

IMPROVING THE BEHAVIOR OF THE GENETIC ALGORITHM

IN A DYNAMIC ENVIRONMENT

By

Mark Wineberg, B.Sc., M.C.S.

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Ottawa-Carleton Institute for Computer Science

School of Computer Science

Carleton University

Ottawa, Ontario

June 8, 2000

© copyright

2000, Mark Wineberg

 ii

 iii

Abstract

Two widely noted deficiencies of the Genetic Algorithm (GA) are its tendency to get

trapped at local maxima and the difficulty it has handling a changing environment after

convergence has occurred. These two problems can be shown to be related; a solution to

the former should help to alleviate the latter. In the 1930s, a mechanism was proposed by

Sewall Wright to address the local maxima problem. He called this process the Shifting

Balance Theory (SBT) of evolution. In this dissertation, it is conjectured that the same

mechanisms that theoretically help the SBT prevent premature convergence in nature will

improve the GA’s performance in highly multimodal environments and when tracking a

global optima in dynamic environments. This should especially be true for dynamic

environments that have remained stationary for a long time allowing populations to

prematurely converge.

When abstracting the SBT process to add it to the GA, the SBT had to be modified to

remove defects inherent in its original formulation. This was carefully done to keep the

properties of the SBT that were believed to both increase the adaptive abilities of the GA

and prevent it from prematurely converging. The resulting mechanism, which is a

multipopulational system, can be added as a ‘plug-in’ module to any evolutionary

algorithm and therefore was named the Shifting Balance Evolutionary Algorithm

(SBEA). When applied to the GA, it is called the SBGA.

 While formulating the SBGA, some mathematical theories had to be developed: the

definition of the distance between two populations, and a measure of the amount of

overlap between them. These concepts were needed for the mechanisms used to control

the multipopulations.

Using an implementation of the SBGA, experimental results and analysis are

presented demonstrating that the SBGA does, in fact, lessen the problem of premature

convergence and also improves performance under a dynamic environment, thereby

mitigating both deficiencies.

 iv

Acknowledgements

Most importantly I would like to acknowledge the support and insights provided by

my supervisor, Franz Oppacher. Early on he brought out my ability to create ideas and

then gave me the freedom to explore them. He introduced me to the area of Evolutionary

Computation and made it interesting enough to interest me. I truly believe that the Ph.D.

process can only work properly if there is a proper meshing between supervisor and

candidate. Taking his graduate course on Genetic Algorithms and Artificial Life was very

fortuitous as it introduced me to both Franz and the area, and I am very grateful to him

for accepting me as his student.

There have been other professors who have helped me in areas that were critical for

the successful completion of this dissertation. I would like to thank Prof. George

Carmody for being so patient with me when answering all my questions on biological

genetics as well as for his friendliness and encouragement. Furthermore, it was in his

Population Genetics course that the ideas of Sewall Wright were first introduced to me;

this consequently led to my exploration of the Shifting Balance theory, which has become

the cornerstone concept in my doctoral work. I also wish to thank Prof. Shirley Mills for

all her help in the use of Linear Models for the statistical analysis of my results. Without

her I might still be applying inappropriate statistical methods and therefore be solely

relying on faulty inferences to support my conclusions.

 I would also like to thank each of the members of my Ph.D. committee: Prof. Jean-

Pierre Corriveau, Prof. Mark Forbes, Prof. Stan Matwin and Prof. Ken De Jong. I am

grateful for the time and care they took in reading my dissertation and helping to perfect

it. I would also like to especially thank Prof. Ken De Jong for being my external

examiner and coming all the way from George Mason University Virginia.

Thanks must, of course, go to my fellow graduate students Steffen Christensen,

Hassan Masum and Rob Cattral for their aid and support. They have been wonderful in

 v

allowing me to bounce my ideas off of them; not infrequently would I find those ideas

coming back in far better shape than I can solely take credit for.

I would also like to acknowledge the funding of Ontario Government Scholarship

program, which helped to make my studies possible.

Finally I must thank my parents, Sam and Sylvia Wineberg; without their financial

aid, constant prodding, moral support, and overall assistance, this dissertation could never

have been completed.

 vi

Table of Contents
Abstract ...iii

Acknowledgements .. iv

Table of Contents ...vi

List of Tables..xi

List of Figures ...xii

List of Lemmas...xiv

List of Properties ..xiv

List of Theorems ... xv

List of Appendices ..xvii

Part 1 The Shifting Balance Evolutionary Algorithm

Chapter 1 Introduction and Dissertation Outline

Ch1 §1 Introduction .. 2

Ch1 §2 An Outline of the Dissertation ... 6

Ch1 §3 Main Contributions of the Dissertation.. 7

Chapter 2 Sewall Wright’s Shifting Balance Theory

Ch2 §1 The Theory ... 10

Ch2 §2 The Deme Approach in the GA Literature
as Inspired by the Shifting Balance Theory ... 13

Ch2 §3 Problems With the SBT, both in Theory and in Practice 18

Chapter 3 Abstracting the SBT: The Shifting Balance Evolutionary Algorithm

Ch3 §1 The First Level of Abstraction: Core Group and Colonies 21

Ch3 §2 The Colonies as Exploratory Sub-Populations: A Further Abstraction 24

Ch3 §3 The Shifting Balance Evolutionary Algorithm .. 28

 vii

Part 2 Where is Elsewhere

Chapter 4 Introduction

Ch4 §1 Landscapes, Manifolds and the Fitness “Field” ... 31

Ch4 §2 Ordering the Chromosomes:
Gene Space, Chromosome Space and Population Space 33

Ch4 §3 Distances, Metrics and Norms ... 34

Ch4 §4 Outline of the Chapters for “Where is Elsewhere” 38

Chapter 5 Chromosome Space

Ch5 §1 Introduction .. 39

Ch5 §2 Hamming Space ... 41

Ch5 §3 The Mutational Distance between Chromosomes.. 48

Ch5 §4 Towards a Crossover based Chromosome Distance 59

Ch5 §5 Continuing On the Road to an Accurate Reproductive Distance
between Chromosomes .. 61

Chapter 6 Distance Between Populations

Ch6 §1 Introduction .. 63

Ch6 §2 Diversity ... 69

Ch6 §3 An All-Possible-Pairs “Distance” Between Populations 77

Ch6 §4 The Mutational-Change Distance Between Populations.............................. 81

Ch6 §5 The Lk-Norms and the Distance Between Populations 83

Ch6 §6 The Distance between a Chromosome and a Population 85

Chapter 7 Distances and EC Systems with Numeric Genes

Ch7 §1 Introduction .. 87

Ch7 §2 The Distance between Chromosomes .. 89

Ch7 §3 Diversity in Populations with Numeric Genomes.. 92

Ch7 §4 Distances Between Populations ... 93

Ch7 §5 Distances and Centers .. 96

 viii

Part 3 The Shifting Balance Genetic Algorithm

Chapter 8 Introduction

Ch8 §1 Adding the Details that Were Missing from the SBEA 102

Ch8 §2 An Outline of the Chapters that detail the SBGA 103

Chapter 9 Moving the Colony Elsewhere

Ch9 §1 Introduction .. 105

Ch9 §2 Keeping Colony Away from Core ... 106

Ch9 §3 Adding Finesse: Evaluating The Colony Using
a Multi-Objective Function ... 107

Ch9 §4 A Dynamic κ: Detecting the Similarity Between
the Colony’s Search Area and the Core’s .. 111

Ch9 §5 Percentage Overlap and Percentage Similarity
as Non-Parametric Statistics .. 129

Ch9 §6 Choosing Between Percentage-Overlap and Percentage-Similarity 131

Ch9 §7 Keeping Colony Away from Colony: A Future Extension 133

Chapter 10 Migration from Colony to Core

Ch10 §1 Introduction .. 138

Ch10 §2 Migration from Core to Colony ... 139

Ch10 §3 Migration from Colony to Core ... 140

Ch10 §4 Migrants and the Core: Integrating the Immigrants 141

Chapter 11 An SBGA Overview

Ch11 §1 Completing the Algorithm ... 143

Ch11 §2 The SBGA in a Stationary Environment.. 148

Ch11 §3 Using the SBGA with Dynamic Environments ... 151

Ch11 §4 A Comparison of the SBGA with Similar GA Techniques 154

 ix

Part 4 Experimental Results and Analysis

Chapter 12 Escaping Local Optima Part 1: Purpose and Experimental Design

Ch12 §1 Introduction and Outline of Part 4.. 157

Ch12 §2 Purpose: Determining if the SBGA is better
at Escaping from Local Optima than the GA... 159

Ch12 §3 Methodology .. 160

Chapter 13 Escaping Local Optima Part 2: Analysis Design, Results and Discussion

Ch13 §1 Introduction .. 179

Ch13 §2 Observational and Analytical Methodology .. 180

Ch13 §3 Results 196

Ch13 §4 Analysis and Discussion... 199

Chapter 14 Comparing the SBGA to the GA in a Dynamic Environment

Ch14 §1 Introduction: Does the ‘Shifting Balance’ Extension Aid the GA when
Tracking a Moving Global Optima? .. 202

Ch14 §2 Experimental Design .. 203

Ch14 §3 Analysis Procedure: Part 1 ... 212

Ch14 §4 Analysis Procedure: Part 2 ... 217

Chapter 15 Random vs. Guided Diversity

Ch15 §1 Introduction .. 225

Ch15 §2 Experimental Design .. 227

Ch15 §3 Results .. 228

Ch15 §4 Discussion .. 231

Chapter 16 Summary, Conclusions and Future Work

Ch16 §1 The Shifting Balance Evolutionary Algorithm .. 234

Ch16 §2 Distances in Gene Space .. 236

Ch16 §3 Details of The SBEA as Implemented in a GA System: The SBGA........ 236

 x

Ch16 §4 Experimentation ... 238

Ch16 §5 Conclusions .. 239

Ch16 §6 Future Work ... 240

 xi

List of Tables

Table 1: Common test functions (from (Whitley, Mathias et al. 1996)) 162

Table 2: The R
2 values from the linear regression of each normality plot of the

fitness values. If R
2 = 100% , then the data is normally distributed 191

Table 3: Factors and Factor Levels used in the model... 194

Table 4: Constant parameter setting for all experiments ... 195

Table 5: ANOVA summary Using Model 1 .. 198

Table 6: Factors and Factor Levels used in the model... 211

Table 7 ANCOVA results using Model 1... 219

Table 8: ANCOVA results using Model 2 broken down by speed,
dimensionality and test function.. 221

Table 9: ANCOVA results using Model 2. Presented are the breakdowns by
speed and dimensionality for both the F8F2 and F8mF2 environments 223

Table 10: ANCOVA results using Model 2 after combining all factor levels but
those for the test function and migration interval factors 224

Table 11: Sample results of the expected number of mutational steps, E (Ndx , y
)

for populations with various chromosome lengths and mutation rates 272

Table 12: The average expected number of mutational steps between
chromosomes ... 277

Table 13: Confidence intervals around level mean differences using the Scheffé
procedure ... 305

 xii

List of Figures

Figure 1: Demes shifting from one peak to another on a topographical
representation of a fitness landscape ... 12

Figure 2: A depiction of the new Shifting Balance Theory .. 23

Figure 3: Hypercubes – From 2d to 6d... 45

Figure 4: A 3d hypercube with a) normal 0/1 based coordinate and
b) spin coordinates... 46

Figure 5: A Chromosome Transition Graph based on the Mutation Operator
with all transition probabilities shown... 49

Figure 6: A fragment of a transition graph, where the probability of going to the
left vertex from v0 is much less than going to the right one. 56

Figure 7: Problems with the Cluster Analysis definition of the center of a set of
symbolic points. ... 67

Figure 8: Two collections of points in Euclidean 2-space are presented, along
with the basic measurements that are used. ... 97

Figure 9: The modified VEGA algorithm tailored for the SBGA colonies. 109

Figure 10: If a constant value of κ is used, all colonies are driven to the antipode
of the core. ... 112

Figure 11 Venn-like diagrams representing the overlap of the search areas
between the core and a colony... 113

Figure 12 A core member is near a colony member if it is closer to it than it is to
the rest of the core’s population... 116

Figure 13: Calculating the xi -values for the percentage-overlap.................................. 117

Figure 14: Inside vs. outside in relation to a core population 121

Figure 15: Calculating the Percentage Similarities for colony members..................... 123

Figure 16: Computing κ using the percentage similarity – a detailed example........... 127

Figure 17: A core member that is ‘outside’ of a colony member. 132

Figure 18: Keeping All Possible Pairs of Colonies Apart... 134

Figure 19: Keeping Colonies Away from Each Other with a Time Complexity
that is Linear in the Number of Colonies... 135

Figure 20: The top-level pseudo-code for the Simple Genetic Algorithm.................... 144

 xiii

Figure 21: The SBGA Algorithm.. 145

Figure 22: The SBGA Shifting to a New Maximum ... 149

Figure 23: Two Scenarios Where the Colonies are Defeated .. 150

Figure 24: The GA cannot track the optimum after it starts to move
unexpectedly .. 152

Figure 25: The SBGA tracking the optimum after it starts moving unexpectedly 152

Figure 26: An overview of the F8F2 function (dimension = 2) 164

Figure 27: An overview of the F8mF2 function (dimension = 2)................................. 167

Figure 28: The more diverse System A has a better ‘best member’ response than
System B, but a worse ‘mean’ response. ... 183

Figure 29: Normality plots of SBGA behavior in two different environments 190

Figure 30: Residuals from the ANOVA shown for the three different factors 193

Figure 31 Dot Plots of Results in the Stationary F8F2 environment. 196

Figure 32 Dot Plots of Results in the Stationary F8mF2 environment. 197

Figure 33: Fitness of the best of the generation in the F8F2 environment.................... 213

Figure 34: Fitness of the best of the generation in the F8mF2 environment. 214

Figure 35: The entropic diversity of the GA and SBGA in the F8F2 environment...... 229

Figure 36: The entropic diversity of the GA and SBGA in the F8mF2
environment ... 230

Figure 37: A Summary of all diversity and fitness line plots presented in the
thesis (from Figure 33, Figure 34, Figure 35 and Figure 36). 233

Figure 38: A Hamming chain of length 4 in a chromosome graph where the
chromosomes have a chromosome length of 3.. 251

Figure 39: Calculating recursively the probability of transforming chromosome x
into chromosome y after Nx , y = n mutational steps..................................... 268

Figure 40: The response curves across all generations of the GA and SBGA
systems for pgm=F8F2, dim = 2 and spd = 0.833 units/gen. 307

Figure 41: The median response of the GA and SBGA systems 309

 xiv

List of Lemmas

Lemma 1: Let u,v, ′ u be a Hamming chain of length 2, where u ≠ ′ u . Also let
p be the probability of mutation and let q = 1 − p . Then
cost(u, ′ u) > cost(u,v, ′ u) iff the following inequality holds: 252

Lemma 2: Let the cost of the direct path between two chromosomes that are a
Hamming distance of two apart, be greater then the cost of the
shortest Hamming chain between them. Also let v0,v1,K,vh be the
shortest possible Hamming chain between v0 and vh , where h is the
Hamming distance between v0 and vh (see Corollary 2). Then the

cost of

v0,v1,K,vh is no greater than the cost of v0,vh 254

Lemma 3: The sum of the Hamming distance at a locus between a given
chromosome and all other chromosomes in the population is equal to
the size of the population reduced by the gene count (at that locus) of
all chromosomes that have the same gene as the given chromosome 258

Lemma 4: Let us, for each chromosome, take the gene within that chromosome
at locus k and find the corresponding gene count across the
population. Then the total of all those counts is equal to the total of
the square of the gene counts from that locus for each symbol in the
alphabet.. 258

List of Properties

Property 1: The total of all gene count at a locus is equal to the population
size ... 257

Property 2: The total of all gene frequencies at a locus is equal to 1. 257

 xv

List of Theorems

Theorem 1 Let V be a real linear vector space, and let v, w ∈ V . Then v − w , the
norm of the difference between any two vectors, is a metric.................... 36

Theorem 2: If the graph the edges in a graph G have symmetric edges weights,
i.e. w(u,v) = w(v ,u) , and all weights are greater than 0 then the cost of
the shortest path between two vertices is a distance measure. 53

Theorem 3: If graph G has edges between distinct vertices that have costs equal
to 0 then the cost of the shortest path between two vertices is not a
distance.. 53

Theorem 4: If the probability of mutation p is sufficiently small, i.e. if

p <
a −1
a +1

, then the distance between chromosomes due to mutation

is directly proportional to the Hamming distance, with a

proportionality constant of
q ⋅ (a −1)

p ⋅q l .. 57

Theorem 5: Assuming that the reproductive distance is the cost of the shortest
path between chromosomes in a distance graph, the mutational
distance between chromosomes is an upper bound on the true
reproductive distance between chromosomes. .. 61

Theorem 6: The all-possible-pairs diversity can be rewritten in linear form 73

Theorem 7: The function DistL 2 |k (P1, P2) is a pseudo-distance at a locus k.................. 80

Theorem 8: When there are no genes in common between two populations P1
and P2, DistL 1

(P1,P2) = 1 (i.e. is maximally distant). 85

Theorem 9: Let xk =
1
n

xi |k
i=1

n

∑ and xk
2 =

1
n

xi|k
i =1

n

∑ . Then

Dv
2 (P) = n

2
xk

2 − (xk)2

k=1

l

∑ .. 93

Theorem 10: Dist(Px, Py) = (xk − yk)2

k=1

l

∑ ... 95

Theorem 11: The square diversity of a population is proportional to the variance
of points around a centroid.. 98

 xvi

Theorem 12: Let the cost of the direct path between two chromosomes that are a
Hamming distance of two apart, be greater then the cost of the
shortest Hamming chain between them. Then, for all pairs of
points in G, the shortest Hamming chain is also the shortest path.......... 254

Theorem 13: Div(P) =
a

n ⋅(a −1)
Dist(chri , P)

i =1

n

∑ 264

 xvii

List of Appendices

Appendix A Proofs of all Theorems Used in Part 2

A-1 The Cost of the Shortest Path is a Distance
in a Graph with Symmetric Positive Edge Weights... 247

A-2 Zero Weighted Edges Destroys Distance Property.. 249

A-3 Mutational Distance Between Chromosomes is Proportional
to the Hamming Distance Between Chromosomes.. 249

A-4 Deriving a Formulation of the All-Possible-Pairs Diversity
that allows Linear Time Computation.. 256

A-5 P1 and P2 are Maximally Distant if they Share No Genes 261

A-6 The Distance between a Chromosome and a Population 262

A-7 A Linear Time Reformulation of the Diversity
for Systems with Numeric Genomes.. 263

A-8 The Equivalence of the Diversity and the Standard Deviation
from the Centroid in Populations with Numeric Genes ... 263

A-9 The Equivalence of the Diversity and the ‘Deviation from the
Gene Frequency Vector’ in Populations with Symbolic Genes............................. 264

Appendix B The Expected Number of Mutation

Operations between Chromosomes

B-1 The Number of Mutation Operations
Between Chromosomes as a Random Variable ... 266

B-2 Computing The Expected Number of
Mutation Operations Between Chromosomes ... 269

B-3 The Expected Number of Mutation Operations as a Distance 271

B-4 Some Interesting Observations... 274

 xviii

Appendix C Algorithms, Programs and Time

Complexities

C-1 An O(l ⋅ n)Algorithm for Computing
the All-Possible-Pair Diversity of a Population ... 279

C-2 Computing the Distance between a Chromosome and a Population 282

C-3 Reproduction in the SBGA using the Modified VEGA Algorithm 283

C-4 Reproduction in a Colony using Percentage Similarity ... 287

C-5 Migration from Colony to Core ... 295

C-6 Integrating the Immigrants ... 297

C-7 The SBGA Top-level Algorithm.. 299

C-8 What is the Maximal Slope Possible in Linear Rank Selection? 303

Appendix D Topics on Statistics

D-1 The Scheffé Comparison Test .. 304

D-2 Graphs of the Runs Performed When Testing the Ability
of the GA and SBGA to Track Moving Environments (Ch14 §3.1) 307

D-3 Comparisons between GA and SBGA Implementations
when Testing the Ability to Track Moving Environments (Ch14 §4.4) 313

 1

Part 1

 The Shifting Balance
Evolutionary Algorithm

 2

Chapter 1

Introduction and

Dissertation Outline

Ch1 §1 Introduction

The Genetic Algorithm (GA) as a search algorithm / function optimizer has been very

successful when applied to a wide range of problems. This is due, in large part, to the

adaptiveness that has been designed into the system; the GA readily adapts itself to the

various optimization problems and their functional ‘landscapes’. In fact the GA is so

successful when applied to function optimization that, until recently, little work has been

done to explore the GA on its home turf; the GA as an adaptation mechanism. Ken De

Jong makes just this point (De Jong 1993). He points out that the behavior of the

canonical GA, as created by John Holland, has features that conflict with the process of

optimization. For example, since the canonical GA uses fitness proportional selection

without elitism, there is no guarantee that the optimum will be found, and if found that it

Part 1 The Shifting Balance Evolutionary Algorithm 3

will persist over the generations. De Jong, instead, views the GA “in terms of optimizing

a sequential decision process involving uncertainty in the form of lack of a priori

knowledge, noisy feedback, and time-varying payoff function”1. It is this final form of

uncertainty, the “time-varying payoff function”, i.e. dynamic environments2, that will be

the focus of this dissertation.

 John Holland devoted the final two pages of his book Adaptation in Natural and

Artificial Systems, which introduced the GA, to the topic of these “time-varying payoff

functions”. While hesitant to go into details, since he had not yet developed a

mathematical framework that he felt was adequate3, Holland predicted that the GA would

be up to the task. “So far we have been discussing spatial inhomogeneity of payoff, but

temporal inhomogeneity or nonstationarity is an even more difficult problem. … [T]he

rapid response of reproductive plans [GAs] … permits ‘tracking’ of the changing payoff

function. As long as the payoff function changes at a rate comparable to the response

rate, overall performance will be good”4. Holland’s optimism is warranted. Many other

search algorithms such as A* and Simulated Annealing cannot cope with dynamic

functions / search spaces without extensive modification. The GA, on the other hand,

takes them in stride. This is not to say, however, that the GA would perform flawlessly in

all dynamic scenarios, even when the environment is moving at a rate comparable to the

GA’s ‘response rate’. This is demonstrated by the following thought experiment:

Let a GA evolve in an environment that remains stationary for a lengthy period of

time. The GA, if it performs its duties properly, will begin to converge on the global

1 De Jong, K. A. (1993). Genetic Algorithms Are NOT Function Optimizers. Foundations of Genetic

Algorithms 2. L. D. Whitley. San Mateo, CA, Morgan Kaufmann, pg. 12. Italics used as in the original.
2 Throughout the dissertation, the terms ‘dynamic’, ‘changing’, ‘moving’, ‘time-varying’ and ‘non-
stationary’ will be used interchangeably.
3 “In biology there are varying amounts of evidence for the foregoing responses to nonstationarity, and
some of the predicted effects have been demonstrated in simulations, but again we are a long way from a
theory, or even good experimental confirmation, of their efficiency”. (Holland 1975), pg. 170.
4 Holland, J. H. (1975). Adaptation in Natural and Artificial Systems : An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence. Ann Arbor, University of Michigan Press., pg.
169. Italics used as in the original.

Part 1 The Shifting Balance Evolutionary Algorithm 4

optimum. As convergence occurs, diversity is being bred out of the system. This means

that crossover is becoming ineffective since crossover between nearly identical members

produces children that are nearly identical to their parents. In other words, no exchange of

genetic material is really occurring. Now let the environment begin to move at a rate

faster than the mutation rate. With crossover now ineffectual, the GA is dependent on

mutation alone, which cannot keep up with the environment. Eventually mutation will

have generated enough variation for crossover to become effective again, but until then

the GA is performing at a diminished capacity.

The situation in the above thought experiment seems simple enough. One would think

that now, after 25 years, GA systems that excel in dynamic environments and react well

in scenarios such as the above, would be common place. However, even though Holland

emphasized the importance of dynamic environments by ending his book with them, it is

only recently that researchers have begun to turn their attention to them. This research

can be divided up into two main areas:

The first type of research focuses on environments that have recurring or cyclical

solutions. The problems are usually approached by the addition of more sophisticated

memory techniques to the GA, see (Goldberg and Smith 1987), (Ramsey and Grefenstette

1993), (Ng and Wong 1995), (Hadad and Eick 1997), (Mori, Imanishi et al. 1997),

(Branke 1999), (Collins and Ryan 1999) and (Trojanowski and Michalewicz 1999).

The second area of interest, which seems to be the smaller of the two, explores the

response of the GA in environments that generate perpetual novelty. Systems that face

such non-cyclical environments have no use for extra memory; with the environment

always different, nothing that could be remembered would be germane5. For these types

of problems researchers have been incorporating mechanisms that attempt to enhance the

diversity of the population, hoping that this will generate the right alleles to allow

5 This, of course, is not strictly true. Since the environments usually have some form of continuity of
features, remembering what the environment has been recently like will aid in the ‘tracking’ of it. However,

Part 1 The Shifting Balance Evolutionary Algorithm 5

crossover and selection to track the environment. There are two broad approaches used to

accomplish this: increased mutation rates / restarts (see (Bäck 1993), (Cobb and

Grefenstette 1993), (Angeline 1997), (Stanhope and Daida 1998), (Grefenstette 1999),

(Stanhope and Daida 1999), (Trojanowski and Michalewicz 1999) and (Tucker and Liu

1999)), and restricted mating practices such as using species identity tags, or spatially

localized breeding groups (see (Liles and De Jong 1999), (Sarma and De Jong 1997) and

(Sarma and De Jong 1999)).

As the thought experiment uses a non-recurring environment, the non-cyclical

approaches are more applicable than the cyclical ones. These mechanisms will be

expounded on and discussed when relevant throughout the dissertation (see Ch2 §2.2 and

Ch3 §2.2, as well as Ch11 §4).

While it may well be that the problem of movement after convergence (MaC) could

be eased by diversity enhancing extensions to the GA, it is instructive to look at the

problem from a different angle. There exist deep similarities between MaC and the well-

known problem of being trapped at a local optimum. In both cases, the GA is tricked into

believing that the perfect solution has already been discovered and ‘stops’ searching

(pulls in on itself) when it should still be looking elsewhere, either to find a new optimum

or to ready itself in places where the global optimum might move. Consequently the

problem of movement after convergence might be helped by techniques that are designed

to help evolutionary systems escape from local optima.

One such technique is the ‘deme approach’, which was created by the population

geneticist Sewall Wright in 1932, and is well known to parallel GA implementers who

frequently reference it to justify some of their design choices. Wright called his idea the

Shifting Balance Theory.

In this dissertation, we will examine the Shifting Balance Theory to fully understand

the mechanisms that allow it to escape from local optima. By abstracting these methods

the current ‘memory’ inherent in the population should be sufficient for providing the foundation upon

Part 1 The Shifting Balance Evolutionary Algorithm 6

from the biological systems they were designed for and operationalizing them, we can

then apply them to evolutionary algorithms (specifically the GA). Tests will then be

performed to determine whether evolutionary systems improve under the Shifting

Balance Theory when faced with a highly multimodal environment, as predicted by

Sewall Wright. Further experiments will then be performed using a dynamic environment

that moves only after a lengthy stationary period has occurred, allowing the GA

populations time to converge. This will test whether the Shifting Balance addition can

improve the behavior of the GA in a dynamic environment.

Ch1 §2 An Outline of the Dissertation

The dissertation is structured in four parts.

In the first part (the current one), after the problem has been introduced, Sewall

Wright’s Shifting Balance Theory is described (Chapter 2), analyzed, operationalized,

and then applied to evolutionary algorithms to form the SBEA systems (Chapter 3).

The second and third part of the dissertation develops the various mechanisms used in

the SBEA as applied to the GA, i.e. the SBGA.

The second part develops a definition of distance in gene space. This distance

measure is fundamental to the primary mechanism that will drive the SBGA and

enhances its exploratory capabilities. The first chapter in this part (Chapter 4) reviews the

mathematical notions of distances and then proceeds to express the idea of the ‘fitness

landscape’ in terms of these concepts. In the next chapter (Chapter 5), we develop the

idea of the distance between chromosomes, a distance already in use in the GA

community. The concepts behind this distance are clarified and the use of the traditional

Hamming distance as a first order approximation is justified. The distance between

which to build and adapt to the changes presented.

Part 1 The Shifting Balance Evolutionary Algorithm 7

chromosomes is the basis for defining a concept that is even more important for this

dissertation, i.e. the distance between populations. While analogs in Cluster Analysis

exist (see (Theodoridis and Koutroumbas 1999)), this measure is unknown in the EC

literature. Population distances for both symbolic (Chapter 6) and numeric (Chapter 7)

chromosomal evolutionary systems are presented.

In part three, the missing details of the SBGA are filled in. Chapter 9 presents the

mechanism where the extra diversity is created (in subpopulations called ‘colonies’).

Then the mechanism that adds the generated diversity back to the main population (called

the core) is presented in Chapter 10. With the SBGA complete, the thought experiment is

reexamined, applying it to the new system to see how the Shifting Balance Theory might

aid the GA when faced with a stationary environment that begins to move (Chapter 11).

The fourth and final part experimentally verifies whether improvements would be

observed in both highly multimodal stationary environments (Chapter 12 and Chapter 13)

and in dynamic environments (Chapter 14 and Chapter 15).

A large appendix has been added to house all mathematical proofs and pseudo-code

algorithms that are used within the main body of the dissertation (as well as other sundry

topics such as large result tables etc.).

Ch1 §3 Main Contributions of the Dissertation

The goal of this dissertation is to enhance of the performance of the GA in non-

cyclical environments through the informed increases in diversity, especially to

counteract premature convergence caused by stagnation in the environment before

motion occurs. To achieve this goal many problems have to be overcome, each producing

a contribution to the field in its own right:

As already mentioned, the premature convergence problem will be counteracted by

the application of a modified version of Sewall Wright’s Shifting Balance Theory. Even

Part 1 The Shifting Balance Evolutionary Algorithm 8

though the SBT has been used previously to justify many different GA extensions,

especially in the parallel GA field, the treatment of the SBT is novel because it does not

use the SBT as a post-hoc rationalization for the system presented. Rather the SBT is

analyzed and ‘rationally reconstructed’ to remove inconsistencies and ensure

computational feasibility6. This new version of the SBT is then applied to the GA as an

extension of its procedures (and consequently should be similarly applicable to almost

any evolutionary algorithm) to produce a system that should be, if the SBT proves its

worth, more resistant to premature convergence.

The reconstruction of the SBT has identified two concepts that need to be clarified

and developed. The first is the identification of meaningful genetic distances, between

chromosomes and between populations. This is required by the SBGA to enforce

exploration ‘elsewhere’ in gene space. The consequent analysis of gene space consists of

the simple application of metric definitions to differences between populations based on

the reproductive methods that can be used by the GA to transform one into the other. The

approach attempt to reformulate these notions from fundamental principles. The results,

while yet incomplete, seem sufficient to increase the performance of the SBGA through

the guided exploration that can be accomplished by the appropriate application of relative

distance measures.

A related concept, which I view as critical to the improvement of the behavior of the

GA, became obvious through the reconstructing the SBT and the application of the

exploration through careful manipulation of gene distances. This is the need for

promoting controlled diversity in areas of the search space that seem promising as well as

being unexplored, as opposed to just randomly generating the diversity. Consequently,

care is taken during the construction of the SBGA to ensure that diversity is not added

haphazardly, but through the application of appropriate distance measures and biobjective

optimization techniques.

6 This ‘rational reconstruction’ of the SBT may also be of interest to the Biological community as and
not just the Evolutionary Computational community.

Part 1 The Shifting Balance Evolutionary Algorithm 9

By the successful experimentation performed in the final part of the dissertation, the

above concepts and procedures have been (preliminarily) justified. This new

interpretation and implementation of Wright's Shifting Balance theory applied to the GA

provides a form of "directed" diversity in an evolutionary algorithm that seems to

significantly enhance its problem solving abilities in both multimodal and dynamic

fitness landscapes.

 10

Chapter 2

Sewall Wright’s Shifting Balance

Theory

Ch2 §1 The Theory

The population geneticist Sewall Wright (Wright 1932) realized the problem of an

evolutionary system getting trapped at local maxima back in the 1930’s. Wright called

the (hypothetical) function that was being optimized by the evolutionary system the

“fitness landscape” and thought that each species was, over time, hill climbing through

the process of mutation and natural selection. Having this view, he naturally became

aware of the problem of local maxima:

But ... it is possible that there may be two peaks, and the chance that this may be
the case greatly increases with each additional locus... In a rugged field of this
character [very many peaks], selection will easily carry the species to the nearest
peak, but there may be innumerable other peaks which are higher but which are
separated by “valleys.” The problem of evolution as I see it is that of a

Part 1 The Shifting Balance Evolutionary Algorithm 11

mechanism by which the species may continually find its way from lower to
higher peaks in such a field. In order that this may occur, there must be some trial
and error mechanism on a grand scale by which the species may explore the
region surrounding the small portion of the field which it occupies.7

The term “trial and error” here means some exploratory mechanism that could take the

species to the next higher peak despite the harsh selection pressures of the valley forcing

the species back to the original hill.

Wright not only observed the problem, but also proposed a mechanism to cope with

it. This mechanism was eventually called by Wright “the shifting balance theory” (SBT).

Hartl and Clark present a good summary of the shifting balance theory in their textbook

Principles of Population Genetics:

In the shifting balance theory, a large population that is subdivided into a set of
small, semi-isolated subpopulations (demes) has the best chance for the
subpopulations to explore the full range of the adaptive topography and to find the
highest fitness peak on a convoluted adaptive surface. If the subpopulations are
sufficiently small, and the migration rate between them is sufficiently small, then
the subpopulations are susceptible to random genetic drift of allele frequencies,
which allows them to explore their adaptive topography more or less
independently. In any subpopulation, random genetic drift can result in a
temporary reduction in fitness that would be prevented by selection in a larger
population, and so a subpopulation can pass through a “valley” of reduced fitness
and possibly end up “climbing” a peak of fitness higher than the original. Any
lucky subpopulation that reaches a higher adaptive peak on the fitness surface
increases in size and sends out more migrants to nearby subpopulations, and the
favorable gene combinations are gradually spread throughout the entire set of
subpopulations by means of interdeme selection8.

Hartl and Clark then identify three distinct phases:

The shifting balance process includes three distinct phases:

7 Wright, S. (1932). “The roles of mutation, inbreeding, crossbreeding and selection in evolution.”
Proceeding of the Sixth Internation Congress of Genetics 1: 356-366. as reprinted in Provine, W. B. E.
(1986). Sewall Wright Evolution; Selected Papers. Chicago, IL, University of Chicago Press. pp. 162-164.
8 Hartl, D. L. and A. G. Clark (1997). Principles of Population Genetics. Sunderland, MA, Sinauer.
pg.259.

Part 1 The Shifting Balance Evolutionary Algorithm 12

1. An exploratory phase, in which random genetic drift plays an important role
in allowing small populations to explore their adaptive topography.

2. A phase of mass selection, in which favorable gene combinations created by
chance in the random drift phase rapidly become incorporated into the
genome of local subpopulations by the action of natural selection.

3. A phase of interdeme selection, in which the more successful demes increase
in size and rate of migration; the excess migration shifts the allele frequencies
of nearby population until they also come under the control of the higher
fitness peak. The favorable genotypes thereby become spread throughout the
entire population in an ever-widening distribution. Where the region of spread
from two such centers overlaps, a new and still more favorable genotype may
be formed and itself become a center for interdeme selection. In this manner

Figure 1: Demes shifting from one peak to another on a topographical representation of
a fitness landscape (based on a diagram from Wright (1932)).

Part 1 The Shifting Balance Evolutionary Algorithm 13

the whole of the adaptive topography can be explored, and there is a continual
shifting of control from one adaptive peak to control by a superior one.9

In the above explanation the term random drift refers to a statistical process that

occurs in populations because of the random sampling of alleles produced by random

mating. This effectively causes a random walk in the relative proportions of two

competing alleles; the smaller the population, the more erratic the random walk. Wild

swings in the proportion of the two alleles can, in very small populations, even eliminate

an allele independent of the selective value of that allele. Wright’s visualization of the

demes moving from one peak to another in a fitness landscape can be seen in Figure 1.

However, when viewing the diagram, keep in mind that the landscape is a “fitness”

landscape, not a geographical one, and the demes consist of genetically similar

individuals, not necessarily spatially local individuals (although Wright views the first as

being implied by the second).

Ch2 §2 The Deme Approach in the GA Literature as Inspired by the
Shifting Balance Theory

Wright’s ideas have been popular in the GA community, with many authors quoting

his theory (often referred to as Sewall Wright’s demes10) when justifying the introduction

of a novel feature in their GA implementation. This is particularly true in parallel GA

research. There are two basic techniques used when creating parallel GAs, both of which

9 Hartl, D. L. and A. G. Clark (1997). Principles of Population Genetics. Sunderland, MA, Sinauer. pp.
259-260.
10 The term “demes”, which comes from the Greek word δ ˆ η µοσ, was first used by Gilmour and Gregor
in Nature (Gilmour and Gregor 1939) to refer to “local intrabreeding populations” or “populations
occupying a specific ecological habitat”. They subdivided the term into more specialized forms such as
Gamodeme, Topodeme and Ecodeme. They are defined as follows: “Deme - any assemblage of
taxonomically closely related individuals; Gamodeme - a deme forming a more or less isolated local
intrabreeding community; Topodeme - a deme occupying any specified geographical area; and Ecodeme - a
deme occupying any specified ecological habitat.”

Part 1 The Shifting Balance Evolutionary Algorithm 14

use the term ‘demes’ to indicate a mating pool of individuals locally clustered

geographically: the fine-grained model and the coarse-grained model (which is also

called the island model).

Ch2 §2.1 Parallel GAs and Wright�s �Demes�

The island model is used with coarse-grained parallel machines (machines with a few

very powerful processors - anywhere from 4 to 128 nodes), hence the term coarse-

grained model. Each processor runs a normal GA on its own subpopulation or deme 11.

For all of the demes, the GAs act on the same fitness function during selection, although

the various populations are different from one another because of the random process of

chromosome creation. Furthermore, each deme may evolve in different directions due to

the probabilistic nature of evolution. Periodically, migrants travel between processors

bringing new - possibly better - genetic material from other demes. Usually the members

of a population chosen to be migrants are the elite of the population. This basic

mechanism has been independently “discovered” many times over; see (Cohoon, Hegde

et al. 1987), (Pettey, Leuze et al. 1987), (Tanese 1987), and (Whitley and Starkweather

1990).

The association of Wright’s SBT with the island model style of parallel GA was first

done by (Cohoon, Martin et al. 1991):

The population structure is based upon demes, as Wright describes, “Most species
contain numerous small, random breeding local populations (demes) that are
sufficiently isolated (if only by distance) to permit differentiation…”12 … Wright
conceives the shifting balance to be a micro-evolutionary mechanism, that is, a
mechanism for evolution within a species. For him the emergence of a new

11 This is analogous to a topodeme.
12 Wright, S. (1964). Stochastic Processes in Evolution. Stochastic Models in Medicine an Biology. J.
Gurland, University of Wisconsin Press: 199-241.

Part 1 The Shifting Balance Evolutionary Algorithm 15

species is a corollary to the general operation and progress of the shifting
balance.13

Cohoon, et. al., then uses Wright theory via Eldrege and Gould’s theory of punctuated

equalibria to justify their use of the island model.

The second approach to the parallelization of the GA is the fine-grained approach.

Here fine grained parallel machines (machines with small, fairly weak processors at each

node but comprising a large numbers of nodes: anywhere from 516 to 64k) are used, with

each processor holding only a single member of the population. ; Each member is only

allowed to mate with its nearest neighbours or possibly within a small neighbourhood.

This design decision is motivated by the fact that the fastest communication happens

among neighbors. The neighbors can be arranged in various topologies such as a chain

(or circle), grid (or toroid), or a hypercube. Diffusion of genetic information occurs

because neighborhoods overlap. These neighborhoods are identified in many

publications as demes 14. As with the island model, the continuous model was frequently

rediscovered by various researchers. For example see (Gorges-Schleuter 1989),

(Manderick and Spiessens 1989), (Mühlenbein 1989), (Hillis 1991), (Collins and

Jefferson 1991), (Davidor 1991), and (Spiessens and Manderick 1991).

Like the island approach, Sewall Wright’s SBT is invoked as a justification of a

parallel approach which uses spatially restricted mating. This is explicitly mentioned in

both (Gorges-Schleuter 1989) and (Collins and Jefferson 1991).

Gorges-Schleuter begins by presenting the problems inherent in the use of a single

population and then quotes Wright:

According to Wright … the most favorable population structure is one
“subdividing the species into local populations (demes) sufficiently small and
isolated that accidents of sampling may overwhelm many weak selection
pressures. There must, however, be enough diffusion that a deme that happens to

13 Cohoon, J. P., W. N. Martin, et al. (1991). A Multi-Population Genetic Algorithm fro Solving the K-
Partitiion Problem. Proceedings of the Fourth International Converence on Genetic Algorithms (ICGA4).
R. K. Belew and L. B. Booker. San Mateo, CA, Morgan Kaufmann, pg. 244.
14 Like the island model the fine-grained model can be considered a topodeme, or possibly a gamodeme.

Part 1 The Shifting Balance Evolutionary Algorithm 16

acquire a favorable interaction system may transform its neighbors to the point of
autonomous establishment of the same peak, and thus ultimately transform the
whole species or at least that portion of it in which the new system actually is
favorable.”15

She then proceeds to construct a double ring toroid of processors where mating only

occurs between neighbours (which was called the “neighbourhood model”) where

presumably the local mating demes are “sufficiently small and isolated that accidents of

sampling may overwhelm many weak selection pressures”.

Collins et. al. wish to invoke the efficacy of Wright’s SBT in their fine grained

system, but see a problem with the contiguous nature of a grid not allowing the formation

of the sought after demes. They therefore invoke isolation by distance:

One of the basic assumptions of Wright’s shifting balance theory of evolution is
that spatial structure exists in large populations … The structure is in the form of
demes, or semi-isolated subpopulations, with relatively thorough gene mixing
within a deme, but restricted gene flow between demes. One way that demes can
form in a continuous population and environment is isolation by distance: the
probability that a given parent will produce an offspring at a given location is a
fast-declining function of the geographical distance between the parent offspring
locations. Wright’s theory of evolution has played a role in the design of several
parallel genetic algorithms…16

The other parallel GAs mentioned in the last sentence were: (Gorges-Schleuter 1989);

(Mühlenbein 1989), which was a companion piece to the Gorges-Schleuter paper;

(Spiessens and Manderick 1991) who do not actually quote Wright nor use the word

deme as far as I can tell; and a paper by the authors themselves in ALIFE II (Collins and

Jefferson 1991). All references were to fine-grained systems. This ignores the use of

Wright’s theories by the creators of coarse-grained models to justify their style of

parallelism. The two styles of parallelism are very different and it is hard to see how the

shifting balance theory could be invoked to support both simultaneously.

15 (Schleuter 1989) pg.422 quoting Wright, S. (1982). “Character Change, Speciation, and the Higher
Taxa.” Evolution 36(3): 427-443..
16 Collins, R. J. and D. R. Jefferson (1991). Selection in Massively Parallel Genetic Algorithms.
Proceedings of the Fourth International Conference on Genetic Algorithms (ICGA4). B. R. K. and B. L. B.
San Mateo, CA, Morgan Kaufmann, pg. 251.

Part 1 The Shifting Balance Evolutionary Algorithm 17

Ch2 §2.2 Sewall Wright, Demes and Sequential GAs

Taking inspiration from Wright’s shifting balance theory and its use of interdemic

selection is not exclusive to parallel implementations of the GA. This more restrictive

mating policy has been used for sequential GAs with moderate success over the more

global mating strategies.

The use deme in sequential GAs are similar to the fine-grain model in parallelism. In

(Pál 1994) the favoured topology is a simple ring with mating restricted to contiguous

members. The more common toroidal topology is used in (Sarma and De Jong 1999) and

(Sumida and Hamilton 1994). Sumida and Hamilton restrict mating to the eight

contiguous members surrounding a cell in the toroid, while occasionally allowing a more

panmictic approach to mate selection with long distance mating. Sarma and De Jong

devised a measure to allow modification of the size of the mating neighborhood17 when

applying their system to a particular problem; potentially, therefore the system can be

tuned from a global mating strategy down to the simple nearest neighbour mating. Sarma

and De Jong claim that smaller neighbourhoods decrease the selection pressure felt by an

individual in the population.

Both Sumida and Hamilton, and Collins explicitly make use of the Wrightian term

Deme. Sumida and Hamilton go further, explicitly mentioning Wright and designing their

algorithm with the view of its justification through the SBT:

Populations of organisms which inhabit the natural world are usually clustered
into groups of individuals. For a population of a given size, having its members
compete and mate largely within groups greatly alters its properties under natural
selection. Sewall Wright (1969 and earlier) was the first to give serious attention
to this fact and developed a body of theory describing what he called a ‘shifting
balance’ referring to alternative adaptations and levels of adaptation among semi-
isolated populations18.

17 With the change of mate selection from grid neighbor to a more generalized neighbourhood, the
topology of the mating environment is really no longer a simple toroid.
18 Sumida, B. H. and W. D. Hamilton (1994). Both Wrightian and ‘Parasite’ Peak Shifts Enhance Genetic
Algorithm Performance in the Traveling Salesman Problem. Computing With Biological Metaphors. R.
Paton. London, Chapman & Hall, pg. 264.

Part 1 The Shifting Balance Evolutionary Algorithm 18

Unlike most other researchers that quote Wright, Sumida and Hamilton recognize that

small demes are used in the theory to promote random drift in order to escape from the

dominion of a local maximum:

Such partial isolation is highly preservative of global population variation (Wright
1931) and from the point of view of evolution becomes most creatively so if the
demes are small because isolation facilitates random genetic drift (Futuyma
1986). Since drift is a non-directional process, in the ensemble all directions of
drift are experienced, including, at times, different allele and genotype fixations;
hence the ensemble stores variability. Adding natural selection Wright saw that
(a) different adaptive peaks would tend to be attained in different demes, and (b)
by a combination of drift and migration, demes finding superior peaks could
transform neighbouring demes to their discovery19.

Sumida and Hamilton attempt to keep close to the SBT method of allowing random drift

to dominate the small demes via local spatial mating and yet allow more global

interdemic interactions by probabilistically allowing long distance mating.

Ch2 §3 Problems With the SBT, both in Theory and in Practice

While all of the above deme models, both parallel and sequential, may be interesting

in their own rights, they are not similar enough to the SBT in either form or purpose to

claim direct descendance from it, as some of their authors purport. In fact, in view of the

basic difference of the two approaches to parallelization, it is hard to see how the shifting

balance theory could be invoked to support both simultaneously.

Of course not every implementor of a deme based GA makes such a claim. However,

even those who directly mention Wright and the shifting balance theorem are really not

making any attempt to hew closely to the theory and are just using it to support their

19 Sumida, B. H. and W. D. Hamilton (1994). Both Wrightian and ‘Parasite’ Peak Shifts Enhance Genetic
Algorithm Performance in the Traveling Salesman Problem. Computing With Biological Metaphors. R.
Paton. London, Chapman & Hall, pp. 264-265.

Part 1 The Shifting Balance Evolutionary Algorithm 19

system through analogy. For example most do not comment on the importance of random

drift, and just mention that Wright proposed that interdemic selection was a powerful

mechanism in natural evolutionary processes. To properly acknowledge the use of the

mechanism one would have to ensure that the deme sizes are kept small enough for

random drift to take effect and gain purchase on the footholds of a new maximum.

Usually no special attention to the deme size is given for such a purpose and if the demes

are in fact kept to a proper minimal size it is done by chance and not through

experimentation or theoretical reasoning.

One exception to those who do not pay close attention to the details of Wright’s

theory is Sumida and Hamilton. They purposely keep the demes in their system small in

order to facilitate the random drift that Wright postulated was necessary. They also

attempt to model interplay between demes allowing for more distant communication to

periodically occur. It is questionable, however, whether these long distance

communications are what Wright had in mind when he talked of interdeme selection and

the shift in balance between random drift and selection. Furthermore, Sumida and

Hamilton do not appear to have made any attempt to determine whether their deme size

was small enough to promote random drift. Nor did they determine whether the

interconnectedness fostered by long distance mating was effective enough to allow

selection to shift the balance of the mass of the population onto the new hill and proceed

to climb it.

However, even if the SBT were implemented exactly according to specification, there

would still be a very large problem attendant on its use: the theory as it stands is

unfortunately inconsistent. The SBT depends quite heavily on balancing two evolutionary

pressures against each other. Random drift is needed to cross the low fitness valleys,

while selection is needed to climb the hills once the valleys have been crossed. Yet the

two mechanisms cannot be invoked simultaneously. Random drift is dependent on small

populations to operate while selection is effective in large populations. Indeed the very

effects that are to be obtained through both are mutually exclusive since one cannot climb

Part 1 The Shifting Balance Evolutionary Algorithm 20

a hill and descend through a valley at the same time. Keeping the deme populations of

middling size would simply restrict the efficacy of both and not let either excel; thus

there can even be no compromise. Wright seemed to have the notion of segregating many

small demes for the time necessary to fix various traits through random drift, then

reintegrate them back into a larger population to shift the genetic makeup of the whole,

but never made clear the details.

This defect in the theory is well know in the biological community. From Hartl and

Clark:

For the theory to work as envisaged, ... [t]he population must be split up into
smaller demes, which must be small enough for random genetic drift to be
important but large enough for mass selection to fix favorable combinations of
alleles. While migration between demes is necessary, neighboring demes must be
sufficiently isolated for genetic differentiation to occur, but sufficiently connected
for favorable gene combinations to spread.20

Consequently, while the SBT has been very useful in genetics as a metaphor to aid the

visualization of the process of evolution, very little work has been done to verify whether

it correctly describes evolution. This is primarily because much of it is untestable. Once

again from Hartl and Clark: “Because of uncertainly (sic) about the applicability of these

assumptions [mentioned in the previous quote], the shifting balance process remains a

picturesque metaphor that is still largely untested.”21

This balancing act of deme sizes, small enough for random drift but large enough for

selection to occur, seems to be a giant impediment to implementation. What is the right

size? Is there a right size; or are the two mechanisms of random drift and selection

largely exclusive? These questions are not addressed by any of the GA implementors.

20 Hartl, D. L. and A. G. Clark (1997). Principles of Population Genetics. Sunderland, MA, Sinauer. pg.
260.
21 Ibid.

 21

Chapter 3

Abstracting the SBT: The Shifting

Balance Evolutionary Algorithm

Ch3 §1 The First Level of Abstraction: Core Group and Colonies

The SBT holds out the hope that, through its incorporation into the GA it will

overcome the problem of prematurely converging on local maxima. Yet the SBT by

itself is of questionable worth because of the contradictory reliance on both random drift

and selection. To obtain the benefits of the theory without its drawbacks, the SBT itself

will have to change.

One way to ‘balance’ the behavior of random drift and selection is to drop one in

favour of the other. Of the two, keeping random drift would be a poor choice, after all

random drift is just that – random. Selection on the other hand is more pliable. While

selection does allow for the maximization of an objective function, it can be converted so

that local maxima can be eschewed and valleys crossed. This can be accomplished by

Part 1 The Shifting Balance Evolutionary Algorithm 22

recognizing that maximizing the optimization function need not be the only trait selected

for.

