 2

AN−TPLS−1seed

Figure 11: EAF differences for one isometric TSP instance, after 15 scalariza-
tions (top) and after 30 scalarizations (bottom). Strategies are 1to2 (left) and
AN-TPLS-1seed (right). Plots for other instances are available as supplemen-
tary material [6].

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 30

maxdist = 5

2.5e+06 3.5e+06 4.5e+06 5.5e+06
objective 1

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

o
b

je
c
ti
ve

 2

AN−TPLS−2seed

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

2.5e+06 3.5e+06 4.5e+06 5.5e+06
objective 1

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

o
b

je
c
ti
ve

 2

AN−TPLS−1seed

maxdist = 100

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

0
1

e
+

0
4

3
e

+
0

4
5

e
+

0
4

o
b

je
c
ti
ve

 2

AN−TPLS−2seed

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

0
1

e
+

0
4

3
e

+
0

4
5

e
+

0
4

o
b

je
c
ti
ve

 2

AN−TPLS−1seed

Figure 12: EAF differences for two anisometric TSP instances, after completing
30 scalarizations. Strategies are AN-TPLS-2seed (left) and AN-TPLS-1seed
(right). Other values of maxdist show similar trends. Plots for other instances
are available as supplementary material [6].

problem), AN-TPLS-1seed is clearly better for a small values of maxdist (top plot
of Fig. 13), whereas for large values of maxdist = 100 (bottom plot of Fig. 13),
the results are similar to the ones obtained in the isometric bTSP instances.

7.2 Graphical analysis on bPFSP

Figure 14 illustrates the EAF differences between AF-TPLS and 1to2 on one
instance for PFSP-(Cmax,

∑

Ci), after 15 scalarizations out of 30 and after
completing the 30 scalarizations. In both cases, there are strong differences in
favor of AF-TPLS.

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 31

maxdist = 5

2.5e+06 3.5e+06 4.5e+06 5.5e+06
objective 1

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

o
b

je
c
ti
ve

 2

1to2

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

2.5e+06 3.5e+06 4.5e+06 5.5e+06
objective 1

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

o
b

je
c
ti
ve

 2

AN−TPLS−1seed

maxdist = 100

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

0
1

e
+

0
4

3
e

+
0

4
5

e
+

0
4

o
b

je
c
ti
ve

 2

1to2

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

5e+06 2e+07 3e+07 4e+07 5e+07
objective 1

0
1

e
+

0
4

3
e

+
0

4
5

e
+

0
4

o
b

je
c
ti
ve

 2

AN−TPLS−1seed

Figure 13: EAF differences for two anisometric TSP instances, after completing
30 scalarizations. Strategies are 1to2 (left) and AN-TPLS-1seed (right). Plots
for other instances are available as supplementary material [6].

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 32

PFSP-(Cmax,
P

Ci) 50x20 1 — 15 scalarizations out of 30

3700 3800 3900 4000 4100 4200
Cmax

1
.2

e
+

0
5

1
.2

4
e

+
0

5
1

.2
8

e
+

0
5

1
.3

2
e

+
0

5

∑
C

i

1to2

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

3700 3800 3900 4000 4100 4200

Cmax

AF−TPLS

PFSP-(Cmax,
P

Ci) 50x20 1 — Completion of 30 scalarizations

3700 3800 3900 4000 4100 4200
Cmax

1
.2

e
+

0
5

1
.2

4
e

+
0

5
1

.2
8

e
+

0
5

1
.3

2
e

+
0

5

∑
C

i

1to2

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

3700 3800 3900 4000 4100 4200

Cmax

1
.2

e
+

0
5

1
.2

4
e

+
0

5
1

.2
8

e
+

0
5

1
.3

2
e

+
0

5

∑
C

i

AF−TPLS

Figure 14: EAF differences for one bPFSP instance, after 15 scalarizations out of
30 (top plot) and after completing the 30 scalarizations (bottom plot). Strategies
are 1to2 (left) and AF-TPLS (right). The instance shown is 50x20 1 and the
combination of objectives is PFSP-(Cmax,

∑

Ci). Plots for other instances are
available as supplementary material [6].