It is by the combination of isolating subpopulations and using differing selection

criteria in each that the ends of Wright’s theory can be obtained without resorting to his

conflicting means. The majority of the members continue to optimize the objective

function. Smaller demes are created and given different environments in which to evolve.

If these environments are different enough from that of the main population, the various

local maxima will be in different positions in the gene space. Therefore the selection

pressure in each deme will force the members within it to converge on these other

maxima. Since the positions of these maxima are shifted from that of the main

population, so too will be the members under its purview. Consequently, any members

that migrate from the smaller demes to the large deme will no longer be in the same

location in the gene space. If there are enough small demes, then migrants from those

demes will be occasionally be on a larger hill when evaluated by the objective function of

the large population. The genetic makeup of these members will begin to dominate in the

large population, and shift its position in gene space to the newly found hill. Note the

effect of the shifting balance is felt with only selection applied throughout. There is thus

no need to balance two contrary forces to shift the balance of a population.

The following summarizes the first level of abstraction (see Figure 2). A large central

population, which shall be called the core, experiences a single environment and

consequently is under the selective pressure of a single fitness landscape. While adapting

to this landscape the core can get stuck on a local maximum, at which point no

evolutionary progress is occurring. However, the core is constantly sending out members

to peripheral groups called colonies. The members within these colonies find themselves

in a different environment; hence each experiences a fitness landscape different from that

of the others and of the core group. Consequently the new landscape for each colony

may not have the same local maximum as the landscape of the core group. The colonies

are then forced to adapt through selection to these new landscapes, thus changing the

genetic makeup of its constituents. The modified colony members who migrate back to

Part 1 The Shifting Balance Evolutionary Algorithm 23

the core are now different from its members. Furthermore they may be on a better hill in

the fitness landscape of the central area. Thus, through the use of the colonies, the

species as a whole can now jump over valleys in the fitness landscape and continue to

evolve.

Note again that the new model only depends on selection. While random drift may

occur, it can only help add to the variation being produced by selection, and is not

mandatory to the system anymore. Furthermore, the population sizes of the colonies,

while much smaller than the core group, are set large enough to prevent undue effects due

to random drift.

Figure 2: A depiction of the new Shifting Balance Theory

Part 1 The Shifting Balance Evolutionary Algorithm 24

Ch3 §2 The Colonies as Exploratory Sub-Populations: A Further

Abstraction

Ch3 §2.1 Fitness in the Colony

The reader will have noticed that the colonies are supposed to be in different fitness

landscapes yet no method exists in the model to determine how the environments should

differ from that of the core. Specifically, these environments should be capable of

moving the system off of local maxima. What property of the alternative fitness functions

would allow them to push the system away from a local maximum?

The alternate fitness functions in the colonies encourage them to search in different

areas of the search space. Any mechanism that encourages such an exploration will thus

achieve the goal of moving the system away from a local maximum. Now, instead of

trying to create new fitness functions to do this, perhaps we could directly determine

whether the colony is searching in the same area as the core group. If the system can

identify that such an overlap is occurring, then the colony is not performing its duty and

should be moved elsewhere.

The above analysis makes it clear that we need a mechanism to relocate the

population to other places in the search space independently of the selection pressure,

thus escaping from a local maximum. To relocate a population away from a local

maximum, other researchers resort to a blind restart mechanism, see (Eshelman 1991),

(Whitley, Mathias et al. 1991), (Cobb and Grefenstette 1993), (Jones 1995) and

(Maresky, Davidor et al. 1995). It would be preferable if such draconian measures are not

resorted to.

Fortunately a more evolutionary alternative is available. If we had a method of

determining whether the colony is searching in the same area as the core, then we could

use this to determine whether a colony is searching in novel territory. This ‘distance’ to

the core could then be used as a selection criterion for the members in the colony: the

members will be selected for reproduction according to an amalgamation of their

Part 1 The Shifting Balance Evolutionary Algorithm 25

‘distance’ from the core the objective function rather than according to the objective

function alone. They will evolve into a new area of the search space.

If selection based on ‘distance’ to the core is used exclusively, the colonies will just

move as far from the core as possible. This will most likely send them into unpromising

territories. A balance must therefore be kept. The colonies must be allowed to search for

good solutions (using the regular fitness function) when searching in areas where the core

is not; when searching in the part of gene-space near the core, they must be selected for

distance from the core, thus moving them away.

While this new abstraction may seem to be a more radical departure from the SBT

than the first, it is actually only an extension of it. The original modification of the SBT

required environments in the colonies that were slightly different than the environment in

the core. How those environments were to have become different was not specified. With

the new abstraction, the new colony environment is differentiated from that of the core

through the direct means of determining where the core is and changing the environment

such that it rewards members that are further from the core as well as members that are

maximizing the objective function. The colony environment is therefore slightly different

from that of the core, with local maxima positioned away from the local maximum where

the core is trapped. Hence the new abstraction is merely an amendment to the first and

not a replacement.

Ch3 §2.2 Prevention versus Promotion of Inbreeding

Selecting for dissimilarity to core which is being done in the colonies has its analogy

in nature apart from Sewall Wright’s theory. If one selects among individuals that differ

from a given group, one is preventing inbreeding. In the modified SBT, the colonies are

specifically bred to be different from the core, and so when introduced back into the core,

through migration, variety is generated. It is just this variety that the SBT wants to

promote.

Part 1 The Shifting Balance Evolutionary Algorithm 26

Indeed, mechanisms to prevent inbreeding are known in both biology and the

evolutionary computation literature. Selective mating in mice was found to promote

outbreeding (Potts, Manning et al. 1991). The dispersal of birth and breeding sites in

birds is correlated to less inbreeding and higher diversity (Greenwood, Harvey et al.

1978).

In evolutionary computation, there are three main techniques to prevent inbreeding:

incest prevention, crowding and fitness sharing. Incest prevention was introduced by

(Eschelman and Schaffer 1991) in their CHC implementation of the GA. Here

chromosomes with Hamming distances below a certain threshold were prevented from

mating. In crowding, mating takes place as usual, but the offspring is inserted back into

the population replacing the individual most similar to it, again as measured by the

Hamming distance, see (De Jong 1975) and (Goldberg 1989) for details. Steady state

GAs, such as Whitley’s GENITOR program, also employ this technique, although they

commonly overwrite the most poorly fit individual as opposed to the most genetically

similar, see (Davis 1991) and (Whitley 1989). Finally, fitness sharing divides the fitness

of similar individuals, again as measured by the Hamming distance, thus promoting the

selection of individuals that are more distinct in the population (Goldberg and Richardson

1987). Both crowding and fitness sharing have been used to tackle multi-modal fitness

functions.

The SBT, while focused on increasing variety, does not do so by preventing

inbreeding – rather, it actively promotes it! The effect of having a small deme size to

encourage random drift is to increase inbreeding. This is not an unwanted side effect, but

rather an actively pursued feature of the model. Wright felt that the deleterious effects of

inbreeding were offset by the ability of inbreeding to bring to light yet undiscovered

traits. Once this was accomplished, the crossbreeding between demes would ‘restore

vigor’. In Wright’s own words:

Progress by ordinary selection of individuals would thus be very slow or nil. A
single unfortunate selection of a sire, good as an individual, but inferior in
heredity, is likely at any time to undo all past progress. On the other hand, by
starting a large number of inbred lines, important hereditary differences in these

Part 1 The Shifting Balance Evolutionary Algorithm 27

respects are brought clearly to light and fixed. Crosses among these lines ought to
give a full recovery of whatever vigor has been lost by inbreeding, and particular
crosses may be safely expected to show a combination of desired characters
distinctly superior to the original stock. Thus crossbred stock can be developed
which can be maintained at a higher level than the original stock, a level which
could not have been reached by selection alone22.

William Provine notes Wright’s emphasis on inbreeding and its use as the foundation

of the shifting balance theory:

Reasoning from his theory of animal breeding to his theory of evolution in nature,
Wright proceeded upon the plausible but wholly unproved assumption that
evolution in nature proceeded primarily by the three-level process utilized by the
best animal breeders: (1) local mass selection and inbreeding, (2) dispersion from
the more successful local populations, and (3) transformation of the whole species
or breed. He had ample evidence from animal breeders who found that mass
selection was frequently a slow, unsure, or even ineffective mechanism for
changing gene frequencies; thus, Wright decided that evolution in nature must
proceed from a more efficient and effective mechanism than mere mass selection.
Judging from animal breeding, he thought that natural populations must be
subdivided into small-enough partially isolated subgroups to cause random
drifting of genes but large-enough subgroups to keep random drifting from
leading directly to fixation of genes, for this was the road to degeneration and
extinction. Mass selection within subgroups was followed by selective diffusion
from subgroups with successful genetic combinations. The final step was the
transformation of all subgroups by the immigration of organisms with a superior
genotype and subsequent crossbreeding23.

Once again Wright is interested in ‘balance’. Instead of trying to enhance variety by

discouraging similarity, he uses inbreeding to cause random drift. This promotes

exploration. The resulting instability is balanced by integrating the small populations into

a large one where selection, with increased variation, can take place. The problem is in

regulating the proper balance.

22 As quoted in Provine, W. B. (1986). Sewall Wright and Evolutionary Biology. Chicago, IL, The
University of Chicago Press., pg. 156.
23 Provine, W. B. (1986). Sewall Wright and Evolutionary Biology. Chicago, IL, The University of
Chicago Press., pg. 236.

Part 1 The Shifting Balance Evolutionary Algorithm 28

With the modified and abstracted SBT this balance becomes unnecessary, as does the

reliance on inbreeding. The exploration is done by the colonies while the exploitation is

left to the core. Furthermore, unlike the inbreeding prevention mechanisms incorporated

into many EC systems, the wanted variety is produced directly, by selecting for it, and

not circuitously, by the prevention of similarity through the reduction of inbreeding.

Ch3 §3 The Shifting Balance Evolutionary Algorithm

Throughout the above exposition, all comparisons and analysis have been done with

respect solely to the genetic algorithm. This was done for two reasons. Firstly, the

literature on the GA is far more extensive than that of ES, which has been primarily

restricted to German researchers, and EP, which, while contemporaneous in creation with

GAs, has only recently begun to attract attention. Secondly, I am more familiar with the

GA oeuvre and so am much more familiar with the many variants that exist.

However, if one examines the motivation of the SBT, and the generality of the

abstraction, it should be obvious that colonies can be added with potentially great effect

to any evolutionary method provided multiple populations with immigration are not

already present and so cannot come into conflict. Consequently, the abstracted shifting

balance theory will be called the Shifting Balance Evolutionary Algorithm (SBEA).

The SBEA can be specialized by inserting the EC method of choice for the evolution of

each population, thus obtaining the SBGA, SBES and SBEP.

Unfortunately, the SBEA as presented in this chapter is incomplete. For clarity of

exposition, many details were glossed over so the broad outline could be observed. For

example the frequency of the migration and the method by which the migrants are to be

integrated into the core was not mentioned.

The largest oversight occurs with the assumption that we can detect whether a colony

is searching in the same area of the core, and if so, moving it elsewhere through selection.

How is this to be accomplished? We would need to know where the core is in gene space,

Part 1 The Shifting Balance Evolutionary Algorithm 29

where the colony is, and how much the two overlap each other. However, there is no

theory present in the GA literature to be used for these purposes.

In fact this is another restriction on the applicability of the SBEA as an extension for

a given EA. A definition of distance between chromosomes and populations must be

derivable, computationally feasible and of a sufficiently small time complexity so that the

EA is not slowed inordinately.

That shall be the task of the next part of the dissertation: determining distances

between chromosomes and populations for some popular evolutionary systems.

 30

PART 2

WHERE IS ELSEWHERE

 31

Chapter 4

Introduction

Ch4 §1 Landscapes, Manifolds and the Fitness “Field”

Sewall Wright introduced the concept of the fitness landscape to genetics. However,

the details were kept vague. In fact his concept of the fitness landscape differed over

various publications, see (Provine 1986). This is not because Wright was a sloppy

thinker. In biology what is a fitness landscape is indeed hard to define; after all, the real

world is not neat and tidy. In nature the fitness is not absolute but relative. The genome

is not a rigid, fixed length string of information, but a dynamic string of base pairs, with

section being inserted, deleted, and transposed from one location to another. Keeping a

stable notion of the conception of the fitness landscape in all that instability is not a

simple task; it may even be untenable.

In the world of Evolutionary Computation, things are more sedate. In fact they are

deceptively simple. Chromosomes have fixed lengths, and the vast majority of fitness

Part 2 Where is Elsewhere 32

functions encountered are unvarying with a single global optimum to aspire to.

Consequently the notion of a fitness landscape is second nature to the GA researcher,

who talks with ease about hill climbing and basins of attraction.

However the landscape analogy is just that: an analogy. A landscape or surface is

closely tied to geometry where it is defined as a subset of a space (frequently defined by a

function) that locally behaves like a plane. This is not the case with the fitness function:

its values are not drawn from the same field that the chromosomes are drawn from

(although when presented as a graph it does looks that way), and it certainly need not,

and generally does not, behave locally as a plane. Yet there must be a connection, for the

terms ‘hill climbing’ and ‘basins of attraction’ intuitively make sense.

One of the strongest images from the landscape analogy is that of hill climbing. From

this vision comes the need to recognize an ordering of the chromosomes. The task of

finding your way amongst the Himalayan mountains would be made much simpler if the

longitudes and latitudes would rearrange themselves to form a single, easy to climb, hill;

that they don’t makes navigation among the Himalayas quite difficult. Yet, when there is

no order in the search space, all search but exhaustive search becomes futile.

Consequently, it is the ordering among the chromosomes that makes the finding of the

global optimum easy or hard. It is this idea that needs to be maintained if we move to a

new metaphor.

The shift in metaphor is only a slight one: moving from those of landscapes and

surfaces to that of scalar fields. A scalar field comprises an Euclidean space (normally

E3) where each point is associated with a scalar value. This only differs slightly from a

surface or landscape24 where each value associated with a point in the Euclidean space,

24 While a “scalar field of fitness values” may be a more exact analogy than that of the “fitness
landscape”, there appears to be some loss of intuition attendant on its use. For example, when comparing
the two statements “the GA is searching on the gradient of a scalar fitness field” and “the GA is following
the fitness landscape”, the latter produces a much clearer mental picture of what is occurring. This is likely
the result of the natural practice of representing the fitness function through pictorial means. When
presented as a graph, the axis on which the function is plotted is no different than the other axes; here, the
fitness function actually does define a ‘landscape’. Consequently, in order to enhance intuition and in
deference to Sewall Wright’s usage of the term, we will frequently refer to the fitness “landscape”

Part 2 Where is Elsewhere 33

must be itself drawn from the same Euclidean space albeit from a different dimension.

There is no such restriction on a scalar field. Examples from physics are temperature

fields, pressure fields, and potential energy fields (from which Simulated Annealing likes

to draw its analogy).

Of course the scalar field analogy is also just an analogy. There are two ways in

which that analogy breaks down. First, scalar fields are normally differentiable, while

fitness values frequently are not. Second, the ordering among chromosomes does not in

any way constitute an Euclidean space. Now, a differentiable surface in a non-Euclidean

space is called a manifold. So the fitness function on top of an ordered set of

chromosomes seems to be a cross between a scalar field and a manifold, except it need

not be differentiable. This then is the structure we are really trying to analyze.

Ch4 §2 Ordering the Chromosomes:

Gene Space, Chromosome Space and Population Space

The model that is used in this dissertation distinguishes the underlying topological

space that results from the reproductive operators acting on the genomes in an EC system

from the fitness field that lies above it. Reproduction can be thought of as a means of

transforming one chromosome into another. The ease in which it is possible to do so

determines the topology of the space, i.e. the general ordering of the positions in the

space. This topological space shall be identified as gene space or chromosome space

(the two terms will be used interchangeably).

Deciding where you go next in gene space is a function of selection, which acts on

the scalar fitness field. While knowing where the EC system will go next is definitely of

throughout this dissertation, keeping the word ‘landscape’ in scare quotes to emphasis that it is only a loose
analogy.

Part 2 Where is Elsewhere 34

interest, it is irrelevant to knowing where ‘elsewhere’ is. The gene space tells us where

we are; fitness and selection tell us where to go. Since, for the purpose of this

dissertation, we are interested in knowing where we are in gene space, this chapter will

focus on developing the mathematical tools and systems necessary for answering that

question. Consequently, no consideration will be paid to the selection operator, and the

fitness function and fitness values will rarely be discussed, except when we need to see if

the topological space will support an appropriate scalar fitness field.

In the third chapter of this part it will be argued that chromosome space is insufficient

to allow a complete representation of fitness as a scalar field. To do so, we will introduce

the concept of population space: the relative positioning of two populations in

population space that forms the answer to the question “where is elsewhere?”

Ch4 §3 Distances, Metrics and Norms

Ch4 §3.1 Distances and Metrics

In the previous section we discussed the need to develop gene space, i.e. a topological

space for the chromosomes. As we proceed to find such space it will become obvious

that, with the possible exception of the space induced by the crossover operator, all

potential gene spaces invariably turn out to be metric spaces. Therefore a definition of

both ‘distance’ and its corresponding concept the ‘metric space’ is presented here. This

definition will be referenced extensively throughout the next few chapters.

A metric space is a set of points with an associated “distance function” or “metric” on

the set. The distance function must have 4 properties to be called a metric: it must be

symmetric, non-negative, be equal to 0 if and only if it is a distance between a point and

itself, and obeys the triangle inequality. In other words, a distance function d acting on a

Part 2 Where is Elsewhere 35

set of points X is such that d :X × X → R, and that for any pair of points x, y ∈ X , the

following properties hold:

M1 d x, y()= 0 iff x = y

M2 d x, y()= d y, x() (Symmetry)

M3 d x, y()≥ 0

as well as a fourth property: for any 3 points x, y, z ∈ X ,

M4 d x, y()+ d y,z() ≥ d x, z() (Triangle Inequality)

If for x ≠ y , d x,y()= 0 , which is a violation of M1, then d is called a pseudo-distance or

pseudo-metric. If M2 does not hold, i.e. the ‘distance’ is not symmetric, than d is called a

quasi-metric. If M4 (the triangle inequality) does not hold, d is called a semi-metric.

Finally note that if d is a proper metric then M3 is redundant, since it can be derived from

the three other properties when z is set equal to x in M4.

There are many different metric definitions possible on a given set. Consequently it is

important to choose a definition that most closely matches the properties of interest. In

(Jones 1995), it was pointed out that if one wants to analyze the behavior of a GA, or any

evolutionary system, one should focus on the genetic operators25. After all, it is the

genetic operators that are responsible for producing the next solution or set of solutions in

one time step, i.e. they drive the search. Consequently the distance between chromosomes

should be a function of how many genetic operations are needed to transform one

chromosome into the other.

25 It should be noted that this paper does not talk in terms of metrics, but rather of “neighborhoods”. He
defines a “neighborhood” as follows: “Given an operator φ, the φ -neighborhood of ν ε Μ(R) … is the set
of elements of M(R) accessible from ν via a single use of the operator” (pg. 24). Unfortunately, this
concept is not as useful as that of the metric. For example, since each locus has an independent chance of
being mutated, the mutation operator can transform a chromosome from 00000000 to either 00000001 or to
11111111 in one time step. However, the probability of the latter occurring is much lower than that of the
former. Both results would be considered apart of the mutation neighbourhood of 00000000, even though
00000001 is intuitively much more likely to be produced in that one mutation step, i.e. it is closer. To be
fair, the two transformations are distinguished by assigning the corresponding transition probability to
each; however this idea is not taken any further.

Part 2 Where is Elsewhere 36

Ch4 §3.2 Norms

A second concept of great importance for the few chapters, and one that is closely

related to distance, is ‘the norm’. A norm is a function applied to a vector in a vector

space26 that has specific properties. From the Schaum’s Outline on Topology27 the

following definition is given: “Let V be a real linear vector space …[then a] function

which assigns to each vector v ∈ V the real number v is a norm on V iff it satisfies, for

all v, w ∈ V and k ∈ R , the following axioms:

[N1] v ≥ 0 and v = 0 iff v = 0.

[N2] v + w ≤ v + w .

[N3] kv = k v .”

The norm properties hold for each of the following well-known (indexed) functions:

 k
k

im aaa ∑=><=− ,,normL 1k K .

Taking the limit as k → ∞ of the Lk-norm produces the L∞ - norm :

 L∞ - norm = max a1 , a2 ,K, am().

The norm combines the values from the various dimensions of the vector into a single

number, which can be thought of as the magnitude of the vector. This value is closely

related to the distance measure. In fact, it is well known that every normed space (a

vector space with a norm defined on it) is a metric space:

Theorem 1 Let V be a real linear vector space, and let v, w ∈ V . Then v − w , the

norm of the difference between any two vectors, is a metric.

Proof. To show that v − w is a metric, all properties, M1 through M4, must hold.

First notice that both M1 and M3 are a direct consequence of N1. Next the symmetry

requirement M2 can be derived from N3 aided by two properties of vector spaces: the

26 Of course the vector space itself is a set of tuples that obey certain properties of addition and scalar
multiplication: associativity, commutativity, the existence of a 0, an inverse operation to addition, the
existence of a scalar multiplicative 1, and various scalar multiplicative distributive laws.
27 Lipschutz, S. (1965). Schaum's Outline of Theory and Problems of General Topology. New York, NY,
McGraw-Hill, Inc., pg. 118.

Part 2 Where is Elsewhere 37

commutativity of addition and behavior of scalar multiplication. Finally M4, the triangle

inequality, follows directly from N2. ❚

The vector space V, along with a norm on V is called a normed space. Since, from

Theorem 1, the norm of the difference between vectors is a metric, it follows that any

norm space is also a metric space. This property of norms will be referenced extensively

throughout the next few chapters.

The most recognizable distance produced by a norm on a vector space is the

Euclidean distance. The vector space upon which the Euclidean distance acts is built from

the real number scalar field. The Euclidean distance is just the L2-norm applied to the

difference between vectors in this vector space, and the Euclidean space is the metric

space associated with this distance. For example, the Euclidean distance

d
v
x ,

v
y () = x1 − y1()2

+ x2 − y2()2
+ x3 − y3()2

 on the set of points in R3, which is formed

from the L2-norm of the difference vector
v
x − v

y , produces the 3d Euclidean metric space

E3.

Other metric spaces can be induced through the use of different norms on the same

vector space. For example if we take the L1-norm on a vector difference in the same

vector space as used for the Euclidean spaces, we get another well-studied distance, the

‘taxicab driver’ or ‘Manhattan’ distance. This distance is so named because it represents

the distance that a taxicab must travel from one address to another following the streets in

a grid-like city such as Manhattan. For example, using the same 3-dimensional vector

space as we used for the Euclidean distance example, the corresponding Manhattan
distance between two vectors,

v
x and

v
y , is d

v
x ,

v
y () = x1 − y1 + x2 − y2 + x3 − y3 .

In Summary, there are two important aspects of the norm: its ability to combine

values into a single number called the magnitude and its ability to produce metric spaces

by determining the magnitude of vector differences. In this chapter both aspects will both

be used extensively.

Part 2 Where is Elsewhere 38

Ch4 §4 Outline of the Chapters for “Where is Elsewhere”

Discovering where “elsewhere” is, is perhaps the most complex part of the

dissertation. Consequently it has been divided into four chapters, each of which builds on

the previous ones.

The current introductory chapter has presented the concepts of distances, norms and

spaces upon which everything else is built.

The next two chapters deal exclusively with GA style binary and symbolic

chromosomes. The first of the two chapters looks at chromosome space, starting with the

standard Hamming space and building towards a more realistic picture of the search

space as influenced by the workings of the Genetic Algorithm, although this goal is never

quite attained. The chapter following explores the notion of population space, which has

not been previously examined by the GA community. In the final chapter on “Where is

Elsewhere”, we turn our attention to systems that use numeric chromosomes, such as EP

and ES. The chromosome space and population space for such systems are developed and

examined, culminating in a comparison and generalization of the various techniques used

to determine gene space for both symbolic and numeric genes.

 39

Chapter 5

Chromosome Space

Ch5 §1 Introduction

In this chapter we will look at chromosome space, the topological space induced by

reproductive distance between chromosomes when population effects are not taken into

account. This is the traditional way of viewing gene space. Although in the next chapter

we will abandon chromosome space in favour of population space, it is still important to

develop it in detail since the distance between populations will be based on the distance

between chromosomes.

In evolutionary computational systems there are two very different ways of

representing genes and alleles: symbolically, where the genes are drawn from an n-ary

alphabet, and numerically, where the genes can be either integer or real valued.

Traditionally the Genetic Algorithm uses symbolic genes, while Evolutionary Strategies

and Evolutionary Programming use numeric genes. The composition of the genotype has

Part 2 Where is Elsewhere 40

a substantial effect on the means of computing distances between chromosomes;

consequently the two different encoding schemes will be dealt with separately. Since the

main focus of this dissertation will be on the GA, this chapter will focus solely on the

chromosome space of a typical GA that uses symbolic genes. The chromosome space for

numeric genomes will be deferred to the beginning of Chapter 6, when the topic of EC

systems with numeric genes is discussed.

In the present chapter we will justify the use of the Hamming distance as the metric

for ‘gene space’, as is traditionally used in the GA literature. This justification is

necessary because there are many objections to its use as an accurate model of the GA

search. These are discussed, after which a more accurate representation of distance in a

simplified GA that just uses the mutation operator is developed. While a true distance

between chromosomes for a complete GA system was not successfully accomplished

during the course of this dissertation, a general framework, which hopefully will lead to

its development, is introduced. Immediately following, an attempt is then made to apply

it to a GA system that use crossover only, as well as the full GA that uses both crossover

and mutation. This is done in order to delineate the strengths and shortcomings of the

framework, as well as derive some useful generalities that can be gleaned even at this

preliminary stage.

By the end we will see that the Hamming distance is a good first order approximation

of the distance between chromosomes. While not as precise as the actual distance would

be, it is accurate enough for the purposes of this dissertation and will stand in its stead as

the basis for the distance between populations for the GA that will be developed in

Chapter 5.

Part 2 Where is Elsewhere 41

Ch5 §2 Hamming Space

Ch5 §2.1 Definition

It is traditional in the GA literature to associate the distance between two

chromosomes with the Hamming distance. The Hamming distance is a simple measure

that just counts up the number of differences between the two strings when compared

location by location. To be precise: Let P be a population of chromosomes, and let

x, y ∈ P . If i is a given locus within the string and both xi and yi the values of the x and y

chromosomes at that locus, then the distance at a locus hdl x l ,y l() is

 hd l x,y() =
0 if x l = yl

1 o.w




 (2.1)

So, if there are l loci in a chromosome, then the Hamming distance between

chromosomes x and y is

 hd x, y() = hd i xi , yi()
i =1

l

∑ (2.2)

which, when normalized, becomes

 hd x, y() =
1
l

hdi x i ,yi()
i=1

l

∑ (2.3)

The Hamming distance superficially has the same form as an L1-norm applied to a

vector difference. However, that difference is not actually one between vectors, rather it

is a Boolean distance between symbols; are they the same symbol or not. Consequently,

the L1-norm can not really be applied. Be that as it may, the Hamming distance truly is a

distance, as all of the distance properties almost trivially hold. Consequently, the

Hamming distance forms a metric space from the chromosome set, which we shall call

the Hamming space.

Finally, notice that, despite the fact that Hamming distances are thought to be the

distance between binary strings, definition (2.1), the distance at a locus, does not depend

on the 0s or 1s of a binary alphabet. It just checks whether the symbols at that locus are

Part 2 Where is Elsewhere 42

different, and so add to the distance, or not. This works quite well for symbolic alphabets

of any size. Consequently, in the discussion that follows, all concepts will be derived

from chromosomes that have been drawn from n-ary (symbolic) alphabets and not just

binary alphabets.

Ch5 §2.2 Chromosomes as a Coordinate Vector

It seems natural to think of a chromosome of length l as a “vector” of l dimensions,

where each locus represents an axis along each different dimension, with the genes being

values along the axes, and the particular value at a locus being the coordinate of an axis.

This is a valid way of thinking about the chromosome, with a few caveats:

People are used to thinking about spaces with a small dimensionality, one with each

axis having many (usually an infinite number of) values as its domain. With chromosome

space the opposite is true. We have a large number of dimensions, ranging from dozens

to thousands. Meanwhile the values along each dimension is drawn from a very small

domain; usually the values 0 and 1. Consequently the space is more difficult to visualize

than one might think.

To make matters worse, the values along each axis are unordered. For example, actual

DNA is drawn from an alphabet of size 4: adenine, thymine, cytosine and guanine. Is

cytosine greater than or less than guanine? The question is silly. There is no ordering!

The same holds for any chromosome string drawn from any alphabet, including a binary

alphabet. We tend to think of ‘0’ as being less than ‘1’. In a chromosome this is not the

case.

There are a couple of immediate consequences of the above points. First, symbolic

chromosome space is not a vector space. It is vector spaces that we are most familiar

with, and which most of our intuitions are drawn from. That chromosome space is not a

vector space is simple to prove. To be a vector space, vector addition must be

meaningful. Since chromosome space has unordered values along each axis, addition of

any sort is meaningless, and so chromosome space cannot be a vector space.

Part 2 Where is Elsewhere 43

Furthermore, this means that there is no ‘origin’ of the ‘axes’ in chromosome space, i.e.

there is nothing special about, say, the chromosome <0 0 0 0 0> in 5-space.

While thinking about a chromosome as a set of coordinates is to some degree

misleading, as described above, it can help form some useful insights. Consequently,

throughout the dissertation we will occasionally make use of the coordinate metaphor

when deemed appropriate.

Ch5 §2.3 The Hypercube

When the chromosomes are defined over a binary alphabet, the generalized Hamming

distance becomes the familiar binary string Hamming distance, and the metric space

becomes a hypercube (see Figure 3). Most analysis of the GA that recognizes the need

for an metric space underlying the fitness function use the hypercube, see (Goldberg

1989) pg. 53, and (Stadler 1995).

The work by Stadler probably represents the most complex of such analysis (Stadler

1995). Here he attempts to formulate a framework for fitness landscapes that would apply

to biological and computational evolutionary systems. Stadler recognizes that the normal

{0,+1} representation of the hypercube coordinate system presents a difficulty for the

mathematics. The 0 has special properties in arithmetic, while the symbol ‘0’ in the

hypercube coordinate system does not. Therefore any arithmetic operations done on the

coordinate system, such as averaging, will produce biased results. Instead Stadler uses the

alphabet {−1,+1} , which is analogous to the quantum mechanical ‘up’ and ‘down’ spins

that an elementary particle may have. Admittedly, the association of {−1,+1} to the two

genes is arbitrary, but no more arbitrary than associating +1 with up and –1 with down.

Furthermore, while one gene is not ‘less than’ the other and –1 is usually thought of as

‘less than’ +1, at least the two coordinate values have the same magnitude and therefore

are unbiased under arithmetic. So as long as only magnitudes are considered, this

representation is fairly safe.

Part 2 Where is Elsewhere 44

In physics, a string built from the {−1,+1} alphabet is, naturally enough, called a

string of “spins”28. If the string size is 2, then the structure formed is the ‘spin glass’ or

SK model (Sherrington and Kirkpatrick 1975). The generalization to a string of size ‘p’ is

called the p-spin model (Derrida 1980). An example of the coordinate for a 3-spin system

is presented in Figure 4 along side the normal hypercube coordinate system.

28 In mathematics a ‘string of spins’ is called a ‘bipolar vector’, see Theodoridis, S. and K. Koutroumbas
(1999). Pattern Recognition. San Diego, Academic Press., pg. 365.

Part 2 Where is Elsewhere 45

In this model, if we have a string σ of p “spins” σk ∈ + 1, −1{ } , then a fitness function

f on the string s can be decomposed into spins by

 f σ() = J0 + Ji1i2 Ki3
σ i1

i1 <i2 <K< ik

∑
k =1

p

∑ σ i2
Kσ ik

, (2.4)

where

Ji1i2Ki3

 are constants (again from (Stadler 1995)).

The fitness of a chromosome is treated as a random variable, which Stadler calls a

random field, which sits on top of the hypercube, if a p-spin model is used, or any other

Figure 3: Hypercubes – From 2d to 6d
 (to increase dimensionality, duplicate the hypercube and connect the corners)

Part 2 Where is Elsewhere 46

graphs that would be more relevant. He then examines various probability distributions

that he associates with the random variables and goes on to prove many, possibly

interesting, theorems. Unfortunately, those distributions have questionable relevance to

the actual fitnesses used in evolutionary computation, and so his conclusions may not

apply to the GA or other evolutionary algorithms.

There is one very interesting aspect of Statler’s ‘fitness landscape’ model: it consists

of a fitness field on top of a topological space, which, at a high level, is identical to the

model used in this dissertation (see Ch4 §1). However, Stadler is not interested in finding

the correct topology to represent gene space. He assumes that it will be some graph

structure, possibly the hypercube or some other, more general graph. Instead he focuses

his attention on properties of the fitness field as a random field when laid over this chosen

graph (in the paper, he analyses a few graphs that he assumes to be relevant to biology

and evolutionary computation). Even worse, his model has a complete absence of any

population effects. Consequently, aside from his insight into treating fitness as a random

field, little in Stadler’s work can be used to answer the primary question of interest in this

chapter, “what is the true structure of gene space?”

Figure 4: A 3d hypercube with a) normal 0/1 based coordinate and b) spin coordinates

Part 2 Where is Elsewhere 47

Ch5 §2.4 Distance between Chromosomes ≠ Hamming Distance

Until recently it was assumed that the distance between chromosomes could be

simply represented through the use of the Hamming distance. This is the basis of using

the hypercube as the fitness landscape (see the previous section for a more detailed

discussion on this topic). However, this has recently been challenged in two ways (Jones

1995):

It can be argued that the use of the Hamming distance was a result of the undue

influence of the written structure of the chromosome, and does not properly represent the

process of transition between one chromosome and another. Instead, it was proposed that

there should be a set of such spaces29, one for each reproductive operator. This implies

the need for two distinct distances, one for mutation space and the other for crossover

space30.

In the next three sections we will attempt to develop an appropriate distance between

chromosomes by first looking at mutation and crossover separately, then trying to

combine them into a single distance.

This last objective is contrary to the one stated in (Jones 1995), where it was believed

that each reproductive operator should generate its own space, and be investigated

separately. Only afterwards should one combine their effects at a higher level of analysis.

However, it must be remembered that ultimately you don’t have, as separate, the various

reproductive operators for them to be considered independently; you just have a single

reproductive step the changes one chromosome into another. There is only one space that

is being examined.

29 While the discussion in (Jones 1995) was based on the idea of “fitness landscapes’ and
‘neighbourhoods’, not of gene spaces, the idea still holds.
30 Actually a third “landscape” was included in (Jones 1995), one produced by the fitness operator.
However, the model that is used in this dissertation distinguishes between the underlying topological space
produced by the reproductive operators that actually change the chromosomes from the associated fitness
values which do not share the same properties. It is this that we are attempting to model. Remember … the
gene space tells us where we are, while fitness and selection tells us where to go; we are interested in
knowing where we are.

Part 2 Where is Elsewhere 48

Unfortunately, we will not be wholly successful in creating a metric that properly

models the transformation of chromosomes during general GA reproduction. However,

we will ultimately show that, surprisingly, the Hamming distance is a robust distance and

is a pretty good estimator of the true distance between chromosomes in lieu of developing

the actual distance itself. This will suffice for now.

Ch5 §3 The Mutational Distance between Chromosomes

Ch5 §3.1 Problems with using the Hamming Distance as the Distance

between Chromosomes under Mutation

While the Hamming distance may not be the proper distance for chromosomes that

undergo both crossover and mutation, it still seems intuitive that it should accurately

model chromosome distance under mutation alone. However, this does not turn out to be

so.

It was pointed out in (Jones 1995) that the use of the Hamming distance assumes that

only one locus per generation has been changed. For example, if two chromosomes were

a Hamming distance of three apart, it would take three mutational steps to change one

into the other. However, in actuality, those three mutations could occur in only one

generation because each locus has an independent chance of mutating during a single

application of the mutation operator. By defining nearest-neighbours in the fitness

landscape as a pair of chromosomes that can be changed from one to the other by the

single use of an operator31, it was concluded in (Jones 1995) that all chromosomes are

neighbours of each other. In other words, instead of the hypercube, the underlying

topology of the fitness landscape is a completely connected graph, with 2 l vertices,

where each vertex being a chromosome of length l. Also, each edge is given a weight

31 Jones, T. (1995). Evolutionary Algorithms, Fitness Landscapes and Search. Computer Science.
Albuquerque, New Mexico, The University of New Mexico, pg. 24.

Part 2 Where is Elsewhere 49

equal to the probability of one chromosome transforming into the other in a single

mutational step (see Figure 5).

Unfortunately this analysis is insufficient for the purpose of representing distances

rather than just one step transitions (which it was designed for). While it is true that one

can go from any chromosome to any other chromosome in one step, surely it is also true

Figure 5: A Chromosome Transition Graph based on the Mutation Operator with all
transition probabilities shown. For simplicity a chromosome length of three was used.

Part 2 Where is Elsewhere 50

that if the probability is greater to go to one chromosome than another then the former is,

in some sense, closer than the latter. In other words there should be a natural distance

measure between chromosomes that takes into account the possibility of multiple loci

mutations. This was recognized to some degree in (Jones 1995) by the weighing of the

edges in the nearest-neighbour graph with the probability of transitions between

chromosomes. However, such weights are not in themselves distances (as will be shown

in Ch5 §3.4). Therefore a new definition for the edge weights between chromosomes in a

transition graph will have to be developed to transform it into a ‘distance’ graph.

Ch5 §3.2 The Expected Number of Mutation Operations Between

Chromosomes: An Instructive Blind Alley

In the transition graph from Figure 5, the mutation operator was modeled as a

transition from one chromosome to another. Here the probability transition between two

chromosomes, x and y, is p
hdx , y (1− p)

l −hd x ,y , where l is the length of a chromosome, and

hd x, y is the Hamming distance between the two chromosomes and p is the probability of

mutation. However, a one step mutation is not the only way one chromosome can mutate

into another. The mutation can occur in two stages, or three, or more. Indeed the number

of mutational steps that are used to turn one chromosome into another can be considered

as a random variable. By this we mean that the number of mutational steps will turn out

to be a certain value, but which value that would be is determined by a probability that is

associated with each value in turn.

The first thing that one immediately thinks of, when given a random variable, is

computing its expectation. So perhaps the expected number of mutation steps that turns

one chromosome into another is the sought-after mutational distance. Unfortunately on

closer look one realizes what is actually being measured by such an expectation: the

number of mutation steps needed when trying to find a target chromosome while using a

random search algorithm. By simply computing and summing the probabilistic path

lengths of all possible paths, we have implicitly stated that no path is better than any

Part 2 Where is Elsewhere 51

other. A path itself can be thought of a path that a “hill-climber” takes to get from one

chromosome to another, but we are not giving this “hill-climber” any gradients to climb

on. Thus we are reduced to a random search.

It is well known that random search produces exponential behavior, thus it is no

surprise that the results of our “new distance” are exponential too. However, an

examination of the expected behavior of unguided mutation in a search space produces

some interesting and unexpected insights, including some subtle differences between a

normal random walk and this random mutational walk. As a result, a detailed description

of the expected number of mutational steps between chromosomes is provided in

Appendix A, followed by a detailed examination of the dynamics as observed through

simulation. As a result of the simulation, some very interesting and sometimes

counterintuitive observations have come to light. Ultimately, however, the expected

number of mutations does not provide a meaningful measure of mutational distance

between chromosomes; we must take our search elsewhere.

Ch5 §3.3 The Shortest Path Cost as a Distance

In the previous section we attempted to define mutational distance as the expected

number of mutational steps needed to transform one chromosome into another. In other

words we were calculating the expected path length between the two chromosomes

averaged over all possible paths in a transition graph32. However, this is not how the

Hamming distance is computed on a hypercube. It is not the average path length

considering all possible paths; rather it is the cost of the shortest path between the two

points on the hypercube. This suggests a new definition of mutational distance: the

distance between two chromosomes is the cost of the shortest path between them on a

completely connected graph where each vertex is a chromosome. Of course the cost of a

path depends on the weights on the edges, however we will only develop the appropriate

32 Since this section will be focusing on transition and distance graphs the standard graph theoretic
notation shall be used; see (Cormen, et. al. 1990) pp. 86-90, 514-515 for details.

Part 2 Where is Elsewhere 52

weights in the next subsection. Here we will assume that the proper weights have already

been defined and will only deal with the general implications of using the shortest path

cost between vertices as the distance between chromosomes.

Since the above definition of distance is completely dependent on the cost of the

shortest path in a graph, care must be taken when defining that cost, especially when self-

loops are allowed. The cost of a path

v1,v2 ,K,vk is w(v i , vi+1)

i =1

k−1

∑ where w(u ,v) is a weight

associated with the edge (u, v). However this ignores the case when the starting vertex of

a path is the sought after node. When that occurs the vertex is recognized as both source

and target, thus no transitions need be made and no path need be generated. This can be

simply represented as the ‘path’ v . Since there are no edges in this ‘path’, the cost as

defined above cannot be applied. However, since no edges were taken, no costs really

should apply. So the cost of the path v is defined to be 0. This should not be mistaken

for the cost of making a transition across a self-loop. Here the path would be represented
by v,v and consequently have a cost of w(v, v) , which is not necessarily equal to 0.

Before accepting the association of mutational distance and the cost of the shortest

path in a chromosome transition graph, the question has to be asked: is the cost of the

shortest path between vertices in a graph a distance? The answer is “no, it need not be”.

For a start a distance must be symmetric and the cost of the shortest path between two

points may not be symmetric if the graph is directional. A second problem can occur if

edge costs can be equal to 0 between two distinct vertices33. The fundamental distance

property states that distance must be greater than or equal to 0 and can only be 0 iff the

two points are identical. Therefore graphs that do not have symmetric edge costs and

graphs with edge costs that equal 0 are suspect.

33 Note, if any edge weights are less than zero, than there is no shortest path between any two vertices
(see (Cormen, et. al. 1990) pp. 514-516). So edge weights settings that allow the shortest path costs to be
distances must be positive. Since we never propose any weight settings that have negative weights in this
section we will not explicitly test for this condition.

Part 2 Where is Elsewhere 53

However if the graph has symmetric edge weights, where each weight is greater than

0, then the cost of the shortest path between two vertices is indeed a distance (once the

caveats have been taken into account, this results is, of course, well known):

Theorem 2: If the graph the edges in a graph G have symmetric edges weights, i.e.
w(u,v) = w(v ,u) , and all weights are greater than 0 then the cost of the shortest path between

two vertices is a distance measure.

Proof. The proof of this theorem can be found in Appendix A-1.

Therefore to show that in a graph the cost of a shortest path between two vertices is a

distance all one needs to do is show that the graph has symmetric and positively weighted

edges.

It would be nice if every graph that has, as a distance, the cost of the shortest path

between two vertices, also has symmetrical, non-zero edge weights. In other words it

would be nice if the converse of the above theorem were also true. Unfortunately this is

not the case. In specific it is not true that all directed graphs with asymmetrical edge

weights must have shortest path costs between vertices that are not distances, although in

many case that may be true. Looking at M1 through M4, the properties for a measure to be

a distance, we see that, with the sole exception of the symmetry property M2, they all

hold under asymmetrical edge weights. Therefore if the graph in question has

asymmetrical edge weights you will have to check whether the costs of the shortest path

from x to y is identical to the cost of the (possibly different) shortest path from y to x . If

so then, provided all edges have positive costs, the shortest path costs on the digraph are

distances; otherwise they are not.

While digraphs may or may not have shortest path costs that are distance, a firm

statement can be made about graphs that have zero cost edges:

Theorem 3: If graph G has edges between distinct vertices that have costs equal to 0

then the cost of the shortest path between two vertices is not a distance.

Proof. The proof of this theorem can be found in Appendix A-2.

Part 2 Where is Elsewhere 54

In summary, for an edge weight setting to support the shortest path cost as a distance

measure two properties must hold. First there must be no 0-weighted edges unless they

are self-loops. Secondly, the shortest path from u to v must have the same cost as the

shortest path from v to u, where u and v are vertices. The second property will hold if all

connected vertices have symmetrical edge weights.

One final note. The limitations on the edge weights described above are very loose.

Many different edge weights can be assigned that would produce shortest path costs that

are distances. Consequently more justification is need then just successfully passing the

two theorems before considering that the transition graph properly models a given

system. For example, one would want the edge weight to be greater on an edge that is

difficult to cross in comparison to one that is easy to cross. The list of properties needed

for the edge weights to model a system properly will depend on the system and so will be

dealt with on a case by case basis.

Ch5 §3.4 Converting a Transition Graph to a Distance Graph:

Designing the Edge Weights

Even though transition probabilities are distances, they cannot be used as weights

because they would identify improbable transitions as close neighbors. At the limit, if the

transition cannot be performed at all, the edge weight should be infinite, not 0, which

occurs when the probability of transition is used as weights. The zero edge weight for

impossible transitions also violates Theorem 3 thus destroying the shortest path cost as a

distance measure. Therefore the probability of transition, at least as it is, does not

properly model distances, and so the weights in the transition graph must be modified to

produce a proper distance graph.

Examine the transition graph fragment presented in Figure 6. Given the probability

of transitions, the chances are that, starting from v0 , the (v0 ,v2) edge will be taken. If we

perform the experiment over and over again we would find that, on average, the (v0 ,v1)

edge would be taken only after 10 tries. This suggests that the cost of taking that edge is

equal to 10.

Part 2 Where is Elsewhere 55

Generalizing this we can define the cost of an edge as the number of times one would

have to try an edge, on average, before actually crossing it. We will now rewrite this
statement formally: the weight, w(vi ,v j) , of the edge between two vertices, vi and v j , must

be governed by the equation Pr(vi → v j) ⋅ w(vi ,v j) =1. Here Pr(vi → v j) is read as “the

probability that the chromosome vi is transformed through a single mutation step into the

chromosome v j ”. From this governing equation we can define a distance graph weight

w(vi ,v j) as

 w(vi ,v j) =
1

Pr(vi → v j)
. (2.5)

Thus the edge weights are not proportional to the probability of transition, but rather

inversely proportional to it34.

Edge weights that are inversely proportional to the probability of transition have nice

properties. First, since probabilities range between 0 and 1, the weights range between 1

(when the probability is 1) and infinity (when the probability is 0). Intuitively this is

almost the perfect model for transitions based on probabilistic transformations. If the

probability that a transformation will happen is 1, i.e. it is certain that the edge will be

taken, then in one step we are guaranteed to reach the target directly. Thus the edge

weight is 1 as it should be. However, if the probability is less then 1, it will take, on

average, more than one step to reach the target directly. So the weight must be greater

than 1. In the limit when the transition becomes impossible, the probability becomes 0

and the edge weight becomes infinite, as desired. So in all circumstances the edge

weights are behaving perfectly.

The edge weights defined above have all the properties needed for the shortest cost

path to be considered a distance between chromosomes. We know from Theorem 2 that

the edge weights allow a shortest cost path to be a distance when the weights are always

greater than 0, and are symmetric. As just discussed, all weights are elements from the
real valued domainw x, y ∈ [1,∞) . Consequently no edge weight equals 0 and all weights

34 In retrospect, this concept seems quite obvious and is probably known within the mathematical
community.

Part 2 Where is Elsewhere 56

are positive. Also since the chromosome distance graph shares the same edge structure as

the chromosome transition graph, it is symmetric. Thus the shortest cost path in the

chromosome distance graph is indeed a distance between chromosomes.

Ch5 §3.5 The Chromosome Distance Graph for Mutation

Ch5 §3.5.1 Structure

The chromosome distance graph for mutation has the same structure as the transition

graph presented in Ch5 §3.1. It is a ‘completely connected graph of size 2 l’, where l is

the length of a chromosome. Therefore the distance graph is a completely connected

digraph (as opposed to a complete graph) with symmetric edge weights.

Ch5 §3.5.2 Edge Weights

In a binary valued GA system with mutation operating alone the probability of
transition is Pr(x → y) = p

hd x ,y q
l −hd x ,y , where hd x, y is the Hamming distance between

Figure 6: A fragment of a transition graph, where the probability of
going to the left vertex from v0 is much less than going to the right one.

Part 2 Where is Elsewhere 57

chromosomes x and y, l is the length of the chromosome, p is the probability of a locus

mutating and q = (1 − p). Consequently the edge weights would be

 w(x , y) =
1

p
hdx , y q

l − hdx , y
. (2.6)

For GA systems with n-ary valued genes, not only do you need to make the

transitions between the two chromosomes at a locus, you need to make the transition to

the right gene. The mutated gene is usually drawn from the alphabet using a uniform

probability distribution after excluding the current gene value (one must switch), so the

probability of transforming gene g into a given gene ′ g is

 Pr(g → ′ g) =
1

a −1

where a is the size of the alphabet. Since there are hd x, y genes to change between the two

chromosomes, and since changing to the correct gene is independent of deciding to make

the transition, the probability of transition to the correct genes between two chromosomes
that are hd x, y apart is Pr(x → y) = p

hd x ,y q
l −hd x ,y ⋅ (1

1−a)
hd x ,y . This can be rewritten as

 Pr(x → y) = q
l p

q ⋅ (a −1)

 


 

hd x ,y

. (2.7)

From (2.5) we know that the edge weights are the inverse of the probability of transition

Consequently the edge weights for an n-ary, mutation only GA is

 w(x , y) =
1
q

l

q ⋅ (a −1)
p


 


 

hd x, y

. (2.8)

Ch5 §3.6 For the GA, Mutational Distance ∝∝∝ ∝ Hamming Distance

Having defined the mutational distance between chromosomes, we can now address

the hypothesis that such a distance measure becomes equivalent to the Hamming distance

when the probability of mutation becomes small enough:

Theorem 4: If the probability of mutation p is sufficiently small, i.e. if p <
a −1
a +1

, then

the distance between chromosomes due to mutation is directly proportional to the

Hamming distance, with a proportionality constant of
q ⋅ (a −1)

p ⋅q l .

Part 2 Where is Elsewhere 58

Proof. The proof of this theorem can be found in Appendix A-3.

A surprising consequence of this theorem is the very large latitude that “small

enough” affords when keeping the two distances proportional to each other. For example,

when dealing with a GA that has binary genes, i.e. when a = 2 , then the mutational

distance remains proportional to the Hamming distance as long as p < 0.33Ý3 . Most, if not

all GA system, are designed to use mutation rates that are much lower than this cutoff

value.

Furthermore the binary case produces the tightest bound on the probability of

mutation. As the alphabet size increases, the proportionality between mutational distance

and Hamming distance will hold at higher and higher cutoff rates. At the limit, with the

alphabet size at infinity, the proportionality holds for any mutation rate.

Since the mutational distance is directly proportional to the Hamming distance, the

Hamming distance can be used in lieu of the exact mutational distance between

chromosomes in most circumstances. For example, if we want to see whether

chromosome c1 is further than chromosome c2 from chromosome c0 , then since the

chromosome distances are only being compared in relation to each other, the Hamming

distance can be used instead of the exact mutational distance. In fact the Hamming

distance can be used directly when only relative distances or ratios between distances

need be known, i.e. when the absolute distances are not important in and of themselves.

As this is normally the case, the use of the Hamming distance as the distance between

chromosomes is fully justified in just about any GA system that uses mutation only as its

reproductive operator.

Part 2 Where is Elsewhere 59

Ch5 §4 Towards a Crossover based Chromosome Distance

Of course mutation is not the only reproductive operator; there is also crossover.

Unfortunately the distance between chromosomes under the crossover operator is not

nearly as straight forwards as the distance under mutation.

Mutation is based on the transition from one chromosome to another. Crossover, on

the other hand, takes two parent chromosomes to produce either one or two children

chromosomes, depending on the implementation. This complicates matters since

mutation and crossover seem to be applied to different domains, and may even have a

different range (this is the approach taken in (Jones 1995), and consequently mutation

and crossover were analyzed separately). Producing a single distance that incorporates

both of these operators is vital, since ultimately we will to combine the two distances into

one distance based on the actual reproduction effect, which is the combination of the two

genetic operators. This has proven to be quite difficult, and unfortunately, a complete

resolution of the two, while attempted, was not successfully accomplished during this

dissertation35.

While a complete solution has not yet been developed, the framework upon which it

is to be built may have already been derived in the previous section. The crossover

distance may just be an application of the shortest cost path between chromosomes in a

crossover-based, rather than a mutation-based distance graph. Still before presenting a

sketch of the concept, it must be emphasized that the idea is still in a nascent form. The

details are still nebulous. Many questions are left unanswered; many problems are left

open. However, it is a start.

Before we can develop such a graph, the domain and range of the two functions must

be brought into agreement. The key here is to change our focus from just looking at the

35 It may occur to the reader that mutation and crossover are just two different means of transforming one
chromosome into another, which can be thought of as string edits. Therefore one might think the resolution
of all the problems of this section would be solved by simply applying the edit distance (the minimal
number of transformations, given a set of edit routines, to convert one string into another). Unfortunately,
the crossover procedure cannot be described as an edit routine. What is produced by crossover is dependent
on the constituency of the population; a normal edit routine must be a function of the two strings alone.

Part 2 Where is Elsewhere 60

operator in isolation and look at the bigger picture. The correct question to ask is “what is

the probability of transforming chromosome x into chromosome y by crossing x with

chromosomes from a given population P . With this understanding in place, the crossover

domain and range now match that of mutation; both are looking at the transformation of

one chromosome into another. So, just as with mutation, crossover can be represented as

transition graph, except now the probability of transition is conditionally based on some

given population.

With a transition graph that can represent the crossover operation in place, it should

follow that, by taking the inverse of the probability of transition, we would produce a

distance graph and thus could define the cost of the shortest path as the crossover

distance. Indeed, this is the general framework that I believe will eventually produce just

such a distance. Unfortunately, there are many wrinkles to be ironed out before that can

happen.

The main problem can be simply stated: the composition of population P, upon which

the crossover probability of transition relies, has not been properly defined. One might

think that it would be the current population of the GA, and that may be true before the

first round of crossover has occurred. However, one cannot expect that the target

chromosome will always be produced after only one round; the path may have more than

one edge. Unfortunately, population P, which is used to compute the edge weights, will

have also changed from crossover. How should the new population be modeled? Even

more worrisome, if we change populations in the midst of computing a path, it is quite

possible that we will violate some of the conditions necessary for the production of a

distance. In fact the resulting path may not even be a basis for a topology, let alone a

distance!

Ultimately, I believe that all problems will be resolved, and both a transition and

distance graph is definable for the crossover operator. Until then, the idea of crossover

distance between chromosomes must remain unresolved.

Part 2 Where is Elsewhere 61

Ch5 §5 Continuing On the Road to an Accurate Reproductive Distance

between Chromosomes

Of course GA reproduction is a combination of both mutation and crossover. We

would therefore want to see a distance measure between chromosomes that incorporates

both of these mechanisms. However, as we have seen in the previous section, the

crossover distance is not yet fully understood and consequently it would be futile to

attempt a distance model of the full GA reproductive scheme.

Surprisingly, however, a positive statement can be made about the reproductive

distance between chromosomes even without knowing the details of the crossover

distance, provided that the final reproductive distance will also be based on the cost of the

shortest path between chromosomes in a distance graph:

Theorem 5: Assuming that the reproductive distance is the cost of the shortest path

between chromosomes in a distance graph, the mutational distance between

chromosomes is an upper bound on the true reproductive distance between chromosomes;
i.e. Dist(x,y) ≤ Distµ (x, y) .

Proof Sketch: Proof by reducto ad absurdum. Assume that Distµ (x, y) < Dist(x, y) .

However, in a GA, it is always possible to apply mutation alone without crossover. Thus

the same path that produced the smallest cost between the two chromosomes in the

mutation distance graph, is also a valid path in the full reproduction distance graph.
Furthermore, it will have the same cost as the mutational distance, Distµ (x, y) , which is

smaller than the distance value by assumption. However, a path representing the distance

value is supposed to have the smallest cost. This is a contradiction. Therefore the

assumption does not hold and thus the true distance must be no greater than the

mutational distance. ❚

In other words, if the crossover doesn’t help to shorten the cost in conjunction with

mutation, when one chromosome is being transformed into another through reproduction,

then it would not be a part of the shortest cost path and hence will not contribute to the

Part 2 Where is Elsewhere 62

distance value. Thus crossover will, at worst, not affect a mutation-only shortest cost

path. It can only reduce the cost and thus the distance.

From this realization we can ultimately conclude that, in place of a complete distance

model for the full reproductive step, we can temporarily use the mutation only model to

form the distance between chromosomes, as long as we keep in mind the restrictions on

its use. Since the Hamming distance is proportional to the mutational distance and since

all distances will routinely be normalized, the proportionality constant becomes irrelevant

and the Hamming distance shall be synonymous to the distance between chromosomes in

the remainder of the dissertation.

 63

Chapter 6

Distance Between Populations

Ch6 §1 Introduction

Ch6 §1.1 The Need for a Population Metric

All previous attempts to characterize gene space have focused almost exclusively on

the Hamming distance and the hypercube. However, this chromosome space cannot fully

account for the behavior of the GA.

An analysis of the GA using chromosome space implicitly assumes that the fitness

function alone determines where the GA will search next; that the fitness of each

chromosome in isolation uniquely determines the ‘fitness field’. This is not correct. The

effect that the population has on the selection operation can easily be seen in the

following examples: -

Part 2 Where is Elsewhere 64

 First consider the change in the probability of selection due to duplicates in the

population. In fitness proportional selection, the probability of a chromosome α being

chosen is normally thought of as

 Pr chr = α()=
f α()

f ci()
i=1

p

∑
 (2.9)

where p is the size of the population P, and α ,ci ∈ P . However, if there are duplicates of

chromosome α in the population, then the probability of selection changes to become

 Pr chr = α()=
f α i()

i=1

k

∑

f ci()
i =1

p

∑
=

k ⋅ f α()

f ci()
i =1

p

∑
. (2.10)

So the probability of selection for a chromosome is not only proportional to its fitness, it

is proportional to its multiplicity in the population. Definition (2.10) is, of course, a direct

consequence of the GA schema theorem36 and so is quite well known. However it is used

here to point out that fitness values associated with a chromosome cannot be derived

from the fitness function acting on the chromosome alone.

Actually, the population plays an even stronger (and more obvious) role in both

definitions (2.9) and (2.10). The denominator in the probability of selection is a function

of the make-up of the population. In other words fitness proportional selection is

proportional to the fitness of the chromosome with respect to the total fitness of the

population. This dependence on population for the probability of selection is true not just

for fitness proportional selection, but also for rank selection as the ranking structure

depends on which chromosomes are in the population, and tournament selection since

that can be reduced to a subset of all polynomial rank selections.

Finally, and most glaringly, the probability of selecting a chromosome that is not in

the population is zero; this is true no matter the fitness of the chromosome! Consequently

the fitness value associated with the chromosome is meaningless when taken

36 Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading,
Mass., Addison-Wesley Pub. Co. pg. 30.

Part 2 Where is Elsewhere 65

independently of the population. This means that the scalar field is not valid over the

chromosome space and thus chromosome space is not the correct underlying metric

space.

As the above examples demonstrate, any metric that hopes to model the behavior of

the GA must include population effects. These effects are not made evident if only the

chromosome space is examined, as the final example most strongly shows. Therefore the

metric used must include more information than just the distance between chromosomes;

we must look to the population as a whole for our unit of measure. In other words, we

need a distance between populations.

Ch6 §1.2 Population Distances and Cluster Analysis

Cluster Analysis, which is used heavily in pattern recognition, is the branch of

mathematics and statistics that attempts to group points in a space into various clusters in

order to minimize the dispersion or scatter
37 of the system. Consequently, the notions of

cluster scatter (diversity of a population) and distance between clusters (distance between

populations) are key and have been well defined, especially for clusters with points that

have positions which can be represented by continuous numeric vectors. When GA

systems that use numeric genes are examined in Chapter 7, all of the measures and

structures developed have exact analogs in the cluster analysis field.

Clusters of points that comprise symbolic ‘vectors’, which are called discrete valued

vectors in the cluster analysis field, have also been well studied as they have relevance to

conceptual clustering, which is important in Machine Learning.

The distance between two clusters of discrete valued vectors is the distance between

their respective mean centers38, where the mean center mc of a cluster C is defined

 d(mc, y)
y∈ C

∑ ≤ d(z, y)
y ∈ C

∑ , ∀ z ∈ C . (2.11)

37 The two terms are synonymous.
38 See Theodoridis, S. and K. Koutroumbas (1999). Pattern Recognition. San Diego, Academic Press.,
pp. 374, 378.

Part 2 Where is Elsewhere 66

Here d is a distance measure between two points, which, for symbolic values, usually is

the Hamming distance. Converting the above definition into plain English, the mean

center of a cluster is the point in the cluster that has the minimum average distance to all

of the other points, while the distance between clusters is the distance between the two

respective ‘center’ points39.

Unfortunately there are two basic problems with this definition as applied to

populations:

 The first problem lies in the fact that mc need not be unique. There may be many

points with identical average distances to every other point in the cluster. This is

especially true with a GA style population where duplicate points are allowed.

Secondly, the definition is inherently unstable. To see this, look at Figure 7, which

depicts two different clusters of points in R
2 , both basically in the shape of a ring. Let

these two ring clusters be composed of identical points with two exceptions. In the first

ring there exists a point that is closer to the geometric center of the ring than any of the

other points, which are on the ring itself. Therefore that point is the mean center for the

cluster. The second cluster also has such a point, which therefore is its mean center.

However that point lies on the other side of the ring with respect to the mean center of the

first cluster. Consequently, the distance between the two clusters is very large, spanning

the diameter of the ring, when really the two clusters are basically the same.

One modification that may occur to some to alleviate the instability of (2.11) in the

above ‘ring’ example is to make the geometric center the mean center of the cluster. This

will not vary much with the slight difference in the two points. This modified definition is

very similar to the previous one:

39 Actually, in (Theodoridis and Koutroumbas 1999) pg. 378 there are other ‘proximity’ measures given.
However, except for the distance between centers, none of them was a proper distances.

Part 2 Where is Elsewhere 67

 d(mc, y)
y∈ C

∑ ≤ d(z, y)
y ∈ C

∑ , ∀ z ∈ U . (2.12)

where U is the universal set of all points. If d is the Hamming distance, it can be easily

shown that mc can be computed by taking the majority function for the symbols at each

vector location across the population. Formally, a given coordinate k in the vector mc can

be computed by

 mc = majority
y ∈ C

(y) (2.13)

where the majority function for a vector is equal to the majority function applied to each

element of the vector.

Unfortunately, this definition of mc is no more unique then the previous one. Since

more than one symbol may be tied for the majority for any vector element across the

cluster, there can be many points that meet the criteria for being a mean center. However,

Figure 7: The position of the mean center is not stable. C1 and C2 above are virtually
identical clusters with only two points different, the two respective mean centers. The
point by point difference between the two clusters is small, while the difference between
centers is large.

Part 2 Where is Elsewhere 68

a work around exists. For each element in mc store the set of all such majority symbols,

i.e.:
 (mc)k ={x | count (x,Ck) = count(majority

y∈ Ck

(y),Ck)} (2.14)

where Ck is the collection of elements from the kth coordinate of each point in the cluster

C, and the function count(p,C) counts the number of points in the cluster (or collection)

that is equal to p. Instead of using the straight Hamming distance between centers, use the

sum of one minus the Tanimoto measure:

 d(mc

1, mc

2)k = l −
(mc

1 Imc

2)
(mc

1
Umc

2)k =1

l

∑ (2.15)

However, even after all of this manipulation, this definition of the distance between

populations is still fundamentally flawed. While the distance based on (2.11) was

unstable, (2.15) has become too stable! The distance is not sensitive enough; too much

information has been lost. This can easily be seen when examining a GA population of

binary chromosomes where a single locus has completely converged to the value 0. Let

us say that the environment changes and there is great pressure to select chromosomes

with the value 1 in that position. Little by little the population changes its make-up with

more and more 1 symbols appearing at the locus. Yet until the 1 gene achieves plurality,

there will be no change in the mean center at all! With this distance measure too much of

the possible volatility of the system could remain hidden.

As a result of all these problems, it was decided to return to the fundamentals and

attempt to define a new distance between populations from first principles. That shall be

the work of this chapter.

Ch6 §1.3 Chapter Outline

There are five more sections in this chapter. Ch6 §2 examines the well-known

population measure ‘diversity’ since the definitions and methodologies developed for it

will from the basis of the distance measures. In the two sections after, Ch6 §3 and Ch6

§4, two different approaches are introduced that attempt to determine the distance

between populations. The first, the all-possible-pairs approach, is a natural extension of

Part 2 Where is Elsewhere 69

the traditional diversity definition. The second is called the mutation-change distance

between populations. In Ch6 §5, a synthesis of these two distance concepts is developed

eventually leading to a single definition of the distance between populations. The final

section, Ch6 §6, looks at the distance between a single chromosome and a population.

This concept, which is based on the distance between populations, will be crucial in the

development of the mechanisms that determine when a colony is searching in the same

area as the core and then pushing the colony away.

Ch6 §2 Diversity

Before attempting to find a relevant distance between populations, it will be

instructive to first discuss the related concept of ‘diversity’.

There are four reasons for this. First, diversity is a known measure of the population

that is independent of the fitness function. Since the distance between populations should

likewise be independent of the fitness (for the scalar field model to be appropriate),

useful insights may be derived from a study of diversity. Second, several techniques shall

be introduced in this section that will become important later when discussing the

distance between populations. Third, the concept of diversity itself will be used in the

analysis of the distance between populations. Fourth and finally, diversity will be useful

as a measure in its own right when analyzing the behavior of the GA and the SBGA in

dynamic environments (see Chapter 15 for details).

This section is divided into three main parts. First the familiar definition of diversity

is given. Next that definition is transformed to allow for an efficient algorithm to be

produced. Finally a second diversity definition, based on Information Theory, is

introduced and connections to the original definition are made.

Part 2 Where is Elsewhere 70

Ch6 §2.1 All-Possible-Pairs Diversity

The simplest definition of diversity comes from the answer to the question “how

different is everybody from everybody else?” If every chromosome is identical, there is

no difference between any two chromosomes and hence there is no diversity in the

population. If each chromosome is completely different from one another, then those

differences add, and the population should be maximally diverse. So the diversity of a

population can be seen as the difference between all possible pairs of chromosomes

within that population.

While the above definition makes intuitive sense, there is one aspect not covered:

what do we mean by different. If a pair of chromosomes is only different by one locus, it

only seems reasonable that this pair should not add as much to the diversity of the

population as a pair of chromosomes with every locus different. Consequently the

difference between chromosomes can be seen as the Hamming distance or chromosome

distance, and hence the population diversity becomes the sum of the Hamming distances

between all possible pairs of chromosomes, see (Louis and Rawlins 1993). In cluster

theory this is called the statistic scatter, see (Duran and Odell 1974).

Now, since the Hamming distance is symmetric, and is equal to 0 if the strings are the

same, only the lower (or, by symmetry, only the upper) triangle in a chromosome pairs

table need be considered when computing the diversity. Consequently the all-possible-

pairs diversity can be formalized as

 Div P() = hd(ci ,c j)
j =1

i−1

∑
i =1

p

∑ (2.16)

where P is the population and chromosome ci ∈ P .

This diversity definition is actually used in the field of molecular genetics, although

modified slightly to reflect the fact that, in practice, one only has a sampling of DNA

sequences from a population. The modified formula is proportional to the all-possible-

pairs definition of diversity,

 Div P() =
2

l ⋅ n ⋅(n −1)
hd(ci ,c j)

j =1

i −1

∑
i =1

p

∑ ,

Part 2 Where is Elsewhere 71

and is called nucleotide diversity
40. For more details, see Molecular Evolution (Li 1997)

pp. 237-238.

Ch6 §2.2 The Reformulation of the All-Possible-Pairs Diversity:

A Linear Time Algorithm

Ch6 §2.2.1 Introduction

A problem with formula (2.16) is its time complexity. Since the Hamming distance

between any two pairs takes O(l) time and there are n2 possible pairs (actually 1
2 n n −1()

pairs when symmetry is taken into account), then the time complexity when using (2.16)
is O l n

2(). Since the time complexity of the GA is O(l ⋅ n) calculating the diversity every

generation would be expensive.

Surprisingly a reformulation of definition (2.16) can be converted into an O(l ⋅ n)

algorithm to compute the all-possible-pairs diversity. This will be developed directly.

It seems unlikely such an efficient algorithm would not already be present somewhere

in the literature. Unfortunately, most books that deal with sets of binary strings seem to

be interested in the maximum of the distances between all possible pairs and not the

average. Unlike the sum or average, the time complexity of the maximum Hamming
Distance between all possible pairs cannot be reduced from O l n

2() to O(l ⋅ n) time, so

the issue has been ignored. While the maximum distance between all possible pairs of

chromosomes can also be considered as a diversity measure on a GA population, it is not

a particularly good one since it is too sensitive to outlier chromosomes, and does not give

fine grain information about changes in the population.

Still, while the reformulation probably already exists, we will present a complete

discussion of it anyway. This is being done for one primary reason: the ideas and

mathematical procedures that will be introduced during the proof shall become the

40 The term ‘nucleotide diversity’ was coined in (Nei and Li 1979).

Part 2 Where is Elsewhere 72

foundations upon which the development of the distance between populations and other

later concepts shall rest.

Ch6 §2.2.2 Gene Counts and the Gene Frequencies

We will now introduce two terms that not only will be used to reformulate the

definition of the all-possible-pairs diversity, but also will become ubiquitous throughout

this chapter. They are the gene count across a population, and the gene frequency of a

population.

The gene count ck (α) is the count across the population of all genes at locus k that

equals the symbol α. This means that

 ck (α) = δi|k (α)
i =1

n

∑ . (2.17)

where δi |k (α) is a Kronecker δ that becomes 1 when the gene at locus k in chromosome i

equal the symbol α, and otherwise is 0 (see Appendix A-4 for a formal definition). Later

in the chapter we will frequently write ck (α) as cα |k , or just as cα if the locus k is

understood in the context.

The array of the gene counts of each locus will be called the gene count matrix
41.

The gene frequency fk (α) is the ratio of the gene count to the size of the population.

In other words,

 fk (α) =
ck(α)

n
. (2.18)

Again, later in the chapter we will frequently write fk (α) as fα |k , or just as fα if the locus

k is understood in the context.

The array of the gene frequencies of each locus will be called the gene frequency

matrix
42.

41 For non-evolutionary systems, such as those used for cluster analysis or symbolic machine learning,
the gene count matrix could be called the symbol count matrix.
42 Just as with the gene count matrix, the gene frequency matrix could be called the symbol frequency
matrix when dealing with non-evolutionary systems.

Part 2 Where is Elsewhere 73

Ch6 §2.2.3 The Reformulation

With the notation in place we can present the alternate form of writing the all-

possible-pairs diversity:

Theorem 6a: The all-possible-pairs diversity can be rewritten as

 Div P() =
n2

2 l
fk(α) (1− fk(α))

∀ α ∈ A

∑
k=1

l

∑ (2.19)

Proof. The proof of this theorem is in Appendix A-4.

Theorem 6b: The normalized all-possible-pairs diversity can be rewritten as

 Div(P) =

a

l ⋅ (a − 1) − r(a − r)
n2







fk (α) ⋅(1− fk (α))
∀ α ∈ A

∑
k=1

l

∑ a < n

n

l ⋅(n −1)
fk(α) ⋅ (1 − fk(α))

∀ α ∈ A

∑
k =1

l

∑ a ≥ n















where r = n ⋅ mod a .

Proof. The proof of this theorem is in Appendix A-4.

In most cases a < n and a | n , so r is 0 and the normalized all-possible-pairs diversity

can be written as

 Div(P) =
a

l (a −1)
fk (α) (1 − fk(α))

∀ α ∈ A

∑
k =1

l

∑ . (2.20)

Since, in the majority of GA implementations a binary alphabet is used with an even

population size (because crossover children fill the new population in pairs), the above

equation becomes

 Div(P) =
2
l

fk (α) (1 − fk (α))
∀ α ∈ A

∑
k=1

l

∑ . (2.21)

A pseudo-code implementation of this formula has been placed in Appendix C-1. The

algorithms there also include one for computing the gene frequency matrix, which is to

become very important later in the chapter as well as in the rest of the dissertation.

Part 2 Where is Elsewhere 74

Alongside the algorithms is a time complexity analysis. Here we show that the above

formula can be computed in O(l ⋅ n) time, which is much faster than the O(l ⋅ n
2) time

that the original naïve all-possible-pairs algorithm would take.

As with the normal all-possible-pairs diversity, the above reformulation also has a

biological interpretation; this time it is not in the recent area of molecular genetics, but in

the older field of population genetics. Here the diversity is used to measure the variation

of alleles in a population and is known as either the gene diversity or the expected

heterozygocity. It is normally only defined for a single locus and is usually given in the
form 1 − fa

2

∀ a ∈ A

∑ , where A is the set of alleles at that locus. Remember, an allele at a locus

may comprise an entire sequence, or even many sequences of nucleotides and so is

working at a much higher level than the nucleotide diversity, even though the underlying

mathematics is identical. For details, see Molecular Evolution (Li 1997) pp. 52-53.

This version of the (normalized) all-possible-pairs diversity appeared in (Collins and

Jefferson 1991) with reference made to the biological definition of heterozygocity,

although formula given had been modified to deal with binary values only. In the paper,

no attempts were made to connect this diversity definition with the standard all-possible-

pairs formulation.

Ch6 §2.3 Diversity as Informational Entropy

In the experimentation part of this dissertation, the all-possible-pairs diversity is not

used; in its stead is a diversity measure based on the Shannon entropy from Information

Theory. This measure of diversity is commonly used in biology for computing the

diversity of species in an ecology, see (Pielou 1975) pp.7-8. It has also been used in

Machine Learning for decision tree induction (Quinlan 1993). Lastly, it was introduced as

a form of genetic diversity into the GA literature as an alternative to the regular

Hamming diversity (Wineberg and Oppacher 1996).

In information theory, entropy is defined as

Part 2 Where is Elsewhere 75

 H(X) = p(x)log
1

p(x)x ∈ A

∑ (2.22)

where X is a discrete random variable with values taken from alphabet A and a

probability mass function p(x) = Pr{X = x}, x ∈ A (Cover and Thomas 1991). Equating

the population at a locus with X and the gene frequencies at that locus fk(α) with the

probabilities p(x) , the entropic diversity at a locus can be written as:

 Div k(P) = fk (α)log
1

fk(α)α ∈ A

∑ . (2.23)

Averaging over all loci gives the actual entropic diversity of the population:

 Div(P) =
1
l

fk (α)log
1

fk (α)α ∈ A

∑
k=1

l

∑ (2.24)

To distinguish between the two different types of diversity, the all-possible-pairs

diversity shall be symbolized by DivX(P) and the entropic diversity by DivH(P) (the X

represents the complete Cartesian cross of the all possible pairs, and the H represents the

entropy).

 The entropic diversity is closely tied to the all-possible-pairs diversity in behavior.

Preliminary experiments done by the author show that the correlation between the two is

very close, although not identical to 1. If we compare the definition (2.19) of all-possible-

pairs diversity with the entropic diversity definition above, we see that aside from the

constants in front, the two forms are remarkably similar. The only difference is the use of

log
1

fk (α)
 term in the entropic diversity instead of the (1 − fk (α)) term as used in the all-

possible-pairs diversity. Furthermore both diversities can be seen as just the expected

value of those terms. However, if we perform a Taylor expansion of log
1

fk (α)
 around

α = 1, we get

 log
1

fk (α)
= (1 − fk(α)) +

(1 − fk (α))2

2
+

(1− fk(α))3

3
+L+

(1− fk(α))i

i

Notice that the first term in the Taylor series is the same as the one used in the all-

possible-pairs diversity definition. Also notice that the other terms are all less than 1 and

rapidly approach 0 and consequently the early terms will dominate. So we can now see

Part 2 Where is Elsewhere 76

that DivX(P) is just the first term in the Taylor expansion about 1 of DivH(P) , which

accounts for the similarity in their behavior.

Now (1 − fk (α)) can be thought of as the “probability” that, if selected at random, the

gene at this location won’t be α. The other terms then can be seen as the probability

under random selection that gene α won’t be selected after i selections. Therefore, the

diversity can be regarded as the expectation that the selected gene will be “some other

gene”. Since in each generation the GA selects from the population multiple times, and

since the Taylor series above rapidly converges, the entropic diversity is used as a more

accurate measure of diversity.

Finally, it is well known that the maximum of the Shannon entropy occurs under a

uniform probability distribution. This, as we would expect, is the same as we found with

the all-possible-pairs diversity. Consequently, the normalized form for the entropic

diversity in the usual case when a < n and n | a is

 Div(P) =
1

l log a
fk(α)log

1
fk(α)α ∈ A

∑
k =1

l

∑ (2.25)

(notice that if we choose the base of a for the logarithm, the original definition of

entropic diversity (2.24) is already normalized). The corresponding formulae for the

cases when a < n but n / | a , and when a ≥ n) are analogous to those developed for the all-

possible-pairs diversity.

Part 2 Where is Elsewhere 77

Ch6 §3 An All-Possible-Pairs “Distance” Between Populations

Ch6 §3.1 Definition

The obvious extension of the all-possible-pairs diversity of a single population would

be an all-possible-pairs distance between populations. Here we would take the Cartesian

product between the two population producing all possible pairs of chromosomes, take

the Hamming distance between each of those pairs of chromosomes, and sum the results.

Since there are O(n ⋅m) such pairs (where n and m are the two population sizes) then

assuming m ∝ n , there would be O(n
2) distances being combined. Consequently the

resulting summation, if it turns out to be a distance, would be a squared distance. So

formally we have:

 Dis ′ t P1, P2()= hd(chr1i ,chr2j)
j =1

n2

∑
i =1

n1

∑ , (2.26)

where P1 and P2 are populations 1 and 2, each with a population size of n and m

respectively, and chr1i ∈ P1 and chr2j ∈ P2 , where i and j are indexes into each respective

population. The reason we are using the function name Dis ′ t instead of Dist shall be

explained in the next subsection. This ‘distance’ between populations is used in some

pattern recognition algorithms and is called the average proximity function
43

Following the same argument as with diversity presented in Ch6 §2.2, a frequency-

based version of the same formula can be produced:

 Dis ′ t P1, P2()=
nm

l
f1|k (α) (1 − f2|k (α))

∀ α ∈ A

∑
k =1

l

∑ , (2.27)

where f1|k(α) is the gene frequency of the gene α at locus k across population P1, and

f2|k(α) is the corresponding gene frequency for population P2.

43 Theodoridis, S. and K. Koutroumbas (1999). Pattern Recognition. San Diego, Academic Press. pg.
378.

Part 2 Where is Elsewhere 78

Ch6 §3.2 Problems

While initially attractive for its simple intuitiveness, the all-possible-pairs “distance”

is unfortunately not a distance. While it is symmetric and non-negative, thus obeying

properties M2 and M3, it fails on properties M1 and M4.

The failure of property M1 is actually readily seen. Remember M1 states that the

distance must be 0 iff the populations are identical; consequently the all-possible-pairs

“distance” of a population to itself should be equal to 0. Instead it is actually the all-

possible-pairs diversity measure, which is typically greater than 0. In fact, the diversity

only equals 0 when all of the chromosomes in the population are identical!

Furthermore the all-possible-pairs “distance” also fails M4, the triangle inequality.

This can be seen from the following example. Let A be a binary alphabet {0, 1} from

which the chromosomes in all three populations that form the triangle will be drawn. Let

populations P1 and P3 both have a population size of 2 and P2 have in it only a single

chromosome. To make the situation even simpler, in all populations let each chromosome

consist of only 1 locus. Now look at an example where the population make-up is as

follows:

P1 ={< chr1,0,0 >,< chr1,1,0 >},

P2 ={< chr2,0 ,0 >}

P3 = {< chr3,0 ,1 >,< chr3,1,1 >}.

The corresponding gene frequencies are f1(0) = 1, f1(1) = 0, f2 (0) = 1, f2 (1) = 0 , f3(0) = 0

and f3(1) =1. Using the all-possible-pairs “distance” definition (2.27) we can calculate

that Dist(P1,P2) + Dist(P2, P3) = 0 + 2 = 2 , and that Dist(P1,P3) = 4 = 2 .

Consequently Dist(P1,P2) + Dist(P2, P3) < Dist(P1, P3) and so the triangle inequality does

not hold.

Part 2 Where is Elsewhere 79

Thus the all-possible-pairs “distance” cannot be considered a metric44. It is for this

reason that we put the prime after the ‘distance function’ that has been developed so far.

Ch6 §3.3 Correcting the All-Possible-Pairs Population Distance

In the previous subsection we discussed two shortcomings of our initial attempt at

creating a population distance through the means of an all-possible-pair comparison of

the two populations. First, this measure does not obey the distance property M1, which

requires that the distance be equal to 0 if the two populations are identical. Second, it

doesn’t hold to property M4, the triangle inequality. We will now remodel the formula to

redress these two problems.

We shall deal with the triangle inequality first. Definition (2.27) was written to be as

general as possible. Consequently, it allows for the comparison of two populations of

unequal size. In the counter-example showing the inapplicability of the triangle

inequality, unequal sized populations were indeed used. When populations of equal size

are examined no counter-example presents itself. This holds even when the largest

distance between P1 and P3 is constructed and with a P2 specially chosen to produce the

smallest distance to both P1 and P3 . Generalizing this, we could redefine the definition

(2.27) such that small populations are inflated in size while still keeping the equivalent

population make-up. The same effect can be produced by dividing definition (2.27) by

the population sizes, or in other words through normalization.

Now let us address the problem of non-zero self-distances. As noted in the previous

subsection, this property fails because the self-distance, when comparing all possible

pairs, is the all-possible-pairs diversity, which need not be zero. To rectify the situation

we could simply subtract out the self-distances of the two populations from the all-

44 It is not even a measure. See (Theodoridis and Koutroumbas 1999) pg. 378 under the properties of the
average proximity function.

Part 2 Where is Elsewhere 80

possible-pairs distance equation45. Again we are removing the problems through

normalization.

To summarize the above, looking first only at a single locus and normalizing the

squared distance (which simplifies the calculation) we get:

 Dist k

2 (P1, P2) = Dis ′ t k (P1, P2)()2
−

a −1
2a

Divk (P1) −
a −1
2a

Div k(P2) (2.28)

Now, let us substitute (2.27) the definition of Dis ′ t P1, P2(), into the above equation. Also

let Div k(P) =
a

(a −1)
fk (α) ⋅ (1 − fk (α))

∀ α ∈ A

∑ , which is the normalized diversity as

developed in Ch5 §2.2, only modified for a single locus. Then (2.28) becomes

 DistL 2 |k (P1, P2) =
1
2

f1| k(α)− f2| k(α)()2

∀ α ∈ A

∑ . (2.29)

(the use of the L2 subscript in the distance name will become apparent in the next section)

Notice that the above distance is properly normalized46. Furthermore, this process has

actually produced a distance (or rather a pseudo-distance):

Theorem 7: The function DistL 2 |k (P1, P2) is a pseudo-distance at a locus k.

Proof: First notice that f1| k(α) − f2|k(α) forms a set of vector spaces (with k being the

index of the set). Now f1|k (α) − f2|k (α)()2

∀ α ∈ A

∑ is the L2-norm on those vector spaces.

From Theorem 1 we know that the norm of a difference between two vectors v − w

obeys all distance properties. Consequently, the equation f1|k (α) − f2|k (α)()2

∀ α ∈ A

∑ is a

distance. Any distance multiplied by a constant (in this case 1
2) remains a distance.

However, Dist l2 |k(P1,P2) is a distance between gene frequency matrices, and of course

there is a many-to-one relationship between populations and a gene frequency matrix. For

example, you can crossover members of a population thus producing a new population

with different member in it but with the same gene frequency matrix. Hence you can have

45 The a −1
2a term in front of the two normalized diversities in the resulting distance equation is a re-

normalization factor. It is needed to ensure that the resulting distance cannot go below zero, i.e. the distance
stays normalized as required.
46 The maximum occurs when f1|k(α 1) = f2|k (α 2) =1 and f1|k(α ≠ α1) = f2|k(α ≠ α2) = 0 .

Part 2 Where is Elsewhere 81

two distinct populations that have a distance of 0 between them. Consequently,
Dist l2 |k(P1,P2) is a distance for gene frequency matrices, but only a pseudo-distance for

populations. ❚

Using the L2-norm, we can combine the distances for the various loci into a single

pseudo-distance:

 DistL 2
(P1,P2) =

1
2l

f1|k (α) − f2|k (α)()2

∀ α ∈ A

∑
k=1

l

∑ . (2.30)

While it would be nice to have an actual distance instead of a pseudo-distance

between populations, most properties of metrics are true of pseudo-metrics as well.

Furthermore, since the distance between gene frequency matrices are actual distances,

their use connotes a positioning in gene space, albeit with some loss of information. The

effects of this information loss and how to compensate for it will be explored in Chapter

9 when the techniques for moving one population away from another are discussed.

Ch6 §4 The Mutational-Change Distance Between Populations

While, in the section above, we were able to derive a population distance using an all-

possible-pairs approach, it is a bit disappointing that to do so we needed to perform ad-

hoc modifications. In this section we will approach the matter from a different

perspective. We will define the distance between populations as the minimal number of

mutations it would take to transform one population into the other.

The above definition of population distance is the generalization of the Hamming

distance between chromosomes. With the distance between chromosomes we are looking

at the number of mutations it takes to transform one chromosome into the other; with the

distance between populations we directly substitute into the entire population each

mutational change to create an entirely new population.

Part 2 Where is Elsewhere 82

There are, of course, many different ways to change one population into another. We

could change the first chromosome of the first population into the first chromosome of

the other population; or we could change it into the other population’s fifth chromosome.

However, if we just examine one locus, it must be true that the gene counts of the first

population must be transformed into those of the second by the end of the process. The

number of mutations that must have occurred is just the absolute difference in the gene

counts (divided by 2 to remove double counting).

There is one slight problem with the above definition. It only makes sense if the two

populations are the same size. If they are of different size, no amount of mutations will

transform one into the other. To correct for that we transform the size of one population

to equal that of the other.

To give the intuition behind the process that will be used, imagine two populations,

one double the size of the other. If we want to enlarge the second population to the size of

the first population, the most obvious approach is to duplicate each chromosome. The

effect that this has is the matching of the size of the second population to the first while

still maintain all of its original gene frequencies. Since the first population will not

always be a multiple of the second population, we can duplicate the first population by

the size of the second population. Now the second population will be able to divide

evenly into the first. So the duplication factor in front of the first population is n2 , the

duplication factor in front of the second population is n1 , and the common population size

is n1n2 . So we can now define the mutational-change distance between two populations at

a locus as

DistL 1 |k (P1, P2) = n2 c1|k (α) − n1 c2|k(α)
∀ α ,α ∈ A

∑

= n1 n2

c1|k(α)
n1

−
c2|k(α)

n2∀ α ,α ∈ A

∑

= n1 n2 f1|k (α) − f2|k (α)
∀ α ,α ∈ A

∑

which, when normalized, becomes

 DistL 1 |k (P1, P2) =
1
2

f1|k(α) − f2|k (α)
∀ α ,α ∈ A

∑ . (2.31)

Part 2 Where is Elsewhere 83

Notice the similarity between the above and the all-possible-pairs distance at a locus

(2.29). We basically have the same structure except that the L2-norm is replaced by the

L1-norm (hence the use of the L1 and L2 subscripts). Therefore, the argument that was

used to prove Theorem 7 applies here as well. Consequently the mutational-change

distance between populations at a locus is also a pseudo-distance.

Finally, averaging across the loci produces the mutational-change pseudo-distance

between populations:

 DistL 1
(P1,P2) =

1
2l

f1|k (α) − f2|k (α)
∀ α ,α ∈ A

∑
k=1

l

∑ . (2.32)

Ch6 §5 The Lk-Norms and the Distance Between Populations

In the previous two sections we have seen two different distances (actually pseudo-

distances) between populations derived through two very different approaches. Yet there

seems to be the same underlying structure in each: the norm of the differences between

gene frequencies. In one case the norm was the L1-norm, in the other the L2-norm,

otherwise the two results were identical. Generalizing this, we can define an Lk-distance

on the population:

 DistL k
(Pa ,Pb) =

1
2l

fa |i (α) − fb|i(α)
k

∀ α ,α ∈ A

∑
i=1

l

∑k (2.33)

and
 DistL∞

(Pa ,Pb) = max
∀ α ,α ∈ A
∀ i,i ∈ [1,l]

fa | i(α) − fb |i (α)(). (2.34)

Interestingly, the L∞ - distance restricted to a single locus can be recognized as the

Kolmogorov-Smirnov test. The K-S test is the standard non-parametric test to determine

whether there is a difference between two probability distributions.

Part 2 Where is Elsewhere 84

Realizing that there are an infinite number of possible distance measures between

populations, the question naturally arises: is one of the distance measures preferable or

will any one do?

Of course, to a great degree the choice of distance measure depends on matching its

properties to the purpose behind creating that distance measure in the first place; i.e.

different distances may or may not be applicable in different situations.

That being said, there is a property that the distanced based on the L1-norm possesses

which none of the others do, making it the preferable distance. This property becomes

evident in the following example. Let us examine 4 populations, the chromosomes in

each population are composed of a single gene drawn from the quaternary alphabet {a, t,

c, g}. The 4 populations are:

P1 ={< chr1,a >, < chr2,a >, < chr3,a >, < chr4,a >}

P2 ={< chr1, c >, < chr2, c >, < chr3,c >, < chr4 ,c >}

P3 = {< chr1,a >, < chr2,a >, < chr3, t >, < chr4, t >}

P4 ={< chr1,c >, < chr2, c >, < chr3,g >, < chr4 ,g >}

and so

f1(a) =1, f1(t) = 0, f1(c) = 0, f1(g) = 0,

f2 (a) = 0, f2(t) = 0, f2(c) = 1, f2 (g) = 0,

f3(a) = 1
2 , f3(t) = 0, f3(c) = 1

2 , f3(g) = 0,

f4 (a) = 0, f4(t) = 1
2 , f4(c) = 0, f4 (g) = 1

2 .

Now, lets look at the two distances DistL k
(P1, P2) and DistL k

(P3, P4) . In both cases the

populations have no genes in common between each of the populations compared. We

should therefore expect the distance between both pairs of populations to be the

maximum distance that can be produced. It is true that the diversity within each of the

first two populations is 0, while the diversity within each of the second two is greater

than 0; however that should have nothing to do with the distances between the

populations. One expects both distances to be equally maximal. Working out the

distances from the equation

 k
k

baba PP
k ∑

∈∀

−=
A,

L)(f)(f
2
1

),(Dist
αα

αα

Part 2 Where is Elsewhere 85

we get

DistL k
(P1, P2) = 1

2
⋅ 2 ⋅ 1()k + 1

2
⋅2 ⋅ 0()k





1
k

= 1 and

DistL k
(P3, P4) =

1
2

⋅ 4 ⋅
1
2





k
 


 

1
k

= 2
k−1
k .

The only value of k for which the two distances will be equal (and since 1 is the

maximum, they will be maximally equal) is when k = 1. For the L∞ - norm ,

DistL∞
(P1, P2) = 1 and DistL∞

(P3, P4) = 1
2 , so it is only under the L1-norm that the two

distances are maximally equal. The above property of the L1-norm holds for any alphabet

and population sizes:

Theorem 8: When there are no genes in common between two populations P1 and P2,
DistL 1

(P1,P2) = 1 (i.e. is maximally distant).

Proof. See Appendix A-5.

Consequently, for the rest of the dissertation, the (pseudo) distance between

populations will be calculated using the L1-norm, unless some other norm is explicitly

stated.

Ch6 §6 The Distance between a Chromosome and a Population

Ch6 §6.1 The Definition

The mechanisms that separates a colony from the core, developed in the next chapter,

rely very heavily on the individual distance from each member of the colony to the entire

core. Even the method used to determine whether and to what extent the colony is

searching in the same area as the core will depend almost entirely on these distances.

Therefore the distance between a single chromosome and a population must be defined.

Part 2 Where is Elsewhere 86

Fortunately all that needs to be done is to recognize that a single chromosome can

always be considered as a population with only one member. Then the distance becomes

a direct corollary of the definition of the distance between two populations. This can be

simplified to produce the following:

Corollary 1: Let gk be the gene at locus k of the chromosome chr. Then the distance

between that chromosome and some target population is

 Dist (chr, P) =
1
l

1 − fP |k(gk)()
k=1

l

∑ . (2.35)

Proof: See Appendix A-6.

Ch6 §6.2 An O(l ⋅n) Cost Algorithm

The above formula can obviously be implemented as an algorithm to compute the

distance between a chromosome and a population. The time complexity of this algorithm

is actually no different from that of computing the distance between two populations or

computing the diversity of a population, all of which can be done in O(l ⋅ n) time.

However, usually one does not just need the distance of a solitary chromosome to a

target population; rather what is usually required is the distance to a target population of

every member of an entire population of chromosomes. If a distance takes O(l ⋅ n) time to

compute for each locus, then we have an O(l ⋅ n
2) algorithm, which is quite time

consuming.

Fortunately, after we calculate the gene frequencies for all loci in the target

population, which takes O(l ⋅ n) time, the actual computation of the distance in the

following algorithm is O(l) , i.e. linear in the length of the chromosome, and

consequently the cost for computing the distance for every chromosome remains O(l ⋅ n).

The algorithm that computes the distance between a chromosome and a population

can be found in Appendix C-2.

 87

Chapter 7

Distances and EC Systems with

Numeric Genes

Ch7 §1 Introduction

Until now the focus was on chromosomes with genes taken from n-ary alphabets, i.e.

symbolic genes. Genes of this type are not ordered in any way. Consequently,

comparisons between them are very Boolean – either they are the same, or they are

different. Real biological systems use symbolic nucleotides (A, C, T and G), as do most

GA implementations. Thus the Hamming distance is a natural distance measure for such

gene systems, as both are composed from the same fundamental comparison operator: are

they or are they not equal to the same gene (with caveats as described in the previous

chapter).

However, the other two main branches of EC, EP and ES, and even some GA

implementations, do not use symbolic genes. Rather, they use genes taken from ordered

Part 2 Where is Elsewhere 88

number fields such as the Integers and the Reals, with reproductive operators to match.

Such genetic systems shall be said to have numeric genes47. As a consequence of the

change in gene structure, the distance between chromosomes will not be the Hamming

distance, resulting in a change to all population measures.

This chapter rectifies the situation. First a distance between chromosomes is

developed that corresponds to the numeric genes and associated reproductive operators.

Next diversity will be examined in such populations followed by a new definition for the

distance between populations. Finally, the meaning behind the new equations is

examined and then contrasted with the corresponding equations developed for

evolutionary systems with symbolic genes. This leads to the concept of a ‘center of a

population’.

The following discussion is written in a format that highlights the similarities between

population measures in Euclidean space and those that were developed previously for

symbolic populations. This was done to help strengthen our intuition about the general

structure of population measures as a whole; the payoff of this approach will come in the

final section of this chapter and especially in the first half of the following part. However,

it should be noted that none of the diversity and distance definitions for populations with

numeric genes as presented below are at all new. Unlike populations with symbolic

genes, all of the results that will be developed are identical to those developed through

Cluster theory, as will be discussed in Ch7 §5.2.

47 A numeric gene must be distinguished from a numeric phenotype. If the phenotipic number is recorded
directly into the genome and is modified genetically as a number then it is a numeric gene. However, if it is
encoded as a sequence of binary digits (possibly through the use of Gray codes) and each digit is
manipulated as a separate locus, then the chromosome comprises symbolic genes.

Part 2 Where is Elsewhere 89

Ch7 §2 The Distance between Chromosomes

Ch7 §2.1 Using Euclidean Distance

The most common reproductive operators on numerical genes are the ‘creep’ and

‘Gausian’ mutation operators.

First let us look at the ‘Gausian’ mutation operator. Here, each locus has added to it a

value that has been drawn from a Gausian distribution with a mean of 0 and a standard

deviation of σ. At first one may think that the distance between two genes would just be

the difference between their values. However, since we are combining loci distances into

a single distance between chromosomes, we should recognize immediately that we are

constructing L1-norm, and perhaps one of the other norms would be more natural. Indeed,

as the standard deviation is based on the L2-norm, and since the Gausian distribution is

founded on this statistic, the distance to combine the loci should be the L2-norm, i.e. the

Euclidean distance between the chromosomes.

The ‘creep’ operator, used for chromosomes with integer based genes, acts

analogously to the ‘Gausian’ operator on real valued genes. When used, the ‘creep’

operator adds or subtracts one from the gene at a given locus. Now looking at the

behavior of the ‘creep’ operator when acting without regard to fitness, we see that it

behaves like a random walk. Now a random walk has a binomial distribution around the

starting point. Furthermore the binomial distribution is the discretized version of the

Gausian distribution. Consequently, it follows that the same argument used for

supporting Euclidean distances in systems with a “Gaussian’ mutation operator, applies

with equal force in here.

Ch7 §2.2 Standardizing the Unit Distance

The use of the unadorned Euclidean distance when measuring chromosomal distance

in EC systems with ‘Gausian’ or ‘creep’ mutations is not completely valid. Just as the

Part 2 Where is Elsewhere 90

Hamming distance is only proportional to the true symbolic mutational distance, so too is

the Euclidean distance only proportional to the true distance induced by the ‘Gausian’

and ‘creep ‘mutation operators.

To see that this is so, let us examine an EC system that uses ‘Gausian’ mutation. Take

two chromosomes, a target chromosome ct and a source chromosome cs , and let the

Euclidean distance between them be D(cs,c t) . Now let us look at two different ‘Gausian’

mutation strategies, one that has a standard deviation of σ1 and the other with a standard

deviation of σ2 , where σ1 << σ2 . Then using mutation strategy 1, we can arrive at

chromosome ct with far fewer mutational steps than if we use strategy 2. Yet the

Euclidean distance between the two chromosomes remains the same! As discussed in

Ch5 §3.1, the distance between chromosomes should reflect the behavior of the

reproductive operators used. Thus the Euclidean distance, at least unmodified, cannot be

the true distance between chromosomes.

The modification of the Euclidean distance measure, so that it properly reflects the

behavior of the ‘Gausian’ mutation (and by extension the ‘creep’ mutation) under a given

standard deviation, is relatively straightforward. We simply take a page from normalizing

random variables in statistics. To guarantee that a random variable has a unitary standard

deviation, the variable is divided by the standard deviation of the variable, producing a

new variable with a unit standard deviation. We therefore do the same thing and define

the distance between two chromosomes as

 Dist(cs,c t) =
D(cs ,ct)

σ
 (2.36)

where D(cs,c t) is the Euclidean distance, and σ is the standard deviation of the noise

being added to each locus by the ‘Gausian’ mutation operator48.

So, just as with the relationship between the Hamming distance and mutational

distance for the GA, the mutational distance between real valued genomes is directly

48 It is important not to mistake this standard deviation of the mutational noise with the standard
deviation observed in the population. They can be and usually are radically different.

Part 2 Where is Elsewhere 91

proportional to the Euclidean distance. Therefore, as long as the standard deviation of the

added ‘Gausian’ values does not change, the Euclidean distance can be used.

Ch7 §2.3 The Problems with Distances when Parameters are Evolved

There is one caveat to the above analysis. We have assumed that the standard

deviation of the Gausian values (or the standard deviation of the random walk produced

by a given creep size) is a constant across the population. However, that need not be the

case. In fact, in Evolutionary Strategies, it is actually not the case.

In ES, the standard deviation of the Gausian values used in mutation is incorporated

into the genome itself. It evolves along with the members of the population and each

chromosome has its own σ. Therefore a problem of analysis arises similar to the one

induced by crossover in systems with symbolic chromosomes: the ‘distance’ from

chromosome ct to chromosome cs need not be the same as the ‘distance’ from

chromosome cs to chromosome ct . Furthermore, in this instance it is obvious that it

won’t be the same if σs is not equal to σ t .

There is one saving grace. In practice, as the population evolves in ES, the standard

deviations begin to converge, so that most standard deviations are within a given range.

Therefore an upper and lower bound on the distance between chromosomes can be

computed by using the minimum and maximum standard deviations in the population.

While the true distance will have to wait for further research, we know it must lie

somewhere within that range. Consequently, assuming that difference between the upper

and lower bound is small, we will do all further analysis for EC systems that use a

constant standard deviation when using ‘Gausian’ mutation.

Furthermore, as noted in the previous subsection, the Euclidean distance can be

substituted for the true mutational distance since most measures that use the distance will

be relative measures. So, in practice, the proportionality constant will be eliminated.

Consequently, in the remainder of the dissertation, the Euclidean distance will be used

when analyzing EC systems with numeric genes.

Part 2 Where is Elsewhere 92

Ch7 §3 Diversity in Populations with Numeric Genomes

The first population measure that was examined for symbolic genomes was diversity,

especially as the diversity of a population was needed to fully understand the distance

between populations. The same holds when dealing with numeric genomes. Therefore we

now turn our attention to the diversity of the population.

At first one might think that the all-possible-pairs diversity for a locus would be

1
2

D(xi |k, x j |k)
i =1

n

∑
j=1

n

∑

where D is the Euclidean distance between chromosomes. However, a simple summation

of the distances is equivalent to taking the L1-norm of the all-possible-pairs ‘vector’.

Furthermore, since D is based on the L2-norm, it only makes sense to match the method

of combination of all of the possible pairs with that used for the distance itself. There is

nothing special about the averaging done by the L1-norm. Rather, the L2-norm can be

thought of as an ‘average’ that emphasizes the effects of larger differences.

Consequently, using the L2-norm, the all-possible-pairs diversity at a locus becomes

 Dvk

2 (P) =
1
2

D
2 (xi|k ,x j|k)

i =1

n

∑
j =1

n

∑ .

To obtain the actual all-possible-pairs diversity by combining all the diversities at the

various loci, we again use the L2-norm producing

 Dv
2 (P) =

1
2

D
2 (xi |k , x j |k)

i =1

n

∑
j =1

n

∑
k=1

l

∑ =
1
2

(x i|k − x j |k)
2

i =1

n

∑
j =1

n

∑
k=1

l

∑ .

The above formula, coded as is, would produce an O(n ⋅l2) algorithm. However, just

as with systems that use symbolic genes, the formula can be rearranged to produce a

program that hasO(l ⋅ n) time complexity. For the symbolic gene systems, this was

accomplished by introducing the frequency of a gene at a locus. While this cannot be

used directly for systems using numeric genes, there is an analogous measure: the

average gene value at a locus. This can be used to produce a reformulation of the all-

possible-pairs diversity:

Part 2 Where is Elsewhere 93

Theorem 9: Let xk =
1
n

xi |k
i=1

n

∑ and xk
2 =

1
n

xi|k
i =1

n

∑ . Then Dv
2 (P) = n

2
xk

2 − (xk)2

k=1

l

∑ .