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 33

8 Conclusion

TPLS is a key component for effective bi-objective optimization algorithms [4,
14]. However, the originally proposed TPLS framework has an important draw-
back: It requires to know in advance the available computation time to dis-
tribute appropriately the computational effort and to reach high quality results.
Stopping the algorithm earlier than scheduled would lead to poor performance,
as we show in this paper. Therefore, the original TPLS framework has poor
anytime behavior. In this paper, we address this weakness. We propose new
ways to define the weights used to start new scalarizations and the order in
which these weights are considered. Our new strategies are designed with the
main goal of improving substantially the anytime behavior of TPLS. However,
according to our analysis, the best of our proposed strategies also improve upon
the quality of the Pareto front approximations reached by the “classical” TPLS
strategies. These improvements are experimentally shown using as benchmarks
two well-known problems, the bi-objective Traveling Salesman Problem (bTSP)
and the bi-objective Permutation Flow-Shop Problem (bPFSP) using different
types of instances (in the case of the bTSP) and different combinations of ob-
jectives (in the case of the bPFSP). These two problems are important because
of the amount of research they have already attracted, and because TPLS is
an essential part of the current state-of-the-art algorithms for these problems—
any improvements made to the TPLS framework would further improve those
algorithms.

Our first proposal, RA-TPLS, improves strongly the anytime behavior of
“classical” TPLS strategies and, thus, outperforms these if they are stopped be-
fore completion. However, the final quality of the Pareto front approximations
of, for example, D-TPLS is better than that of RA-TPLS. However, when choos-
ing adaptively, in dependence of the distribution of already obtained points, the
scalarizations, further improvements over RA-TPLS are possible. Our adap-
tive TPLS schemes are inspired by the dichotomic scheme proposed for exact
algorithms [1]. We studied various variants of adaptive TPLS algorithms that
differ in the number of initial solutions (one or two) that are used to tackle a
scalarization, schemes for focusing the search towards the center of a segment,
and different ways of choosing the region of the objective space where to in-
tensify the search. Our experimental results unambiguously show that (i) the
adaptive schemes show better anytime behavior that a regular scheme and (ii)
the best adaptive schemes typically also improve over the final quality of the
approximations to the Pareto front reached by the best classical TPLS schemes.
Hence, our results suggest that the new adaptive TPLS schemes should replace
the classical schemes in future TPLS applications.

Acknowledgments.

This work was supported by the META-X project, an Action de Recherche

Concertée funded by the Scientific Research Directorate of the French Commu-
nity of Belgium, and by the MIBISOC network, an Initial Training Network

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 34

funded by the European Commission, grant PITN–GA–2009–238819. Thomas
Stützle acknowledges support from the Belgian F.R.S.-FNRS, of which he is
a Research Associate. The authors also acknowledge support from the FRFC
project “Méthodes de recherche hybrides pour la résolution de problèmes com-

plexes”.

References

[1] Aneja YP, Nair KPK (1979) Bicriteria transportation problem. Manage-
ment Science 25(1):73–78

[2] Conover WJ (1999) Practical Nonparametric Statistics, 3rd edn. John Wi-
ley & Sons, New York, NY

[3] Du J, Leung JYT (1990) Minimizing total tardiness on one machine is
NP–hard. Mathematics of Operations Research 15(3):483–495

[4] Dubois-Lacoste J, López-Ibáñez M, Stützle T (2009) Effective hybrid
stochastic local search algorithms for biobjective permutation flowshop
scheduling. In: Blesa MJ, Blum C, Di Gaspero L, Roli A, Sampels M,
Schaerf A (eds) Hybrid Metaheuristics, Lecture Notes in Computer Sci-
ence, vol 5818, Springer, Heidelberg, Germany, pp 100–114