Proof. See Appendix A-7.

Looking at the diversity equation in the theorem, we see that the all-possible-pairs

diversity is dependent directly on population size. Since intuitively the diversity of a

population should not increase by simply duplicating the exact population, we will define

the true diversity as

 Div(P) = xk
2 − (xk)2

k=1

l

∑ (2.37)

which is simply the all-possible-pairs diversity divided by the population size.

We will now turn to the time complexity of an algorithm that implements the above
definition of diversity. Since the average gene value, xk , and the average of the gene

value squared, xk
2 , can be computed in O(n) time for a single locus, and since there are l

loci, all of the average gene values and gene values squared can be computed in O(l ⋅ n)

time. Furthermore, once the average gene values are obtained, the diversity squared can

be computed in O(l) time. Consequently the total time complexity of an algorithm to find

the squared diversity is O(l ⋅ n).

Ch7 §4 Distances Between Populations

Continuing to use the same approach in finding appropriate measures for evolutionary

systems with numeric genes as we have for those with symbolic genes, we will now

design a distance between populations from an all possible pairs comparison of distance

between the members of the two populations. This is done after removing the diversity of

the respective populations from the result. Also, as when creating the diversity measure

for populations with numeric genomes, we will be using the L2-norm instead of the L1-

norm to combine the distances between all of the possible pairs from the two populations.

This matches the use of the L2-norm based Euclidean distance used to measure the

Part 2 Where is Elsewhere 94

distance between chromosomes. Consequently, a first attempt at defining the distance

between populations is

 Dis ′ t (Px, Py) = D
2(x i ,y j)

i =1

n

∑
j =1

n

∑ − Div
2 (Px) − Div

2 (Py)

where xi ∈ Px , yi ∈ Py , n and m are the number of members in Px and Py respectively and

D is the Euclidean distance.

Notice that to remove the ‘self distance’ we must subtract out the square of the

diversity from the square of the distance. Again this is just using the L2-norm approach to

combine values; although the L2-norm usually adds values rather than subtract them.

However, one can always think of the diversity values being combined with the distance

as being imaginary numbers, then the l2-norm can be used directly.

Now from the previous section we know that Div
2(Px) = n

2
xk

2 −(xk)2

k=1

l

∑ and

similarly that Div
2(Py) = m

2
yk

2 − (yk)2

k=1

l

∑ . Furthermore, since

 D
2 (Px ,Py)

i =1

n

∑
j =1

m

∑ = (x i|k − x j|k)2

k=1

l

∑
i=1

n

∑
j =1

m

∑ = mn xk
2 − 2xk yk + yk

2

k=1

l

∑

we find that the square of the above ‘distance’ would be

 Dis ′ t
2 (Px, Py) = n(m − n) xk

2

k=1

l

∑ + m(n − m) yk
2

k=1

l

∑ + (nxk − myk)2

k =1

l

∑ . (2.38)

Now, if n = m , we know t hat the above becomes a distance because the first two

terms vanish, and the third term becomes n times the Euclidean distance between gene

averages. However, if the two population sizes are unequal, then it is not a distance, since

it would fail the triangle inequality.

Fortunately we can play the same trick as was done in Ch6 §4 to derive the distance

between populations with symbolic genes. Two new populations must be created to even

out the sizes of the populations, while still keeping the gene averages the same. The first

population, which originally has a size of n, must be duplicated m times, while the second

population (of size m) must be duplicated n times. As a result the two new populations,

Part 2 Where is Elsewhere 95

′ P x and Py
′ , both have the same population size, mn, yet will have identical gene averages

across all members as the populations they were based on. Now if we define the distance
between populations as Dist(Px, Py) = 1

mn Dis ′ t (′ P x , ′ P y) , where the constant is used to

reduce the distance to a unit sized population for normalization purposes, we find that the

following theorem holds:

Theorem 10: Dist(Px, Py) = (xk − yk)2

k=1

l

∑ .

Proof. By definition we know that Dist
2(Px, Py) =

1
m

2
n

2 Dis ′ t
2 (′ P x, ′ P y) . Now since the

sizes of ′ P x and Py
′ are equal, it follows from the definition of Dis ′ t in (2.38) that

 Dist
2(Px, Py) =

1
m

2
n

2 (mn ⋅ ′ x k − mn ⋅ ′ y k)2

k=1

l

∑ = (′ x k − ′ y k)2

k=1

l

∑ .

Finally, since ′ x k = xk and ′ y k = yk by construction, the desired result is obtained. ❚

The above distance can easily be recognized as a Euclidean distance. Furthermore, in

Euclidean space, the average of the values at each coordinate in a collection of points is

called a centroid. Consequently, since each chromosome can be considered a coordinate

vector in chromosome space, the distance between populations can be seen as the

distance between the centroids of the populations.

As a direct corollary, we also know that the distance between a chromosome and a

population would be the Euclidean distance between centroid of the population, and the

value of the chromosome, i.e. for the distance from chromosome x to population Y is

 Dist(Px, Py) = (xk − yk)2

k=1

l

∑ . (2.39)

Part 2 Where is Elsewhere 96

Ch7 §5 Distances and Centers

Ch7 §5.1 The Centroid

The population diversity and distance between populations for EC systems with

numeric genes have deep connections with natural measures of diversity and distance for

collections of points in Euclidean space.

To demonstrate this, we will first examine the standard measures used in statistics.

While statistics primarily deals with sampling points from a random variable, one can

also view it as measuring points from a 1d Euclidean space, with the mean being the

centroid of a collection of points. The distance, in statistics, between two random

variables is the difference between their means. While this looks like the Manhattan

distance in use rather than the Euclidean, one must remember that in a one-dimensional

space they are actually the same.

The standard deviation is the method of determining how concentrated or scattered

the points from the random variable are around its mean. This seems to be an alternative

measurement of diversity. Looking at the formula of the standard deviation from the

mean,

 σ =
1
n

(x i − µ)2

i =1

n

∑ ,

it is easily recognized as being proportional to the L2-norm applied to the distances

between each point in the collection and the centroid.

We can now generalize the above definitions to k-dimensions.

The distance between two collections of points in Ek is the distance between their

respective centroids (see Figure 8). This expanded definition has its analog in physics.

Much of dynamics is calculated using the ‘center of mass’, which is just the centroid of

the coordinates of the particles, with each particle weighted by its mass. In fact, a particle

of large mass can be thought of as a ‘unit’ massed particle represented many times at the

Part 2 Where is Elsewhere 97

same point in space; with this understanding, the center of mass is actually identical to

the centroid. The use of the distance between centroids to represent the distance between

two groups in Euclidean space is also consistent with standard usage in geometry, from

which the term ‘centroid’ has been borrowed.

 The straightforward generalization of the standard deviation from the mean, to get a

sense of ‘spread’ of the collection of points, would be to take the ‘standard’ deviation’ of

points around the centroid (see Figure 8). In other words we wish to take the L2-norm to

combine the distances between each point from the collection and its centroid.

Figure 8: Two collections of points in Euclidean 2-space are presented, along with the
basic measurements that are used.

Part 2 Where is Elsewhere 98

We already know that the distance between populations is the distance between

centroids as desired, but is the all-possible-pair diversity measure of a population the

same as the ‘standard deviation’ from the centroid? Surprisingly, it is!

Theorem 11: The square diversity of a population is proportional to the variance of

points around a centroid, i.e. Div(P) =
1
n

D
2 (

v
x i ,

v µ)
i =1

n

∑ where D(
v
x ,

v
y) is the Euclidean

distance between two vectors,
v
x i = (xi|1,x i|2,L, xi |k) and

v µ = (µ1,µ2 ,L,µk) .

Proof. See Appendix A-8.

Ch7 §5.2 Cluster Analysis and Numeric Populations

As mentioned in the introduction, none of the above definitions and results developed

for populations that use numeric genomes are at all new. They are well known and fall

within the purview of Cluster Analysis.

Just about every concept and definition detailed in this current chapter on numerical

genomes exists in the Cluster Analysis literature: The diversity of a population, defined

as the ‘deviation from the centroid’, is the statistic scatter of a cluster. The relationship

between the statistic scatter and the sum of squares of the all-possible-pairs Euclidean

distance is also well known. The distance between centroids (when multiplied by
n1n2

n1 + n2

) is the main distance between clusters and is called the statistical distance

between clusters. Even the relationship between the statistical distance, called between

group sum of squares (BGSS), and the statistical scatter, called the within group sum of

squares (WGSS), is known.

A good summary of the mathematics behind Cluster Analysis (although now

somewhat dated) can be found in Cluster Analysis: A Survey (Duran and Odell 1974). For

a more recent overview, as well as a discussion on how cluster theory is used to solve

pattern recognition problems, see (Theodoridis and Koutroumbas 1999).

Part 2 Where is Elsewhere 99

Ch7 §5.3 The Characteristic Center and the Center of the Population

As has become evident throughout the development of the various measures used on

populations that have numeric genes, there are deep similarities between those measures

and the ones used on populations that have symbolic genes.

In numeric systems, the distance between chromosomes is based on the Euclidean

distance, which is the L2-norm of the vector difference between the chromosomes. In

symbolic systems the distance between chromosomes is the Hamming distance, which is

the ‘L1-norm’ of the Boolean difference between genes. It is also half of the L1-norm of

the difference between the gene frequency matrices for the two chromosomes, which, if

normalized, is the distance between populations (2.32) when both populations are

comprised of only one chromosome each.

In numeric systems, the distance between populations is the Euclidean distance

between centroids, which is again the L2-norm of a vector difference. In symbolic

systems, the distance between populations is the L1-norm of the difference between the

gene frequency matrices of the two populations, normalized.

In numeric systems, the diversity of a population is the L2-norm of the distance from

each chromosome to the centroid of the population. In symbolic systems, the diversity of

a population is the (normalized) L1-norm of the distance from each chromosome to the

gene frequency matrix of the population (see Appendix A-9).

From the above list of comparisons between systems with symbolic and numeric

genes the analog between the two becomes very apparent. For symbolic gene systems,

the gene frequency matrix takes the place of the centroid, and the L1-norm and Manhattan

distances take the place of the L2-norm and Euclidean distances49.

49 For the L1-norm to apply to the gene frequency matrix, the matrix has to be ‘converted’ into a vector.

This can be done by a simple indexing trick. Let the single vector index k be defined as k = l
i + j , where l

is the length of a chromosome. For example, given a matrix
a

00
a

01
a

02

a
10

a
11

a
12

a
20

a
21

a
22













, the equivalent vector would

Part 2 Where is Elsewhere 100

As a consequence of the above observations, two new terms will be introduced: the

characteristic center and the center of the population.

The gene frequency matrix of a population with symbolic genes will be given a new

name: the characteristic center. This change of name was deemed necessary firstly in

order to highlight the way the gene frequency matrix seems to characterize a population,

but mainly to emphasize its similarity to the centroid.

The second term is introduced in order to have a way of referencing that aspect of a

population that corresponds to either the centroid or the characteristic center, yet apply

equally to systems that have symbolic or numeric genes. Thus the generic term center of

the population will refer to the above concept.

be a
0

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

[] = a
00

a
01

a
02

a
10

a
11

a
12

a
20

a
21

a
22

[] . With the gene frequency matrix written
this way, the L1-norm can now be applied, producing all of the results listed above.

 101

PART 3

THE SHIFTING BALANCE

GENETIC ALGORITHM

 102

Chapter 8

Introduction

Ch8 §1 Adding the Details that Were Missing from the SBEA

In Part 1 we developed the “shifting balance” addition to evolutionary algorithms.

Added to the main population of the regular evolutionary algorithm, be it the GA, ES or

EP, are a series of smaller, helping populations called colonies. The main population,

called the core, is responsible for exploring the area of the search space that seems most

promising, i.e. performing exploitation, while the colonies explore the areas of the search

space where the core population doesn’t yet have a presence. For the colonies to maintain

their distance from the core, they must have information as to how far they are away from

the core. Thus for the SBEA to be applicable to a particular evolutionary algorithm, a

distance between chromosomes and populations must be known. Consequently, a

mathematically precise definition for distances between populations was derived in the

previous chapter for various evolutionary systems, and as a result, the colonies now can

have a sense of where “elsewhere” is through a distance measure to the core. The basis

Part 3 The Shifting Balance Genetic Algorithm 103

for that distance changes depending on the evolutionary algorithm used: the distance for a

standard GA is based on Hamming distance between chromosomes, while for ES, EP or a

GA with real valued genomes, the distance will be derived from the Euclidean distance

between the chromosomes.

While the above exposition is accurate, some important details are missing: with the

distance measure the colonies can tell where elsewhere is, but through what mechanism

do they move themselves there? For the core to profit from the exploration by the

colonies, the colonies send in migrants; but how should the core population incorporate

them?

These details will, of course be different for the different underlying evolutionary

algorithms. In this dissertation we will develop the mechanisms to add to the GA, which,

when completed, shall be called the Shifting Balance Genetic Algorithm (SBGA). All

details and experimentation will be based on the GA. The “shifting balance” addition to

ES or EP would be done analogously.

Ch8 §2 An Outline of the Chapters that detail the SBGA

In the three chapters following this introductory chapter, the workings of the SBGA

will be explored in detail.

The first two chapters complete the various mechanisms that are needed for the

SBGA to function properly, but were previously glossed over.

In Chapter 9 the mechanisms necessary to move the colonies into new areas in the

search space will be developed. This process was begun in the previous part of the

dissertation, which looked at ‘where is elsewhere’. However, while location in the gene

space has been better delineated, the actual algorithms that would keep the colonies from

the core were not presented. This situation will finally be rectified and the complete

process given.

Part 3 The Shifting Balance Genetic Algorithm 104

In the chapter following, the migration of members from colony to core will be

investigated. Topics will include the rationale for not having migration from core to

colonies, how to integrate the migrants from the colonies into the core, and the frequency

that migration should occur at.

With the completion of these two components we will be in a position to comment on

the completed SBGA as a whole. This will be dealt with in Chapter 11. First the top-level

algorithm of the SBGA is compared with that of the GA. Then the order that the new

operators should be performed in is determined. The balance of the chapter, which will

end this part of the dissertation, will discuss the usage of the SBGA in both stationary and

dynamic environments, motivating the experimentation that will be investigated during

the remainder of the dissertation.

 105

Chapter 9

Moving the Colony Elsewhere

Ch9 §1 Introduction

The purpose of developing a distance between populations, as was done in Part 2, was

to ensure that the colony could tell that it was searching in an area of the search space that

was different than where the core was searching. In this chapter we shall now use that

distance to do just that.

There are two main tasks to accomplish when keeping the colony away from the core:

detecting when the colony is too close to the core, and actually moving the colony away

when so detected. The detection mechanism will be dealt with in Ch9 §4, while the

procedure for moving the colony, if found too close to the core, will be developed in Ch9

§2. Between these two sections we shall motivate the development of the detection

mechanism by creating a method to reduce or increase the pressure by which the colony

is moved away from the core.

Part 3 The Shifting Balance Genetic Algorithm 106

In the last section a technique that keeps colonies away from each other will be

presented.

Ch9 §2 Keeping Colony Away from Core

Let us assume that a colony is too close to the core. For the Shifting Balance theory to

work, the colony must be forced elsewhere. The theory as developed by Sewall Wright

identified random drift occurring in small populations as the mechanism to perform this

task. While this may or may not be true in nature, as the basis for an algorithm random

drift seems rather haphazard and hard to control. A better approach is to change the

fitness function such that areas other than where the core is searching are preferred and

let selection do the work. Thus selection is the sole mechanism that determines where the

GA is to search, eliminating the balancing act entailed by relying on both random drift

and selection in tandem.

An immediate problem that arises, when trying to evolve the colony away from the

core, is the choice of fitness function. As the name implies, random drift moves the

population in a random direction. We can do better than that. The purpose of the fitness

function is to increase the distance between the colony and the core. Now that we have a

distance between the colony and core, as developed in the previous chapter, it can be

used as the fitness function. In other words the fitness function shall be the distance from

the core: the further a member is from the core, the more fit it is.

Notice that fitness is a property of the individual members of a colony, not of the

entire colony. Consequently the distance used in the fitness is not the distance between

the entire colony and the core, but rather the distance between an individual member of

the colony from the core. Thus one would use the distance from a single chromosome to

a population, i.e. (2.35) for chromosomes with binary or symbolic genes, and (2.39) for

chromosomes with real valued genes. The colony can then be allowed to evolve

naturally, using the regular GA. With distance from the core used as the fitness, the

Part 3 The Shifting Balance Genetic Algorithm 107

colony evolves smoothly away from the core and into virgin territory without the

unnatural leap suffered by using a restart.

Ch9 §3 Adding Finesse: Evaluating The Colony Using a
Multi-Objective Function

If the algorithm were left as presented in the previous section, the evolution of a

colony away from the core would be an on / off proposition. If the colony is too close to

the core it completely stops trying to find the optimum of the objective function and just

moves away from the core in any direction. It would be nice if the colony is allowed to

balance the two tasks and partially follow the objective function’s landscape so when it

moves away from the core, it has a good chance of heading into a fruitful area. However,

to accomplish this, two goals are being merged: first one must follow the fitness

landscape and yet also move away from the core. In other words we are faced with a

multi-objective optimization task.

The problem with multi-objective optimization for the GA is the reliance of the GA

on a single fitness function for selection. Many techniques have been developed to handle

multi-objective optimization, see (Coello Coello 1999).

The simplest method is to combine the various functions to be optimized into a single

function. This is usually done using a linear combination of the various objective

functions into a single fitness function:
 F(x) = wi ⋅ fi(x)

∀ i

∑ (3.1)

with the weights usually constrained so that they sum to one. Since we are dealing with

only two optimization functions, the objective function f(x) and the distance between the

chromosome and the core population Dist(x,P), we will only have one weight, which

shall be symbolized as κ. Consequently, the general linear equation takes the form

 F(x) = κ ⋅ f (x) + (1 −κ) ⋅ Dist(x,P). (3.2)

A second technique for handling multi-objective functions was proposed by Schaffer,

which he called the Vector Evaluated Genetic Algorithm, known by its acronym

Part 3 The Shifting Balance Genetic Algorithm 108

“VEGA” (Schaffer 1985). Here the next generation is divided into equally sized sub-

populations, one sub-population for each function. A sub-population is then filled by

selecting chromosomes from the parent’s generation based on only one of the

optimization functions. In other words there is a one-to-one mapping of the fitness

function used by a sub-population and the set of optimization functions. The sub-

populations are then merged and shuffled and the GA genetic operators are applied to

form the new generation. VEGA has been modified in various ways (Cvetkovic, I. et al.

1998), including keeping the sub-populations separate and allowing for migration.

In this dissertation, it was decided to use a modified VEGA approach to handle the bi-

objective criteria of regular fitness and distance from the core. The linear combination

approach was ruled out because it was felt that the combined fitness function was

blending two very disparate tasks, with the resulting function possibly doing neither well.

The standard VEGA approach was also rejected because, after the shuffle, the crossover

operator would be combining solutions that could have been selected for radically

different reasons (distance from core versus high fitness on the objective function). The

modifications developed by Cvetkovic et. al. seemed to be more promising, but a more

direct modification of VEGA, developed below was chosen instead. There are two

reasons for the development of the modification. First, it is actually simpler than VEGA

is, with or without Cvetkovic’s modifications. Second, and more importantly, it closely

matches the properties one would desire given the nature of the bi-objective task faced by

the colony.

For the modification of VEGA as used by the SBGA, first the shuffle step is

removed. Then, when filling a sub-population, the parents are selected from the previous

generation’s entire population. However, the fitness function used during the selection is

the one associated with the sub-population being filled. Notice that, unlike VEGA, it is

the children of the selected parents that fill the sub-population, not the parents themselves

(see Figure 9 for details).

Part 3 The Shifting Balance Genetic Algorithm 109

Figure 9: The modified VEGA algorithm tailored for the SBGA colonies, which are trying
to maximize both the objective function its distance to the core.

Part 3 The Shifting Balance Genetic Algorithm 110

As a consequence of the modification, crossover is performed on chromosomes that

have been selected under the same criteria. Furthermore combining the two sub-

populations allows for chromosomes to have a probability of being selected for the next

population that combines its distance from the core with its objective function valuation.

This doesn’t happen if the two sub-populations are kept separate, even with migration.

A full outline of the reproduction routine as used in the SBGA is presented in

Appendix C-3 pseudo-code, including alongside, a detailed description of the working of

the code.

Part 3 The Shifting Balance Genetic Algorithm 111

Ch9 §4 A Dynamic κκκκ: Detecting the Similarity Between the Colony’s

Search Area and the Core’s

Ch9 §4.1 Defining the Problem: The Fine Balancing Act of Keeping

Colony From Core Without Wandering to Infinity

Intuitively, having the colony move away from the core while still following the

“fitness landscape”, instead of just blindly “fleeing” the core’s search area, should be of

great advantage to the SBGA system. However, one obvious downside is the need to

introduce the new parameter κ; how should this parameter be set?

The simplest approach it to keep κ constant. This is what is implicitly done in VEGA,

with κ equaling 1
2 . However, with a little thought one can see that this is not desirable.

When κ is kept constant, a constant pressure is maintained driving the colony away from

the core. This pressure will be, to some degree, balanced by the colony’s following of the

“fitness landscape” through the means of the selection being done on the (1 − κ) colony

members. However, unlike the selection pressure to keep away from the core, this

counter pressure is not held constant, and changes as the area of the objective function

being explored changes. Furthermore, even when the colony is far enough away from the

core so that it is searching in novel territory, the pressure away from the core continues

on relentlessly. Consequently over-time (and from preliminary experiments that time can

be short indeed) the colonies will all drift over to the antipode of the core (see Figure

10). To state it mildly, this is not the behavior that one wants the system to have!

It is now obvious that a measure is needed to naturally reduce and even stop the

selection pressure on the colony that is driving it to greater and greater distance from the

core, especially after the colony is in an area free from core members. This measure

would regulate the value of κ for the colony, keeping it small to zero when far from the

core while increasing it when moving into an area of the search space that is already

occupied by the core. It is just such a measure that will be developed in this section.

Part 3 The Shifting Balance Genetic Algorithm 112

Figure 10: If a constant value of κ is used, all colonies are driven to the antipode of the
core.

Part 3 The Shifting Balance Genetic Algorithm 113

Ch9 §4.2 The Key Idea in an Abstract Form

Let us look at a Venn-like diagrammatic abstraction of the situation50. In Figure 11

we see three scenarios. In Figure 11a, the colony is entirely in the core. Consequently the

pressure to move the colony should be at its greatest and hence κ should be much greater

than 0. In the next figure, the colony is already partly out of the core’s search area; so κ

should be reduced from the previous level. In the last figure the colony is not near the

core at all. Therefore the colony should be allowed to just follow the search space

according to the selection pressure provided by the objective function, which means κ

must be equal to 0.

50 These are not true Venn diagrams since the Colony members are distinct from the Core members. Thus
when the Colony is seen to overlap with the Core the members are overlapping in ‘position’ and do not
(necessarily) have any shared members.

Figure 11: Venn-like diagrams representing the overlap of the search areas between the
core and a colony

Part 3 The Shifting Balance Genetic Algorithm 114

From this analysis we can see that a good measure of κ should be based on the

proportion of members of the colony that overlap the search area of the core.

This is a very different concept from just looking at the distance from colony to core.

There the emphasis is on the entire colony population; the question being “how much

change is needed to turn it into the core?” A large amount of change necessitates no

action. Too little and the colony must be moved away from the core. Yet there was no

scale associated with ‘too little difference’ versus ‘just enough difference’.

After the new insight, the focus has shifted to the position, with respect to the core, of

each colony member, as opposed to the distance of the colony in its entirety. The

question has become “how many members of the colony are in the same search area as

the members of the core?” The absolute scale of the ‘distance between populations’ has

now become a relative measure of overlapping search areas. This change in perspective

will allow for the regulation of the division of the sub-populations, as will be

demonstrated presently.

Ch9 §4.3 From �Venn� Diagrams to Populations in Gene Space Part I:

the Percentage Population Overlap

Ch9 §4.3.1 From ‘Venn’ Diagrams to Populations in Gene Space: An Overview

Now that the main idea has been loosely presented as a series of Venn-like diagrams,

all that is left is to simply translate it into actual populations in gene space. This

unfortunately is not so easily done.

In this and the following subsection, two different attempts at capturing this abstract

idea in algorithmic form will be made.

The first attempt will successfully embody the concept of the ‘overlapping search

areas’. It will be called the ‘percentage population overlap’ and is presented in the

balance of the current section. Unfortunately, the corresponding algorithm will prove to

be too computationally expensive.

Part 3 The Shifting Balance Genetic Algorithm 115

The second attempt, called ‘percentage population similarity’, is presented in the

following subsection. It does not hew as closely to the idea, but turns out to be more

computationally efficient.

Ch9 §4.3.2 Finding the Percentage Population Overlap

It would be nice if there were a direct translation from Venn Diagrams as applied to

sets and populations in gene-space; unfortunately, populations in gene space are not as

easy to work with. For example, in Venn diagrams, an overlap (or intersection) is the set

of points that both sets have in common; however with populations in gene space this is

normally the empty set! In most cases the populations of the core and colony would be

distinct with the exception of migrants from the colony to the core. Even with those

members most would not survive the selection routine, and the chances are that either

crossover or mutation will change those that do. Everything in gene-space is based on

distances; with sets everything is based on set inclusion.

Actually the last sentence in the previous paragraph holds the means of overcoming

the problems that arise from the difference in behavior of sets and populations. Instead of

demanding that a colony member can only be in an “intersection” region by being a

member of both populations, which is an idea based on set inclusion, we allow the

definition to be loosened. Now we say that the member is in an “overlapping” region by

merely being close to one or more members of the other population, which is a distance

based concept.

Unfortunately, the definition above is not precise enough. It is based on the closeness

of members but does not clarify how close is close. In Figure 12, a situation is presented

that will give us the insight needed to identify the solution. Compare the two members of

the colony, m1 and m2, with the core member n1. Intuitively one can see that m1is closer to

the core member than the core member is, on average, to the other members of the core

(represented by the distance of n1 to the center). This is not so with m2. Now, from (2.35)

in Ch6 §6, we know that the distance of a chromosome to every member within a

Part 3 The Shifting Balance Genetic Algorithm 116

population is identical to its distance to the population as a whole. So we can say that a

member of the core group is close to a member of a colony if the distance between them

is less than the distance between that core member and the entire core.

Using this model, we will now define a dynamic function for computing our first

version of the split ratio κ , which shall be called the percentage population overlap, or

simply percentage overlap, and which shall be denoted κ O .

Let Core be a core population of size n and Colony be a colony population of size m.

Now, let xi be the number of core members that are closer to the i
th member of the

colony than they are to the core. This can be more formally stated as follows: let Xi be

the multi-set corresponding to the colony member di ∈ Colony such that

 Xi ={c | c ∈ Core,dist(c,di) ≤ dist(c,Core)} , (3.3)

Figure 12 A core member is near a colony member if it is closer to it than it is to the rest
of the core’s population.

Part 3 The Shifting Balance Genetic Algorithm 117

then we can define xi = X i .

Now the percentage of the core that are closer to the ith member than they are to each

other is
xi

n
 and so the average,

1
m

x i

ni =1

m

∑ , is the total fraction of the core that the colony is

close to. This is what κ is supposed to measure! So, after factoring out the 1
n , we obtain

the formula for the split ratio:

 κ O =
1

m ⋅ n
xi

i=1

m

∑ . (3.4)

An example calculation of the xi -values for some sample members of a colony with

respect to a core with 300 members is presented in Figure 13. Here, as in Figure 12, we

have chosen a GA whose chromosomes have two genes, both of which are numeric. This

Figure 13: Calculating the xi -values for the percentage-overlap

Part 3 The Shifting Balance Genetic Algorithm 118

allows accuracy when drawing populations in Euclidean 2-space, which is much simpler

to visualize than an n-dimensional Boolean space.

In the diagram, the blue flecks are core members, the two small orange circles are the

sample colony members, m1 and m2 . The large, purple and pink circles labeled ‘Core’

and ‘Colony’ are only supposed to be suggestive of the area that the two populations

cover; they are not the populations themselves. Only the members themselves define the

population.

The dashed orange lines in the diagram are the respective boundaries between the

core members that are closer, on average, to each other than they are to the colony

member, and the core members that are closer to the colony member. The reason that

they are straight lines is as follows: As seen in the previous chapter, a chromosome’s

distance to a population is isomorphic to its distance to the center of that population. In

the diagram we represent the center of the core as an asterisk. Now the set of points in

Euclidean space that are equidistant from two given points forms a Voronoi boundary

between them. It is well known, provided we only consider two points, that such a

boundary forms a straight line. The assumption of Euclidean space is validated by the use

of numeric genes in the chromosome, which produces a chromosome space that is

isomorphic to Euclidean space. Finally, note that the shortest distance from either the

core or the colony member to the division line is half the distance to each other.

The x-values are calculated by counting all core members on the colony member’s

side of the Voronoi boundary. The percentage of the core that is close to the colony

member is also presented in the figure.

The percentage overlap departs somewhat from our intuitive notions of the properties

that an “overlap” should have. For example if we compare two identical populations we

would think that they should completely overlap, i.e. that κ should be 1. However, in

most cases we would find κ to be much smaller than 1. A percentage unary overlap

would only occur if all members of the colony were at the center, i.e. all had zero

distance to the core population (actually the value would be equal to 1
2 , not 1, because of

Part 3 The Shifting Balance Genetic Algorithm 119

the way that ties are handled, see 0). Any spread in the colony population will lower the

percentage overlap. This means that κ , thus defined, is conservative in the sense that the

resulting system follows the fitness landscape more readily than it does pushing away

from the core.

Ch9 §4.3.3 Time Complexity when Calculating the Percentage Overlap

Unfortunately there is a major problem with the definition of κ as it stands. Since the

distance from each colony member to each core member must be computed and treated

separately (there is a comparison for each core member / colony member pair) instead of

averaged, there will be m ⋅ n such comparisons. Each comparison takes O(l) time, where

l is the length of the chromosome. Consequently the algorithm to compute κ will have an

O(l ⋅ m ⋅ n) time complexity. Since this must be done for each colony, if there are k

colonies the time complexity becomes O(k ⋅ l ⋅m ⋅ n). Now the total population size is

N = k ⋅ m + n . Normal settings for k, m and n have n ≈ k ⋅m since the core group should

be a lot larger than the colonies to do proper exploitation, yet the colonies must be large

enough not to suffer excessively from random drift. Therefore N = k ⋅ m + n ≈ 2n , which

means that n ≈ k ⋅m ≈ N
2 . Consequently k ⋅ m ⋅ n ≈ N

2 ⋅ N
2 ≈ N

2 , and so the time complexity

can now be seen to be O l ⋅ N
2().

Since the time complexity of the GA is only O(l ⋅ N) , if κ is calculated by the means

of percentage overlap, the SBGA will have caused a slow down in the performance of the

GA. Another approach will have to be found.

Ch9 §4.4 From Venn Diagrams to Populations in Gene Space Part II:

Finding the Percentage Population Similarity

Ch9 §4.4.1 Defining the Percentage Similarity

Since the percentage population overlap is so computationally expensive, we will

look for other methods to accomplish the task. We probably will not find any method

Part 3 The Shifting Balance Genetic Algorithm 120

with exactly the same properties (otherwise it would probably have the same time

complexity). However, as long as the new measure is conceptually similar to the

percentage overlap, prevents the colony from being in the same area as the core, and has

a time complexity no greater than that of the GA, it will the preferable technique.

Since the n comparisons between each colony member and all the core members is

responsible for the large time complexity, let us weaken the previous method and just

calculate the distance of a colony member to the core group as a whole. This distance can

be computed for every colony member in O(k ⋅ l ⋅m) ≈ O(l ⋅ n) time (see Ch6 §6), thus

keeping the total time complexity of the GA unchanged as required.

Now instead of comparing a core member’s distance to the core with its distance to a

colony member we compare its distance to the core with the colony member’s distance to

the core. If distance to the core of a core member is greater than the colony member’s

distance the core it is deemed to be ‘outside’ the colony member. Conversely if its

distance is less it is considered to be ‘inside’ (see Figure 14). Since distance to a

population is just the converse of similarity, a chromosome's having a smaller distance to

a population is equivalent to its being more similar to that population. Consequently core

members that are ‘outside’ of a colony member are less similar to the core than is that

colony member.

 From here there are two ways of thinking about the meaning of the ‘outside’ /

‘inside’ partitioning of the core with respect to a colony member.

With the first approach, having numerous core members ‘outside’ of a colony

member implies that the colony member is close to the ‘center’ of the core (as defined in

the previous chapter). Consequently the deeper the colony member is, the more we say it

is searching in the same area as the core.

In the second perspective, we focus on the similarity aspect to distance. The distance

to a population implies a corresponding similarity measure between member and

population. If a colony member is at the “center” of the core, all core members, other

than those also at the center, would be “outside” of that colony member. Therefore the

Part 3 The Shifting Balance Genetic Algorithm 121

more similar a colony member is to the core population, the greater will be the fraction of

“outside” core members of the core population.

Now, combining the two perspectives, the basic algorithm becomes clear. As with the

percentage-overlap, we wish to know what fraction of the core population is to be

considered too similar to the colony member. But instead of judging similarity by the

number of core members that are too close to the colony member, we look at the number

of core members with a greater distance to the core than the colony member’s distance to

the core. These core members are considered as evidence of the colony member’s

similarity to the core. So, instead of counting for each colony member how many core

members have a greater distance to the core than to the colony member, we count the

number of core members that have a greater distance to the core than that colony

member’s distance to the core.

Figure 14: Inside vs. outside in relation to a core population

Part 3 The Shifting Balance Genetic Algorithm 122

We can now define ri , which is the analog to xi , as the number of core members

whose distance to the core is greater than the colony members’ distance to the core. Since

the distance to a population is the converse of the measure of similarity to a population, ri

can be thought of as the number of core members that are less similar to the core than the

colony members.

We will now present a formal definition of ri . Let Ri be the multi-set corresponding

to the colony member di ∈ Colony such that

 Ri ={c | c ∈ Core,dist(di ,Core) ≤ dist(c,Core)}. (3.5)

Then we can defineri = Ri . Now
ri

n
 is the percentage of the core that is less similar to the

core itself than is the ith member of the colony. We shall call this the percentage

similarity to the i
th

 member.

We can now average all the percentage similarities of all members together to

produce the average percentage similarity of the colony, which is
1
m

ri

ni =1

m

∑ . This average

represents the total fraction of the core that, when compared with itself, is found to be

less similar than the comparison of the colony to itself. This is the percentage

population similarity, or more simply the percentage similarity.

We can now use the percentage similarity as the new split ratio:

 κ S =
1

m ⋅ n
ri

i=1

m

∑ (3.6)

In Figure 15 a pictorial example is presented that shows the computation of the

percentage-similarities for a few colony members in a two locus GA that uses numeric

genes, (because binary or symbol genes are harder to visualize). Since only half of the

core is presented, assume that the other half is the mirror image of the first half, including

the amount and placement of the core members. The blue flecks in the core represent core

members, and the orange circles, labeled m1, m2 and m3, are the three colony members
whose percentage similarity are being computed. The symbols rm1

 and rm3
 are not radii,

but rather the radial regions (an area) where any core members that reside there are

considered to be “outside” of the corresponding colony member. Finally note that colony

Part 3 The Shifting Balance Genetic Algorithm 123

member m2 is completely outside the core. Consequently it has no radial region, and its r-

value is 0.

Ch9 §4.4.2 Handling Ties

The definition of the percentage similarity defined above is not quite accurate. In

many cases there will be ties in the distance to the core, either between colony members

with core members, or colony members with each other. In equation (3.5) the “less than

or equal to” is used to compare the relative distances, colony member to core versus core

member to core. A similar definition could be created that uses the “strictly less than”

operator. Which one is right? Should we include ties in the Ri multi-set, or exclude them?

Figure 15: Calculating the Percentage Similarities for colony members

Part 3 The Shifting Balance Genetic Algorithm 124

The solution becomes obvious if we consider what happens to κ when it is calculated

for a colony that is a complete duplicate of the core, yet all member within each

respective population are distinct from one another. Since the colony duplicates the core,

each core member is tied with one and only one colony member in distance to the core.

Now, if we include ties, κ can be computed as

 κ ≤ =
1
n

2 Ri

i =1

n

∑ =
1
n

2 i
i=1

n

∑ =
1
n

2

n(n +1)
n

=
1
2

+
1
2n

.

However if we exclude ties then κ becomes

 κ < =
1
n

2 Ri

i =1

n

∑ =
1
n

2 (i −1)
i=1

n

∑ =
1
n

2

n(n −1)
n

=
1
2

−
1
2n

.

If we let n → ∞ then both κ ≤ and κ < become equal to 1
2 . So κ = 1

2 should be the value

returned if ties are handled correctly.

This result can be obtained if we treat the value that a tie contributes to the term ri as

being half of that of a non-tied member of Ri . An alternate way of computing this is to

average the number of members counted when ties are included and those counted when

ties are excluded. In other words, if Ri is split into two multi-sets, Ri ,< and Ri ,≤ where

 Ri ,< = {c | c ∈ Core,dist(di ,Core) < dist(c,Core)}

and

 Ri ,≤ = {c | c ∈ Core,dist(di ,Core) ≤ dist(c,Core)} ,

then
 ri = 1

2 Ri,< + Ri, ≤(). (3.7)

This methodology is identical to the tie handling strategy used in the non-parametric

statistic, the Wilcoxon Rank Sum test. This should not be surprising since the Wilcoxon

Rank Sum test is closely related to the percentage similarity measure, as will be shown in

Ch9 §5.

The same tie handling strategy should be used when computing the percentage

overlap.

Part 3 The Shifting Balance Genetic Algorithm 125

Ch9 §4.4.3 An Algorithm for Computing the Population Similarity

The primary reason for the development of the percentage similarity is to reduce the

time complexity suffered by the percentage overlap to manageable proportions.

Unfortunately it is not so easy to look at the definition of the percentage similarity as

embodied by equation (3.6), or (3.7) if ties are to be handled, and know how long the

computation time will take. Consequently, a detailed algorithm to produce the percentage

similarity has been included and can be found in Appendix C-4. A general overview of

this algorithm shall be given below and the time complexity analysis will be done in the

following subsection.

To prepare for the computation of the percentage similarity, the distance to the core

must first be computed for all members in all colonies as well as for all members in the

core. Each member is then labeled as to whether it belongs to the core or a colony and

then all of them are combined into a single population.

Now all of the ri values for all of the colony members can be found. The combined

population is first sorted by distance to the core and then traversed in reverse sort order.

Each core member encountered during the traversal is tallied into a running count. This

count therefore contains the number of core members that are further from the center of

the core than those members of the colonies not yet seen, which is what the ri values are.

So, when a colony member is encountered the current running count is stored as its ri

value.

To handle ties, two different sort orders have to be created, producing two different ri

values for each member: one where ties are included and one where they are excluded.

To include ties, the tied core members must be placed higher in the sort order than the

colony member that they are tied with. Then when the array is traversed in descending

order, the tied core members are encountered before the colony member and so are

included in the colony member’sri value. To exclude ties the opposite sort order is used.

Now the colony member is encountered before the core members that it tied with.

Part 3 The Shifting Balance Genetic Algorithm 126

Therefore those core members will not be included in the colony members ri value. Both

inclusive and exclusive ri values must be stored for each colony member.

Once the ri values are found the percentage similarity for each colony can be

calculated in short order. All members from a colony are canvassed to find their ri values.

These are then summed together into two numbers, Rincl and Rexcl , which are averaged

together to find R the true similarity sum for the colony. Finally, to arrive at the

percentage similarity, this sum is first divided by m, the colony size, and then by n, the

core size, as per equation (3.6).

An example of this algorithm in action as applied to two colonies can be seen in

Figure 16.

For the example, two colonies and one core group were used, where both colonies

have a population size of four, while the core itself has eight members. Having the core

equal the population size of all the colonies combined is a typical configuration for the

SBGA.

When reading the combined population array, the further a population member is to

the right, the closer to the core it is. To generate the ri values, the array is then traversed

from right to the left.

Part 3 The Shifting Balance Genetic Algorithm 127

Core Size: n = 8 Number of Colonies: k = 2 Colony Size: m = 4

Excluding Ties: Core members tied with a colony member are sorted ‘inside’ of it
Dist .75 .75 .65 .55 .50 .45 .40 .35 .35 .35 .30 .20 .20 .20 .15 .10

Popn m1 m1 m2 c m2 m1 c m2 m1 c c m2 c c c c

Type 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1

ri 0 0 0 1 1 1 2 2 2 3 4 4 5 6 7 8

 R(m1) = 0 + 0 +1+ 2 = 3 R< (m2) = 0 + 1+ 2 + 4 = 7

Including Ties: Core members tied with a colony member are sorted ‘outside’ of it
Dist .75 .75 .65 .55 .50 .45 .40 .35 .35 .35 .30 .20 .20 .20 .15 .10

Popn m1 m1 m2 c m2 m1 c c m2 m1 c c c m2 c c
Type 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1

ri 0 0 0 1 1 1 2 3 3 3 4 5 6 6 7 8

 R(m1) = 0 + 0 +1+ 3 = 4 R< (m2) = 0 + 1+ 3 + 6 = 10

Computing κ ⋅ m

For Colony 1: κ ⋅ ′ m =
R<(m1) + R≤ (m1)

2n
=

3 + 4
16

= 0.875 κ ⋅ m = 2 ⋅ round
0.875

2




 = 0

For Colony 2: κ ⋅ ′ m =
R<(m2) + R≤(m2)

2n
=

7 +10
16

= 2.125 κ ⋅ m = 2 ⋅ round
2.125

2




 = 2

Returning κ

For Colony 1: κ =
κ ⋅ m

m
=

0
4

= 0 For Colony 2: κ =
κ ⋅ m

m
=

2
4

= 0.5

Figure 16: Computing κ using the percentage similarity – a detailed example

Part 3 The Shifting Balance Genetic Algorithm 128

While performing the traversal, the third line of the array is checked to see if the

member comes from the core (value 1) or a colony (value 0), and a running total of the

core members encountered is stored in each member of the array as line 4. These are the

ri values.

Finally these values are summed for each colony and then the ratio is taken against

the population size to produce the percentage similarity (although care is taken to make

sure that the resulting ratio divides the colony into sections that are integer valued).

In this example the first colony was far enough away from the core so that no

members need to be removed. The second colony is not so lucky. It is so intermixed with

the core that half of its members will have to be moved away.

Ch9 §4.4.4 The Time Complexity of the Percentage Similarity Algorithm

A detailed analysis of the time complexity of computing the percentage similarity is

presented in Appendix C-4. However an analysis of the algorithm sketch above produces

the same results and will be presented here.

In the preparation stage, the distance to the core of all members in the system is

computed. From Ch6 §6.2 we know that this can be done in O(l ⋅ N) , where l is the

length of the chromosome and N = k ⋅ m + n , the cumulative population size of all

colonies plus the core. The final step in the preparation is the combining of all

populations into a single population. Since this is an O(N) operation, the total time

complexity for the preparation stage is O(l ⋅ N) .

When computing the ri values, the complete population is first sorted, which takes

O(N log N), and then iterated through to compute and store the ri values, which takes

linear time. So the time complexity of this stage is O(N log N).

Finally the ri values are summed for each population, which is again a linear time

computation, and the percentage similarity is computed, which is constant for each

colony. So in total, the final stage takes linear time.

Part 3 The Shifting Balance Genetic Algorithm 129

Overall, since O(N log N) < O(l ⋅ n) (again see Appendix C-4), the percentage

similarity algorithm takes O(l ⋅ N) time to compute. As the GA also has a O(l ⋅ N) time

complexity, computing the split ratio in this way only adds a constant overhead to the

GA. This is in direct contrast with the percentage-overlap method which, with its

O(l ⋅ N
2) time complexity.

Ch9 §5 Percentage Overlap and Percentage Similarity as Non-
Parametric Statistics

Non-parametric statistics is a branch of statistics that was developed to handle any

type of probability distribution. Regular parametric statistics, such as the T test and

Analysis of Variance (ANOVA), assumes a normal or Gausian distribution. Distributions

other than Gausian, or an abundance of very large outliers, can derail any parametric

analysis and incorrect conclusion can occur. In the 1940s and 1950s statisticians,

spearheaded by Wilcoxon, developed various statistics when comparing two or more

random variables based on the ranked values of the combined observations51. Statistics

that depends on the values of the observations themselves, a.k.a. the parameters, became

known as parametric statistics while those based on the rank and not the direct

observational values themselves, became known as non-parametric statistics.

Interestingly, the dichotomy between parametric and non-parametric statistics has its

analog in the GA literature. The original formulation of the GA used fitness directly

when performing selection with the well-known fitness proportional selection. Since

fitness can be considered an observational parameter, one could, by analogy, call it a

‘parametric’ selection routine. On the other hand, rank selection and tournament selection

51 Hollander, M. and D. A. Wolfe (1973). Nonparametric Statistical Methods. New York, John Wiley &
Sons., pp. 1-2

Part 3 The Shifting Balance Genetic Algorithm 130

both use the rank and not the value of the fitness to select members from a population.

Thus they can be considered as non-parametric selection routines.

Both percentage-overlap and percentage-similarity are based on the number of

members that meet a criterion, and so are ranking methods. Consequently they would be

classified as non-parametric procedures. In fact ri from the percentage-similarity

procedure is very similar to the ranking used by the Wilcoxon rank sum test for

comparing whether 2 samples are drawn from the same probability distribution. The

Wilcoxon ranks are calculated as the number of members of both populations that are

greater than (or less than, if we are minimizing rather than maximizing) the value of the

current member instead of just how many of the opposite population are greater as is

done with the percentage-similarity. Even the method of handling ties is identical.

Therefore, one could view the percentage-similarity procedure as just a variant of the

Wilcoxon rank sum.

Part 3 The Shifting Balance Genetic Algorithm 131

Ch9 §6 Choosing Between Percentage-Overlap and Percentage-

Similarity

There are many reasons why either method could be chosen as an effective technique

for detecting when and by how much, a colony should move away from the core. Both

are non-parametric and so are not sensitive to outlier values; an outlier member of the

core that is far from the rest of the core members would make a colony appear closer to

the core’s “center” than it should. Both have a natural “cut-off” point when driving a

colony away from the core without the need for artificial threshold values: when the

colony is far enough away κ becomes 0 and the colony is allowed to follow the “fitness

landscape”. Finally both are intuitive measures of whether a colony is in the same area of

the gene space as the core with values that increase smoothly as the colony is found to be

more thoroughly entrenched within the core’s search area.

On the surface the percentage-similarity is the poorer of the two methods for it has

properties that are counterintuitive. Look at Figure 17. Here we find a core member that

has a greater distance to the core than a given colony member. It is therefore a core

member that is less similar to all other core values than the colony member, implying that

the colony is too close to the core. Yet it is nowhere close to that core member, hence the

core member is not searching in the same area as it. So consequently the percentage-

similarity method can be seen as being somewhat overly harsh. The percentage-overlap

does not suffer from this problem.

While the above argument may support the choice of the percentage-overlap method,

the very slow time complexity of that algorithm is quite daunting. Furthermore, being

harsh when driving the colony away from the core, which is the main problem of the

percentage-similarity method, is actually not too bad a property; after all we want the

colony to search in novel areas. So as long as the percentage-similarity method is not

overly harsh, as a constant pressure away from the core was found to be, its good time

complexity makes it the preferable procedure.

Part 3 The Shifting Balance Genetic Algorithm 132

As a result of the analysis in this section, all experimentation performed in testing

whether the ideas in this dissertation are sound, uses the percentage similarity for

computing the new colony’s split. It is, of course, possible that the advantages of the

percentage-overlap outweigh its major disadvantage; that an increase in the evolutionary

performance of the system due to the accuracy of the test may compensate for its

computation cost. Whether this is so has been left for future work.

Figure 17: A core member that is ‘outside’ of a colony member, thus increasing the
percentage similarity of the colony, while not being in the same area of the search space.

Part 3 The Shifting Balance Genetic Algorithm 133

Ch9 §7 Keeping Colony Away from Colony: A Future Extension

Ch9 §7.1 The Problem

The idea behind the SBGA is to have many small colonies searching in novel

territories that are not being exploited by the core. However this effort would be

weakened if the colonies were overlapping each other thus exploring only one other area

of the search space instead of many. This may even be likely to occur, since all colonies

are following the same “fitness landscape” and may very well end up in the same area of

the search space. Consequently, keeping the colonies away from each other, as well as

away from the core, may prove to be advantageous.

Furthermore, the same technique that keeps colonies from the core could even be

used to keep the colonies from each other. However, there is one small wrinkle to be

ironed out first. Naïvely applying a percentage similarity style procedure to every

possible colony pair (see Figure 18 on the left) produces an algorithm with an

O(k
2 ⋅l ⋅ m) ≅ O(l ⋅ N

3
2) time complexity52. As with the percentage-overlap method, this

would slow down the performance of the GA.

Furthermore, the mechanism developed in the previous sections divides the colony

into two during reproduction: one part following the “fitness landscape” and the other

part moving the colony away from the core. Now we would have to subdivide the colony

k + 1 ways: one section for following the “fitness landscape” as before, one for moving

away from the core, also as before, and k −1 new sections for moving the k −1 other

colonies away as well. It is quite conceivable that in some cases there would not be

enough members of the colony to be subdivided so many ways.

52 Again, k is the number of colonies, m is the population size of each colony, l is the length of a
chromosome and N is the population size of the whole system.

Part 3 The Shifting Balance Genetic Algorithm 134

Ch9 §7.2 The Solution

Fortunately, there is a simple modification that reduces the time complexity of the

algorithm that keep colony from colony while still maintaining the same functionality.

Instead of every colony trying to move away from each other simultaneously, each

colony has a target colony from which it keeps its distance. One can think of the targeted

colony j as being given a label that says “colony i must stay away from me”.

Figure 19, pictorially demonstrates the algorithm using10 colonies, labeled from 0-9.

Each colony has a single arrow leaving it pointing to the target colony from which it is

trying to maintain an appropriate distance. While every colony has a single outgoing edge

connecting it to one and only one other colony, their fan-in size can differ dramatically.

This can be seen by the adjacency list below Figure 19i. Colonies 0, 1 and 3 have no

colonies trying to move away from them, colonies 2, 5, 6, 7 and 9 have one target colony;

and colonies 8 and 4 have two and three colonies respectively.

Figure 18: Keeping All Possible Pairs of Colonies Apart

Part 3 The Shifting Balance Genetic Algorithm 135

In Figure 19ii, we see a typical transition of the algorithm between generations. All

the greyed-out arrows are between colonies that have remained close enough that the

colony that is trying to move away has decided that it still needs to extract itself; the

black arrows are from colonies that have just switched targets, going to the next colony in

the colony list.

Between the two colonies the behavior of the new system is almost identical to what

has been previously developed. A percentage-similarity ratio κ c (the c stands for

“colony”) is computed for the colony trying to leave, while the targeted colony takes the

place of the core in the algorithm. Notice that instead of having k −1 such ratios for each

colony as was assumed previously, there is now only one reducing the time complexity to

O(l ⋅ k ⋅m) < O(l ⋅ N).

Figure 19: Keeping Colonies Away from Each Other with a Time Complexity that is
Linear in the Number of Colonies. In Figure ii, the grey edges have remained unchanged.

Part 3 The Shifting Balance Genetic Algorithm 136

While the above procedure eliminates the time complexity problem and severely

reduces the excessive subdivision problem, the latter problem has not been eliminated.

While only two percentage-similarity ratios, κ and κ c , need to be used and not k +1 of

them, this still necessitates a division of the colony into three sub-populations instead of

just the two as was used previously. Furthermore it is unclear as to the best approach to

take in performing this three-way split.

One possibility is as follows: Since moving away from the core is of primary

importance, perform this split first. We then have a (1 −κ) sized region that is still

following the “fitness landscape”. We now subdivide that section into 2 parts using the

ratio κ c . So in the end the sub-population selected for distance from the core will have

κ ⋅ m members, the sub-population selected for distance from the other colony is to be

given κ c(1−κ) ⋅ m members, and finally the number of members that will follow the

“fitness landscape” is (1 −κ c) ⋅(1−κ) ⋅ m .

A second approach would be to see which ratio is higher, κ or κ c . This would

determine which of the two populations’ search area the colony is too similar to and

needs extracting from the most: the core or the other colony. This is the population that

will be given the primary consideration and so the first split. There are many more

possible division strategies; the best one can only be found after some experimentation

has been done.

As was pointed out previously, it is possible for a single colony to be the target for

extractions by many other colonies, possibly all other colonies. This is not a problem.

Since each colony only has one choice of which other colony to keep away from, the

algorithm stays linear in time with respect to the number of colonies. Also since each

colony will eventually find itself far enough away from its targeted colony it will perforce

switch targets (a time limit can be placed on the number of generations spent on a given

colony if switching becomes an issue). Consequently, over k ⋅ gm generation, where gm is

the average time it takes for two populations to move away from each other and k is the

number of colonies, each colony will, on average, have had the chance to remove itself

from the search area of each of the other colonies in turn.

Part 3 The Shifting Balance Genetic Algorithm 137

While the mechanism presented in this section should work in keeping the colonies

apart from each other, it is obvious that experiments will have to be done to fine tune the

mechanism. Furthermore, it is not even known at this time how large a problem colony

overlap is. Some simple experiments can be run to measure the amount of colony overlap

that occurs during a typical run of the SBGA. If this proves to be a problem, the

mechanism described above, or some variant of it, can easily be added to the SBGA.

However all of this remains outside the scope of this dissertation and will be left for

future work.

 138

Chapter 10

Migration from Colony to Core

Ch10 §1 Introduction

The preceding chapter dealt with the problem of keeping the colonies away from the

core so they can explore novel territory. The mechanism that accomplishes this causes

information flow, albeit indirectly, from the core to the colony. However, the information

flow must go two ways. Not only do the colonies need to know information about the

core, but the core must also receive information from the colonies. Otherwise the core

would be independent from the colonies, and the colonies will not be aiding the search

but only absorbing resources. The mechanism that closes this feedback loop between core

and colonies is migration.

Part 3 The Shifting Balance Genetic Algorithm 139

Ch10 §2 Migration from Core to Colony

In the original shifting balance theory, migration happened in both directions, from

core to colony and from colony to core. The migration from core to colony occurred to

isolate members in a new environment so that they may be allowed to vary from the norm

that exists in the main population. The back-migration from colony to core then in turn

provided the core with the novel members, which, if those members demonstrated that

they were better than the members of the original population, would shift the balance

toward the new breed. The main population, now with a new composition, sends

members out into new environments as new colonies, thus starting the process over

again. This two-way migration between core and colony sets up a feedback loop where,

with evolution as the driving mechanism, information processing can occur.

However, while the core gains information about the colonies through immigration of

colony members, sending members from the core to the colony can actually create

problems. Since the core has a very large population, most of the time it will find far

better solutions than a colony. These solutions, if allowed into the colony, would begin

to dominate the colony population within a few generations, forcing the colonies to

search in the same area as the core. This would interfere with the mechanism that

prevents the colony from overlapping the core. Furthermore, while the overlap

prevention mechanism was designed to promote exploration (replacing random drift), not

to usurp the function of “seeding” the colonies with core members, it does allow

information flow from the core to the colony (unlike random drift) that was previously

the sole purview of forward migration. Thus the need for core to colony migration to

provide information of the core for the colony is to some degree alleviated.

Of course there is still a role for migration from core to colony: to keep the colonies

close to the good search area that has been found by the core. In fact, as mentioned in the

previous paragraph, there is a reasonable fear that it would do this too well. Still, the

effect of migration from core to colony is virtually the opposite of the distancing

mechanism by selection. Migration drives the colony inward; selection pressure from the

Part 3 The Shifting Balance Genetic Algorithm 140

distance to the core drives the colony away. Consequently, there may very well be

complex interactions between the two that may improve search, if properly balanced.

While this would make the SBGA a closer model of the mechanism as envisioned by

Sewall Wright, allowing for a truer test of the efficacy of the SBT, this addition presents

yet another very large confounding factor into the behavior of the system. Therefore

allowing migration from core to colony will not be dealt with for this dissertation and

shall be left for future work.

Ch10 §3 Migration from Colony to Core

In the SBGA, the colony sends members, called “migrants”, back to the core. If a

colony sends a member with great potential to the core it will after a few generations start

to dominate the core and shift the location of the population to the area of gene space

where the originating colony is located. The colony will then have to move into a new

area because of the core avoidance mechanism, potentially into an area with a still larger

local optimum thus driving the system ever ‘upwards’.

During migration the colony may send all of its members to the core or only some

portion thereof. The colony members could be randomly selected, selected stochastically

according to fitness, or, represent an elite subgroup. All of the above techniques have

been used in the various island model parallel GAs, see (Pettey, Leuze et al. 1987),

(Tanese 1987) and (Cohoon, Martin et al. 1991)). In the SBGA system as implemented,

the colony members are chosen as an elite subgroup.

Since migration of the colony members disrupts the core group, time is given for the

colony to evolve potentially useful members. The number of generations between the

movement of colony members to the core is called the migration interval. To reduce the

pressure on the core even more, immigration is staggered between the colonies. For

example, if there are eight colonies and the migration interval is four, two of the colonies

send immigrants to the core each generation. However, for any given colony, four

generations pass before colony members are allowed to migrate again.

Part 3 The Shifting Balance Genetic Algorithm 141

A complete implementation of the above algorithm is given in pseudo-code in

Appendix C-5.

Ch10 §4 Migrants and the Core: Integrating the Immigrants

Just like all multiple-population based GAs, the SBGA needs a method to integrate

the migrants arriving from the colony into the core’s population. There are two different

strategies used in the GA literature; they are briefly sketched below.

The first technique is to replace current members of the host population with the new

immigrants ((Pettey, Leuze et al. 1987) (Tanese 1987) (Whitley and Starkweather 1990)).

The host members to be replaced can be selected by many means: randomly, based on

fitness, or based on similarity using the Hamming distance (as done in Crowding).

The second approach is similar to the (µ, λ) technique of evolutionary strategies, but

uses GA style selection and reproduction. The host population is temporarily enlarged by

the migrants (analogous to the λ number of children in ES) and then pared down again to

its normal size after reproduction (analogous to µ, although in ES the µ members are just

derived by selection alone and not selection with reproduction). In other words selection

for reproduction is performed on the extended population, host members plus

immigrants, but there will only be µ offspring. This technique has been used by (Cohoon,

Martin et al. 1991) in their GAPE system.

Since the purpose of the colonies is to add diversity to the core, a large fraction of the

colony will be sent to the core, perhaps the entire population. Consequently, if a

substantial number of colonies send migrants, the core will be inundated with new

members. Since the replacement approach (the first technique of those presented above)

incorporates the new members by replacing the old core members, all or most of the

members of the Core could be replaced by new immigrants. As the purpose is to add

diversity to the core – not replace it!! – the (µ, λ) method of immigration absorption will

Part 3 The Shifting Balance Genetic Algorithm 142

be used. The change to the core reproduction method, which is necessary to effect core

reduction via the (µ, λ) approach, is presented in pseudo-code form in Appendix C-6.

The competition during migrant integration is very fierce. Since the core population is

reduced to its normal size during reproduction, the selection pressure exerted on the

bloated core exceeds that experienced by a normal GA population. If the migrants from

the colonies have very poor fitness with respect to the core, they will not be selected

during reproduction and will have no effect on the core at all. Any migrant that makes it

into the core intact deserves to be there! However, since the selection is not deterministic,

colony migrants do have a chance of being selected as a parent and so can influence the

next core generation, if not intact, then in part.

 143

Chapter 11

An SBGA Overview

Ch11 §1 Completing the Algorithm

Ch11 §1.1 Integrating the SBGA Routines into the GA

So far, in the chapter, we have looked at the various mechanisms that are to be added

to the GA to incorporate the properties sought after by Sewall Wright in his “Shifting

Balance Theory”. There are basically four changes to the GA; the first is structural, and

the other three are procedural. The structural change consists of the addition of multiple

populations, which are divided into a set of colonies to perform exploration and a large

core group to process the new solutions found. This was covered in Part 1. The second

chapter of this part dealt with the first of the procedural changes: the modification to the

selection routine of the colonies to ensure that areas are searched other than where the

core is searching. Then in Chapter 10 we addressed the other two procedural changes:

Part 3 The Shifting Balance Genetic Algorithm 144

migration, which communicates to the core what the colonies have found, and a change

to the reproduction of the core, allowing for the incorporation of the migrants. All of

these changes must now be added to the basic GA to create the SBGA.

For purposes of comparison, a surface level pseudo-code of the GA is presented in

Figure 20. The SBGA will not encompass the entire GA algorithm even though it is

technically an addition to it. This is because the SBGA is to be designed to work on both

stationary and dynamic environments. When solving problems in a dynamic environment

the intent is not to discover the best solution in the search space, after all that would be an

impossible task since the best solution keeps changing over time. Rather, the goal is to

constantly find reasonable solutions every generation, keeping to the good areas of the

search space as the environment continually changes. This is analogous to on-line versus

off-line performance, where the dynamic environment requires the best on-line

performance available. Even in the interior of the loop, not every line of code is required.

Line 7 is computing the best solution, which is unnecessary for dynamic environments,

and since Line 8 is really optional, it is best handled by the calling procedures.

function ga(n, f, file)

args: int n – the population size; function f – the objective function;

output file – to record statistics if requested
vars: int gen; population ga-population;

population-member best-member, best-contender

1 gen := 0; best-member := NULL

2 ga-population := create-population(n, f) “does evaluations”
3 loop until ga-population.end-condition-met?(gen)

4 ga-population := ga-population.reproduction(n) “includes selection”
5 ga-population.evaluate(f)

6 best-contender := ga-population.best(using f)

7 best-member := best_fitness(best-contender, best-member)

8 unless null(file) do ga-population.print-statistics(file)

9 gen := gen + 1

10 return best-member

Figure 20: The top-level pseudo-code for the Simple Genetic Algorithm

Part 3 The Shifting Balance Genetic Algorithm 145

Consequently the SBGA will perform only the interior of the loop, focusing on lines 4-6.

Since the SBGA is only a part of the complete GA routine when solving a problem, the

routines for calling the SBGA, both for stationary and dynamic environments, have been

given in Appendix C-7 alongside the code for the SBGA itself. The SBGA code

(although not the calling procedures) is reproduced below in Figure 21 to analyze it

directly.

 By focusing on the inside of the evolutionary loop, we are actually ignoring the first

difference between the standard GA and the SBGA, the formation of the multiple-

populations. This procedure is straightforward with the appropriate populations being

formed and evaluated by the same procedure that forms the GA population. The only

difference is that it returns an ‘all-populations’ object that comprises the populations of

the core and all colonies instead of just returning a single population. As with the GA the

populations can be formed with random strings as chromosomes, or they can be seeded.

In this dissertation, all populations will be created with randomly generated

chromosomes.

The three procedural additions to the GA are actually reasonably straightforward.

First migration must be added. Secondly, reproduction of the GA population must be

populations.function sbga(gen, n, f, µ∆, µ)

args: populations self – the object that contains both the core and colonies;

int gen – the current generation, function f – the objective function;

int µ∆ – the migration interval; int µ – the number of migrants
vars: synonym Core := self.core, Colonies := self.colonies;

synonym all-popns := self

1 Core.migration(Colonies, gen, µ∆, µ)

2 all-popns.core := Core.reproduction(n)

3 all-popns.colonies := Colonies.reproduction(Core)

4 all-popns.evaluate(f)

5 return all-popns.best(using the obj-function)

Figure 21: The SBGA Algorithm.

Part 3 The Shifting Balance Genetic Algorithm 146

changed to reproduction of the core population thus allowing for the incorporation of the

migrants into the core. Finally colony reproduction is added, both because the colonies

need to reproduce and because the changes to the selection mechanism used to keep the

colonies from the core is done during the reproduction of the colonies.

It should, at this point, be noted that there are tight restrictions on the ordering of the

function statements. Migration must be performed first since it depends on all members

having been evaluated, a property that reproduction, by creating new unevaluated

members, destroys. The evaluation of the populations must be done after reproduction for

the same reason. So the reproduction must be done between the two. Furthermore core

reproduction must precede the reproduction of the colony populations. If we perform

colony reproduction first, the colony members will be computing their distance to a core

that possibly contains themselves and many of their neighbours that have just migrated.

This will artificially decrease the distance to the core. This problem is relieved after the

core undergoes reproduction: any colony member that is still there, in whole or in part, is

now legitimately a part of the core, and so should be included when computing the

distance to the core.

Ch11 §1.2 The Time Complexity of the SBGA

Taking the algorithm from back to front, we will first look at the time complexity for

colony reproduction, which is O(l ⋅ N) , where N is the combined size of all populations

and l is the chromosome size. This is true since performing the reproduction step for all

colonies consists of preparing for computing the percentage-similarity, which takes

O(l ⋅ N) (see Appendix C-4), then computing the percentage-similarity, which takes

constant time for each colony, and finally performing the reproduction, which is still

O(l ⋅ N) . It is true that the reproduction step is divided into two: reproduction while

following the fitness “landscape” and reproduction ensuring a proper distance from the

core. However, the number of offspring produced by the two reproduction sections

together is equal to the population size of a single colony. The only extra overhead is the

preparation time for the selection by distance to the core; but selection preparation takes

Part 3 The Shifting Balance Genetic Algorithm 147

at most O(N log N), which is less than O(l ⋅ N) (again see Appendix C-4). So in total

colony reproduction takes O(l ⋅ N) .

Reproduction of the core is just regular GA reproduction with only n members, where

n is the core size. Therefore the time complexity is O(l ⋅ n); this means that it is also

O(l ⋅ N) since n ≈ N (see Ch9 §4.3.3). One might think that the immigrants to the core,

which expands the core’s population size, would also increase the time complexity taken

for reproduction. The reason they don’t, however, is simply that the increase in the

population size only affects the selection step. The number of children being created,

which is the time consuming procedure, remains equal to the core size; consequently, the

time complexity does not change.

Migration sends at most k ⋅ m members to the core (where k is the number of colonies

and m is the size of each colony). Now each member is deep copied into the core.

Counter-intuitively, this does not take O(l) time but only constant time. This is because a

deep copy creates a new object (unlike shallow copy, which just creates a new pointer to

the old object), but fills the new objects slots with pointers to the contents of the old

object. This means that the array of genes that comprise the chromosome is not copied

gene by gene; only a pointer to the array is stored in the new instance variable. This takes

constant time. Since k ⋅ m ≈ N , as was discussed in Ch9 §4.3.3, the time complexity for

migration is O(N) , much less than for either reproduction step.

Consequently the total time complexity for the SBGA is O(l ⋅ N) . This is identical to

the time complexity of the GA inside the evolutionary loop. Therefore the “shifting

balance” additions only add a constant overhead to the GA.

Part 3 The Shifting Balance Genetic Algorithm 148

Ch11 §2 The SBGA in a Stationary Environment

While the focus of this thesis is on dynamic environments, the SBGA can improve

the performance of the GA even if the environment is stationary and especially if the

environment has many local optima. Remember that Sewall Wright developed the

shifting balance theory from his belief that nature escaped from local optima in the fitness

“landscape” in just this way. Consequently one would expect that the SBGA should have

a significantly improved performance over a simple GA if there are many local optima in

the objective function.

The following series of figures illustrates why the SBGA should be effective at

escaping from local optima. Here the SBGA is trying to find the maximum of some

function f (x) . In Figure 22a, the core population, symbolized by the purple oval, has

become trapped at a local maximum. The two colonies, represented by the red hashed

ovals, are lying elsewhere in the search space, as they are forced to, and are sending

migrants to the colony.

 One of the colonies is in an area of the search space that leads to a higher maximum.

The migrants that it sends to the core will begin to compete favourably with the existing

core members. Eventually the descendants of the migrants will come to dominate the core

and the core will have shifted over to the new area. Thus the core will have successfully

crossed the gully keeping it trapped in the area of the local maximum (Figure 22b).

With the shifting of the core, the colony now finds itself surrounded by its members.

The percentage-similarity will be very high indeed, and the colony will begin to move

away from the core (Figure 22c
53). This forces the colony to continue its search in new

areas, where it may hopefully find a higher peak than any yet seen so far.

53 Actually, the colonies will not wait for the core to envelop it, as shown in the figure. It will begin to
move away from the core as soon as the core starts to move towards it and the percentage-similarity begins
to increase. The process was exagerated to emphasize the effect.

Part 3 The Shifting Balance Genetic Algorithm 149

Meanwhile the core is exploiting the area that the colony has found for it. Soon it will

have roughly identified the best solutions in that area, and will wait for a colony to find a

new, more promising area.

While the above scenario paints a rosy picture, it should not be too surprising at this

point to reveal that the SBGA is not a panacea for all optimization problems.

Figure 22: The SBGA Shifting to a New Maximum

Part 3 The Shifting Balance Genetic Algorithm 150

Unimodal and quasi-unimodal optimization problems are the simplest types of

landscapes where the SBGA will not work as well as the standard GA. On problems like

these, brute force is called for, not finesse. A large population increases the search power

of the algorithm when just hill climbing in comparison to a small population. Since the

core is smaller than the entire GA population, and the colonies are smaller still, the

SBGA has futilely divided its labor to search for other optima that do not exist. The

SBGA should therefore only be used on problems that are known to have many local

optima.

Even when there are many local optima, the SBGA may still be ineffectual, if the

optima are of certain types. This should not be surprising since search is NP-hard; if the

SBGA never got stuck at any type of local optima it would be able to solve search in

polytime and P would equal NP. Figure 23 presents two such types of local maxima.

In the first, the local maximum has a very large basin of attraction. The basin is so

large that the core and all colonies can fit within it without overlapping. Thus any

members sent by the colonies to the core will be from the same “hill”, yet since the

colonies don’t overlap the core, they feel no pressure to move anywhere else.

Consequently, the core never escapes from its local area.

The second scenario is similar to the first. Here there is a large local maximum ringed

by a series of smaller local maxima. Each of the smaller maxima is extensive enough to

Figure 23: Two Scenarios Where the Colonies are Defeated

Part 3 The Shifting Balance Genetic Algorithm 151

contain one or more colonies. If there are enough such local maxima, all of the colonies

will be trapped in their own area. Yet the core won’t move towards them to drive them

elsewhere. The core is at a higher maximum and consequently has a higher fitness than

any of the other populations – no migrant from any colony will budge it. The situation is

therefore stable and the algorithm is trapped.

With the two scenarios above, we have gone to the other extreme. Instead of viewing

a bright future for the SBGA through rose coloured glasses, all we see is doom and

gloom. The true situation is actually somewhere in the middle. While the SBGA will not

do any better than the GA when faced with the problems from Figure 23, it won’t do any

worse either, and on many problems the colonies will perform just as desired.

Ch11 §3 Using the SBGA with Dynamic Environments

There are two very different styles of dynamic optimization problems: in the first, the

environment cycles, first changing then changing back; in the second, the environment is

continually moving into novel territory. The latter changes can occur smoothly as with a

translation or a rotation of the “landscape”, it can be punctuated and discontinuous, or the

“landscape” itself can be modified, roiling about like waves on a drunken sea. Cycling

environments tend to be handled very differently from environments that face one with

perpetual novelty: for cycles the GA is frequently modified by installing some sort of

memory ((Goldberg and Smith 1987) (Zhou and Grefenstette 1989) (Branke 1999)). On

the other hand for dynamic environments that have non-cycling changes, most GA

systems are augmented with mechanisms that promote diversity ((Cobb and Grefenstette

1993) (Handa, Katai et al. 1999) (Sarma and De Jong 1999)).

The SBGA was designed for the latter, non-cycling style of dynamic environments.

Like other mechanisms of its ilk, the SBGA does handle novelty by promoting diversity,

however the diversity is added carefully, based on the “landscape”, not blindly moving it

Part 3 The Shifting Balance Genetic Algorithm 152

into a new area as restarting the GA or applying macro-mutations would. On the other

hand, the SBGA actively tries to search in novel territory unlike other multi-population /

parallel methods, which just assume that this will occur. Consequently the SBGA should

be of great advantage when faced with a non-cycling dynamic environment.

One particular type of dynamic environment problem that the SBGA should be quite

adept at handling is tracking a continuously moving global optimum along a trajectory.

The advantage of the SBGA becomes even more evident if the fitness “landscape”

remains at rest for a significant period of time and then suddenly starts moving, or

Figure 24: The GA cannot track the opti-
mum after it starts to move unexpectedly

Figure 25: The SBGA tracking the opti-
mum after it starts moving unexpectedly

Part 3 The Shifting Balance Genetic Algorithm 153

equivalently is moving very, very slowly for a long period of time and then suddenly

speeds up.

In this scenario the standard GA will at first converge onto the global optimum

(assuming it is relatively easy to find). As the “landscape” remains stationary the GA

population continues to evolve, focusing in more and more on the optimum, all the while

loosing diversity (as shown in Figure 24a and Figure 24b). By the time the environment

changes the GA has already bred out most of its diversity. Unfortunately, diversity is the

‘leverage’ the GA population uses to shift itself in gene-space. If the population is fairly

uniform, crossover will not produce offspring distinct from the parents and consequently

the GA is completely reliant on mutation. Unfortunately, mutation acts very slowly if set

low, or completely randomly if set high. Consequently the GA will have a hard time

tracking the global as it starts to move (as shown in Figure 24c).

At the beginning, while the fitness “landscape” remains stationary, the SBGA seems

to react in the same way as the GA, finding the optimum, then honing in on it and losing

diversity. The difference lies with the colonies. Once the core has found the global

optimum, the colonies cannot possibly shift it; however neither can they remain where

the core is. Consequently they stay in areas near the core, but far enough away to keep

the percentage-similarity measure low (see Figure 25a). When the environment starts to

move, the colonies are ready for it. Since they are close to the core, but not within it, the

drifting global optimum has a good chance of moving into, or near, the area where a

colony is positioned. All the while, the colonies were sending migrants to the core.

Previously, those migrants were only ignored, for they must be inferior to members of a

core that has already found the global optimum. Now, the migrants from the colony that

is lucky enough to be close to the optimum, now that the optimum has moved, find

themselves in demand as parents within the core. In other words, the core is shifting

toward that colony; the SBGA has begun to successfully track the optimum.

Part 3 The Shifting Balance Genetic Algorithm 154

Ch11 §4 A Comparison of the SBGA with Similar GA Techniques

The “shifting balance” addition to the GA consists of adding multiple populations and

three specially designed processes which control them. Admittedly, the addition of

multiple populations is not novel; all course-grained parallel GA implementations have

multiple populations, almost by definition. What is novel is the dividing of the

populations into those that explore new areas of the search space (the colonies) and one

that exploits the best region found so far (the core). Furthermore, instead of just hoping

that the populations will be exploring different search areas, either in parallel as with

multiple-population approaches, or sequentially with population restarts and changing

mutation rates, the SBGA enforces that the exploring populations be in areas other than

where the main population is doing its exploitation.

While the SBGA is superficially similar to multi-population based GAs, such as those

used in parallel GAs, fundamentally the SBGA has more in common with the methods

added to the GA to prevent inbreeding, such as ‘fitness sharing’ and ‘crowding’.

It is interesting to note that ‘fitness sharing’ is a parametric technique dependent

directly on the values obtained from the objective functions to accomplish its prevention

of inbreeding. Members that are very fit will be more resilient to having its fitness

reduced by multiple copies of themselves than can those who are not. ‘Fitness sharing’ is

therefore vulnerable to outliers and unusual fitness distributions, as is the case with any

parametric procedure. Consequently a lot of work goes into scaling the fitness function

and other modifications to “normalize” the fitness-values being obtained. The SBGA on

the other hand is a non-parametric process and so is not susceptible to those problems.

The main difference between the SBGA and both ‘fitness sharing’ and ‘crowding’ is

the lack of forced exploration in the latter two. While ‘Fitness sharing’ and ‘crowding’

prevent inbreeding in the main population and thus promote diversity, there is no

mechanism for driving the population, or any subset therein, to other areas of the search

space. This is directly accomplished in the SBGA by selecting colony members based on

distance from the core. Thus the SBGA can be seen as combining the best of both worlds:

Part 3 The Shifting Balance Genetic Algorithm 155

the properties of discovery (supposedly) enjoyed by multiple-population GAs (although

only in the SBGA is it actively enforced), and the prevention of inbreeding as performed

by ‘fitness sharing’ and ‘crowding’.

Finally, as the “shifting balance” mechanisms are only additional to those of the GA,

and do not replace any, most GA extensions can be used alongside it. The only

exceptions to this rule are extensions that incorporate multi-populations; these would

interfere with the multiple populations added by the SBGA. Otherwise any of the sub-

populations, be it core or colony, can have an enhanced GA as its underlying

evolutionary technique. For example, the core, for added inbreeding protection, could

have a GA that performs ‘crowding’; if Whitley’s Genitor is preferred over the standard

GA, then Genitor’s mechanism for selection and reproduction can be used in the core and

every colony. Not all extensions will be improved equally by the addition of the ‘shifting

balance’ routines; some may already incorporate benefits that were to be derived from the

shifting balance theory. However, the easy compatibility of the SBGA with many of the

existing GA techniques is definitely a great advantage.

 156

PART 4

EXPERIMENTAL RESULTS

AND ANALYSIS

 157

Chapter 12

Escaping Local Optima Part 1:

Purpose and Experimental Design

Ch12 §1 Introduction and Outline of Part 4

In this dissertation we are attempting to answer the question posed in the thesis

statement: By incorporating concepts taken from Sewall Wright’s Shifting Balance

Theory, can the behavior of the GA be enhanced in both dynamic environments and

environments with many local optima? To this end we have so far examined the SBT for

its key concepts, abstracted them and finally created an extension to the GA: the SBGA.

In Part 4 we will put our theories to the test. In this chapter and the next, three

experiments will be devised to compare the SBGA with a standard GA in both dynamic

environments and environments with many local optima. These tests will be designed to

see whether the Shifting Balance extension has a positive effect on the behavior of the

GA as predicted.

Part 4 Experimental Results and Analysis 158

Part 4 is divided into four chapters.

The first two chapters in this part cover the test used to determine whether the SBGA

shows improved performance in environments with many local optima. They comprise

the description and execution of two complimentary experiments performed to determine

whether the Shifting Balance Theory aids in escaping from local optima.

In the first of these two chapters (this chapter itself), the purpose and general

methodology of the experiment as well as the details of the experimental design are

described. This includes a description of the various component parts of the design such

as the environmental optimization functions and the GA and SBGA parameters, as well

as the rational for their choice. These design components will be the basis for all

experiments performed in Part 4.

The second chapter presents the analytic tools and methodology that will be used to

examine the results of the experiments as outlined in the first chapter. Once again, the

methods presented will be used throughout the remainder of the dissertation. The chapter

concludes with the actual results obtained from the performed experiments as well as a

analysis and discussion on whether the SBGA succeeded in aiding the GA to escape from

local optima.

 In the third and fourth chapters of Part 4, we deal with the questions that are at the

heart of the dissertation: What is the behavior of the GA and SBGA in dynamic

environments? Does a GA enhanced by the Shifting Balance mechanisms show improved

performance when tracking a moving global optimum? In Chapter 14, the first of the two,

the SBGA is compared with a standard GA in a dynamic environment. This should

determine whether the Shifting Balance extension really does improve the ability of the

GA to track a moving global optimum. Finally, Chapter 15 explores the diversity of the

populations used in the GA and SBGA systems as they evolve in a dynamic environment.

By looking at the diversity we hope to determine whether or not added diversity is the

primary factor for improving behavior of a GA in a non-cyclical dynamic environment.

Part 4 Experimental Results and Analysis 159

Ch12 §2 Purpose: Determining if the SBGA is better at Escaping from

Local Optima than the GA

Sewall Wright’s concept of a population evolving in fitness landscape, the

recognition that they may get trapped at local maxima, and his ideas for escaping from

them in the guise of the SBT were introduce in Chapter 2. In the following chapter, those

ideas were analyzed, deficiencies removed, operationalized and then added to the GA to

form the SBGA. If Wright was correct about the effectiveness of the SBT at escaping

local optima when compared to theories that do not take it into account, it follows that the

SBGA should be better than a standard GA in an environment with many local optima. In

such environments we should see the SBGA attain, on average, better fitness values. The

GA would get stuck in locals that the SBGA can escape from, thus allowing the SBGA to

continue to improve and reach the higher fitness values.

However, the hoped for advantage of the SBGA probably comes at a price (most

things do). It is easy to foresee that the sophistication of the SBGA could become a

disadvantage in environments in which that sophistication is redundant. The SBGA

devotes resources, the colony members, for exploring areas that the core has so far

ignored. However, what if the global maximum in the environment has a large basin of

attraction attached to it? The core should easily find the basin and hence the global. This

will force the colonies into uninteresting areas of the search space, thus rendering them

unnecessary and possibly inhibitory to the SBGA’s search. Because the SBGA had

diverted a lot of its members into the colonies, the core, which is now solely responsible

for the active search, will have a much smaller population than the GA. A large

population provides an evolutionary system with more members to search with.

Consequently, the GA’s large population provides it with both a better chance at finding

the central basin of attraction, and once there, of ascending it. As a result, the SBGA

Part 4 Experimental Results and Analysis 160

should loose its selective advantage to the GA and so do no better and possibly even

worse54.

In this chapter and the next, two experiments will be designed and performed. The

first will test whether the SBGA outperforms the GA in a hard, multimodal (but as of yet,

stationary) environment. This will determine whether Sewall Wright’s concepts are

correct; that evolutionary systems enhanced with a shifting balance mechanism will

escape from local optima and so outperform a system without it. The second experiment,

which is almost identical to the first experiment in form, will explore the behavior of the

two evolutionary systems in a multimodal environment with a large basin of attraction

attached to the global optimum. This will determine whether, as predicted, the SBGA will

loose its selective advantage to the GA when the basin which feeds into the global, is

easy to find.

Ch12 §3 Methodology

Ch12 §3.1 Environmental Setup

Ch12 §3.1.1 Properties that the Test Functions Should Have

To test the SBGA and the GA on a hard multimodal test function, there are some

properties that we would want such a test function to have:

First it should have a known global optimum. This rules out many of the NP-hard and

exponential problems. The existence of known global optimum can be assured if we

construct the function based on a well-understood mathematical formula, such as those

used in the De Jong test suite.

54 Of course on such simple function, the GA itself would probably not be the optimal choice. A less
sophisticated search algorithm would probably be more efficient at solving what amounts to a simple hill-

Part 4 Experimental Results and Analysis 161

Second, we need two different functions, both multimodal, but one with the global

optimum hidden amongst a sea of hills, and the other with the optimum on the top of a

large broad hill providing a wide basin of attraction.

It would also be nice if the functions are tunable. In other words, by changing a

parameter the functions can be made harder or easier. This will give more insight into the

relative performances of the two algorithms under differing levels of difficulty.

We should also require that the functions not be easily soluble in unforeseen ways;

i.e. there should be no trap doors that the evolutionary algorithm can take advantage of.

Consequently the function should not be linearly separable (optimizing for one bit at a

time must not produce a chromosome that encodes the global optimum), and there must

be some epistasis in the system. It would also help if the functions were asymmetric so

that the level of complexity is not reduced by redundancy in the function.

Ch12 §3.1.2 A Hard Multimodal Function: F8F2

In a recent paper, (Whitley, Mathias et al. 1996) examined what features a proper test

function should have for examining the behavior of a GA implementation. They argued

that a good function should be nonlinear, nonseparable and nonsymmetric as well as

being scalable (i.e. have varying levels of difficulty). They emphasized that a test suite

should be developed in accordance with the purpose of the testing: “testing should be

hypothesis driven and different comparative goals may demand different test

problems”55. Finally they criticized many of the functions from currently popular test

suites and proposed methods that allows one to construct test functions that include all of

the appropriate features discussed. One of the functions they created as an example of

their methodology not only fit all of their criteria, but also matched all of the design goals

climbing problem.
55 From Whitley, D., K. Mathias, et al. (1996). “Evaluating Evolutionary Algorithms.” Artificial
Intelligence 85, pg. 252.

Part 4 Experimental Results and Analysis 162

that were required for this dissertation as listed in the previous section. This is the ‘F8F2

function’.

Early in the paper, Whitley et. al. listed many of the popular test functions. They

included the five functions from the De Jong test suite, labeled F1 through F5. The F6

function was the Rastrigin function, F7 was the Schwfel function, and finally F8 was the

Griewangk function (see Table 12-1). Whitley et. al. critiqued each function in turn. For

example the F2 function was nonseparable, and nonlinear (good) but, unfortunately, not

scalable. The F8 function was also nonseparable, and nonlinear, as well as being very

De Jong Test Suite:

F1: f (x0 ,x1, x2) = xi

2

i= 0

2

∑ xi ∈ [−5.12,5.11]

F2: f (x0 ,x1) = 100(x0
2 − x1) + (1− x0)2 xi ∈ [−2.048,2.047]

F3: f (xi i =0,4) = xi 
i= 0

4

∑ xi ∈ [−5.12,5.11]

F4: f (xi i =0,29) = (i +1) ⋅ x i

4

i =0

29

∑ + Gauss(0,1) xi ∈ [−1.28,1.27]

F5: f (x0 ,x1) =
1

0.002 +
1

j + (xi − ai, j)
6

i =0

1

∑j =0

24

∑
 xi ∈ [−65.536,65.535]

Rastrigin Function

F6: f (xi | i=0, N−1) = 10N + xi

2 −10 cos(2π xi)()
i= 0

N −1

∑ xi ∈ [−5.12,5.11]

Schwefel Function

F7: f (xi | i=0, N−1) = − xi sin(xi)
i = 0

N −1

∑ xi ∈ [−512,511]

Griewangk Function

F8:
f (xi | i=0, N−1) = 1 +

xi

2

4000
− cos(

xi

i +1
)

i =0

N−1

∏
i =0

N −1

∑
xi ∈ [−512,511]

Table 12-1: Common test functions (from (Whitley, Mathias et al. 1996))

Part 4 Experimental Results and Analysis 163

multimodal. Furthermore it seemed scalable by increasing the dimensionality of its

domain. Unfortunately, tests showed that, far from getting much harder as the dimension

increased, the problem actually became easier; the many local optima actually smoothed

out as the dimensionality increased until the landscape looked like a simple unimodal

valley (F8 is a minimization function). Furthermore, F8 was symmetric.

To combat these problems Whitley et. al. composed Griewangk’s function (F8) and

De Jong’s F2 function into a new function. They used a one-dimensional version of F8,

which had very many peaks and valleys, and composed it with the nonsymmetric F2

function. This created a function that was nonlinear, nonseparable, nonsymmetric, and

highly multimodal. To make it scalable, they played a simple trick. If one takes a

function S and a second function T, where T “maps two variables onto the domain of S”,

then a composite function can be defined as follows:

F(x0, x1,K, xn−1) = S(T (x i , xi +1))
i =0

n−1

∑ ≡ S(T (xn−1, x0)) + S(T(xi , x i+1))
i=0

n− 2

∑

Notice that each dimension interacts with both the dimension above and below it. Thus as

many dimension as required can be added with nonseparability being ensured. Setting S

equal to the one-dimensional F8 function

 F8(x) = 1+
x 2

4000
− cos(x)

and T equal to the regular two dimensional F2 function (see Table 12-1), Whitley et. al.

created the new composite function F8F2

F8F 2(x i | i= 0,n−1) = 1 +
100(xi

2 − xi +1) +(1− xi)
2()2

4000
− cos(100(xi

2 − xi +1) + (1− xi)
2)




 




 

i =0

n−1

∑ .

Examining the formula, it can be easily shown that F8F2 has all the properties that we

desired. It is nonlinear, not linearly separable, and nonsymmetric at every dimension

(except dimension 2, where it becomes symmetric56).

56 This is because the two dimensional composite function, F(x0 , x1) = S(T(x0 , x1)) + S(T(x1, x0)) , is

itself symmetric. Whitley et. al. gave implementers the choice of defining as F(x0 , x1) = S(T(x0 , x1))
instead, thus allowing for a nonsymmetric version. However, this option was not used in this dissertation.

Part 4 Experimental Results and Analysis 164

The value and position of the minimum is also known (F8F2 is a minimization

function); the minimal value is 0 and is located at the (1,1,K,1) position. Furthermore,

unlike the F8 function, the height of the local optima does not decrease as the

dimensionality increases. Thus the function keeps all the desired properties as the

Figure 26a): An overview of the F8F2 function (dimension = 2) at low resolution
Figure 26b): A blowup of the highlighted square in Figure 26a seen at high resolution.

Note: In Figure 26b the function is redisplayed as a maximization problem to
better view the optima.

Part 4 Experimental Results and Analysis 165

dimensionality increases. Furthermore, by increasing the search space we are increasing

the problem’s difficulty, thus incorporating scalability.

F8F2, as previously mentioned, is a minimization function By inspection we can see

that it has a minimum of 0 found at x0 = x1 = 1. In Figure 26a the two-dimensional

version of F8F2 is presented at low resolution. As can be seen, the overall shape of the

function is ‘bowl shaped’ with a fairly ‘flat’ bottom. At higher resolutions (see Figure

26b
57,) the ‘flat’ bottom is seen to have very many local optima, a few of which have

larger basins of attraction than does the global optimum. Thus the F8F2 function is a

complex, scalable, highly multimodal function, as required.

Ch12 §3.1.3 A Multimodal Function with a Large Basin of Attraction Attached to

the Global Optimum: F8mF2

For the second testing environment, the global optimum should be made easy to find;

i.e. the environment should have a global optimum that is connected to a very large basin

of attraction.

While it is true that a simple unimodal function matches that criterion, such an

environment is so simple that the GA is not the best search algorithm to use. A simple

hill-climber would easily outperform it. Thus we need a multimodal function that is hard

enough for a GA to be of use and yet still be relatively easy to solve.

Such a function can be created through a very slight modification of F8F258. De

Jong’s F2 function

 F 2(x0, x1) = 100(x0
2 − x1) +(1− x0)2

 is slightly altered, becoming the new function

57 Please not that this figure is inverted, which converts it into a maximization to more easily see the
peaks and valleys
58 This modification was discovered accidentally from a bug in the testing code. The bug was found after
examining anomalous results that were being produced. After graphing the ‘faulty’ function it was realized
that the very small change had produced a function with vastly different properties. Furthermore, those
differences were stemming from a huge basin of attraction in the middle of the search domain and which
funneled directly into the global minimum.

Part 4 Experimental Results and Analysis 166

 mF 2(x0 , x1) =100(x0
2 − x1

2) + (1− x0)2 .

Notice the difference between the two, which consists of only a single change: the

squaring of the x1 term. The name ‘mF2’ is read as the ‘modified F2 function’.

Composing the mF2 function with the F8 function in the same way we would compose

the F2 and F8 functions (see the previous section) produces the F8mF2 function (read as

‘F8 modified F2’). Notice that F8mF2 has the same minimum value at the same location

as F8F2: 0 and 1 respectively.

The large size of the basin that feeds into the global minimum is very evident in

Figure 27, a graph of the two-dimensional version of the F8mF2 function. Comparing

the graph in Figure 26a with that in Figure 27a we see that F8mF2 is also largely bowl

shaped, although more symmetrical than F8F2. However, in Figure 27b the difference

becomes obvious as we can now see the giant basin of attraction that resides in the center

of the function. The GA can easily find that large smooth basin, which funnels directly

into the area where the global optimum sits – along the top right arm of the four arms that

extrude from the basin. Finally, the area around the basin is hilly enough to foil any hill-

climbers. Thus F8mF2 perfectly suites the needs of the experiment.

The two-dimensional version of F8mF2 seems ideal for comparing the SBGA with

the GA in an environment with a large basin of attraction. However, does that basin

continue to be a feature of the landscape when the dimensionality increases?

Unfortunately, the answer to this is not known, and very difficult to find out. However,

the behavior of both the GA and the SBGA when run in these environments is consistent

with such a landscape; both produce much smaller (thus better) values when run on the

F8mF2 function than on the F8F2 function with the same dimensional setting.

Part 4 Experimental Results and Analysis 167

Figure 27a): An overview of the F8mF2 function (dimension = 2) at low resolution
Figure 27b): A blowup of the highlighted square in Figure 27a seen at high

resolution. The global optimum and its attendant basin of attraction are
indicated.

Note: In Figure 27b the function was redisplayed as a maximization problem, to
better view the optima.

Part 4 Experimental Results and Analysis 168

Ch12 §3.1.4 Why a Broadband Test Suite is not Used

Traditionally when a new change to or enhancement of the GA is proposed, the new

system is tried against a variety of different problems. These problems usually would

include a few standard optimization functions such as those in the De Jong test suite. The

purported reason behind this is to have the experimental results generalize widely, that

the extension improves the GA on more than just a carefully constructed function.

In many ways this rational is legitimate. Notwithstanding this argument, however, a

different approach is taken in this dissertation. It was felt that, while a broadband test

suite is an important stage during the analysis of an algorithm, it is not the appropriate

first stage, which should be kept small and focused.

There are five reasons to support a more focussed original testing regimen:

First, to attain statistical accuracy during testing, a large number of experimental

repetitions are needed for each series of parameter settings. Consequently even using

only one test function, the computational resources needed are extensive, both in time

and space (massive amounts of data can be produced). This problem is only multiplied,

literally so, by the use of a large number of test functions. Depending on the question

being asked and the functions used, the computational time and storage could easily

outstrip the available computational capabilities of a researcher’s installation.

Second, even if the required results are obtained as raw data, the resulting statistical

analysis can be enormously complicated by the introduction of the various test functions.

This is especially true if you are trying to regress across the generations (i.e. using time as

a concomitant variable). A regular ANCOVA test, even a nonparametric one, assumes no

interaction effects between the regression curves across the various levels of a variable.

This will not hold when analyzing over the different test functions. The response of the

system to each test function across the generations will be different, one from the other.

Consequently, an ANCOVA cannot be used and must be replaced with a difficult

regression that would require a complex interpretation.

Part 4 Experimental Results and Analysis 169

Third, a simple initial testing regime would help to focus the research, so when the

more broadband tests are conducted one would have a better idea of what to look for.

This would result in more efficient experimental designs that isolate the important factors

to look at between the various test functions. As a consequence, concentrating on one or

two initial functions will help to alleviate the problems discussed in the previous two

points. The excessive time and space consumption needed for statistical accuracy would

be reduced if unnecessary variables are identified during the initial tests, and eliminated

from consideration. This will also ease the problem of analyzing a very complex

regression model.

Fourth, alongside helping to identify unnecessary variables, a simple initial testing

regime could also bring to light interesting questions that are not immediately apparent.

This would help refine the testing methodology used during the broadband tests, which in

turn, could answer questions raised by the results from the initial tests, but which require

a larger test suite to ascertain what is really occurring.

Fifth, a broadband suite usually does not even help assure the generalizability of the

results. This is the basic problem of induction. Since the number of possible functions is

vast, a reasonably sized test suite is still open to the criticism that functions used are

special cases for which the system behaves as desired, and are not representative of the

system’s general performance. This is still a large open problem (and one that is not just

limited to the GA community). Currently, developing a proper test suite is more of an art

than a science. The one approach that tend to satisfy critics, using a massive number of

test function à la Koza with GP, is for too extensive for most researchers, and certainly

goes far beyond what is required of a Ph.D. dissertation.

Ch12 §3.1.5 Why F8F2 and F8mF2 Were Chosen Over More Traditional Test

Functions

Since we are going to choose only one test function per given hypothesis, why choose

the little known F8F2 and the unknown F8mF2 functions? One would think that by using

Part 4 Experimental Results and Analysis 170

a common test function, comparisons with other systems could be done without resorting

to re-experimentation.

While temping this approach was also rejected for two reasons:

First, none of the common test functions found in the literature had the requisite

properties that were detailed in Ch12 §3.1.1 except for F8F2 and F8mF2. Most test

functions are closely tailored to answer the questions that prompted their construction.

The appropriateness of F8F2 to this chapter’s hypothesis and the discovery of F8mF2,

with its large central basin of attraction, were both quite fortuitous.

Second, the benefit of cross study comparisons is actually a chimera. No real benefits

can currently be obtained from the use of common test functions over and above their

applicability for studying the problem at hand.

The reason for this is twofold:

First, GA investigators are notoriously bad at providing, in their published papers and

articles, even the minimal information necessary to perform a proper statistical

comparison to their work. Results are frequently given as averages only, without

providing the corresponding standard deviation along with the number of runs the

average was taken over. Without this information you cannot even perform a simple T-

test to determine whether the difference you see in their respective behaviors are

statistically significant or just the product of random fluctuations. Furthermore, most

function definitions are under-specified (see (Whitley, Mathias et al. 1996)) and so even

if the extra information is given, you can’t be sure whether you have used the same

version of the function with the same encoding scheme.

The above sloppiness in reporting, however, is not the main problem. Over time GA

researchers have grown in sophistication. The number of papers with such flagrant

omissions is fortunately on the decline. However, there is a deeper problem that makes

cross study comparisons very problematic: the response of the GA to a given test function

need not be, and likely is not, normally distributed.

Part 4 Experimental Results and Analysis 171

When the response of a system is not normally distributed, standard parametric

techniques are not applicable. Even a straightforward average could engender incorrect

inferences. In this situation, statisticians resort to nonparametric statistics, or the recently

popular “resampling” method. Unfortunately, in order to compare the behavior of your

new system with the original published results, both of the above statistical techniques

require access to the raw data from which the summary statistics was drawn. These

results, for example the fitness of the best member of population for every run, can be

numerous, especially when many parameter setting are used. Consequently, it would be

difficult to publish them in a paper. In the future, the raw data, which may even comprise

entire populations, as well as the statistics derived from the data, will be obtainable from

the Internet. Currently this is not the case, rendering comparisons to previous works

found in the literature effectively meaningless.

Since there is currently no advantage in favouring a common test function over one

that more closely meets the needs of the experiment, the choice was made to use F8F2

and F8mF2 over more standard test functions.

Ch12 §3.1.6 The Limitations of Using a Single Problem-Specific Test Function:

What Can Be Inferred?

It must be emphasized that when using a single problem-specific test function,

general inductive conclusions should never be inferred. Just because a GA behaves in a

certain manner on the current test function does not mean that it will always behave that

way. Since the testing done for this dissertation is preliminary in character, the

experiments performed use just such a single problem-specific test function as discussed

previously, and consequently care must be taken with any inferences made.

There are three legitimate inferences that are valid when using such a test function:

First, it can be used as an existence proof. The test case demonstrates that the GA can

and does behave in a certain way on at least one function. Any future theory or model of

GA behavior will have to take this effect into account, if only as a special case.

Part 4 Experimental Results and Analysis 172

Second, the test case can be used to disprove an hypothesis. This is very closely

related to the first point above. If one hypothesizes that the GA always has a given

behavior, a single counterexample, provided by an appropriate test function, can

definitively disprove it.

Third, the test case can be used as supportive evidence of a general property or

theory. This should not be confused with the drawing of general inductive conclusions.

While the two statements are related, the former actually being a component of the latter,

they differ in scope. Supporting an hypothesis is much weaker than concluding it. All that

is being said is that at least one data point can be found which provides evidence for a

theory or the existence of a universal property.

In conclusion, a single test case provided by a carefully chosen test function can

provide a lot of useful information on its own, without resorting to a very large test suite.

All that must be ensured is that any results obtained are not given more weight than is its

due.

Ch12 §3.1.7 Implementing the Test Functions

Both the F8F2 and the F8mF2 have the same range. Each dimension is represented by

a 12 bit, Gray coded, binary integer. Thus the values range between [-2048, 2047], which

produces the 212 = 4096 distinct possible genomes/dimension. These integers are then

divided by 1000. This converts them into valid input values as expected by the two

functions, which is to say the input values expected by F2. Thus the phenotypic values

range across [-2.048, 2.047]

The dimensions chosen for the stationary experiments are 4, 5, 6, 7 and 8. No

dimensions above 8 were used because of time considerations. Dimension 2 was omitted

for a very different reason. During preliminary experiments it was discovered that both

the GA and the SBGA always could solve both F8F2 and F8mF2. However by dimension

4, no solutions could be found by either system on either test function within the

Part 4 Experimental Results and Analysis 173

timeframe of the experiments. Consequently what defines success for the two-

dimensional problems is radically different than for problems with higher dimensions.

For experiments that use a higher dimensionality, the best measure for monitoring the

behavior of the systems is the fitness of the best member of the population found during

the run. This is commonly known as the ‘offline’ measure. However, this is a

meaningless measure for dimension 2 since the result is always ‘0’ and so no distinctions

can be made between the GA and the SBGA. A more natural measure to use in such a

situation is the time, in generations, when the system first finds the global optimum.

Unfortunately, this measure is not applicable to the higher dimension problems. Since the

global optimum for these problems would only be found, presumably, after the

experiment ends, the generational time when it occurs cannot be known. Hence, the two

measures are not commensurable and dimension 2 results cannot be analyzed alongside

the results from the other dimensions. Consequently dimension 2 was not tested at this

time.

Dimension 3 is a ‘transition’ dimension between dimension 2 and the higher

dimensions. While any given run may not find the global within the time limit, many do.

Consequently, this dimension was also not included in the experiments to keep the

analysis ‘clean’.

Ch12 §3.2 GA and SBGA Configuration

Ch12 §3.2.1 Selecting the Probability of Crossover and the Mutation Rate

For a completely fair comparison between the GA and the SBGA, both systems

should be tuned such that their respective mutation rates and probability of crossover

settings maximize the effectiveness of both systems.

Unfortunately, finding these settings is not a simple procedure. Many tests would

have to be done at high repetition rates to gain the appropriate statistical accuracy

necessary to allow us to induce a model that would predict the most accurate settings.

Part 4 Experimental Results and Analysis 174

Even then, the model would have to assume little epistatic interactions in behavior at the

different parameter levels. This would be very time consuming and outside of the scope

of this dissertation.

Consequently the default GA settings were used for both the GA and the SBGA’s

core. So the probability of crossover = 0.7 and the mutation rate = 0.006 bits/locus. In

order to promote exploration by the SBGA’s colonies, which is their raisons d’être, they

were set at values that are higher than in the core and GA populations59. Each colony has

a probability of crossover = 0.9, and a mutation rate = 0.01.

Ch12 §3.2.2 Population Sizes

Just as with the mutation and crossover rates, the optimal settings for the population

sizes are not known. In general however, the larger the size of the population the better

the performance of the GA, although the law of diminishing returns probably does have

an affect.