[5] Dubois-Lacoste J, López-Ibáñez M, Stützle T (2010) Adaptive “anytime”
two-phase local search. In: Blum C, Battiti R (eds) Learning and Intelligent
Optimization, 4th International Conference, LION 4, Springer, Heidelberg,
Germany, Lecture Notes in Computer Science, vol 6073, pp 52–67

[6] Dubois-Lacoste J, López-Ibáñez M, Stützle T (2010) Supplementary ma-
terial: Improving the Anytime Behavior of Two-Phase Local Search.
http://iridia.ulb.ac.be/supp/IridiaSupp2010-012

[7] Ehrgott M, Gandibleux X (2004) Approximative solution methods for com-
binatorial multicriteria optimization. TOP 12(1):1–88

[8] Fonseca CM, Paquete L, López-Ibáñez M (2006) An improved dimension
-sweep algorithm for the hypervolume indicator. In: IEEE Congress on
Evolutionary Computation, IEEE Press, Piscataway, NJ, pp 1157–1163

[9] Garey MR, Johnson DS, Sethi R (1976) The complexity of flowshop and
jobshop scheduling. Mathematics of Operations Research 1:117–129

[10] Grunert da Fonseca V, Fonseca CM, Hall AO (2001) Inferential perfor-
mance assessment of stochastic optimisers and the attainment function. In:
Zitzler E, Deb K, Thiele L, Coello CA, Corne D (eds) Evolutionary Multi-
criterion Optimization (EMO 2001), Lecture Notes in Computer Science,
vol 1993, Springer, Heidelberg, Germany, pp 213–225

http://iridia.ulb.ac.be/supp/IridiaSupp2010-012

IRIDIA – Technical Report Series: TR/IRIDIA/2010-022 35

[11] Hoos HH, Stützle T (2005) Stochastic Local Search—Foundations and Ap-
plications. Morgan Kaufmann Publishers, San Francisco, CA

[12] Johnson DS (1954) Optimal two- and three-stage production scheduling
with setup times included. Naval Research Logistics Quarterly 1:61–68

[13] López-Ibáñez M, Paquete L, Stützle T (2010) Exploratory analysis of
stochastic local search algorithms in biobjective optimization. In: Bartz-
Beielstein T, Chiarandini M, Paquete L, Preuß M (eds) Experimental Meth-
ods for the Analysis of Optimization Algorithms, Springer, Berlin, Ger-
many, pp 209–233

[14] Lust T, Teghem J (2010) Two-phase Pareto local search for the biobjective
traveling salesman problem. Journal of Heuristics 16(3):475–510

[15] Minella G, Ruiz R, Ciavotta M (2008) A review and evaluation of multiob-
jective algorithms for the flowshop scheduling problem. INFORMS Journal
on Computing 20(3):451–471

[16] Paquete L, Stützle T (2003) A two-phase local search for the biobjec-
tive traveling salesman problem. In: Fonseca CM, et al (eds) Evolution-
ary Multi-criterion Optimization (EMO 2003), Lecture Notes in Computer
Science, vol 2632, Springer, Heidelberg, Germany, pp 479–493

[17] Paquete L, Stützle T (2007) Stochastic local search algorithms for mul-
tiobjective combinatorial optimization: A review. In: Gonzalez TF (ed)
Handbook of Approximation Algorithms and Metaheuristics, Chapman &
Hall/CRC, Boca Raton, FL, pp 29–1—29–15

[18] Paquete L, Stützle T (2009) Design and analysis of stochastic local search
for the multiobjective traveling salesman problem. Computers & Opera-
tions Research 36(9):2619–2631

[19] Ruiz R, Stützle T (2007) A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem. European Journal of Op-
erational Research 177(3):2033–2049

[20] Zilberstein S (1996) Using anytime algorithms in intelligent systems. AI
Magazine 17(3):73–83

[21] Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A com-
parative case study and the strength Pareto evolutionary algorithm. IEEE
Transactions on Evolutionary Computation 3(4):257–271