Unfortunately, because of its multiple populations, matters are even more complex

for the SBGA. Unlike the GA, which only has one population size (N), the SBGA needs

to have settings for the core size (n), the size of a colony (m), and also the number of

colonies (k) in the system. Settings for all these parameters have to be determined.

The Population Size of a Colony: �m�

Because the colony uses most of the SBGA mechanisms, more constraints are placed

on its population size than on any of the others. Thus finding the appropriate size of a

colony will be the first parameter addressed. This is, and so its population size is more

constrained than the core’s.

59 Aside from assuring that the mutation rate and probability of crossover were higher in colonies than in
the core, their values are arbitrarily chosen. Future implementors should not treat them in any way as
canonical, nor use them blindly as defaults.

Part 4 Experimental Results and Analysis 175

In the version of the SBT used by the SBGA, colony movement is based on selection

only, not random drift (unlike the original model developed by Sewall Wright, see Ch3

§1). Consequently it would be preferable to set the colony size high enough to suppress

random drift and promote selection. By suppressing random drift, we are reducing the

number of possible mechanisms that could be responsible for the success or failure of the

SBGA. This will help our analysis of the system in the long term. On the other side of the

equation, we would like to keep the population size as small as possible, to facilitate

exploration; it is easier for a small population to change its genetic makeup than a large

one. To determine what size of a colony would appropriately balance the two effects,

small enough for easy movement but large enough to prevent random drift, we can use

the results of the neutral model theory of population genetics.

 The neutral model theory looks at the behavior of the frequencies of a gene and its

alleles in a population with no mutations and only neutral selection in effect.

Consequently, all that can occur is random drift, which is modeled as a random walk in

frequency space. In the early thirties, R. A. Fisher (Fisher 1930) and Sewall Wright

(Wright 1931) both independently formulated a model of random drift using a random-

walk-induced binomial transition matrix. Later, in the mid 1950’s, an alternative

approximation model of random drift, using differential equations based on the diffusion

of heat in a metal, was provided by M. Kimura (Kimura 1955). In the sixties Kimura

applied this model of genetic drift to natural populations, claiming that most mutations in

a given population were neutral (productive mutations are rare, deleterious ones have too

short a life span to be observed statistically). This became known as the neutral model

(Kimura 1983). To examine the neutral model Kimura, in (Kimura and Ohta 1969), used

his diffusion equations of random drift and calculated the time it would take for a neutral

mutation to reach fixation (driving out its rival allele from the population) or loss (being

bred out of the population). It is these set of equations that we will be used to determine

an effective population size for the colony.

 Random drift is the effect of random processes, modeled as a random walk, driving

an allele to extinction or fixation. The longer the allele can stay ‘in play’ given no

Part 4 Experimental Results and Analysis 176

selective pressures, the less we can attribute the behavior of the population to random

drift.

Kimura and Ohta’s equation for the mean persistence time of an allele in a neutral

model is

 t (p) = −4N[p ln(p) + (1 − p)ln(1− p)]

where p is the frequency of the allele in the population (which is completely analogous to

the gene frequency fP(g) developed in Ch6 §2.2.2) and N is the population size. Since

we want to know the maximum effect of random drift we will assume that the allele

frequency is as far from reaching fixation or loss as possible. So, setting p = 1
2 we get

t (p) = 4N ln 2 . Now, if an allele has not reached fixation or loss by the end of the run,

than random drift cannot be playing a significant role. In our stationary experiment, we

allow 300 generations to pass before we measure the fitness of the best member in the

population. Random drift will therefore not have a great effect during the run of the

experiment if the effective population size is set to

 N =
300

4 ln 2
=108.2 .

Since selection is in effect and random drift is not the sole arbiter of gene frequency in

the population, this population size is an overestimate. Consequently, the colony

population size was rounded down and set to m = 100.

The Number of Colonies: �k�

Setting the appropriate number of colonies is a harder task than setting the size of a

colony’s population. Since the most effective number of colonies is probably problem

dependent and may even change as the SBGA populations evolve, we do not have

recourse to a theory such as the neutral model for determining its value. Just as with the

crossover and mutation rates an inductive determination of the settings through

experimentation is beyond the scope of this dissertation. Still, a choice has to be made. So

I will conjecture that a good, all around setting would be k = m . This keeps k large

enough to be interesting, but small enough to keep size of the entire population down to

manageable proportions. If the resulting value is appropriate to the two test functions

Part 4 Experimental Results and Analysis 177

used, then that is just a fortuitous coincidence. From the previous subsection, we

determined that the population size of a colony should be m = 100. Consequently the

number of colonies is set to k = 10.

The Population Size of the Core: �n�

The core represents the main population of the SBGA; the population responsible for

exploiting the genetic material found by the colonies. Consequently, the core size should

be much larger than the population size of any one colony. Unfortunately, as was the case

when determining the number of colonies, there is no theory to help determine the size of

the core with respect to the size of the colonies. Furthermore, finding it experimentally is,

once again, computationally prohibitive and hence outside the scope of this dissertation.

Consequently I have arbitrarily chosen to set the population size of the core equal to the

cumulative population size of all the colonies; thus, for all experiments, the population

size of the core is n = k ⋅ m = m
3

2 = 100
3

2 = 1000.

The Population Size of the GA: �N�

When comparing the SBGA with the GA, one should not advantage either over the

other by assigning unequal populations sizes. Since larger populations provide more

members to search with, unequal population sizes would bias the results in favour of the

population with the large number of members. The total population size of the SBGA is

n + k ⋅ m = 100 +10 ⋅100 = 2000 . Thus we set the population size of the GA to N = 2000 .

Ch12 §3.2.3 Selection

F8F2 is actually a very hard problem for a canonical GA, and great improvement can

be conferred by the use of various modifications. Whitely et. al. found significant benefits

to performance in the F8F2 environment when using the GENITOR variant of the GA.

GENITOR is a steady-state GA that uses rank selection that was developed by Whitley in

the late 1980’s and early 1990’s, see (Whitley 1989) and (Whitley and Starkweather

1990). Now, since the SBGA is just an extension of the GA, it can usually be grafted onto

Part 4 Experimental Results and Analysis 178

any GA variant (see Ch3 §3). Unfortunately, GENITOR’s use of a steady-state

population interferes with the SBGA’s mechanisms for handling the multi-objective

optimization performed by the colonies (see Ch9 §3). Fortunately, by adding elitism to a

standard generational style GA, most of the effects of the state-state version are obtained.

By choosing linear rank selection as the selection algorithm for both the GA and

SBGA and by using elitism, both the GA and SBGA simulate GENETOR as closely as

possible. Thus the benefits of using GENETOR on the F8F2 function is obtained, while

still adding the functionality of the SBGA. In effect, we are comparing the behavior of

SBGENITOR against that of GENITOR and not that of the SBGA and the standard GA.

However, since we have chosen to use F8F2, this shift makes sense and does not

invalidate the generality of the experiment. If on F8F2 the SBGA can win over

GENITOR and GENITOR has more success than the GA, it follows that the ‘SBGA’

behaves better than the standard GA on F8F2. Furthermore, by extending GENETOR, the

SBEA demonstrates the flexibility provided by its ability to incorporate and extend any

evolutionary algorithm that best suites the problem at hand.

When using linear rank selection, we have the choice of selection pressure by

manipulating the slope of the linear function that determines the probability of selection

for the ranks. The steeper the slope, the higher the selection pressure. Since GENITOR

produces high selection pressures, the maximal slope was used. Using the notation from

(Baker 1985), the maximal slope occurs when the probability of selection of the minimal

rank is 0 (i.e. when low = 0)60.

60 This setting results in a slightly steeper slope than Baker claimed was possible. For a discussion of
this, see Appendix C-8.

 179

Chapter 13

Escaping Local Optima Part 2:

Analysis Design, Results and

Discussion

Ch13 §1 Introduction

In the last chapter, the purpose and testing methodology for the experiments used to

examine whether the SBGA shows improvement over a standard GA were described,

along with their experimental design. In this chapter we present the methodology used

when analyzing the experimental results, the results themselves, and a discussion of the

outcome. This will provide evidence of the ability of the SBGA to improve the capacity

of the GA to escape from local optima. Also, preliminary test are performed on the

experimental data to determine both the type of analysis needed and any remedial

measures that are required to ensure that the results of the analysis are accurate and not

misleading.

Part 4 Experimental Results and Analysis 180

Ch13 §2 Observational and Analytical Methodology

Ch13 §2.1 Analysis and Design Using the General Linear Model

To analyze the performance of the two evolutionary systems on the two test

functions, we will be following an experimental design based on the General Linear

Model (GLM) statistical approach. The GLM combines various different statistical tools

and experimental procedures into one system: regression, analysis of variance (ANOVA),

and analysis of covariance (ANCOVA). A subset of linear multivariate analysis

(MANOVA and MANCOVA61) can also be included in the GLM, as long as all but one

of the random variables used are designated as predictor variables along with the rest of

the fixed variables. In other words, only one of the random variables can be used as the

response variable.

The unifying framework of the GLM is that the underlying statistical model used

must be a linear combination of statistical parameters:

 Y = α 0 + α1X1 + α2 X2 + ... + α kXk

 where α 0 ,α1,α 2, ...α k are the parameters used in the model, and X1, X2 ,...Xk are either

the observational results from random or fixed variables, or functions of one or more of

the random or fixed variables. The GLM uses an appropriate statistical inference method,

such as least square or a maximum likelihood test, to solve for the parameters when given

a set of observational results62.

Comparisons on the effects of the various predictor variables (the Xs) on the response

variable (the Y) can then be applied. This is accomplished by taking the various sum of

61 ‘MANCOVA’ is usually referred to as ‘the normal covariant model’.
62 A common misunderstanding of the GLM is that it can only model linear combination of random

variables. As stressed above, it is the parameters and not the random variables that must be linearly
combined for the GLM to be applicable. The random variables and functions thereof, are actually constants
of the equation, and are explicitly determined by the experimental results. For example, a GLM analysis is

applicable to the model Y = α
0

+ α
1
X

1
+ α

2
(1 − X

2
sin X

1
) + α

3
X

3
log X

3
 but not Y = α

0
2

α1 X
. The latter

model would have to be handled using nonlinear statistical methods.

Part 4 Experimental Results and Analysis 181

square deviations from the factor levels and applying an F-test to see if any of the

observed differences from the null hypotheses are statistically significant.

Since many such inferences are typically made, the F-test must be modified to take

into account the reduction in the confidence level that multiple inferences induce. For

example, look at the case where 3 statistical inferences are made, each with a 95%

confidence level (i.e. each inference has only a 5% chance of being incorrect). Then the

chance that all three inferences are correct is 0.95 * 0.95* 0.95 = 0.857 . In other words

our confidence level has dropped from 95% to 85.7%. With 14 inference, the confidence

level has dropped to below 49%; i.e. there is a greater than 50% chance that one of our 14

inferences is wrong. When applying a GLM, it is easy to blithely make hundreds of

inferences without noticing (caused by the combinatorial effect of different factor levels

that are being compared against each other).

To compensate for this, various corrective measures have been proposed. One such is

the Scheffé test, which has the advantages of being valid for any number of comparisons.

It is therefore very useful for performing exploratory statistical analysis, as we are doing.

It also produces one of the smallest confidence intervals when many comparisons have to

be performed. A brief description of the Scheffé procedure is given in Appendix D-1.

GLM implementations can be found in any modern statistical package including SAS,

SPSS and SysStat. In this dissertation all statistical analyses as well as all graphs and

plots used were performed on or composed using the DataDesk statistical package

(version 6.1), written and distributed by Data Description Incorporated. DataDesk also

comes with a useful manual which provides a good overview of regression and the GLM,

as well as other statistical techniques available in DataDesk (Velleman 1997). For a

detailed description of the GLM techniques and formulas, see (Neter, Kutner et al. 1996).

Ch13 §2.2 The Response Variable (Y)

The first step for developing a GLM is to determine what the response variable of the

system is. The response variable is the random variable that measures the behavior or

Part 4 Experimental Results and Analysis 182

response of the system in question after each run. To study whether it is the GA or SBGA

that is more successful at escaping from local optima, the response variable chosen is the

fitness of the best member found by a system after the run has finished63.

We will now discuss the appropriateness of using the comparison between the fitness

of the best members found from each system as a measure of how easily a system can

escape from the area around a local optima.

For a measure to be a useful indicator of a behavioral trait of a system, some Boolean

function on that measure must provide a necessary and sufficient condition for

determining whether that trait exists. In other words, if and only if one of the systems is

better than the other at escaping from local optima should a predicate of some response

measure of both the GA and SBGA in a hilly environment return true.

As an illustration, we will first present a counter example: the mean of the population.

The respective mean of the populations is a severely flawed measure for providing

information on whether the SBGA is better at escaping from local optima than the GA or

vise versa. Let us suppose that system A is better than system B at escaping local optima.

It could very well be (and in fact is even likely) that system A is better at escaping optima

because its population remains very diverse. Now, because it has converged at the top its

hill, system B could very well lie higher in the fitness landscape, on average, then System

A, which by remaining diverse does not converge to the top of its hill. However, the hill

that System B is on could be inferior to the hill of System A (see Figure 28). Thus the

mean of a population does not provide a necessary condition for determining whether one

system is superior to the other for escaping from local optima, let alone a necessary and

sufficient one.

Now let us look at the same situation for the fitness of the best member measure.

Once again, let system A be better at escaping from local optima than system B. Given

sufficient time, System A will wander more widely than system be since it is not trapped

63 This measure is sometimes called offline fitness, and is by far the most common measure used to
observe the performance of a GA.

Part 4 Experimental Results and Analysis 183

as frequently. Consequently it should have a greater chance of wandering into promising

territory, and so on average it should the best member it finds should be better than the

best member that System B finds. Thus, if a run is sufficiently long, a difference between

the fitnesses of the best members of both systems is a necessary condition for

determining whether one system is better at escaping locals than the other.

Now let us look at the converse problem. A difference, on average, is found between

the fitnesses of the best members of the two systems, and is in System A’s favour. Does

this imply that System A is better at escaping from local optima than system B? There are

three possible reasons that I have thought of which could explain such a difference. The

first possibility is the conclusion we want: there is a difference because System B gets

trapped at a bad local optimum with a greater frequency than System A. Thus A is better

at escaping from local optima. The second possibility is that both systems get trapped by

local optima with equal ease, but one system is better at finding good local optima to get

Figure 28: The more diverse System A has a better ‘best member’ response than
System B, but a worse ‘mean’ response.

Part 4 Experimental Results and Analysis 184

trapped in than the other. It is difficult however to see how this could occur. Unless the

evolutionary system has detailed knowledge of the landscape so it could jump directly to

a good optimum, the system would have to sample the landscape, bad optima as well as

good. If it passes over the bad optima more frequently so it can find the better ones ‘to be

trapped in’, then it is reasonable to say that it does not get trapped at local optima as

easily. Thus first two possibilities lead to the same conclusion.

The third possibility is the most pernicious. Perhaps System B takes longer to escape

from the local optima than System A, but in the long run does better. Thus the difference

we see in System A’s favour is a result of not waiting long enough. This is definitely

possible. Of course, perhaps all that is necessary to resolve this problem is to wait long

enough. However, we do not have enough information to know when long enough is, nor

is there yet any theoretical way of determining it. Thus we cannot conclusively say that

an observed difference in fitness between the best members of the two systems is

sufficient to declare one as better at escaping from local optima than is the other.

However, such an observation would provide strong evidence for this position.

Furthermore, if there is reason to believe that convergence has taken place in both

systems by the time the experiment ends, then sufficiency does hold.

From the above argument, we see that a difference between the average over many

runs of the fitnesses of the best members found by the GA and the SBGA would be

indicate that the more ‘fit’ system is better at escaping from local optima than the other.

However, this conclusion only holds if the experiment is run for a sufficient number of

generations. Preliminary experiments showed that the response of the GA on this

measure reached a plateau by 75 generation. Also by 75 generations the diversity of the

GA reaches close to zero, demonstrating that the GA has converged. Thus by waiting for

75 generations, sufficiency should be assured. However, to be on the safe side, the

number of generation for an experiment increased fourfold over this value. So we wait

300 generations before polling the systems to determine how well they have done.

Part 4 Experimental Results and Analysis 185

Ch13 §2.3 Factors (Predictor Variables), Factor Levels and Repetition

Ch13 §2.3.1 The Factors and their Levels

Predictor variables (which are also called ‘factors’) are the variables that effect, or are

being tested to see if they effect, the behavior of the response variable. When applied to

GA behavior, predictor variables can be either aspects of the construction of the GA such

as choosing different parameter settings, or it can involve varying the environment that

the GA is operating in, such as changing the objective function. A particular parameter

setting, design feature, or test function is called a ‘factor level’ or ‘level’. However, there

is a subtle difference between a factor and a GA parameter, etc. A factor in the model is

modified during the course of the experiment. Therefore a parameter that is kept constant

throughout all runs, is not a factor in the model.

In the experiment performed for this chapter (and those performed for all chapters in

this part) no changes were made to the traditional GA parameters; the mutation and

crossover rates were not changed from their default settings, nor was the slope of the

linear rank selection varied. Consequently, all the factors used in the model were

environmental, except for the two systems under discussion themselves and one of the

newly introduced parameters in the SBGA.

The SBGA and the GA are the two levels in the most important predictor variable in

the model: the systems under study. I have called this factor the ‘program factor’ and

have denoted it ‘pgm’. The other two factors are the test function (‘fn’) and the

dimensionality (‘dim’) a the function. The test function factor has two levels: the F8F2

function and the F8mF2 function. The dimensionality factor has five levels: 4 through 8.

The reasons behind these choices of factors and their levels have already been discussed

last section. The number of factors used was deliberately kept small in order to focus on

the behavior of the two systems without the extra complications that arise when many

factors are involved. Further study of the two systems, together or separately, using other

factors should of course be done at a later time.

Part 4 Experimental Results and Analysis 186

There is one more predictor variable, other than the ones discussed above, that has

been included in the model; different migration intervals for the colonies in the SBGA

were tried. The reason for this will be discussed in the next section.

One last note. None of the factors used in the model are random variables. They are

‘fixed’ variables with levels set by the experimenter. Furthermore, none of them are

concomitant variables; i.e. no regression needs to be done over them. Consequently, the

analysis tool that will be used by the GLM is just a regular ANOVA.

Ch13 §2.3.2 How Many Cases are Needed?

There are, of course, many different combinations of factor level settings (which are

called ‘treatments’) that can be tried. For example, for three factors, A, B and C, which

have a, b and c factor levels respectively, the total number of treatments possible is

nT = a ⋅ b ⋅c . If all such combinations are used, the factors are said to be fully crossed.

This results in a simpler analysis, and consequently I have fully crossed all factors for all

experiments.

Another way in which the analysis can be kept as simple as possible, is to give each

treatment in the system the same number of repetitions. The repetition of an individual

treatment is used to either obtain or increase statistical accuracy. In all experiments an

equal number of treatment repetitions is used.

To determine the number of repetitions required, a test of the power of the statistical

model should be performed. Unfortunately, to do so involves a chicken and egg type

problem. To calculate the appropriate number of repetitions from the power of the model,

an estimate of the mean level effects and variation in the system is required.

Unfortunately, we have no a priori knowledge of those statistics and to obtain them, we

would have to run the experiments.

Fortunately, it is better to over specify rather than under specify the number of

repetitions to be used. If too many repetitions are performed, we just waste computational

power. If too few are performed, we may not have the resolution power needed to

Part 4 Experimental Results and Analysis 187

distinguish between two factors or factor levels and could conclude that there is no

difference between them when there really is (i.e. making a Type I error). Consequently,

in our results, if the null hypothesis wins out and no difference was discerned, we cannot

really conclude that no difference exists. Only a proper study of the power of the test

could convince us of that. Since this was not done, conclusion of this sort must be only

tentatively held.

It would have been nice if we could guard against Type I errors by allocating a very

large number of repetitions for each level setting combination. Unfortunately, the

experiment is very computationally expensive; the fully crossing of the factor levels

results in a combinatorial explosion in number of trials to be performed. A balance

therefore must be kept between performing as large a number of repetitions as desired for

statistical significance, and yet keeping the number of repetitions low enough for the

experiments to be completed in a reasonable time. To attempt such a balance, the choice

was made to use 30 repetitions. With this number of repetitions, the difference between

the Student T distribution and one obtained with an infinite number of repetitions is fairly

small; small enough to be ignored by many tables published in statistical textbooks,

which only publish t-scores up to n = 29, and then skip to n = ∞ . Consequently, I felt

that 30 reps would be a large enough default value, while still be computationally

reasonable. The results seem to bear out this choice, with the sought-for distinctions

between factor levels actually occurring.

Ch13 §2.4 The �Migration Interval� Factor

Of all the parameter settings used in the GA and SBGA, the migration interval is the

only one used as a factor in the linear model. This was done more out of necessity than

desire. For all of the other parameters, good arguments could be made for choosing a

particular setting (see Ch12 §3.2). However I had no theory or intuition to guide me on a

reasonable choice of a migration interval level. Consequently, I decided to try three

different levels and include the migration interval as a factor in the model, denoted

‘migr’.

Part 4 Experimental Results and Analysis 188

While I had no intuition on which single level to choose, I was able to identify three

migration intervals that should be of interest.

The first choice is a migration interval of 10. The idea is to match the migration

interval to colony count. By doing so, one and only one colony will send migrants to the

core each generation. This allows a constant inflow of migrants to the core, while limiting

their number. It also will give each colony a chance to evolve for 10 generations before

sending migrants to the core, allowing the colony to move into a different area of the

search space.

The second choice is a migration interval of 2. Here we are taking the opposite

approach; we are sending migrants in as early as possible while still allowing each colony

a modicum of evolutionary time. This constant influx of members may destabilize the

core, reducing the SBGA’s performance. Alternatively by increasing the core’s diversity

the SBGA’s performance may be enhanced. There is no way to know a priori which will

occur (hence the experiment). Also, in every generation half of the colonies are sending

migrants to the core, which increases that population’s size by 50%; the core is being

deluged. Consequently, we only send 25% of the members of a colony, the elite, during

migration. Thus the number of migrants arriving at the core is reduced to only 12.5% of

the core’s size. Since we don’t want to add yet another factor to the linear mode, the

percentage of a colony that are sent as migrants remain constant across all experiments.

The third choice is a migration interval of 6, which is exactly halfway between the

migration intervals of 2 and 10. This is to test whether we get intermediate behavior at

this level, implying that the migration interval behaves in a linear fashion, or not.

Because the behavior of the SBGA changes with the migration interval, one can view

the varying responses as coming from three distinct implementations of the SBGA. To

emphasize this perspective, the factor levels for migration interval will be denoted ‘S(2)’,

‘S(6)’ and ‘S(10)’ for migration intervals 2, 6 and 10 respectively. The ‘S’ stands for the

SBGA program with the parenthetical values indicating the modifying effect of the

migration interval.

Part 4 Experimental Results and Analysis 189

There is one more issue that needs to be covered concerning the analysis of the GA

and SBGA in the presence of migration intervals. In the previous section, we stated that it

is desirable to keep all factors fully crossed. Therefore, both the GA and SBGA should be

tested using the same migration intervals. However, migration interval is not a valid

parameter of the GA! Consequently, the migration interval factor can only apply to the

SBGA level of the program factor. To rectify this, the linear model has to be slightly

modified. The factor ‘migration interval’ is said to be partially nested within the program

factor. The details of the effect of nesting can be found in Chapter 28 (Neter, Kutner et al.

1996).

When one nests a factor within another, inferences can be made on the nested factor.

Consequently, as long as the program factor is in the model, no inferences can be made

on the migration interval. To study the effects of migration interval levels, a second linear

model has to be used. The second model is created by replacing the ‘pgm’ factor with the

‘migr’ factor. With the original model we can made inferences about the SBGA as a

whole in comparison to the GA; e.g. is the SBGA better over all at escaping from local

optima than the GA. With the second model, more detailed comparison can be made

between the GA and individual SBGA systems with particular migration interval settings.

The second model also allows one to perform a comparative study between the behavior

of the SBGA systems with different migration intervals.

Ch13 §2.5 Testing for Normality and Constancy of Error Variance

The ANOVA test is only valid if two assumptions hold: the data must be normally

distributed, and the error terms must have constant variance across the various factor

levels. If these assumptions do not hold, remedial measures have to be taken before the

ANOVA routine is applied.

Part 4 Experimental Results and Analysis 190

Ch13 §2.5.1 Normality

The easiest way to test for normality in the data is to perform a normality plot. In such

a plot, the data is sorted by fitness and paired with the values that would be expected if

the data were normally distributed. These pairs are then plotted on a scatterplot to see if

they form a straight line. If so, then the data is normally distributed; if not, then not. A

linear regression is usually performed to see how well the results of the normality plot

results fits a straight line. If the R
2 values produced by the regression line are large, on

the order of 95% or greater, then we can accept that the data is normally distributed,

otherwise we assume nonnormality.

When the normality test is applied to the results from the experiment designed in the

previous chapter, a mixed response is obtained. In Figure 29, we see that SBGA evolving

in an F8F2 environment with a dimension of 8 has normally distributed results. On the

other hand, the behavior of the SBGA in the F8mF2 environment set at dimension 4 is

very far from normal. Looking at Table 2, which records all the R
2 values of the

0.1

0.2

0.3

0.4

-1.25 0.00 1.25

nscores

0.01

0.02

0.03

0.04

F8F2,Dim=8

F8mF2,Dim=4

F
it

n
e

s
s

Figure 29: Normality plots of SBGA behavior in two different environments.
F8F2,Dim=8 (in blue) imposes normally distributed behavior on the SBGA;
F8mF2,Dim=4 (in green) does not.

Part 4 Experimental Results and Analysis 191

regressions for the normality plots

applied to all dimension / test

function combinations, we see that

low dimensional experiments are

not normally distributed, while

high dimensional ones are.

Furthermore, the effect is much

more pronounced when the F8mF2

environment is used.

The reason for the variance in

normality results is not as yet

understood. One hypothesis could

be that on ‘easy’ problems an evolutionary system would provide many more ‘good’

results rather than ‘bad’ ones, skewing the data towards lower (better) fitnesses, and thus

producing an asymmetrical and hence nonnormal distribution. While the overabundance

of low fitness values in the normality plot does add weight to the theory, more

experimentation will have to be done before this reason should be accepted.

Ch13 §2.5.2 Remedial Measures for Nonnormality

For the regular ANOVA test to be applicable, the data for all the factor levels of all

the factors must be normally distributed. As this is not the case, we must resort to

remedial measures.

The first remedial measure that should be tried is the coercing of the data into a

normal distribution. To do this, one must find an appropriate transformational function

for the response variable. However, it is not possible to produce such a function. Any

function that normalizes the results at low dimensions would destroy the normality of the

results at high dimensions.

Dim F8F2 F8mF2

4 93.4% 89.8% 70.3% 70.3%

5 92.2% 94.1% 84.0% 84.2%

6 90.5% 98.1% 78.6% 95.0%

7 96.0% 97.9% 90.3% 97.8%

8 94.4% 98.4% 91.1% 96.5%

 GA SBGA GA SBGA

Table 2: The R
2 values from the linear re-

gression of each normality plot of the fitness
values. If R

2 = 100%, then the data is nor-
mally distributed.

Part 4 Experimental Results and Analysis 192

A second remedial approach, and the one taken for this experiment, is to use

nonparametric statistical procedures for the analysis. The original nonparametric version

of ANOVA is the Kruskal-Wallis test64. However, there is an easier alternative. To

transform the data such that an ANOVA performed on it would produce nonparametric

results, simply sort all the cases by the response values, independent of which factor or

factor level is used, and rank them. The ranked data produces a uniform distribution

across all factors and factor levels, which is close enough to a normal distribution that an

ANOVA produces results that are virtually equivalent to the Kruskal-Wallis test. See

(Neter, Kutner et al. 1996), pp. 777-780 for further details. Consequently, the analysis for

this experiment is performed on the ranked data.

Ch13 §2.5.3 Constancy of Error Variance

The data needs to meet a second requirement if valid results are to be produced by the

ANOVA procedure; the error terms must have a constant variance for each of the

different factor levels. A simple test for this is to perform the ANOVA, and then plot the

residuals for each factor level of every factor in the model using a dot plot. If the scatter

of the residuals around 0 is approximately the same for each factor level, then error

variances are constant.

AS we have ranked the fitness to handle the nonnormality of the data, the residuals

should be computed from an ANOVA performed on the ranked fitnesses, not the raw

data.

The constancy of error variance was tested on the data produced by the experiment

described in the previous chapter. Dot plots were produced using the residuals for each

factor level of the three main factors in the model: the test function, dimension, and

migration interval. A quick glance at the results presented in Figure 30 shows that the

64 Hollander, M. and D. A. Wolfe (1973). Nonparametric Statistical Methods. New York, John Wiley &
Sons., pp. 115-120.

Part 4 Experimental Results and Analysis 193

variances are all similarly dispersed around zero. Consequently, the error variances can

be considered constant for all the factor levels and no remedial measures need be taken.

-800

-400

0

400

F8F2 F8MF2

fn

GA 2 6 10

migr

4 5 6 7 8

dim

re
s
id

u
a
ls

Figure 30: Residuals from the ANOVA shown for the three different factors. The
variance remains constant throughout.

Part 4 Experimental Results and Analysis 194

Ch13 §2.6 Summary of the Model

To answer the question “does the SBGA escape from local optima more readily than

the standard GA?” two linear models have been developed.

The first model is designed to answer the question overall. In other words, after

considering all of the migration interval settings that the SBGA has been run with, can

one say that the SBGA escapes from optima more readily than the standard GA? In the

model, the response variable, denoted as Y, is the ranked fitness of the best member by

the end of generation 300 as was discussed in the previous two sections. The factors used

in the model, along with their levels and shortened names can be found in Table 3.The

model also must includes terms used to test whether any interaction between factors

occur. The resulting model is written as

Model 1:

Y = const + fn + dim + pgm(migr) + fn * dim + fn * pgm(migr) + dim * pgm(migr) +
fn * dim* pgm(migr)

The second model is used to study interactions between the GA and individual

‘migration interval’ level responses of the SBGA. It can also be used to compare the

behavior of the SBGA at the different ‘migration interval’ levels. This model is similar to

Factor Levels

Test Function (fn) F8F2, F8mF2

Dimension (dim) 4-8

Program (pgm) GA, SBGA

Migration Interval (migr) S(2),S(6),S(10)

Table 3: Factors and Factor Levels used in the model

Part 4 Experimental Results and Analysis 195

the one before, except that the prg(migr) nested term is replaced by the migr factor. To

do this, the migration interval must be removed as a nested factor of prg. This is done by

augmenting the migration interval factor levels to include GA cases. Each GA case is

given a migration interval value; the factor levels for migr are now ‘S(2)’, ‘S(6)’, ‘S(10)’

and ‘GA’. The resulting model becomes

Model2:

 Y = const + fn + dim + migr + fn * dim + fn * migr + dim * migr + fn *dim* migr

Once again the response variable Y is the ranked fitness of the best member by the end of

generation 300, and all factor names and levels can be found in Table 3.

For both models, the constant parameter settings of the GA and SBGA used are listed

in Table 4.

 Population Sizes Selection
 GA 2000 Linear rank selection
 Core 1000 low = 0.0 (high = 2.0)
 Colony 100 elitism

GA and Core Colonies
mutation rate 0.006 bits / locus mutation rate 0.01 bits / locus

prob. of crossover 0.7 prob. of crossover 0.9
 migration size 1

4 colony size (elite)
 Number of Colonies 10

Table 4: Constant parameter setting for all experiments

Part 4 Experimental Results and Analysis 196

Ch13 §3 Results

The experiments, as described in the previous chapter, were performed. In this section

the results will be presented and those found to be of interest emphasized. However, no

conclusions will be drawn; all such discussions will be deferred to the analysis and

discussion section following.

In Figure 31 dot plots of the best fitness from the population in the three hundredth

generation for all the runs are presented for F8F2. The results for each system (GA or

SBGA with a different migration interval setting) are kept together and clustered by

dimension used in the run. Therefore each dot plot (vertical ‘line’) comprises the 30

repetitions used with each treatment (the combination of system setting and

dimensionality of the environment). The results for F8mF2 are similarly presented in

Figure 32.

S(10)S(2)
S(6) GA GA

4 5 6 7 8Dimension

S(2)
S(6)

S(10)
GA

S(2)
S(6)

S(10)
GA

S(2)
S(6)

S(10)
GA

S(2)
S(6)

S(10)
System

0.1

0.2

0.3

0.4

f

i

t

n

e

s

s

Figure 31 Dot Plots of Results in the Stationary F8F2 environment.

Part 4 Experimental Results and Analysis 197

The results from the dot plots seem, on the whole, to favour the SBGA systems over

the GA systems at low dimensionality, while it is harder to at high dimensionality, in

both F8F2 and F8mF2. However, such visual inspection can be deceptive, especially

when observing stochastic sampling when comparing random variables. How much

variation is to be expected? If one system varies around a lower mean than another, is this

because of an actual difference or just the result of statistical fluctuations. When dealing

with only two factors, this can be settled by doing a two-factored ANOVA or a T-Test

(which is the square root of the F-test used by the ANOVA). When more than two factors

exist, the more general procedure has to be used: the ANOVA, under the general linear

model.

The ANOVA results based on Model 1 have been computed and are summarized in

Table 5. These results should show whether a general difference between the GA and the

0.05

0.10

0.15

0.20

0.25

f

i

t

n

e

s

s

S(10)S(2)
S(6) GA GA

4 5 6 7 8Dimension

S(2)
S(6)

S(10)
GA

S(2)
S(6)

S(10)
GA

S(2)
S(6)

S(10)
GA

S(2)
S(6)

S(10)
System

Figure 32 Dot Plots of Results in the Stationary F8mF2 environment.

Part 4 Experimental Results and Analysis 198

SBGA exists independent of the migration interval used. In the table the comparisons

between the GA and SBGA are broken down and summarized according to the test

function and dimensionality used during the runs.

Let us first look at the F8F2 results in the top of the table. Here we see that the SBGA

outperforms the GA at a confidence level of 95% or greater, which is the usual level for

statistical significance66. The sole exception is the results for dimension 8, which only

reaches an 82% confidence level.

Looking at the results of F8mF2 we see a different story. At very low dimensionality,

the SBGA is better than the GA. However, by dimension 7 the GA is the clearly

dominant system of the two.

65 The Standard Error is the mean squared error (i.e. the variance of all of the combined data divided by
the appropriate degrees of freedom of the model). The standard error multiplied by a factor determined by
the confidence level in accordance with the Sheffé test will produce a confidence interval around the
difference that does not overlap 0, i.e. the difference is significant to within the given confidence level.
66 By ‘outperforms’ read ‘produces lower and hence better fitness values’.

Difference In

Ranks
In Favor of

Standard
Error

65

Confidence
Level

4 388.233 SBGA 30.26 100.0%

5 333.044 SBGA 30.26 100.0%

6 214.356 SBGA 30.26 99.8%

7 120.433 SBGA 30.26 95.4%

8 86.6778 SBGA 30.26 82.0%

F
8
F

2

4 125.689 SBGA 30.26 96.2%

5 61.2222 SBGA 30.26 54.9%

6 11.1667 GA 30.26 0.3%

7 164.911 GA 30.26 99.2%

8 147.733 GA 30.26 98.4%

D
im

e
n

s
io

n

GA vs SBGA

F
8
m

F
2

Table 5: ANOVA summary Using Model 1. The Confidence level is the confidence
we have that the difference observed between the ranks of the GA and the SBGA is real.

Part 4 Experimental Results and Analysis 199

Model 2 was formed to examine whether the overall effects seen in Model 1 holds for

each of the migration interval levels. Unfortunately, the 30 repetitions were not sufficient

to provide such information. Remember that setting the repetition rate to 30 per treatment

was just a best guess at the needed amount for statistical significance. This proved

adequate for examining gross level distinctions between the GA and the SBGA, but not

the fine level distinctions necessary to discern differences between the migration

intervals. In the future, 60 or 90 repetitions per treatment should be tried.

The discussion of Model 2 was included in this chapter for didactic purposes. Model

2 will be of interest when dealing with dynamic environments in the next chapter.

However it was easier to explain the purpose behind Model 2 here using the conceptually

simpler stationary model.

Ch13 §4 Analysis and Discussion

 Overall, the results of the experiment show that the SBGA outperforms the GA on

the F8F2 function, a function designed to have many local optima, while the reverse

occurred on the F8mF2 function, which has a large basin of attraction connected to its

global optimum. In other words, when there were many optima to escape from, the

SBGA excelled; but when the global is easy to find, the larger population of the GA

begins to dominate and the SBGA is not as competitive.

There are, however, some oddities in the results. For the F8F2 function at dimension

8, the success of the SBGA relative to the GA loses some of its statistical significance,

dropping to 82%. This is unexpected since dimension 8 should have even more local

optima for the SBGA to escape from and the GA to get trapped in. One possible

explanation is that by dimension 8 the function is so hard that both systems are beginning

to struggle, thus producing equally poor results. This is, of course, complete conjecture.

A detailed study of the behavior of the SBGA and the GA on F8F2 at higher

dimensionality will have to be done to begin to explain this result.

Part 4 Experimental Results and Analysis 200

The F8mF2 test function also presents some surprises; now in favour of the SBGA.

Before examining the results, I was expecting the GA to have an advantage in the F8mF2

environment at low dimensionality. After all, the F8mF2 function was designed to favour

the GA over the SBGA. Once the large basin is found, the GA can use its superior hill-

climbing capabilities, derived from its larger, undivided population, to rapidly descend

into the bottom of the valley and find F8mF2’s global minimum. Remember; the

population of the GA is double the size of the core and 20 times the size of any colony.

The only advantage that the SBGA should have lies in the initial stages of the experiment

when the central basin is still not yet found. Then, the terain is still rugged and the

SBGA’s ability to escape from local optima can come into play.

At low dimensionality, the initial populations of both the GA and SBGA should

easily find the large central basin by randomly sampling the search space. The small

dimensionality means that there is less search space to cover than with high dimensional

spaces. Furthermore, the population size is kept the same as dimensionality increases thus

the coverage becomes thinner and the chances of stumbling on the central basin

decreases. So we expect that the GA should outperform the SBGA to a greater degree at

low dimensions rather than at high ones.

However, not only does the level of performance of the GA over the SBGA diminish

at low dimensions instead of increase, at dimension 4 the SBGA actually outperforms the

GA to statistical significance! Only at high dimensions (dim = 7 and dim = 8) does the

GA have a clear advantage over the SBGA.

One possible explanation is that the GA is more suitable for solving hard problems

and the SBGA for easy problems. However, this is contradicted by the success of the

SBGA on the F8F2 function compared with the success of the GA on the F8mF2

function; the F8F2 function constructed to be harder!

Another possible explanation hinges on the behavior of the large central basin of

attraction with respect to increasing dimensionality. It is possible that this basin grows in

volume faster than the dimensionality increases. Thus it may be easier for the GA to

Part 4 Experimental Results and Analysis 201

initially find the basin at high dimensionality, not harder. Once again this is a complete

conjecture. To attempt to confirm it, a detailed study the topography of the F8mF2

landscape at high dimensionality is necessary. This is not easy. An explanation of this

effect too will have to be left for future research.

While the two anomalies should be followed up, by and large, the results found,

especially those of F8F2, support the hypothesis that the SBGA is better than the GA at

escaping from local optima.

 202

Chapter 14

Comparing the SBGA to the GA

in a Dynamic Environment

Ch14 §1 Introduction: Does the ‘Shifting Balance’ Extension Aid
the GA when Tracking a Moving Global Optima?

In the previous chapter the ability of the SBGA to outperform a standard GA in an

environment with many local optima was investigated and the outcome seemed to

support the claims by Sewall Wright that the ‘shifting balance’ helps an evolutionary

system escape from local optima. However, an addition claim is made in this dissertation

that the ‘shifting balance’ extension should aid in tracking a moving global optimum.

This should be especially true after a lengthy stationary period is experience by the

environment, which would allow an evolutionary population to converge. While it is

difficult to prove such a conjecture conclusively, an experimental design will be

developed to provide strong supporting evidence in its favour. At the end of the chapter,

Part 4 Experimental Results and Analysis 203

experimental results will be presented that seem to confirm that not only does the Shifting

Balance extension aid evolution in a dynamic environment, but that the advantages

experienced in these situations exceed even those found in stationary problems with

many local maxima.

Ch14 §2 Experimental Design

The same basic experimental design used in Chapter 12 shall be used again. Both the

parameter settings of the GA and SBGA as well as the test functions will remain

unchanged. This is done to facilitate comparisons against the stationary results. However,

to change the stationary experiment into a dynamic one, many changes and additions will

still have to be made. These modifications follow directly:

Ch14 §2.1 Dimensions

In the stationary experiment we examined function dimensions 4 through 8.

Dimension 2 and 3 where skipped because both the SBGA and the GA could actually

find the global optimum when used. However, in a dynamic environment, it is impossible

to “find” the global optimum because the solution found will not be the global optimum

in a generation or two. Furthermore, finding the global while stationary will add to the

effect of premature convergence of the populations, which is even a part of the

experimental design. Consequently dimension 2 was reinstated into the test plan. This,

however, adds to the computational time when running the experiments, which will soon

be made even more onerous by the addition of motion as a factor. Consequently only the

even-valued dimension between 2 and 8 were used as factor levels.

Part 4 Experimental Results and Analysis 204

Ch14 §2.2 Motion

Ch14 §2.2.1 Phenotypic Motion

The term ‘dynamic environment’ is an overly general term. ‘Dynamic’ includes an

extremely broad array of time dependant behavior. The ‘fitness landscape’ could move en

mass, or it could undulate like a storm swept sea. The changes could range from the very

gradual, perhaps almost imperceptibly so, to the very sudden, staccato-like. The motion

may be smooth or punctuated; continuous or discontinuous; cyclical or ever varying. The

permutations are endless.

In this dissertation the choice was made to study the simplest possible dynamic

environment that could be constructed. The reason for this is straightforward, simple

dynamical systems are easier to analyze than complex ones. It is difficult enough to

understand how the GA works on a stationary environment; with a complex dynamics

driving a complex evolutionary process, it becomes very difficult to differentiate the

various causal factors behind the behavior observed. The only hope is to build up

understanding gradually. If the behavior of the GA is known in the simple cases,

differences that arise when complexity is added can more easily be appropriately

attributed. Consequently, it was decided that a simple translation of the entire

environment should be studied first.

To make a function f with d dimensions undergo a translation, simply compose it with

a second function m, where m is defined such that, if f :(x0 , x1,..., xd −1) → R then

m:(x0, x1, ...,xd −1, gen) → (x0, x1,..., xd−1) . In other words m extends the domain of f by

adding the current generation as an argument, and returns a value that is within the

domain of f. Consequently, the dynamic version of f is

 fdyn(x0 , x1, ..., xd −1,gen) = f (m(x0 ,x1, ..., xd −1,gen))

For f to be a simple translation, the dimensions must not interact with each other.

Consequently, the newly formed dynamical function can be written as:

 fdyn(x0 , x1, ..., xd −1,gen) = f (m0 (x0,gen),m1(x1,gen),..., md −1(xd −1,gen))

Part 4 Experimental Results and Analysis 205

where m0, m1,...,md −1 are the linearly separated (by dimension) component function of

the overall function m

The simplest such translation occurs when m0 = m1 = ... = md−1 . This is a translation

along the hyperdiagonal. The translation along the hyperdiagonal has the advantage of

being the simplest transformation that has an affect on every dimension equally and

therefore was the dynamic function chosen for the experiments. Since all of the

component functions, m0, m1,...,md −1 are identical, the function applied to a single

dimension during a translation along the hyperdiagonal shall be denoted md

There is still one more ‘degree of freedom’ to restrict. While the translation is

restricted to the hyperdiagonal, the type of motion along the hyperdiagonal can yet have

any form. For example, if md has the form md (x, gen) = x
k⋅gen , with k being a constant,

then x will gain speed exponentially over time. Similarly, if md (x, gen) = x sin(k ⋅ gen),

then x will oscillate along the hyperdiagonal. In this way cyclical processes can be

emulated. The simplest motion is, of course linear motion: md (x, gen) = x − v ⋅ gen , where

v is a constant speed (the speed of a linear translation will be discussed in Ch14 §2.4).

The linear translation along the hyperdiagonal at constant speed has the advantage of

being the simplest transformation that can be performed, yet effects every dimension.

Furthermore, each dimension is affected equally. Consequently, this was dynamic

function chosen for the experiments.

Ch14 §2.2.2 Genotypic Motion

It is important not to confuse the motion in the domain of the fitness functions, as

described in the previous section, with the motion of the environment as experienced by a

chromosome in a population. Take for example a chromosome that, once decode, lies on

the global optimum of the objective function. What mutational change is necessary to

transform that member into one that lies on the new global optimum once the

environment has shifted by a single phenotypic increment, say between 7 and 8? If the

phenotypic domain is the integers, and the chromosomes are produced using a simple

Part 4 Experimental Results and Analysis 206

binary encoding using 4 loci, then the phenotypic value ‘7’ becomes the genotype ‘0111’,

while the phenotypic value ‘8’ becomes the genotype ‘1000’. Consequently, in this case 4

mutations were needed to move a unit distance in phenotype space; this is the maximal

distance between chromosomes in that gene space. Of course, what has just been

described is simply the well-known problem of ‘Hamming cliffs’; but it proves the point

exceedingly well. What looks like linear motion in phenotypic space may be anything but

linear in genotypic space.

Since domain of an evaluation function is the phenotype of a population member, the

changes in the environment with respect to phenotypic space will be called phenotypic

motion. Similarly genotypic motion shall be used to denote dynamic behavior of the

environment in genotype space.

In general it is much easier to specify phenotypic motion than genotypic motion.

However, it is really the genotypic motion that is experience by the genome as the

environment changes. One technique that partially rectifies this problem is the use of

Gray codes for encoding phenotypic integers as chromosomes. Since an integer

increment of 1 corresponds to a single bit difference in the encoded number, there is a

relatively smooth mapping from phenotype to genotype space. Thus a phenotypic

increment of 1 would correspond to a genotypic increment of 1 throughout the gene

space. Using the standard Gray code specifications, increments of 2 also correspond to

increments of 2 in the gene space. Unfortunately, this mapping breaks down when using

increments of 3 or greater; thus, care must be taken in the analysis when large

incremental jumps in phenotype space are used as they may be associated with much

smaller or much larger changes in gene space.

When defining F8F2 and F8mF2 in the previous chapter, it was noted without

comment that they were encoded with Gray codes. It should now be clear why this choice

was made.

Part 4 Experimental Results and Analysis 207

Ch14 §2.3 When Should Motion Occur?

The experiment requires two distinct periods, a stationary period where the

evolutionary populations are given a chance to converge on the global optimum, and a

dynamic period.

From preliminary experiments, it was determined that convergence in the GA occurs

approximately 75 generations after a random start (also see the diversity results presented

in Ch15 §3). To ensure that convergence occurs, this period is doubled in length

producing an 150 generation stationary period.

Motion occurs immediately after the stationary period and continues unabated until

the end of the run. The length of this dynamic period is set at 300 generations to match

the time used in the experiment in Chapter 12. It is also double the length of the

stationary period.

Consequently, the entire run takes 450 generations in total.

Ch14 §2.4 Speed and Velocity

Ch14 §2.4.1 Phenotypic Velocity and Phenotypic Speed

An obvious question to ask of a dynamic environment is “how fast is it moving?” i.e.

what is the velocity or speed of the environment? This is only a meaningful concept,

however, when every point in the environment ‘landscape’ at time ‘a’ has a one-to-one

and onto mapping with the points at time ‘b ’. It is, for example, not sensible to ask the

‘speed’ of the surface of a choppy lake. The surface is in motion, and the individual water

molecules are experiencing changes in position over time, thus they do have individual

speeds. However, the entire surface as a function is not changing in any uniform or

predictable fashion and hence has no speed.

Environments with motions that can be linearly decomposed into dimensional

components have such an equivalence mapping. For example rotational transformations

Part 4 Experimental Results and Analysis 208

have associated rotational or angular speeds and velocities while translational

transformations have associated the regular definitions of speed and velocity.

We will now look at the rate of change that can be performed in translational

transformations. The average rate of change between generation g1 and generation g2 of

an environment under translation motion is

m0(x0, g2) − m0 (x0 ,g1)

g2 − g1

,
m1(x1,g2) − m1(x1,g1)

g2 − g1

, ...,
md−1 (xd −1,g2) − md−1(xd−1, g1)

g2 − g1


 


 

.

If m is a differentiable function of g, then the instantaneous velocity at a given point

in time would be

 v(x0 ,x1, ..., xd −1) =
∂ m0 (x0 ,g)

∂ g
,
∂m1 (x1, g)

∂ g
, ...,

∂ md −1(xd −1,g)
∂ g


 


 

.

The phenotypic speed of an environment is the magnitude of its instantaneous

velocity. If we use the L2-norm to compute the magnitude, then the speed of the

translation of the dynamic environment would be

 s(x0, x1,..., xd−1) =
∂m0(x0, g)

∂g


 


 

2

+
∂m1(x1,g)

∂g


 


 

2

+ ... +
∂ md −1(xd −1,g)

∂ g


 


 

2

.

As we saw earlier, a linear translation along the hyperdiagonal has

md (x, gen) = x − v ⋅ gen as its dynamic composition function in every dimension.

Consequently, the velocity of the dynamic environment is v(x0 ,x1, ..., xd −1) = (v,v, ...,v)

and the speed, using the L1-norm, is s(x0, x1,..., xd−1) = v d . Since we are generally

interested in the speed of each dimension rather than the Euclidean speed of the entire

system, we will usually refer to the dimensional phenotypic speed v as the phenotypic

speed of the environment rather than v d .

Ch14 §2.4.2 Computing the Motion for the Dynamic F8F2 and F8mF2 Functions

Since there is a stationary period at the beginning of the experiment, the motion will
begin at a given generation, say generation gdyn and will cease at the end of the run,

which is denoted gend . Both of these values are user-defined parameters. A third

Part 4 Experimental Results and Analysis 209

parameter is now introduced, the environmental shift distance (envShiftDist) which is the

total phenotypic distance across which the environment moves during the course of the

experiment. Consequently, the phenotypic speed of each dimension is

 v =
envShiftDist

gend − gdyn

and hence the equation of motion for F8F2dyn becomes

 F8F2dyn(x) = F8F2 x −
gen − g

dyn

gend − gdyn

 envShiftDist


 


 

where gen is the current generation and envShiftDist = envShiftDist ⋅ 1 . The equation of

motion for F8mF2dyn is computed analogously.

Just as with migration intervals, the effects of different envShiftDist values on the

evolutionary systems is entirely unknown. Consequently, 3 equally spaced distances were

selected: 0.25, 0.5 and 0.75. These distances constitute 6.1%, 12.2% and 18.3% of each

dimension respectively. The resulting dimensional phenotypic speed for each distance is

0.833, 1.667 and 2.5 milli-units/generation.

Ch14 §2.4.3 The Average Genotypic Speed of Linear Motional along the

Hyperdiagonal

The genotypic speed is to phenotypic speed as genotypic motion is to phenotypic

motion. It is the speed of the environment as seen in gene space. Because frequently a

linear transformation between phenotypic and genotypic motion does not exist, in spite of

the clever construction of the Gray code, it is difficult to determine, or even to define an

instantaneous genotypic speed. Consequently, we can only look at the average speeds of

the environment in gene space computed across different generational intervals. This

average genotypic speed was experimentally determined by applying the equation of

motion to the position (1,1,...,1), which represents the global optimum of both F8F2 and

F8mF2 (although just the coordinates were produced, not the corresponding function

values). The average dimensional genotypic speed was found to be 0.8333

bits/generation, for an envShiftDist of 0.25, 1.667 bits/generation for an envShiftDist of

Part 4 Experimental Results and Analysis 210

0.5,and 2 bits/generation for an envShiftDist of 0.75. Since there is 12 bits per dimension,

these values correspond to a mutation rate of 0.069, 0.139 and 0.1667 mutations/loci, all

of which exceed the 0.006 mutation rate implemented in both the GA and the SBGA.

Consequently, the crossover procedure in tandem with the population effects in the

systems must be relied upon for the GA or SBGA to have any hope of tracking the global

optimum.

When the average genotypic speed was calculated, the patterns of bit changes per

generation were noted. The Gray code had indeed performed its ‘duty’; the number of bit

changes per generation across each dimension was very uniform in composition. Three

simple patterns emerged, one for each envShiftDist, all of which were repeated until their

respective experiments were completed. With an envShiftDist of 0.25, the pattern was ‘1,

1, 1, 1, 1, 0’; the envShiftDist of 0.25 produced the pattern ‘2, 2, 1’; and the envShiftDist

of 0.25 produced the pattern ‘1, 2, 3, 2’.

Ch14 §2.5 The Model

The response variable remains unchanged from the previous chapter: the fitness of the

best member of the population, ranked against all other cases from all treatments in

ascending order, from best to worst. This is a natural response variable to use since the

closer the system is to the global optimum, the better the results will be on average67.

However, there is one difference. Instead of the offline measure being used (the fitness of

the best member found across any generation) the fitness of the best member is reported

in each of the cases run at every generation to see how closely the evolutionary systems

track the global optimum from generation to generation.

67 There are other possible response variables of interest such as the smallest phenotypic distance of the
population members to the global optimum and the smallest genotypic distance of any member of the
population to the global optimum. However, since both the SBGA and the GA select based on fitness, not
genotypic or phenotypic distance, this dissertation will concentrate solely on the best fitness measure,
leaving study of the other two measures for future work.

Part 4 Experimental Results and Analysis 211

There are two new factors introduced into the linear model. The first was implicitly

mentioned in the previous paragraph, the number of generations (gen) past, which is

treated as a ‘continuous’ factor with levels from 1 to 450 (the final generation of a run).

The second factor has already been discussed at length in the previous section:

dimensional phenotypic speed (spd), with factor levels of 0.833, 1.667 and 2.5 milli-

units/generation. A summary of all the factors, with factor levels, used in this experiment

can be found in Table 6.

Only 6 repetitions are performed per treatment. This is for computational reasons.

When all treatments are considered, 64800 generations are performed, up from the 18000

done in the experiment from Chapter 12. Furthermore, every generation is recorded, not

one out of every three hundred. Consequently, to save both time and space, the number of

repetitions were drastically reduced from 30 to just 6. This will come at the expense of

the power of the test that can be performed; only more gross level differences will be

discernable.

Factor Levels

Test Function (fn) F8F2, F8mF2

Dimension (dim) 2, 4, 6, 8

Program (pgm) GA, SBGA

Migration Interval (migr) S(2),S(6) and S(10)

Phenotypic Speed (spd) 0.833, 1.667 and 2.5
milli-units/generation

Generation (gen) 1 - 450

Table 6: Factors and Factor Levels used in the model

Part 4 Experimental Results and Analysis 212

Ch14 §3 Analysis Procedure: Part 1

Ch14 §3.1 Methodology

The analysis will comprise two parts. The first consists of a visualization of the

behavior of the systems through the use of line plots of the response variable at every

generation. This is a necessary step. Without it, it would not be possible to know how to

design a detailed linear model of the system’s behavior. The results of this step will be

presented in the next section. From those results, the linear model will be developed in

the section after, followed by the results of that model. Finally an analysis will be done

on all of the results obtained.

In the visualization step in the analysis, two line plots of the results of the various

systems in the F8F2 and F8mF2 environment are examined. The line plots show the best

fitness per generation for the GA as well as for the SBGA with each migration interval

given a separate line. Each point in the line plot is averaged over the cases of all

dimension levels and phenotypic speeds. With 4 × 3 treatments at 6 reps each, this means

that each point is averaged over 72 cases68.

At this stage in the analysis, even with the averaging over treatments, no firm

conclusions should be drawn from the plots; without a careful statistical analysis one

cannot know which features are real and which the result of random fluctuation. The

purpose of this quick visual examination is only to provide some useful conjectures and

help us design an appropriate linear model to use during the next stage of the analysis

(which will confirm or deny the conjectures generated in this stage).

68 The averaging was done because with only 6 repetitions, the variability in the results was too high to
properly see any trends with any statistical significance. This was verified when the ANCOVA was
performed in Ch14 §4. Many of the confidence levels between the various systems when the treatment
levels were broken down that finely were not statistically significant, especially between SBGA systems of
different migration levels. More repetitions would have to be done to draw any inferences from the data at
that level. However, for completeness, the 24 graphs (one for each treatment) that compare the various
systems (GA, S(2), S(6) and S(10)) are presented in Appendix D-2

Part 4 Experimental Results and Analysis 213

Ch14 §3.2 Results and Analysis

The results from both F8F2 and F8mF2 (presented in Figure 33 and Figure 34) can

be divided up into three regions: the stationary region, the dynamic region – initial

response, and the dynamic region – main response.

Ch14 §3.2.1 The Stationary Region

The stationary region begins at generation 0 and extends to generation 150. During

this period of time the environment remains stationary, as the name implies.

0.9E6

1.2E6

1.5E6

1.8E6

2.1E6

0 100 200 300 400

generation

f

i

t

n

e

s

s

r

a

n

k

e

d

GA

S(2)
S(10)

S(6)

Figure 33: Fitness of the best of the generation in the F8F2 environment.
The value for each generation is averaged over dimensionality and speed.

Part 4 Experimental Results and Analysis 214

Looking at the results we see that the values for all systems in both cases start off

with very large ranks (very bad fitness values). This is to be expected since the

populations are all randomly generated at the start.

As time progresses, the responses start to improve, and all systems rapidly drop to

better ranks in a uniform matter until generation 30. At that time, some differentiation

begins to occur; the GA begins to level off at a faster rate than does any of the SBGA

curves. This is also expected since we know from Chapter 12 that the SBGA outperforms

the standard GA in stationary environments.

0.9E6

1.2E6

1.5E6

1.8E6

2.1E6

f

i

t

n

e

s

s

r

a

n

k

e

d

0 100 200 300 400

gen

GA
S(10)

S(2)

S(6)

Figure 34: Fitness of the best of the generation in the F8mF2 environment.
The value for each generation is averaged over dimensionality and speed.

Part 4 Experimental Results and Analysis 215

For a brief time in the response to the F8mF2 function, S(2) underperforms with

respect to the GA, but by generation 50, the response curve of the GA crosses that of

S(2); the latter continues to descend until its response becomes no different than that of

the other migration intervals.

The migration interval under which the SBGA performs the best is S(10). Its response

produces ranked fitnesses that are better than or equal to those obtained by the other

migration intervals, but attains them at an earlier generation.

Finally, notice that by generation 150 the difference between the GA and any of the

SBGA curves is greater when the environment used is F8F2 as compared to F8mF2.

Ch14 §3.2.2 The Dynamic Region – Initial Response

When the motion along the hyperdiagonal begins at generation 150, both systems

rapidly loose fitness, hence the increase in values to poorer ranks. Once the values have

risen enough, all systems seem to recover and the response becomes linear with a small

positive slope. This is the beginning of the main dynamic response and seems to occur at

generation 175 (a little earlier with the F8mF2 environment).

Ch14 §3.2.3 The Dynamic Region – Main Response

 Once the initial drop in fitness is passed, all systems begin to track the global

optimum, although all systems seem to loose ground as time goes by. Thus the response

becomes linear with a small positive slope. The slope of these lines is roughly the same69,

which will be an important point when we consider which statistical model to use.

The main feature to notice is that the response curves of all the SBGA systems lie

below that of the standard GA. This remains true in either environment. This implies that

the SBGA does indeed track the moving global optimum more closely, provided that the

69 The performance of the GA in the F8mF2 environment is the most nonlinear of all the responses.
However, the curve is not so far from linear that it will make a difference when performing the ANCOVA
in Ch14 §4.3.

Part 4 Experimental Results and Analysis 216

differences are statistically significant (which will be determined during the second stage

of the analysis).

There are three other observations that should be noted. First the SBGA response

curves for the different migration intervals seem to cluster more closely together (and

hence are more similar) under the F8F2 environment than the F8mF2 environment.

Second, in the F8F2 environment the S(6) response curve seems to perform the best, with

the S(2) and S(10) curves indistinguishable from each other. Third, in the F8mF2

environment the S(2) response curve has lower values (better ranks) than the S(6)

response which in turn is better than the S(10) response throughout most of the region.

However, early on, between generations 150 and 230, the order is different: S(6) has the

best response now, while S(2) is indistinguishable from S(10) (just as in F8F2). S(2)

gains ascendancy after improve dramatically in fitness between generations 200 and 230,

after which it begins its linear decline in the ranks along with the rest as the global slowly

pulls away.

Part 4 Experimental Results and Analysis 217

Ch14 §4 Analysis Procedure: Part 2

The purpose of the second stage of the analysis is to statistically confirm the

conjectures formed from the line plot of the previous section. Since we are interested in

the tracking capabilities of the GA and SBGA, we will restrict the analysis to main

dynamic region, between generations 175 and 450, in which response of the two systems

was linear. Since linearity seems to hold for each factor level, the ANCOVA procedure of

the GLM can be applied.

Ch14 §4.1 The ANCOVA

In the first step of an ANCOVA (Analysis of Covariance) procedure, the response

variable is linearly regressed against a ‘continuous’ predictor variable. A ‘continuous’

variable is a factor that has ordinal levels, between which linear dependencies exist. This

type of factor is called a concomitant variable. Once the linear response is modeled by the

regression, the results are subtracted from the response variable, thus eliminating the

linear dependence between the levels of the concomitant variable. Consequently, each

case of the concomitant variable is now independent of one another and so a regular

ANOVA can be performed. Since the regression is done between the response variable

and the concomitant variable independent of the values of any other factor, all factor

level interactions are blended together. In other words the regression lines for the various

factor levels are assumed to be parallel to each other.

In the case of our experiment, as the regression is done over the time component, the

concomitant variable is the current number of generations completed, i.e. the ‘gen’ factor.

For an ANCOVA evaluation to be valid, each level of the concomitant variable must

be normally distributed. However, we already know that this cannot possibly be the case.

In Ch13 §2.5 we tested both the GA and SBGA’s response to the F8F2 and F8mF2

environments for normality and found that at low dimensionality, normality did not hold.

Consequently, we must again use the nonparametric version of ANOVA / ANCOVA

Part 4 Experimental Results and Analysis 218

formed by first ranking the data in the response variable and then using the ranks instead

of the raw fitnesses when performing the test.

Ch14 §4.2 Models

There are two linear models that will be used during the analysis performed in this

section: the first compare the behaviors of the GA and SBGA in general, the second

compares the GA with the SBGA under the different migration intervals. Both are

extensions of the models developed for the stationary experiments (summarized in Ch13

§2.6). The models have been modified to add the two new factors spd and gen .

 Model 1:

Y = const + gen + fn + dim + spd + pgm(migr) + fn * pgm(migr) +
dim * pgm(migr) + spd * pgm(migr) + fn * dim* pgm(migr)

+ fn * spd * pgm(migr) + dim* spd * pgm(migr) +
fn * dim* spd * pgm(migr)

and Model 2:

Y = const + gen + fn + dim + spd + migr + fn * migr + dim * migr +
spd * migr + fn * dim*migr + fn * spd * migr +

dim* spd * migr + fn * dim*spd * migr

No interaction effects are computed for the concomitant variable gen as they would be

nonsensical terms. All comparisons between levels are computed using the Sheffé test.

Part 4 Experimental Results and Analysis 219

Ch14 §4.3 Results and Discussion Part 1: The Analysis Under Model 1

(Comparing the GA with the SBGA)

Unlike the stationary experiment from Chapter 12, there were not enough treatment

repetitions to perform a detailed breakdown of the ANCOVA results. If attempted, one

finds that too much statistical significance has been lost and all treatments look

equivalent. However, by combining levels, some difference can be discerned. These

results can be found in Table 7.

Table 7b holds an analysis of the results when the dimension levels are combined,

providing a breakdown by speed and test function. One can quickly see that the SBGA is

superior at any speed in both the F2F8 and F2mF8 environments. The same holds when

the speed levels are combined, and the results are broken down by dimension and test

function, as summarized in Table 7a, although not every dimension gave statistically

significant differences.

The lack of universal significance for the results in Table 7a is probably due to the

repetitions being to low for this particular breakdown, resulting in the tests being

underpowered. Comparing this breakdown to the breakdown by speed and test function

a)

 Better Conf. Lvl b)

2 SBGA 87% Better Conf. Lvl

4 SBGA 95% 25 SBGA 96%

6 SBGA 68% 50 SBGA 97%

8 SBGA 15%

F
8
F

2

75 SBGA 98%

F
8
F

2

2 SBGA 21% 25 SBGA 99%
4 SBGA 94% 50 SBGA 91%

6 SBGA 38%

S
p

ee
d

75 SBGA 97%

F
8
m

F
2

D
im

en
si

o
n

8 SBGA 89%

F
8
m

F
2

 GA vs SBGA

 GA vs SBGA

Table 7 ANCOVA results using Model 1.Bolded Values are statistically significant with
at least an 85% confidence level

Part 4 Experimental Results and Analysis 220

seems to support this hypothesis. The dim,fn breakdown has 8 factor level combinations,

or treatments, as opposed to the 6 found in the spd,fn breakdown. The fewer the number

of treatments, the more cases each treatment comprises. With a greater number of cases

per treatment, statistical significance was achieved by the spd,fn breakdown and not the

dim,fn breakdown. Thus one would suspect that an increase to 8 reps from 6 should

increase the power sufficiently to solidify the results for dimensionality.

In spite of being slightly underpowered, the most important result in this section can

be found in the analysis of dim,fn breakdown. Look at the results Table 7a when the

F8mF2 environment has a dimensionality of 8. Here we see that the SBGA wins out over

the GA even though the GA was better at solving this problem when the environment was

stationary (see Table 5 in Ch13 §3). The addition of motion in the environment seems to

give the SBGA an advantage even in an environment that was tailor-made for the GA.

Ch14 §4.4 Results and Discussion Part 2: The Analysis Under Model 2

(Comparing Migration Intervals)

Once again there were not enough treatment repetitions to perform a detailed

breakdown across all factor levels and so we are force to gain significance by combing

levels. The same combination of levels examined with Model 1 will be used again. The

ranks, from best to worst, of pair-wise comparisons between the GA and SBGA can be

found in Table 8, Table 9 and Table 10. The actual confidence levels of the comparisons

used to build these tables are presented in Appendix D-3.

The following three subsections discusses each of the tables and the conclusions

drawn from them.

Ch14 §4.4.1 Breakdown by Dimension, Speed and Test Function

The most detailed of the analysis is a comparison of the GA and various SBGA

systems, where only the results under the same dimensionality, speed and test function

are compared. This is presented in Table 8. On the whole, it can be seen that the SBGA

Part 4 Experimental Results and Analysis 221

performs better than the GA in almost every combination of factor level settings. The

only exception is against S(2) in F8F2, Dim = 8, and against S(10) in F8mF2, Dim = 6. In

both of these cases the GA is not better with statistical significance and so more testing

would be needed to determine whether there is an actual discernable difference or not.

Not withstanding these two anomalies, it appears that the SBGA is better than the GA

under any migration interval tried in any moving environment.

Distinguishing between the various migration interval levels with the SBGA is harder

to do. To obtain greater significance in the results, we will combine the various factor

 Speed
 25 50 75 25 50 75

S(10) S(2) S(2) S(*) S(2) S(*) best

S(2) | S(6) S(10) | S(6) S(6) S(*) S(*) S(*) 2nd

S(6) | S(2) S(6) | S(10) S(10) S(*) S(6) S(*) 3rd

2

GA GA GA GA GA GA worst

S(2) S(6) S(6) S(2) S(2) S(2) best

S(6) S(2) | S(10) S(2) | S(10) S(6) S(6) S(6) 2nd

S(10) S(10) | S(2) S(10) | S(2) S(10) S(10) S(10) 3rd
4

GA GA GA GA GA GA worst

S(6) S(6) | S(10) S(6) S(2) S2) S(02) best

S(2) | S(10) S(10) | S(6) S(10) S(6) S(6) S(10) 2nd

S(10) | S(2) S(2) S(2) GA | S(10) GA | S(10) GA | S(6) 3rd
6

GA GA GA S(10) | GA S(10) | GA S(6) | GA worst

S(10) S(10) | S(6) S(6) | S(10) S(10) S(6) S(6) best

S(6) S(6) | S(10) S(10) | S(6) S(6) S(10) 2) 2nd

S(2) | GA S(2) | GA GA | S(2) S(2) GA | S(2) S(10) 3rd

D
im

en
si

o
n

8

GA | S(2) GA | S(2) S(2) | GA GA S(2) | GA GA worst

 F8F2 F8mF2

Table 8: ANCOVA results using Model 2 broken down by speed, dimensionality
and test function. In the table ‘S(x) | S(y)’ means there is no statistical significance when
comparing S(x) against S(y). ‘S(*)’ means that there is no statistical significance between
the SBGA systems regardless of migration interval.

Part 4 Experimental Results and Analysis 222

levels together. The results of this analysis will be presented and discussed in the next

two subsections.

Ch14 §4.4.2 Breakdown by Dimension and Test Function

In Table 9b, the breakdown of the results by dimension and test function factor levels

is presented. One of the most obvious features that can be seen in the table is the poor

performance of the GA when compared with any of the SBGA systems in any

environment and in almost every dimension. Thus Model 1, studied in the previous

section, is actually redundant; the effects of the SBGA under each of the migration

intervals separately dominate over those of the standard GA without the need to combine

them for added power.

Now look at the F8F2 section of the table. In environments with small

dimensionality, S(2) performs the best and S(10) the worst. This behavior is completely

reversed in environments with large dimensionality. In between, the SBGA with a

migration interval of 6 seems to gain ascendancy. If low dimensionality is considered as

‘easy’ to solve, while high dimensionality is hard (which should be the case if Whitley et.

al. are right about the scalability of the function) then it seems that S(2) should be applied

to easier tasks while difficult tasks should be left to S(10). Tasks of intermediate

difficulty seem to require systems with an intermediate migration interval. This

conclusion is supported by the results of the F8mF2 portion of the table. Since F8mF2 is

easier than F8F2 (as witnessed by the overall lower and thus better fitness levels on

F8mF2), the behavior is shifted to the right. F8mF2 never gets hard enough to warrant the

use of S(10). Even at high dimensionality, S(6) is sufficient to do the job well.

Part 4 Experimental Results and Analysis 223

Ch14 §4.4.3 Breakdown by Speed and Test Function

Table 9a summarizes the results obtained by combining all factor levels other than

speed and test function. In the F8F2 environment, S(6) seems to be a good migration

interval to use at any speed, with little difference found between the other two intervals at

high speeds, while trading places with each other for dominance at lower speeds. In the

F8mF2 environment, S(2) has the best performance at any speed and S(10) the worst.

This is consistent with the hypothesis that S(2) is preferable on easier tasks such as the

F8mF2 function, even in the presence of motion. However, if the task is hard enough,

such as in F8F2 environments, then the middle road between the quick but destabilizing

behavior of S(2) and the careful but slow approach of S(10) seems the best strategy,

hence the dominance of the S(6) system.

Ch14 §4.4.4 Breakdown by Test Function Alone

By combining all factor levels other than those of the migration interval and test

function factors, an exact statistical analysis of the results depicted in the two line plots of

Figure 33 and Figure 34 can be obtained. This result is found in Table 10. For F8F2, the

a) Speed b) Dimension
 25 50 75 2 4 6 8

S(6) | S(2) S(6) | S(10) S(6) S(2) S(2) | S(6) S(6) S(10)
S(2) | S(6) S(10) | S(6) S(10) | S(2) S(6) S(6) | S(2) S(10) S(6)

S(10) S(2) S(2) | S(10) S(10) S(10) S(2) GA | S(2) F
8
F

2

GA GA GA GA GA GA S(2) | GA

S(2) S(6) | S(2) S(2) S(2) | S(10) S(2) S(2) S(6)
S(6) | S(10) S(2) | S(6) S(6) S(10) S(6) S(6) S(10)
S(10) | S(6) S(10) S(10) S(6) | S(10) S(10) GA S(2)

F
8
m

F
2

GA GA GA GA GA S(10) GA

Table 9: ANCOVA results using Model 2. Presented are the breakdowns by speed and
dimensionality for both the F8F2 and F8mF2 environments

Part 4 Experimental Results and Analysis 224

best system was S(6), while the other two migration intervals showed no discernable

difference. For F8mF2, S(2) had the best behavior followed by S(6), with S(10) having

the poorest performance of all SBGA systems. In both environments, the GA faired the

worst. These results completely confirm all conjectures made in Ch14 §3.2 when

discussing the responses seen in the two figures. Consequently, the differences seen

between the response curves in the two figures are statistically significant.

 Combined

S(6) best

S(2) | S(10) 2nd

S(10) | S(2) 3rd

F
8

F
2

GA worst

S(2) best

S(6) 2nd

S(10) 3rd

F
8

m
F

2

GA worst

Table 10: ANCOVA results using Model 2 after combining all factor levels but those for
the test function and migration interval factors

 225

Chapter 15

Random vs. Guided Diversity

Ch15 §1 Introduction

In the previous chapters, it was seen that the SBGA extension does indeed enhance

the GA’s performance. Chapter 14 showed the improvements attendant on the use of the

SBGA in dynamic environments, while the improvements incurred on highly multimodal

stationary environments had previously been demonstrated in Chapter 12 and Chapter 13.

However, the reason for the improvements can be attributed to various causes. One of the

simplest is the claim that the reason for the improvements resides solely with the increase

of diversity in the core engendered by the movement of and migration from the colonies.

Many other systems use diversity increasing mechanisms, such as an increased mutation

rate, to improve performance in a dynamic environment (for more examples see Chapter

1). Perhaps increased diversity is the sole cause of the improvements seen.

Part 4 Experimental Results and Analysis 226

In Ch9 §3 and Ch9 §4, when developing the mechanisms the keep the colonies away

from the core, care was taken to ensure that the colonies follow the fitness landscape as

well as move away from the core. The reason for that elaborate mechanism was to

prevent the colonies from wandering off into unpromising territory in the fitness

‘landscape’. Just randomly adding diversity to the core by including members from an

aimlessly wandering colony, it was suggested, would actually be harmful. There is much

more deleterious than beneficial genetic material in the search space (otherwise

optimization through search would be easy, not NP-hard) and so the SBGA was designed

to avoid purely random diversification. Instead of adding random diversity, the SBGA

adds guided diversity through a multiobjective approach that allows the colony to both

avoid the core and follow the fitness ‘landscape’ simultaneously. In other words, adding

diversity alone is insufficient to aid the GA in a dynamic environment; one must add the

right type of diversity.

However, the above argument is conjecture only. It is quite possible that diversity

alone is responsible for the improved behavior of the SBGA when the SBGA extension is

added. This is the null hypothesis. To demonstrate that guided diversity is solely

responsible for the enhanced behavior of the GA is beyond the scope of this dissertation

(and may be incorrect). However, we can test whether the null hypothesis holds.

Consequently, in this chapter we will design an experiment to test whether random

diversity a sufficient explanation for the improvement seen by the GA when the Shifting

Balance extension is added.

Part 4 Experimental Results and Analysis 227

Ch15 §2 Experimental Design

To determine whether diversity is sufficient to explain the improvement experienced

by the SBGA, we will compare the fitness results from the previous chapter to diversity

measurements obtained from the same runs. The diversity measure used is entropic

diversity as defined in Ch6 §2.3.

To perform the comparison we will compare the line plots of the fitness results

reported last chapter with newly generated line plots of the diversity of the SBGA core

and GA populations. This graphical approach will be sufficient for our purpose, although

a more careful study of the systems using Normal Correlation Models70 should eventually

be done.

Each diversity value per generation used for the line plots is the median of all

repetitions across all the dimension and speed levels. The median is used instead of the

mean because the data is not normally distributed for all migration intervals at every

dimension. A normality test (see Ch13 §2.5.1 for a description) was applied to the

diversity values from all generations over 250, after being split by dimension level. The

following R
2 values were obtained for dim = 2: GA = 98.1%, S(10) = 97.9%, S(6) =

96.2% and S(2) = 59.9%. So the response of the diversity of an SBGA with a migration

interval of 2 is very nonlinear indeed. As a remedial measure the median instead of the

mean is plotted, as previously mentioned.

The differences between the diversity response curves from the various systems were

tested for statistical significance using a general linear model with ranked diversity values

(to handle the nonnormality of S(2)) and restricted to time period when all systems have

adjusted to the motion of the environment (generation > 250). A Sheffé test was

performed for all comparisons, and all differences were found to be significant with

70 The Normal Correlation Model is an extension to the GLM which deals with the interaction of two or
more response variables

Part 4 Experimental Results and Analysis 228

greater than 99.999% confidence. Therefore the distinctions between the various curves

shown in the line plot that follow are real.

When comparing the diversity line plots with the fitness line plots from the previous

chapter, the following results are to be expected if the null hypothesis holds. Systems

with diversity response curves that are very similar should have roughly equal

performance in their best fitness responses. Similarly, systems with indistinguishable best

fitness response curves should have comparable diversity values. If one or both of these

relations fail, then the null hypothesis must be rejected. Were that to be the case, strong

evidentiary support will have been provided for the proposition that guided diversity is, at

least in part, responsible for the success of the SBGA.

Ch15 §3 Results

Looking at the diversity response curves for the GA and SBGA systems in the F8F2

environment (Figure 35) and the F8mF2 environment (Figure 36) we see a variety of

different behaviors.

In all cases the diversity at gen = 0 is maximal (has a value of 1). This is expected

since all populations are seeded with randomly generated chromosomes and so are

maximally diverse. For the next 25 or so generations the diversity of all systems falls at

the same rate and then begin to diverge.

First lets follow the diversity levels of the GA. Generation by generation the levels

rapidly drop, until by gen = 100 the GA population is almost completely converged. This

is the expected behavior of the GA for a stationary environment. When motion begins at

generation 150, the GA experiences a rapid increase in its population diversity, reaching

close to its peak diversity in that domain somewhere between gen = 210 for F8F2 and

gen = 250 for F8mF271. By generation 250 the GA in both environments levels off and

71 Although there is a rapid initial spurt of diversity seen in F8mF2 that doesn’t exist in F8F2. It lasts for
ten generations and accounts for over half of the diversity gain by the GA until equilibrium is reached.

Part 4 Experimental Results and Analysis 229

remains at a constant diversity level for the remainder of the run, although it should be

noted that F8F2 maintains a much higher level of diversity at 0.3, than does F8mF2 with

its 0.25 diversity level.

Now let us look at the diversity response of the SBGA under different migration

intervals.

The SBGA with a migration interval of 10 behaves very similarly to the GA.

However, there are two differences. The S(10) system maintains a slightly higher

diversity level with respect to the GA, with about a 0.5 level difference. This is seen in

both environments. The S(10) system also reacts more quickly to the changing

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400

m

e

d

i

a

n

d

i

v

e

r

s

i

t

y

GA

S(10)

S(2)

S(6)

generation

Figure 35: The entropic diversity of the GA and SBGA in the F8F2 environment (which
begins to move at generation 150). Each point on the graph is the median of all the cases
for each system when dimensionality and speed levels are combined.

Part 4 Experimental Results and Analysis 230

environments, reaching its peak constant level after only 25 to 30 generations instead of

60 to 100 generations.

Initially the S(2) system rapidly sheds its diversity in step with the other systems, but

very shortly afterwards (around generation 25), it levels off at an extremely high diversity

(approximately 0.9) which it keeps to the end of the run. The single exception is a very

slight drop in diversity when the environment motion begins. Unlike all other systems,

S(2) maintains a higher diversity level for F8mF2 rather than for F8F2.

The behavior of S(6) is the most complex and the one that I understand the least. In

the F8F2 environment the diversity quickly levels off at approximately 0.85 early in the

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400

m

e

d

i

a

n

d

i

v

e

r

s

i

t

y

GA

S(10)
S(6)

S(2)

generation

Figure 36: The entropic diversity of the GA and SBGA in the F8mF2 environment
(which begins to move at generation 150). Each point on the graph is the median of all
the cases for each system when dimensionality and speed levels are combined.

Part 4 Experimental Results and Analysis 231

stationary period. However, by around generation 120 the diversity levels suddenly drop,

falling to a level of 0.4 by gen = 150, when the environment begins to move. After

motion begins, the diversity level spikes up again to 0.7, peaking at generation 190, then

falls back down to the 0.4 level by generation 250 at which point it remains constant until

the end of the run. In the F8mF2 environment the pattern repeats itself, but not with such

extreme values. The drop in the stationary period occurs earlier (generation 80 versus

120) and the ‘spike’ in diversity that occurs after motion begins is far more subdued (with

a rise and fall of less then 0.1 as opposed to 0.3). The reasons for the initial drop in

diversity during the stationary period and the large rise and subsequent fall when the

environment moves, is not understood.

Ch15 §4 Discussion

Ch15 §4.1 Comments on the Diversity Results

There are three comments on the results detailed above that I wish to make before we

turn our attention to the question of random versus guided diversity.

First, the ability of all systems (except S(2)) to maintain a lower diversity level in the

F8mF2 environment alongside with the lower (better) fitness values obtained, provide

strong evidence that F8mF2 is an easier optimization problem than F8F2, as we expected

when it was constructed.

Second, in both environments, by generation 250 the diversity has leveled off in

every system, even though the best fitness response shows that all systems are still losing

ground. They are falling farther and farther behind the global optimum and yet do not

seem to increase diversity to compensate72. The systems seem to reach the diversity

72 Although the GA does appear to level off in both the F8F2 and F8mF2 environments by the end of the
run.

Part 4 Experimental Results and Analysis 232

equivalent of an equilibrium in selection pressures and has stabilized even as the fitness

values deteriorate.

Third, the difference in behavior of the S(6) system when run in the two different

environments is as poorly understood as is the pattern of the S(6) behavior itself. Why

S(6) should still keep the same features in F8mF2 as in F8F2, yet moderate the

amplitudes of the changes such that it begins to mimic the GA and S(10) systems in the

easier F8mF2 environment is very much a mystery to me at this point. It will be very

interesting in the future to explore the behavior of S(6) as well as S(5) and S(7) to

determine what affects these ‘intermediate’ migration interval settings.

Ch15 §4.2 Is an Increase in Random Diversity a Sufficient Explanation?

If added random diversity is the primary cause of the improved behavior, we would

expect a similarity of diversity to produce similar fitness responses. Likewise, if the

fitness responses two systems are indistinguishable, so should be their corresponding

diversity levels. The behavior of the systems as seen in this chapter and the previous one

and summarized in Figure 37 belies this hypothesis.

 In the F8F2 environment all SBGA systems have a fitness behavior that is

remarkably similar to one another. Their response curves are far more similar to each

other than the GA’s response curve is to any of them. Yet in diversity behavior, all three

SBGA systems are quite distinct from one another. S(2)’s diversity behavior is quite

distinct, while S(10) most closely resembles the GA’s response curve than it does any of

the other. Thus similarity of fitness response does not imply similarity of diversity.

In the F8mF2 environment, the opposite problem can be seen. The diversity behavior

of S(6), S(10) and the GA are almost identical after generation 250. Yet the fitness

responses are vastly different, with the S(6) system having more in common with S(2)

than it does with the GA. Thus similarity of diversity does not imply similarity of fitness

response.

Part 4 Experimental Results and Analysis 233

With these observations it becomes obvious that the null hypothesis must fail;

diversity alone is not a sufficient explanation for the improved behavior of GA when the

Shifting Balance Extension is added.

f

i

t

n

e

s

s

GA

S(10)

S(2)
S(6)

generat iongeneration

f

i

t

n

e

s

s

GA

S(2) S(10)

S(6)

GA

S(2)

S(10)
S(6)

d

i

v

e

r

s

i

t

y

generation

d

i

v

e

r

s

i

t

y

generation

GA

S(2)

S(10)

S(6)

F8F2 F8mF 2

Figure 37: A Summary of all diversity and fitness line plots presented in the thesis
(from Figure 33, Figure 34, Figure 35 and Figure 36).

 234

Chapter 16

Summary, Conclusions

and Future Work

Ch16 §1 The Shifting Balance Evolutionary Algorithm

This dissertation explores the adaptability of the Genetic Algorithm in a dynamic

environment. This was one of the original goals behind the creation of the GA, although

it is only recently that researchers in the field have begun to turn their attention from the

GA as a function optimizer to the GA as an adaptational process. A study of adaptation in

the GA naturally leads to the study of environments that produce a variety of changes for

the GA to adapt to. Hence the growing interest in dynamic environments.

To begin the exploration of the GA in dynamic environments a thought experiment is

carried out. In this experiment an initially stagnant environment begins to move after the

GA has already converged. This focuses attention towards the problem of keeping

meaningful diversity in the population. Looking at the problem from another angle, it

becomes evident that the problem stems from premature convergence, which is related to

the perennial bane of optimizational search, ‘being trapped at a local maximum’. This

problem has its analog in biological theory along with a solution posed by the famous

population geneticist, Sewall Wright: the shifting balance theory of evolution.

Part 4 Experimental Results and Analysis 235

Sewall Wright recognized evolution could be viewed as a process involving a set of

populations that are trying to find the maximum in a ‘fitness landscape’. He also

recognized that local maxima would be a problem for populations if they were to attain

the highest fitness values. Consequently, he proposed a mechanism whereby an

evolutionary system could naturally escape from such maxima through a careful balance

of random drift occurring in small populations (demes), and selection caused by

migration between the demes. The two mechanisms must work in concert. The small

demes drift in gene space and wander away from the local hill. They may then cross

various valleys to eventually find themselves on new hills with possibly higher peaks. At

this point migration and selection become dominant. Migration among the demes brings

members from demes that have reached the higher hill to those who have not. Selection

then shifts the genetic makeup of the trapped demes to become more like the demes on

the higher hills, thus escaping from the local maximum.

Sewall Wright’s Shifting Balance Theory seems promising, In fact it seemed so

promising that many implementors of parallel GAs have been using the theory to justify

their use of multipopulation systems. However, there are serious flaws with the theory

that are well known in biological circles. First the method of balancing random drift and

selection was never developed. Second, such a balance is problematic anyway since the

resource requirements for each, such as population size and mutation rate, are conflicting.

Random drift is effective in small populations with high mutation rates; selection thrives

in the exact opposite conditions. Even the fitness landscape metaphor was questioned

since Wright’s version seemed static, unchanging, so unlike the extremely dynamic

environments that seem ubiquitous in nature.

To counter these problems, the Shifting Balance Theory was modified. Instead of

small demes escaping from the local optimum by using random drift, those same demes

are allowed to move away from the main population, and hence to areas away from the

local optimum, through selection alone. Members from the small demes having greater

distances to the main population in gene space are selected for, thus allowing them to

evolve away from the main population. Now all populations use the same evolutionary

mechanism at all times, selection, thus removing the conflict between resource

requirements. This modified version of the Shifting Balance Theory can be implemented

and applied to any evolutionary computational algorithm, such as the GA, ES and EP.

Part 4 Experimental Results and Analysis 236

This extension to evolutionary systems is called the Shifting Balance Evolutionary

Algorithm (SBEA).

Ch16 §2 Distances in Gene Space

The SBEA concept seemed to be workable, but many details still had to be worked

out. The first to be addressed was the development of the concept of distance in gene

space. This measure is needed for the evolution of the small demes (now called colonies);

their distance to the main population (the core) had to be computed both to determine if

they are searching in the same space and to enable them to evolve so that they move into

novel territory.

A foundational underpinning of a distance in gene space is the distance between

chromosomes. A general framework for such a distance has been partially developed, and

is close to completion. In the interim, the Hamming distance between chromosomes is

used as a reasonable first order approximation to the chromosomal distance. The

legitimacy of this use is verified in the dissertation.

Building on this result, the second step was to define a distance between populations.

The approach taken by Cluster Analysis was examined and then discounted. A second

attempt was made, taking cues from the various definitions of population diversity used

in the literature, and a workable measure of the distance between populations was

created. Two distinct distance measures were developed; which is to be used depends on

the domain from which the genes are to be drawn. The Manhattan distance between the

two population’s respective gene frequencies is used when the genes are taken from

symbolic (discrete) alphabets. When chromosomes are composed of continuous valued

genes, the distance between populations becomes the Euclidean distance between the

populations’ geometric centers.

Ch16 §3 Details of The SBEA as Implemented in a GA System:
The SBGA

With a definition of population distance in place, the low-level mechanisms of the

SBEA was detailed. The GA that uses a symbolic alphabet was chosen as the exemplar

Part 4 Experimental Results and Analysis 237

evolutionary system to extend with the SBEA mechanisms; thus forming the SBGA. The

ES and EP versions can be developed analogously.

The algorithm to keep the colonies away from the core was the first mechanism to be

developed. Each colony computes its distance to the core using the distance-between-

populations definition. This distance is used as the fitness for selection, forcing the

colony away from the core. However, the colony has another goal that it must balance

against that of keeping away from the core; the colony must still follow the fitness

landscape. Both objectives must be met; otherwise the colony would either randomly

wander into unpromising areas of the gene space or fall back towards the same optimum.

This balancing is accomplished using a novel enhancement to the reproductive process

that is specifically tailored for biobjective problems. Furthermore, the two goals are

balanced dynamically through the use of the percentage similarity measure. This measure

computes the average ratio of the total number of core members versus the number of

core members that are less similar to the core than is a given colony member.

The other low-level mechanism that was developed was migration from a colony to

the core. There are three components to migration: when migration should occur, which

of the members in a colony should migrate, and how the migrants are to be incorporated

into the core.

Migrations should not occur during every generation since they will not have yet

moved into novel areas of the search space. The number of generations between

migration is called the ‘migration interval’ and is a user-defined parameter. All colonies

do not migrate in the same generation. Migration time is staggered throughout the

migration interval cycle. This is to prevent the feast-or-famine effect that would be

caused by synchronized migration.

The migration size is also a user-defined parameter. It can range from the entire

colony down to a single member. Whatever the size of the group selected, the migrants

are chosen from the elite of the population.

The members that migrate to the core temporarily expand that population’s size.

However, during core reproduction, the size of the core returns to normal. This forces a

surfeit of members to compete for a smaller number of slots thus increasing the selection

Part 4 Experimental Results and Analysis 238

pressure. This mechanism is analogous to the (µ, λ) approach used in Evolutionary

Strategies.

With the details of the SBGA complete, the though experiment posed at the beginning

of the dissertation could be reexamined with the SBGA used in place of the standard GA.

This led to the conjecture that the SBGA would not only be effective at escaping from

local optima, but should also enhance the ability of the GA when tracking a global

optimum in a moving environment. Furthermore, even after the environment was allowed

to stay stationary for a lengthy period of time, the ability of the SBGA to track the

environment should not degenerate as much as would a normal GA.

Ch16 §4 Experimentation

With the SBGA system fully developed, the thought experiments have now become

testable. Four experiments are devised to test the behavior of the SBGA. The first

experiment compares the SBGA with a standard GA in a stationary environment based

on an objective function with numerous local optima (the F8F2 function). This tests

whether the Shifting Balance addition to the GA improves its ability to escape from local

optima as Sewall Wright predicted.

The second experiment examines the behavior of the SBGA in a stationary

environment that has a very large basin of attraction attached to the global optimum

(F8mF2). This test is performed to demonstrate that the effectiveness of the SBGA in the

F8F2 environment is caused by the presence within the environment of many local

optima from which to escape. When in an environment where this is not the case, the GA

is expected to outperform the SBGA

The third experiment follows the GA and SBGA as they try to track the global

optimum in a moving environment. The two evolutionary systems are tested on dynamic

versions of both the F8F2 and the F8mF2 functions. The motion is kept as simple as

possible; the entire function is transformed using a translation along the hyperdiagonal.

Three speeds are chosen for the environment motion, each producing changes in the

environment that exceed the mutation rates set in the evolutionary systems. Consequently

both the GA and SBGA systems have to rely on crossover, which can be used to pull the

Part 4 Experimental Results and Analysis 239

various mutational changes that occur throughout the population together in order to

match the speed of the environment.

The final experiment is an augmentation of the third. The diversity responses of the

GA and the SBGA under different migration intervals are monitored while the previous

experiments were run. The results are then compared with the fitness results obtained

from the third experiment to see if similarity in diversity values will correlate with

similarity of fitness behavior. This is done to check the validity of the hypothesis:

unadorned diversity alone causes the improvements found when using the SBGA. If no

correlation is found, then the hypothesis will be negated.

Ch16 §5 Conclusions

The results of the experiments were very positive. The weakest results surprisingly

came from the test on the efficacy of the Shifting Balance extension in escaping from

local optima. What one expects is the domination of the SBGA over the GA in F8F2,

which has many local optima, followed by a reversal of comparative behavior in the

F8mF2 function, with its easy-to-find large basin of attraction that surrounds the global

optimum. When viewed overall these expectations are actually met, however, when

broken down by dimensions, anomalous behavior can be seen. At high dimensions of

F8F2 the GA could rival the performance of the SBGA (to within the power of the test),

while in the F8mF2 environment at low dimensionality the SBGA, not the GA, was

found to be superior. Consequently more experimentation needs to be done to isolate the

causes behind these anomalies.

While the experiments using stationary environments may not have been exclusively

and overwhelmingly positive, the experiments performed with dynamic environments

were. Not only did the SBGA track the global optimum more closely than the GA in

moving environments, but it did so in environments that, when stationary, had been more

amenable to the GA . Furthermore, the comparison between diversity and fitness

measurements on the same experiments showed that unguided diversity is not a sufficient

explanation of the performance increase seen when using the SBGA. This lends support

to the use of the multiobjective approach of following the fitness landscape while moving

away from the core, i.e. guiding the process that adds diversity to the system.

Part 4 Experimental Results and Analysis 240

Sewall Wright developed the Shifting Balance Theory to explain how natural

evolutionary systems could escape from local optima in a ‘fitness landscape’. One of the

reasons that his theory came under attack was that he described the Shifting Balance

Theory using populations that were moving in a ‘landscape’ that did not seem to be

changing. This seemed unrealistic, as natural environments were known to be very

dynamic indeed. However, the results found during the course of this dissertation actually

showed that the SBT is a more helpful extension to an evolutionary system that is facing

a dynamic environment than a stationary one, even when that stationary environment is

riddled with a multitude of local maxima. It is a strange historical irony that what was

thought to be one of the most telling criticisms of the Shifting Balance Theory has now

been demonstrated to be its greatest strength.

Ch16 §6 Future Work

The work done in this dissertation is very much just an initial foray into the

investigation of the SBT and SBEA, and their behavior in dynamic environments. There

are many directions that one can take from where the dissertation ends (some of which

have already been mentioned within the dissertation itself). I have identified seven broad

areas for exploration. These are presented below:

Exploring the Effectiveness of the SBGA

The study done in this dissertation was designed as a focused preliminary exploration

into the power of the SBGA. Consequently, only two very carefully chosen test functions

were used during the tests. However, it is impossible to generalize the results found on

such a small sample set. Consequently a much larger test suite should be designed and

applied. The functions in this suite should increase both the variety of the fitness

landscapes and the range of their dynamics. The suite may also include some real world

problems. Although using a large test suite complicates the statistical analysis

enormously, the results are vital if we wish to know whether the conclusions derived in

this dissertation generalize.

Because the intention of this work was to explore the ramifications of the thought

experiment, the SBGA was compared against a standard optimizing GA (which uses rank

Part 4 Experimental Results and Analysis 241

selection and elitism). The behavior of the standard GA is well known and so much more

predictable than any extension that may also improve the results from the thought

experiment. Consequently, in light of this, and the limited scope of the dissertation’s

purpose, the sole use of the simpler GA as a comparison to base null hypotheses on

should be understandable. However, in the future it would be interesting to know how

well other GA extensions, such as the various diversity enhancing mechanisms, solve the

problem posed in the thought experiments, as well as how the SBGA fares against such

techniques in general73.

The Exploration of Dynamic Environments

To explore the effectiveness of the SBGA, more test functions with an increased

variety and much wider range of dynamics are to be included. These same tests could

have the additional benefit of allowing for the induction of fundamental principles of

evolutionary behavior in dynamic environments. For example, by examining the dynamic

region in the fitness response graphs Figure 33 and Figure 34 found in Ch14 §3.2, one

can see that both the SBGA and the GA seem to have similar piecewise linear responses

to both the F8F2 environment and the F8mF2 environment. First the systems lose fitness

(have higher values which corresponds to a fall in the ranks) at a steady linear rate, until

at some point in time the response curve flatlines. Is this behavior typical of evolutionary

systems in translational dynamic environments moving at a constant speed? Using a

greater variety of functions that are forced to undergo translation should help answer this

question and others like it.

Another interesting, yet simple, modification of the test design would be the

elimination of the stationary period before motion. Some trial tests have already been

done on both the SBGA and the GA with results that are both surprising and so far

unexplainable (at least by me). What one would expect is a gradual improvement in the

fitness of the best of the generation. This should eventually level off as the system

reaches a population composition that is concentrated in an area close to the global

optimum, yet diverse enough to keep track of its motion. Instead the system quickly

73 It would also be interesting to compare the various diversity-enhancing mechanisms one against the
other as well as against the SBGA.

Part 4 Experimental Results and Analysis 242

converges to a higher level of fitness than it can sustain. It then drops in fitness

mimicking the behavior of the systems in environments with stationary periods that allow

premature convergence to occur. Further experimentation using alternate measures and

probes will have to be done if this situation is to be understood.

Exploring the Effects of the Parameters Used in the SBGA

In the experiments performed during the dissertation, parameter settings and other

design features such as selection techniques used were chosen in an ad-hoc fashion. This

is especially true for the new features such as the number of colonies chosen, but also

applies to more well tested parameters such as the mutation rate. While the behavior of

the GA with various parameter settings is understood (to some extent), those results may

not hold for the SBGA. In other words we would like to know how the different settings

and setting combinations affect the behavior of the SBGA.

Some of the components that can be modified are as follows: the number of colonies

in the system, the size of a colony populations, the size of the core population with

respect to the population size of a colony, the mutation rate and probability of crossover,

selection pressure, and migration interval.

Many questions can be asked about the behavior of the SBGA under these various

settings: Should the mutation rate and probability of crossover be different in the various

SBGA populations than it is in the GA? How about between colony and core? Should the

selection pressure used in the SBGA populations be different than that used in the GA?

Even within a colony, different selection pressures could be used when selecting

members according to the objective function as opposed to the distance to the core.

Should they be?

Genetic Distance Theory

From the mathematical side of the dissertation, the framework presented for the

accurate definition of chromosome distance was left incomplete. While the Hamming

distance was shown to be a good first order approximation and can be used in its stead,

the framework should be expanded on and hopefully brought to a conclusion.

Part 4 Experimental Results and Analysis 243

Of course the definitions of the distance between two populations and their

percentage overlap are based on the distance between chromosomes. Consequently a

change from the Hamming distance to a more accurately defined chromosomal distance

will most likely affect their definition as well; these concepts too should be reexamined.

Any resulting changes should be included into the SBGA and tested to see if its

performance shows any improvement over the original SBGA system.

Exploring Alternate Design Features for the SBEA

Earlier we touched on the various parameter settings of the SBGA that can be studied.

However, there were also broad design choices made when distilling the SBGA from the

more general SBEA.

For example, the decision was made to use the percentage similarity measure instead

of percentage overlap for time complexity reasons. However, it is not known whether the

improvement in accuracy that should occur when using the more conceptually pure

percentage overlap measure would or would not compensate for the time lost in

computing it. Experiments could be easily designed that test which one of these two

hypotheses is correct.

The choice of applying the SBEA to the GA can also be modified. The Shifting

Balance extension could be developed and incorporated into Evolutionary Programming

and Evolutionary Strategy systems. Tests would then be designed to see whether the

SBEP and SBES experience the same improvements over their respective systems as was

seen with the SBGA.

Understanding the behavior of the SBEA/GA

In the final experiment done in the dissertation, an extra measure, the diversity of the

SBGA, was monitored. This allowed some small insights into the dynamics of the SBGA

and SBEA systems to be gleaned. The process of understanding the behavior of the

SBEA through the exploration of the SBGA can be continued much further.

The first step would be to investigate the anomalies discovered in the stationary

versions of the F8F2 and F8mF2 environments. We had expected that the SBGA should

outperform the GA on F8F2 while the reverse should happen on F8mF2. While on the

Part 4 Experimental Results and Analysis 244

whole these results were borne out, for some dimension the opposite of what was

expected occurred. A closer examination should be done using test functions designed to

isolate the behavior of the two systems in various simple and complex environments.

Furthermore, this examination could be enhanced by monitoring the behavior of the

systems using various measures such as diversity and local environmental complexity.

 The same treatment should be performed for SBGAs with intermediate value settings

of the migration interval. As discussed in Ch15 §4.1, the dynamics of the S(6) system in

fitness and diversity were seen to be highly complex. Perhaps a closer inspection will

begin to explain the peculiar behaviors observed.

Finally, we could examine the motion of the colonies in gene space. This would

determine whether the colonies, while of course staying away from the core, are

converging on the same alternate area of the search space. If so, this would reduce the

power of a multipopulational search to that of just a two population system. We would

then wish to test the SBGA extension for keeping colonies away from each other,

presented in Ch9 §7, to see if this eliminates the (potential) problem.

The Exploration of the Shifting Balance Theory Proper

Finally, experiments can be designed to explore aspects of the Shifting Balance

Theory itself within the framework of the SBEA.

A detailed examination of the behavior of the core population and a distance

comparison in gene space between the core and the colonies could determine whether the

main population actually shifts its position in gene space toward a colony that had found

a more fruitful area of the ‘fitness landscape’. This would be a test of the behavior of the

SBT as predicted by Sewall Wright, which has been considered until now virtually

untestable. Of course even if demonstrated within a computational framework, this does

not imply that the SBT correctly describes the process of evolution in nature. However it

does show, and with greater precision, how the model developed by Wright should

actually function. This hones the theory and better allows it to be tested for in nature.

Before the SBT can be retrofitted into biological theory, the abstract mechanisms

used in the SBEA should be made concrete. For example, back migration from core to

colony was removed because it was considered as redundant at best and possibly even

Part 4 Experimental Results and Analysis 245

harmful to the process that moves the colonies into interesting areas of gene space.

However, in nature this form of migration will occur. It should therefore be reintroduced

into the SBEA systems and tested to see what behavior is produced as well as to

determine what levels of back migration is beneficial, tolerable, or harmful.

Evolutionary Computation has benefited greatly from what has been learned in

molecular and population genetics. Biological mechanisms have been incorporated into

computational systems wholesale to great effect. Yet, John Holland’s original goal when

he created the GA was to develop a platform from which one could better explore and

understand complex systems such as naturally occurring evolution74. If the refinement of

the SBT in a computational framework is successful, Holland’s goal will be partially

realized: biological evolutionary theory will have been aided through the examination of

a computational evolutionary system.

74 This is evidenced throughout (Holland 1975), especially in chapter 3, and even can be witnessed in the
books title ‘Adaptation in Natural and Artificial Systems’ [italics added]. Holland, in later years both
makes explicit and expands this point, as well as the GA system, in (Holland 1995) and (Holland 1998)).

 246

Appendices

 247

Appendix A

Proofs of all Theorems Used

in Part 2

A-1 The Cost of the Shortest Path is a Distance in a Graph with
Symmetric Positive Edge Weights

Theorem 2: If the graph the edges in a graph G have symmetric edges weights, i.e.
w(u,v) = w(v ,u) , and all weights are greater than 0 then the cost of the shortest path between

two vertices is a distance measure.

Proof. To show that the cost of the shortest path is a distance one must show that all

four of the distance properties hold:

M1) d x, y()= 0 iff x = y . If x and y are vertices of Graph G and that x = y . Since G

is undirected self-looping edges are defined as having a cost of 0 thus d x, y()= 0 .

Appendix A 248

Conversely if d x, y()= 0 then no edge can have been crossed since every edge has a cost

that is greater than 0. Thus x = y , which completes the proof for M1.

M2) d x, y()= d y, x() (symmetry). Proof by reducto ad absurdum. Assume that

d x, y()< d y, x(). However because each edge has the same cost in either direction since

graph G is undirected we can backtrack the same path from x to y that has the cost d x, y()

to get a path from y to x that has that exact cost, which is less then d y, x() by assumption.

However d y, x() is the cost of the shortest path and so there should be no other path from

y to x that costs less. Therefore the assumption must be false and d x, y()≥ d y, x(). Using

a symmetrical argument going from x to y one can show that d x, y()≤ d y, x(). Therefore

d x, y()= d y, x() as required.

M3) d x, y()≥ 0 . Since d x, y() is the cost of the shortest path from x to y and since all

edges along a path have a cost that is greater than 0, d x, y()> 0 when x ≠ y . By property

M1, d x, y()= 0 when x = y . Consequently d x, y()≥ 0 as required.

M4) d x, y()+ d y,z() ≥ d x, z() (triangle inequality). Proof by reducto ad absurdum.

Assume that d x, y()+ d y,z() < d x, z() where x, y and z are three vertices on graph G. Now

lets look at the two paths used to produced x, y() and d y,z(). When one combines the two

paths we have a path from x to z that has a cost of d x, y()+ d y,z() . However this is less

than d x, z() which is supposed to be the cost of the shortest path. This is a contradiction

and so the assumption must fail. Therefore d x, y()+ d y,z() ≥ d x, z() and so the triangle

inequality holds. ❚

Appendix A 249

A-2 Zero Weighted Edges Destroys Distance Property

Theorem 3: If graph G has edges between distinct vertices that have costs equal to 0

then the cost of the shortest path between two vertices is not a distance.

Proof. Let (v1,v2) be an edge that has a cost of 0 with v1 and v2 being distinct, i.e.

v1 ≠ v2 . Since the path v1,v2 , which consists only of the edge (v1,v2), has a cost of 0,

any other path between these two vertices can only equal this cost since all other edges

must be 0 or greater75. Therefore v1,v2 represents the shortest path from v1 to v2 and

has a cost of 0. But by property M1, a distance can only be 0 iff the two points are

identical, which v1 an v2 are not. Therefore the shortest path between two vertices can

not be a distance when graph G has edges between distinct vertices that have costs equal

to 0. ❚

A-3 Mutational Distance Between Chromosomes is Proportional to the
Hamming Distance Between Chromosomes

The proof of the mutational distance / Hamming distance equivalence is fairly straight

forward, but will require one new definition and two lemmas before the theorem can be

derived. The actual proportionality and the conditions necessary for it to hold is a

corollary of the main theorem which is stated in terms of shortest path costs in

chromosome distance graphs.

The Hamming Chain

Both the chromosome transition graph and the chromosome distance graph for

mutation is a completely connected graph. Therefore any path can be formed within it.

75 See footnote 33 from Ch5 §3.3.

Appendix A 250

One particular type of path will prove to be very useful; this type of path will be called

the Hamming chain. It is defined as follows:

Definition 1: A Hamming chain is a path in a chromosome transition graph or a

chromosome distance graph such that any two consecutive chromosomes in the path must

have a Hamming distance of 1.

For example, look at the graph in Figure 38. The weights have been removed from

the edges so it could be either a chromosome transition graph or a chromosome distance

graph. The chromosome length has been set equal to 3 and a binary alphabet has been

used. Consequently the graph consists of 8 nodes that are completely connected,

including self-loops. A Hamming chain of length 4 (which is the path length) is presented

in the graph as four green arcs, starting from chromosome ‘111’ and ending at

chromosome ‘100’. This path can be represented as ' 111' , ' 011' , ' 001' , ' 000' , '100' .

Notice that the Hamming distance between each contiguous pair of vertices, which

represent an arc in the path, has a value of 1 as is required for the path to be considered a

Hamming chain. A Hamming chain in a chromosome graph that has binary valued

chromosomes, and which passes through every vertex while forming a cycle, will trace

out a complete hypercube.

Before leaving the topic of Hamming chains we will present two small corollaries

that follow immediately from the Hamming chain definition:

Corollary 2: If the Hamming distance between two chromosomes is h then the path

length of the shortest Hamming chain that connects the two chromosomes will also be h.

Proof. Since each edge of the path changes the chromosome by 1 locus, a

Hamming chain that only has a length of k, where k < h , will only change a maximum of

k loci. This isn’t enough to match the h loci that need to be changed and so k ≥ h . On the

other hand, if k > h then, since a Hamming chain of length h can always be built that

connects the two chromosomes (since a chromosome distance graph is completely

connected), it follows that the Hamming chain of length k is not the shortest Hamming

Appendix A 251

chain between them. Consequently it must be that k ≤ h . Finally since both k ≥ h and

k ≤ h are true it follows that k = h . ❚

Because of this corollary, we will frequently vertex indices from 0 to the Hamming

distance of end points (denoted as h) of the shortest Hamming chain between them, e.g.
v0,v1,K,vh .

Corollary 3: In a chromosome distance graph that uses mutation, the cost of a

Hamming chain of length n is
q ⋅ (a −1)

p ⋅q l ⋅n .

Figure 38: A Hamming chain of length 4 in a chromosome graph where the
chromosomes have a chromosome length of 3.

Appendix A 252

Proof. By definition of the Hamming chain, each edge is between two chromosomes

that are one Hamming distance apart. Therefore, the cost of each edge must be the same,

and is
q ⋅ (a −1)

p ⋅q l , which was obtained from the edge weight definition (2.8) after setting

hd(x , y) =1 . So by adding the cost of all n edges together to find the total cost of the

Hamming chain, we get
q ⋅ (a −1)

p ⋅q l ⋅n . ❚

The Mutational Distance between Chromosomes ∝∝∝ ∝ Hamming Distance

We will now turn our attention to the proof that the mutational distance between

chromosomes is equivalent to the Hamming distance. First two lemmas are presented that

will be used in the main theorem. Immediately thereafter, the main theorem itself will be

presented followed by a corollary that more clearly specifies the conditions under which

the equivalence of the two distances holds.

The first lemma derives an inequality that holds in a chromosome distance graph

when the cost of every Hamming chain of length 2 that has distinct end points is smaller

than the direct distance between those two end points. The second lemma shows that if

the same condition holds as in the first lemma then the shortest Hamming chain between

any two distinct points in the graph must be smaller then the direct distance between

those two points.

Note: the following lemmas and theorems are all done on a chromosome distance

graph G that comprises chromosomes of length l and whose loci are drawn from an

alphabet of size a. Also, since there is a one-to-one mapping between chromosomes and

vertices, we will uses the two terms interchangeably.

Lemma 1: Let u,v, ′ u be a Hamming chain of length 2, where u ≠ ′ u . Also let p be

the probability of mutation and let q = 1 − p . Then cost(u, ′ u) > cost(u,v, ′ u) iff the

following inequality holds:

q(a − 1)

p
> 2 . (4.1)

Appendix A 253

Proof. First we will assume that cost(u, ′ u) > cost(u,v, ′ u) and demonstrate that

(4.1) holds. Expanding the costs for all paths in the above cost inequality, we get
w(u, ′ u) > w(u, v) + w(v , ′ u) . Then using the inverse transition probabilities as edge weights as

required for a distance graph we get

1

Pr(u → ′ u)
>

1
Pr(u → v)

+
1

Pr(v → ′ u)
. (4.2)

Now since u,v, ′ u is a Hamming chain, hd(u ,v) = hd(v , ′ u) =1 . Consequently, after setting

hd(x , y) =1 in equation (2.7) we get Pr(u → v) = Pr(v → ′ u) = p ⋅ q
l −1 ⋅ 1

a−1 . Next, since u

and ′ u are end points on the Hamming Chain of length 2 it follows that their Hamming

distance must be either 2 (if two loci are changed when the two edges are taken) or 0 (if

the second edge doubles back and we return to the vertex u). However, since u ≠ ′ u , only

the first case applies and the Hamming distance must be exactly 2. We can now use
equation (2.7) again, although this time we set hd(x , y) = 2 , to produce the final required

probability of transition, Pr(u → ′ u) = p
2 ⋅ q

l−1 ⋅ 1
a−1()2

. Substituting all the above

probability of transitions into the inequality (4.2) produces

1

p
2 ⋅ q

l−1 ⋅ 1
a−1()2 >

1
p ⋅q l −1 ⋅ 1

a−1

+
1

p ⋅q l −1 ⋅ 1
a−1

.

A simple rearrangement of the above inequality provides the desired relation.

Now we will prove the Converse by assuming that (4.1) holds and then showing that

cost(u, ′ u) > cost(u,v, ′ u) , where u,v, ′ u is a Hamming chain andu ≠ ′ u . Since u and

′ u are the two endpoints of a Hamming chain of length 2, and since u ≠ ′ u , it follows that
hd(u , ′ u) = 2 . So by expanding the cost of direct path we get

 cost(u, ′ u) = whd (u , ′ u)
=

q 2 (a −1)2

p
2
q

l =
q(a −1)

p
⋅
q(a −1)

pq
l > 2

q(a −1)
pq

l

with the final inequality holding because of (4.1). Now by expanding the cost of the

Hamming chain we see that cost(u,v, ′ u) = whd(u , v)
+ whd(v, ′ u)

= 2
q(a −1)

pq
l . Consequently

cost(u, ′ u) > cost(u,v, ′ u) as desired. ❚

Appendix A 254

Lemma 2: Let the cost of the direct path between two chromosomes that are a

Hamming distance of two apart, be greater then the cost of the shortest Hamming chain
between them. Also let v0,v1,K,vh be the shortest possible Hamming chain between v0

and vh , where h is the Hamming distance between v0 and vh (see Corollary 2). Then the

cost of v0,v1,K,vh is no greater than the cost of v0,vh .

Proof. From equation (2.8) the cost of v0,vh is

 cost v0 ,vh()=
1
q

l

q ⋅ (a −1)
p


 


 

h

=
q ⋅(a −1)

p ⋅ q
l ⋅

q ⋅ (a −1)
p


 


 

h−1

 (4.3)

Since the cost of a Hamming chain of length 2 is less than the cost of a direct path

between the two endpoints of the chain (by assumption) Lemma 1 holds. Therefore
q(a − 1)

p
≥ 2and so

q ⋅ (a −1)

p ⋅q l ⋅
q ⋅ (a −1)

p


 


 

h−1

>
q ⋅(a −1)

p ⋅ q
l ⋅ 2h−1 ≥

q ⋅(a −1)
p ⋅ q

l ⋅ h (4.4)

with the second inequality holding as long as h ≥ 2. Since the Hamming chain has a

length of h, from Corollary 3, which calculates the cost of a Hamming chain, we know

that

 cost v0 ,v1,K,vh()=
q ⋅ (a −1)

p ⋅q l ⋅h (4.5)

Finally, by substituting (4.3) and (4.5) into (4.4) we arrive at the inequality

cost v0 ,vh()> cost v0 ,v1,K, vh(). ❚

Now we arrive at the main theorem itself, from which, as a corollary we will prove

the proportionality of mutational distance and the Hamming distance between

chromosomes:

Theorem 12: Let the cost of the direct path between two chromosomes that are a

Hamming distance of two apart, be greater then the cost of the shortest Hamming chain

between them. Then, for all pairs of points in G, the shortest Hamming chain is also the

shortest path.

Appendix A 255

 Proof. Let path p be the shortest path between two point v0 and vh . Now assume that

path p does not form a Hamming chain. Then there must be at least one pair of adjacent

points in the path, say the adjacent points of the edge (vi ,v i+1), that has a Hamming

distance greater than 2. Now the cost of the direct path between two chromosomes that

are a Hamming distance of two apart is greater then the cost of the shortest Hamming

chain between them. Therefore we can apply Lemma 2, which states that the cost of

(vi ,v i+1) is larger than the cost of the shortest Hamming chain between vi and vi +1 .

Consequently, by substituting the appropriate Hamming chain for the edge (vi ,v i+1) in

path p, we can produced a path, ′ p , that cost less than p. But p is supposed to be the

shortest path, thus we have a contradiction. Therefore the assumption that p does not

form a Hamming chain must be false. Furthermore p must be the shortest Hamming

chain, otherwise some other Hamming chain would be shorter than p and again p would

not be the shortest path. ❚

We finally can now prove that, when the probability of mutation is small enough,

then the distance between chromosomes due to mutation is not only equivalent to, but

also directly proportional to the Hamming distance:

Theorem 4: If the probability of mutation p is sufficiently small, i.e. if p <
a −1
a +1

, then

the distance between chromosomes due to mutation is directly proportional to the

Hamming distance, with a proportionality constant of
q ⋅ (a −1)

p ⋅q l .

Proof. From Corollary 2 we know that the shortest Hamming chain between two

chromosomes has a length equal to the Hamming distances between them. Using both

this and Corollary 3, which gives the cost of the Hamming chain of a given length, we

see that the cost of the shortest Hamming chain between two chromosomes x and y must

be
q ⋅ (a −1)

p ⋅q l ⋅hd(x, y) .

Now since p <
a −1
a +1

, which, after a rearrangement, means that
(1 − p)(a −1)

p
> 2, it

follows that Lemma 1 can be applied. So the cost of a Hamming chain of length 2 is less

Appendix A 256

than the cost of a direct path between its two endpoints. Therefore Theorem 12 holds and

the shortest Hamming chain is also the shortest cost path between chromosome.

Consequently, since the distance between chromosomes is defined as the cost of the

shortest path between them, which in this case is the Hamming chain, it follows that the

distance between two chromosomes due to mutation is

 Dist(x,y) =
q ⋅(a −1)

p ⋅ q
l ⋅ hd(x, y) ❚

A-4 Deriving a Formulation of the All-Possible-Pairs Diversity that
allows Linear Time Computation

In this section of the appendix the definition of the all-possible-pairs diversity of the

population will be manipulated to allow linear time computation. The result is presented

as Theorem 6. First some notation that will be used in the proof is presented. Next three

very simple, but important properties of the gene count and the gene frequency will be

introduced. Finally the theorem itself will be presented and proven.

Notation

Before we can derive the linear time formulation of the all-possible-pairs diversity,

we need to set out a few definitions. Let P be a population of n chromosomes each of

length l. Each chromosome is a sequence of symbols drawn from an alphabet A with a
cardinality of a. Let gi|k ∈ A be the gene at locus k of chromosome i. Also let λ ij|k be the

hamming distance at locus k between chromosome chri and chromosome chrj , or more

precisely let

 λ ij|k = hdk chri ,chrj()=
0 if gi|k = g j |k

1 if gi |k ≠ g j|k





 . (4.6)

Now let α ∈ A . We shall define a Kronecker δ as

 δi |k α() =
1 if gi|k = α
0 if gi|k ≠ α




 . (4.7)

This can be read as “does the gene at locus k in chromosome i equal the symbol α”.

Appendix A 257

Important Properties of Gene Counts and Gene Frequencies

Here are two properties, one for gene counts and one for gene frequencies, which will

be used extensively in the proof of the theorem.

Property 1: The total of all gene count at a locus is equal to the population size, i.e.

 ck (α)
∀ α
∑ = n .

Proof. Substituting the definition of the gene count (2.17) into the left-hand side we

get ck (α)
∀ α
∑ = δi |k(α)

i=1

n

∑
∀ α
∑ . Since the summation limits are finite, the two summations

can be interchanged giving ck (α)
∀ α
∑ = δi |k(α)

∀ α
∑

i =1

n

∑ . Now since the gene at locus k of

chromosome i must hold some value from the alphabet A, δi|k(α)
∀ α
∑ must be equal to 1.

Consequently, ck (α)
∀ α
∑ = δi |k(α)

∀ α
∑

i =1

n

∑ = 1
i=1

n

∑ = n . ❚

Property 2: The total of all gene frequencies at a locus is equal to 1, i.e.

fk(α)

∀ α
∑ = 1

Proof. This is a direct consequence of Property 1 and the definition of the gene

frequency (2.18). ❚

Proving the Linear Time Formulation of the All-Possible-Pairs Diversity

The proof of the linear time formulation of the all-possible-pairs diversity uses two

lemmas that will be presented first. Of the two lemmas it is the second that is the key

behind the transformation of the naïve quadratic time definition into the linear time

definition. Following the lemmas, two versions of the linear time all-possible-pair

diversity are presented, the second being a normalized version of the first, and then

proven.

Appendix A 258

Lemma 3: The sum of the Hamming distance at a locus between a given chromosome

and all other chromosomes in the population is equal to the size of the population reduced

by the gene count (at that locus) of all chromosomes that have the same gene as the given

chromosome. More concisely this reads as

 a) λ ij |k
j =1

n

∑ = n − ck gi|k()

 b) λ ij |k
i =1

n

∑ = n − ck g j|k().
Proof. We will first prove a). Notice that λ ij|k =1 − δj |k gi |k() (this can be seen directly

from definitions (4.6) and (4.7). From this identity we can see that

λ ij |k
j =1

n

∑ = 1− δ j|k gi|k()()
j =1

n

∑ = n − δ j|k gi|k()
j =1

n

∑ . Using the definition of the gene count (2.17)

we immediately see that n − δj |k gi |k()
j =1

n

∑ = n − ck gi|k(), and thus λ ij |k
j =1

n

∑ = n − ck gi|k() as

desired. The proof of b) follows along similar lines as the above but uses the identity
λ ij|k =1 − δi |k g j |k() instead of λ ij|k =1 − δj |k gi |k(). ❚

Lemma 4: Let us, for each chromosome, take the gene within that chromosome at

locus k and find the corresponding gene count across the population. Then the total of all

those counts is equal to the total of the square of the gene counts from that locus for each

symbol in the alphabet. More formally, this can be written as:

 ck (gi|k)
i =1

n

∑ = ck

2 (α)
∀ α ∈ A

∑ .

Proof. First notice that ck(gi |k) = δj|k(α) ck(α)
∀ α ∈ A

∑ . This follows from the selection

property of the Kronecker delta: ck(α) is the gene count for all possible gene values, and

δj|k(α) selects the one that has a gene value equal to that at chromosome i. From this

observation it follows that ck (gi|k)
i =1

n

∑ = δj |k(α) ck(α)
∀ α ∈ A

∑
i =1

n

∑ by straight substitution. We

can now exchange the summations since their limits are both finite, giving us

ck (gi|k)
i =1

n

∑ = δj |k(α) ck(α)
i =1

n

∑
∀ α ∈ A

∑ = ck(α) δj|k(α)
i =1

n

∑

 


  ∀ α ∈ A

∑ . The summation inside the

Appendix A 259

brackets can be seen as just ck (α) by the definition of the gene count (2.17). So

ck (gi|k)
i =1

n

∑ = ck(α) ck(α) = ck

2 (α)
∀ α ∈ A

∑
∀ α ∈ A

∑ as required. ❚

Theorem 6a: The all-possible-pairs diversity can be rewritten as

 Div P() =
n2

2 l
fk(α) (1− fk(α))

∀ α ∈ A

∑
k=1

l

∑ (2.19)

Proof. From the definition of all-possible-pairs diversity (2.16) we know that

Div P() = hd(ci ,c j)
j =1

i−1

∑
i =1

n

∑ . Now using the definition of the normalized Hamming distance

(2.3), and rewriting it according to (4.7) we get

 Div P() =
1
l

hd k ci ,cj()
k=1

l

∑

 


  j =1

i−1

∑
i =1

n

∑ =
1
l

λ ij|k
k =1

l

∑
j =1

i −1

∑
i =1

n

∑

Now since all summation limits are finite, and the innermost summation is independent

of the other two, we can move it to the outside giving Div P() =
1
l

λ ij|k
j =1

i −1

∑
i =1

n

∑
k=1

l

∑ . Due to

the symmetry of the Hamming distance and the fact that λ ii|k = 0 , we can write λij |k
j =1

i −1

∑
i =1

n

∑

as
1
2

λ ij|k
j =1

n

∑
i =1

n

∑ . Using this, as well as the results from Lemma 3, we can see that

Div P() =
1
2l

λij |k
j =1

n

∑
i=1

n

∑
k=1

l

∑ =
1
2l

(n − ck (gi|k))
i =1

n

∑
k=1

l

∑ . Distributing the innermost summation

into the two terms gives us Div P() =
1
2l

n
2 − ck(gi |k)

i =1

n

∑

 


  k=1

l

∑ . We can now use Lemma 4,

producing Div P() =
1
2l

n
2 − ck

2(α)
∀ α ∈ A

∑

 


  k=1

l

∑ . Next we can factor out the n
2 term and

apply the gene frequency definition (2.18) to give Div P() =
n2

2 l
1 − fk

2 (α)
∀ α ∈ A

∑

 


  k =1

l

∑ .

Using the fact that the number 1 can be rewritten as the sum of all the gene frequencies

(from Property 2) we can write the diversity as Div P() =
n2

2 l
fk (α)

∀ α ∈ A

∑ − fk

2 (α)
∀ α ∈ A

∑

 


  k =1

l

∑

which can then be factored to produce Div P() =
n2

2 l
fk (α) (1 − fk (α))

∀ α ∈ A

∑
k =1

l

∑ . ❚

Appendix A 260

Theorem 6b: The normalized all-possible-pairs diversity can be rewritten as

 Div(P) =

a

l ⋅ (a − 1) − r(a − r)
n2







fk (α) ⋅(1− fk (α))
∀ α ∈ A

∑
k=1

l

∑ a < n

n

l ⋅(n −1)
fk(α) ⋅ (1 − fk(α))

∀ α ∈ A

∑
k =1

l

∑ a ≥ n















where r = n ⋅ mod a .

Proof. To normalize this formula we must first find the maximum diversity value

that can be obtained under any make-up of the population. Once this is found, the

normalized diversity is just the regular diversity divided by this value.

There are two different cases. The first occurs when the alphabet size is strictly less

than the size of the population. In the second case the size of the population is the greater

of the two.

When the alphabet size is less than the size of the population (a < n), the diversity

becomes maximal when all gene frequencies are as equal as possible. This can be proven

easily by solving for each of the frequencies from the set of equations produced by
∇ Div(P) = 0 after taking into account the constraint fk(α)

∀ α
∑ = 1 (Property 2). So

max Div(P)() can be found by setting fk (α) = 1
a in the diversity equation. Therefore

max(Div P()) =
n2

2l

1
a (1 − 1

a)
∀ α ∈ A

∑
k =1

l

∑ , which simplifies to

 max(Div P()) =
n2

2a
(a −1) (4.8)

This equation is only accurate if n | a , consequently a slight correction factor must be

introduced76 producing the equation:

 max(Div P()) =
n 2

2a
(a −1) −

r (a − r)
n

2




 (4.9)

76 Notice that equation (4.9) is the same as equation (4.8) when r = 0 . Also notice that the correction
term diminishes when r is close to ends of the interval [0,a] where the alphabet size almost divides into
the population size evenly, plus or minus a small factor, and is maximal when r is at the center of the
interval.

Appendix A 261

where r = n ⋅ mod a .

When the alphabet size is greater then or equal to the size of the population (a ≥ n)

each frequency becomes
1
n

. This is because there can only be n symbols in the

population when maximally diverse (also r = 0 since n | n). Therefore

 max(Div(P)) =
n2

2n
(n −1) =

n(n −1)
2

, (4.10)

which, as expected, is n choose 2, the number of possible pairs that can be uniquely

produced.

Finally we divide (2.19), the all-possible-pairs diversity from Theorem 6a, by the

appropriate maximum values derived above to get the normalized formula as desired. ❚

A-5 P1 and P2 are Maximally Distant if they Share No Genes

Theorem 8: When there are no genes in common between two populations P1 and P2,
DistL 1

(P1,P2) = 1 (i.e. is maximally distant).

Proof. When there are no genes in common between P1 and P2, f1(α) − f2 (α) = f1 (α)

or f1(α) − f2 (α) = f2 (α) . Also the alphabet can be partitioned by the gene values present

in a populations. So let A1, A2 ⊂ A such that A1 holds the gene values that are present in

P1 and A2 holds the gene values that are present in P2. Then

DistL 1 |k (P1, P2) = 1
2l

f1|k(α) − f2|k (α)
∀ α ,α ∈ A

∑
k=1

l

∑

=
1
2l

f1|k(α) − f2|k(α)
∀ α ,α ∈ A1

∑
k=1

l

∑ +
1
2l

f1|k (α) − f2|k (α)
∀ α ,α ∈ A1

∑
k=1

l

∑

=
1
2l

f1|k (α)
∀ α ,α ∈ A1

∑
k=1

l

∑ +
1
2l

f2|k(α)
∀ α ,α ∈ A1

∑
k=1

l

∑

Appendix A 262

By definition A1 comprises all the gene values used in P1. Consequently from Property
2, f1|k(α)

∀ α ,α ∈ A1

∑ =1. Using a similar argument f2|k(α)
∀ α ,α ∈ A2

∑ =1. So we therefore find that

DistL 1
(P1,P2) = 1

2 + 1
2 = 1. ❚

A-6 The Distance between a Chromosome and a Population

Corollary 1: Let gk be the gene at locus k of the chromosome chr. Then the distance

between that chromosome and some target population is

 Dist (chr, P) =
1
l

1 − fP |k(gk)()
k=1

l

∑ .

Proof: A single chromosome can be thought of as a population of one. Thus the

distance between a chromosome and a population devolves to the distance between two

populations with the first having a cardinality of one. Of course the gene frequency of a

given gene at a given locus in a population of size one has to be either 1, if the locus

contains that gene, or 0 if it doesn’t. Let the gene of the chromosome at locus k be gk .

Then using the L1-norm based distance (definition (2.32)) we obtain

Dist (chr, P) =
1
2l

fchr |k (α) − fP|k (α)
∀ α ∈ A

∑
k=1

l

∑

=
1
2l

fchr |k(gk) − fP |k(gk) + fchr |k (α) − fP |k (α)
∀ α ≠ gk ,

α ∈ A

∑












 k=1

l

∑

=
1
2l

1− fP|k (gk)()+ fP |k(α)
∀ α ≠ gk ,

α ∈ A

∑














k=1

l

∑

,

From Property 2 we know that fP|k (α)
∀ α ≠ gk ,

α ∈ A

∑ = 1− fP|k (gk) . Substituting this into the above

equation produces the desired formula. ❚

Appendix A 263

A-7 A Linear Time Reformulation of the Diversity for Systems with

Numeric Genomes

Theorem 9: Let xk =
1
n

xi |k
i=1

n

∑ and xk
2 =

1
n

xi|k
i =1

n

∑ . Then Div
2(P) = n

2
xk

2 − (xk)2

k =1

l

∑ .

Proof.

Div2(P) = 1
2

(xi |k − x j|k)2

i =1

n

∑
j =1

n

∑
k =1

l

∑

=
1
2

xi |k
2

i =1

n

∑
j =1

n

∑
k =1

l

∑ +
1
2

x j|k
2

i =1

n

∑
j =1

n

∑
k =1

l

∑ − xi |k x j |k
i =1

n

∑
j =1

n

∑
k =1

l

∑

=
n

2
xi|k

2

i =1

n

∑
k =1

l

∑ +
n

2
x j |k

2

j =1

n

∑
k=1

l

∑ − xi |k
i =1

n

∑

 


 

x j|k
j=1

n

∑


 


  k=1

l

∑

=
n2

2
xk

2

k=1

l

∑ +
n 2

2
xk

2

k =1

l

∑ − n
2 (xk)2

k=1

l

∑

= n
2

xk
2 − (xk)2

k =1

l

∑

 ❚

A-8 The Equivalence of the Diversity and the Standard Deviation from
the Centroid in Populations with Numeric Genes

Theorem 11: The square diversity of a population with numeric genes is proportional to

the variance of points around a centroid; i.e. Div(P) =
1
n

D
2 (

v
x i ,

v µ)
i =1

n

∑ where D(
v
x ,

v
y) is the

Euclidean distance between two vectors,

v
x i = (xi|1,x i|2,L, xi |k) and

v µ = (µ1,µ2 ,L,µk) .

Proof. First let us look at the variance of points around the centroid:

1
n

D
2 (

v
x i ,

v µ)
i =1

n

∑ =
1
n

(
v
x i|k −

v µ k)2

k=1

l

∑
i=1

n

∑ =
1
n

(xi|k
2 + µk

2 − 2xi |k µk)
i =1

n

∑
k =1

l

∑ .

Appendix A 264

Now, since µk =
1
n

x i|k
i =1

n

∑ , it follows that x i|kµk

i =1

n

∑ = µk xi |k
i=1

n

∑ = nµk

2 = µ k

2

i =1

n

∑ and

consequently,
1
n

D
2 (

v
x i ,

v µ)
i =1

n

∑ =
1
n

(x i|k
2 + µ k

2 − 2µ k

2)
i =1

n

∑
k =1

l

∑ =
1
n

(xi |k
2 − µk

2)
i=1

n

∑
k=1

l

∑ .

Next we shall examine the diversity squared. From the definition of the diversity of a

population with numeric genes as given in Ch7 §3 we see that Div(P) = xk
2 − (xk)2

k=1

l

∑ .

Since µk ≡ xk and xk
2 =

1
n

xi|k
2

i =1

n

∑ it follows that

Div
2(P) =

1
n

x i|k
2

i =1

n

∑ − µ k

2
 


  k=1

l

∑ =
1
n

x i|k
2

i =1

n

∑ −
1
n

µk

2

i =1

n

∑

 


  k=1

l

∑ =
1
n

(xi|k
2 − µk

2)
i =1

n

∑
k =1

l

∑ ❚

A-9 The Equivalence of the Diversity and the ‘Deviation from the Gene
Frequency Vector’ in Populations with Symbolic Genes

Theorem 13: Let P be a population of size n and be composed of chromosomes that

have symbolic genes. Then, after normalization is performed, the diversity of P is equal

to the deviations from the gene frequency vector of all chromosomes in P after the

deviations are combined using the L1-norm i.e. Div(P) =
a

n ⋅(a −1)
Dist(chri , P)

i =1

n

∑ .

Proof. First, since Dist(chr ,P) is calculated by taking the distance between the

chromosomes and the population’s gene frequency vector, it properly represents the

deviation of a chromosome from the gene frequency vector of a population. Next, since a

distance is always positive, and from the definition of the distance from a chromosome to

a population presented in Ch6 §6.1 we see that Dist(chri ,P)
i =1

n

∑ =
1
l

(1− fk(gi |k))
k=1

l

∑
i=1

n

∑ .

Now from the definition of the gene frequency in Ch6 §2.2.2, fk(α) =
1
n

δ(gi |k = α)
i =1

n

∑ ,

where δ is a Kronecker delta and equals 1 when the gene equals α, and from the identity

Appendix A 265

fk(gi |k) = fk (α)δ(gi|k = α)
∀ α ∈ A

∑ , which holds because of the basic properties of the

Kronecker delta, the sum of the deviations from the gene frequency vector becomes:

Dist(chri ,P)
i =1

n

∑ =
1
l

(1− fk(α)δ(gi|k = α)
∀ α ∈ A

∑)
k=1

l

∑
i=1

n

∑

= 1
l

(n − fk (α) δ(gi|k = α)
i =1

n

∑
∀ α ∈ A

∑)
k=1

l

∑

= n

l
(1 − fk

2 (α)
∀ α ∈ A

∑)
k =1

l

∑

=
n

l
fk(α)(1 − fk (α))

k =1

l

∑ .

To normalize the sum of the deviations we must multiply them by
a

n ⋅ (a − 1)
.

Consequently,
a

n ⋅ (a − 1)
Dist(chri , P)

i=1

n

∑ =
a

l ⋅(a −1)
fk (α)(1− fk(α))

k=1

l

∑ = Div(P) . ❚

 266

Appendix B

The Expected Number of Mutation

Operations between Chromosomes

B-1 The Number of Mutation Operations Between Chromosomes as a
Random Variable

Let us consider two chromosomes, each of length l. If the probability of mutation is p,

then the probability of one chromosome mutating into the other in one step is p
dx ,y q

l −dx , y ,

where q = 1 − p .

However, a one step mutation is not the only way one chromosome can mutate into

another. The mutation can occur in two stages, or three, or more. Indeed the number of

mutation steps that are used to turn one chromosome into another is a random variable; it

can be any number, but associated with each value is a probability.

Let us represent the number of mutation steps that turns chromosome x into
chromosome y as the random variable Nx , y . Notice the subscripts on the random variable.

Appendix B 267

They are there because it is possible that the probability distribution associated with the

number of steps necessary to turn one pair of chromosomes into each other may be

different than that used for another pair.

Then the first thing that one immediately thinks of is determining the expected
number of mutation steps that would turn one chromosome into another, E(Nx ,y) .

Perhaps this is the sought-after mutational distance77. Following the definition of an

expectation,

 E(Nx ,y) = n ⋅ Pr(Nx , y = n)
n=1

∞

∑ (4.11)

To calculate this expectation we need to know the probability distribution associated

with the random variable. Unfortunately this is not so easily determined. In fact it may

not even be possible to produce an exact analytic solution for it. However, it is possible to

define a recursive series that would determine the desired expectation.

Figure 39 demonstrates pictorially the recursive steps that are needed to compute the
probability distribution associated with the random variable Nx , y . The recursive equation

has two base cases. The first occurs when the chromosome at the starting vertex is the

target chromosome, so no steps need to be done. Consequently the probablity of going

elsewhere defined as 0:





=
≠

==
yx

yx
N yx 1

0
)0Pr(, (base case 0)

The second base case occurs when the target is a Hamming distance of one away:

77 Using E(N) as a distance measure has recently been suggested by (Jelasity, et. al. 1999). They,
however, used a radically different probability distribution associated with the random variable N than will
be developed in this section. Their probability distribution is determined by comparing the number of steps
a “mutational hill-climber” would take in a search space that was totally ordered by fitness (so that the
global can be found using just hill-climbing). While this may be an interesting measure in itself, the way it
was defined in (Jelasity, et. al. 1999) it is not a distance; it doesn’t even produce a value between any two
chromosomes, just between a chromosome and the chromosome representing the global maximum. Nor
does it even attempt to use the actual topology that the GA imposes on the search space (which is what is
being attempted in this thesis); instead it imposes a global sort order on the search space, which is highly
unrealistic and tells us little about the distance the GA must travel to get to the global maximum.

Appendix B 268

Pr(N x, y = 1) =
p

dx , y (1 − p) (l − dx ,y)
x ≠ y

0 x = y





 
 (base case 1)

Finally the general equations for the recursive step is:

Pr (N x, y = n) =
Pr(N x ,m =1) ⋅ Pr(Nm, y = (n −1))

m ∈ U l,m ≠ y

∑ x ≠ y

0 x = y





 
 (recursive step)

In all of the above equations, d x, y is the Hamming distance between the two

chromosomes, l is the length of the chromosome and Ul is the universal set of all

chromosomes. Notice that we are summing over all chromosomes in the population

except for the goal y. This is because if the mid point m is equal to y then we will have

reached y before the n steps it is supposed to take.

Figure 39: Calculating recursively the probability of transforming chromosome x into
chromosome y after Nx , y = n mutational steps. The two chromosomes are a Hamming

distance d x, y apart.

Appendix B 269

B-2 Computing The Expected Number of Mutation Operations

Between Chromosomes

Since the probability distribution of the random variable Nx , y cannot be determined

analytically, to see how our prospective ‘distance’ behaves, we must resort to computer

simulations. Unfortunately this is not as easy as it seems. If you look at the definition of

an expectation in equation (4.11), you see that the sum goes to infinity, which is
obviously not computable. Consequently instead of computing E(Nx ,y) we only compute

E(Nx ,y < k) , which only sums to k. The value of k is determined dynamically through

observing the amount of converges that has occurred when comparing E(Nx ,y < k) with

E(Nx ,y < ′ k) , where k > ′ k .

In this dissertation a very naïve measure of convergence is used: if the ratio of the
difference between E(Nx ,y < k) and E(Nx ,y < ′ k) to the value of E(Nx ,y < k) itself is below

some tolerance (say 1
100) then we stop computation and return the expectation. This will

usually produce a value that is accurate to within the tolerance interval, i.e. to within a

user defined number of digits. However, very slow growing functions, some who may

even be divergent, may have differences in values after k − ′ k apart that fall within the

tolerance value thus stopping the computation prematurely. We will note when we

suspect that this may be a difficulty.

To calculate the recursively defined probability distribution of Nx , y a recursive

function can be used. However, in practice, the recursion is unwound and built up step by

step. Since we start with k = 2 and build from there, the internal results from the previous

step are stored, and the new layer is added as we increment k by 1 and check to see if

convergence has occurred. Thus the old work for computing the expectation at k need not

be redone when computing the expectation at k +1.

The definition of the recursive step itself can actually be improved. Notice that by the

end of the recursion, the probability distribution will rely entirely on a function of the
Hamming distance. Therefore if d x, y = d ′ x , ′ y then Pr(N x, y = n) = Pr(N ′ x , ′ y = n) .

Consequently we are computing Pr(Nm ,y = (n −1)) with the various m values that have

Appendix B 270

the same Hamming distance to y and getting the same results. Consequently if p is the

probability of mutation and q = 1 − p then the recursive step can be rewritten as:

 Pr (Nhx ,y
= n) = Chx ,m ,hm , y , hx , y , l ⋅ p

hx ,m ⋅q (l −hx ,m) ⋅ Pr(Nhm, y
= (n −1))

hx ,m =0

l

∑
hm, y =1

l

∑ (4.12)

where

 Chx, m ,hm ,y ,hx , y ,l =

hx , y

hm ,y + (hx ,y − hx ,m)

2






 






 

*

⋅

l − hx, y

hm ,y − (hx ,y − hx ,m)

2






 






 

*

is the number of chromosomes78 that have both a distance to x of hx ,m and a distance to y

of hm, y . Notice that the lower limit on the outer summation starts from 1 instead of 0.

This is because a Hamming distance of 0 would mean that we are already at the target
chromosome y and so Nx , y = 1 instead of Nx , y = n which we are trying to compute. Also

note that the subscripts on hx ,m and hm, y are actually meaningless in the computation.

They could have easily been replaced by h1 and h2 . The reason for the notation is just as

a reminder to the reader of the relation that the respective Hamming distances hold to the

distances in the original formulation.

The above modification speeds up the calculations significantly. Since there are two

summation operators, the recursion step is done l ⋅(l −1)times. In the previous

formulation the recursion is performed 2 l −1times, which is the number of possible

chromosomes of l length. Needless to say a recursive step done a quadratic number of

times will take substantially less time than the same computation performed exponential

number of times.

With this algorithm design, the time complexity is O(kconv l
2) where kconv is the

number of iterations taken before the algorithm converges. To compute E (Nx ,y = k) the

algorithm must be iterated at least k times. So since most of the time kconv > 2 l and

78 Note,
n

i()
*

 is the ‘protected’ version ‘n choose i’. In other words if n < i or n, i ∉ N then
n

i()
*

= 0.

Appendix B 271

frequently kconv >> 2l , as can be seen in the sample results in Table 11, the average time

complexity of computing E (Nx ,y) is at least exponential79.

Here is one final word of warning before presenting the results and drawing

conclusions from them. Since the values will only be from a (relatively small) subset of

all of the possible results from the infinite number of combinations of probability of

mutation and chromosome size, any conclusion drawn will not be deductively proved,

only inductively supported. Of course hypothesis can always be disproved through

simulation by showing a counter example, so any conclusions of this type will be

conclusive.

B-3 The Expected Number of Mutation Operations as a Distance

E (Nx ,y) Appears to be a Distance

The definition of E (Nx ,y) trivially obeys most of the properties of a distance such as

“d(x, y) = 0 iff x = y , d(x, y) ≥ 0 and symmetry. The only property that cannot be proven

directly without a closed form for the probability distribution is the triangle inequality.
Therefore we can only provide evidence on whether E (Nx ,y) is a distance through

simulation.

The results of the simulation are presented in Table 11. Here E (Ndx , y
) has been

computed for all possible Hamming distances between chromosomes x and y within 4

different chromosome spaces, where each space was derived from chromosomes of

lengths 3 to 6. A wide variety of mutation probabilities where also used. The convergence

79 This same exponential behavior with respect to chromosome size also pertains to the measure used in
(Jelasity, et. al. 1999). In fact, since the entire exponential-sized search space must be sorted, exponential
time is guarenteed. In their paper Jelasity et. al. note that “[our] distance is more expensive to calculate than
the hamming distance…”. Since the Hamming distance behaves linearly with respect to chromosome size,
this is putting it mildly indeed!

Appendix B 272

tolerance was set at 1
100 when k − ′ k = 500 steps. Also, all results with Hamming

distances equal to 0 have been omitted since E (N0) = 0 by definition.

For the triangle inequality to hold E (Nx ,y) + E(Ny ,z) ≥ E(N x, z) so if no expectation

value can be so small that the sum of two of them (or two of the same) would be less then

any of the others, unless that combination of distances cannot occur. Looking at the
results in Table 11, which gives the various values of E (Nh x ,y

) for chromosome spaces

derived from small chromosome lengths, we can see that the triangle inequality holds for

all values produced when using a probability of mutation less than 0.5. For probability of

mutations that are much higher than 0.5 the expected number of step for finding y when y

Probability of Mutation Chr.
Lgth hd

1E-05 1E-04 0.01 0.05 0.1 0.25 0.5 0.55 0.6 0.75 0.8 0.99 0.999

1 9910 12500 235 48.4 25.2 11.6 8.0 7.9 7.8 8.4 9.1 110.0 990

2 13000 16200 301 61.1 31.1 13.3 8.0 7.7 7.5 8.0 8.8 110.0 990 3

3 14900 18000 334 67.4 34.1 14.3 8.0 7.5 7.0 5.8 5.4 4.1 4.0

1 7150 14300 378 79.5 42.3 21.0 16.0 15.9 15.9 16.8 17.9 181.0 1690.0

2 8730 17900 468 96.9 50.4 23.2 16.0 15.7 15.6 16.9 18.3 206.0 1930.0

3 9840 19600 509 105.0 54.2 24.4 16.0 15.5 15.2 15.9 17.1 181.0 1690.0
4

4 10800 20500 533 110.0 56.4 25.1 16.0 15.3 14.6 12.4 11.6 8.2 7.8

1 5100 14700 622 135.0 73.3 39.0 32.0 31.9 31.9 33.1 34.7 313.0 2800.0

2 5730 17900 750 159.0 84.7 42.0 32.0 31.7 31.7 33.6 35.7 362.0 3270.0

3 6280 19300 802 169.0 89.5 43.5 32.0 31.6 31.4 33.3 35.5 362.0 3270.0

4 6860 20200 831 175.0 92.2 44.3 32.0 31.3 30.9 31.6 33.3 313.0 2800.0

5

5 7310 20700 851 179.0 94.0 44.9 32.0 31.1 30.2 26.4 24.6 16.4 15.0

1 3720 13500 1050 233.0 130.0 73.9 64.0 63.9 64.0 65.5 67.7 541 4560.0

2 3710 16000 1240 269.0 147.0 78.0 64.0 63.8 63.8 66.3 69.3 623.0 5280.0

3 3880 17100 1310 282.0 153.0 79.9 64.0 63.6 63.6 66.4 69.8 639.0 5430.0

4 4190 17700 1340 289.0 156.0 80.9 64.0 63.4 63.2 65.7 69.0 623.0 5280.0

5 4480 18100 1360 293.0 158.0 81.6 64.0 63.2 62.6 63.1 65.3 541.0 4560.0

6

6 4730 18400 1380 297.0 160.0 82.1 64.0 62.9 61.7 55.2 51.5 32.8 28.0

Table 11: Sample results of the expected number of mutational steps, E (Ndx , y
) for

populations with various chromosome lengths and mutation rates

Appendix B 273

is at the antipode of x is very small and so has the potential of violating the triangle

inequality. However, two applications of the same Hamming distances will bring you

back to x and the Hamming distance of x to x is 0. Furthermore the antipode is situated
such that d xz = l − dy ,z and by inspection we can see that in Table 11

E (Nd x , y
) + E(Nd y, z

) ≥ E (Nl −dy , z
). So the evidence seems to support the idea the expected

number of mutational steps is a distance under all chromosome lengths and probabilities

of mutation.

Expected Number of Mutational Steps ≠ Mutational Distance

Even though E (Nx ,y) seems to be a distance, closer examination shows that it is not

the distance measure we are looking for. First let us rewrite the recursive step of the

probability distribution (4.12):

 Pr (Nhx ,y
= n) = Ahx , y , hm, x ,l Pr(Nhm , y

= (n − 1))
hm, y =1

l

∑

where

 Ahx , y , hm, x ,l = Chx , m ,hm,x ,hx , y ,l p
hx , m ⋅ q

(l − hx, m)

hx ,m =0

l

∑

We can now easily see that, except for the outermost recursive call, all subsequent

recursive calls are identical and independent of the Hamming distance between x and y,

the original two chromosomes. Furthermore, the majority of the computation is

performed in the identical inner recursions and the results of those recursions. From the

results in Table 11 we see that the expectations grow exponentially with chromosome

length. Therefore the majority of the recursive computation has an exponentially large

effect on the value and so dominates the information in the measure. In fact it dominates

to such a degree that the majority of the expectation values are fairly uniform in

magnitude, even with low probability of mutations (which we expected to behave more

like a hypercube).

All of the above behavior could actually be expected when one realizes what is
actually being measured by E (Nx ,y) : the number of mutation steps needed when trying to

Appendix B 274

find a target chromosome while using a random search algorithm. When looking at all

possible paths and weighting them equally, we have implicitly stated that no path is better

then any other. A path itself can be thought of a path that a “hill-climber” takes to get

from one chromosome to another, but we are not giving this “hill-climber” any gradients

to climb on. Thus we are reduced to a random search.

It is well known that random search produces exponential behavior, thus it is no

surprise that the results of our “new distance” are exponential too. As we will see next

there are some interesting differences between a normal random walk and this random

mutational walk. Unfortunately what it does not provide us with is a meaningful measure

of mutational distance.

B-4 Some Interesting Observations

While the expected number of mutational steps may not tell us anything as a

mutational distance, it does show the behavior and biases of mutation when there is no

selection pressure. True it is not a perfect measure of this since the expectation is

performed on the transformation of a single chromosome from its initial starting point

until it eventually reaches the target value. Thus it ignores population effects. Still if there

is a bias even without the population effects there is probably some carry over and in any

case it is a more accurate picture than the simple ‘random search’ model that has been the

only analysis done of mutation without fitness until now.

The Interaction Effects Between the Probability of Mutation and the Hamming

Distance between Chromosomes on E(Nx , y)

The first obvious effect when looking at Table 11 is the difference in behavior of
E (Nx ,y) in three distinct domains each delimited by the probability of mutation.

Appendix B 275

In systems where the probability of mutation is less then 0.5, the expected number of

mutational steps monotonically increase when the Hamming distance between the start

and end chromosomes are larger for a given chromosome length. This is to be expected.

With low mutation rates it is easier to explore close to where one is and it takes time to

go to more distant regions. However, as was noticed in the previous subsection, the

differences in the expectation values do not grow in proportion to the Hamming distance.

Instead there is only a slight preference to finding chromosomes at lower Hamming

distances, even when the mutation rate is very small. This occurs because if the

chromosome does not make the correct transition immediately then it will quickly “get its

lost” in the chromosome space and thus loose all the advantage from its original

positioning.

With systems that have mutation rates equal to 0.5 the expectations remain constant

and is independent of the Hamming distance between the two chromosomes. In fact, with

a mutation rate of 0.5 we are performing the well-known pure random search of the

chromosome space. With a random search the original distance between starting point

and target is irrelevant. One chromosome is as likely to be produced by completely

random mutation as is any other. As is also well known, the space of all possible

chromosomes of size l is 2 l and so random search in such a space would take, on

average, 2 l time steps. This is exactly what we see happening with the 0.5 mutation rate.

The behavior in systems with mutation rates greater than 0.5 is more complex. For

mutation rates that are close to 0.5 the expectation values monotonically decrease with

the increase of the Hamming distance between the two end points. At higher mutation

rates, the expectation values increase with the Hamming distance until a certain break

point. From then on the expectation values decrease in relation to the Hamming distance.

The value that the break point occurs at is dependent on the mutation rate setting. At very

large mutation rates, the expectation values are almost symmetric around the break point;

here the break point occurs at a Hamming distance that is exactly half that of the

maximum Hamming distance (which equals the chromosome length). This near mirror

symmetry also includes the zero distance and its corresponding antipode, which occurs

Appendix B 276

when the Hamming distance between the chromosomes is at its maximum. Please notice,

however, that the expectation value of the antipode is not actually 0 as occurs when the
originating and target chromosomes are one and the same. If it were, E (Nx ,y) would not

be a distance. However, the expectation value at the antipode is far less than the

expectation values found for any of the other Hamming distances.

With some thought we can see that this behavior makes sense. Close to the mutation

rate of 0.5 the system is still basically behaving as a random search technique (more on

this later). However as the high probability of mutation becomes significant it becomes

easy to change a chromosome into its mirror image. When the mutation rate is set to 1 the

mirror image chromosome is produced in one time step and the originating chromosome

is reproduced in one time step more. Consequently, with mutation rates set near to 1, the

system can easily find the originating and antipodal chromosome, but takes a lot more

time to find any other chromosome. The closer the target chromosome is to the mid-point

between the originating and antipodal chromosome, the harder it is to find. The further

the mutation rate is from 1, the easier it is to find chromosomes closer to the originating

chromosome than to its antipode and so the mirror point shifts closer to the originating

chromosome.

More Effects of the Probability of Mutation on the Behavior of E(Nx , y)

In Table 12 we average the expected number of mutational steps between source and

target chromosomes assuming equal probability of selected any chromosome in

chromosome space as the target chromosome (aside from the source chromosome itself,
which has an E (Nx ,y) defined as 0). This strips away the complex interaction between the

probability of mutation and the Hamming distance between target and source

chromosomes thus allowing a direct look at the probability of mutation as an isolated

factor.

First notice that all expectation values from systems with mutation rates below 0.5 are

all much greater than the values associated with the mutation rate of 0.5. This means that

low mutation rates without selection to guide it actually behaves far worse than just

Appendix B 277

random search. When one thinks about it this actually makes sense. With low mutation

rates, it takes time, on average, to visit every point. The system tends to stay close to

where it already is and it takes time to travel to far regions of the search space.

The next effect is more puzzling. If one sets the mutation rate to 0 it becomes

impossible to get to the target. Consequently the distance becomes infinite. Therefore one

will expect that the closer we set the mutation rate to zero, the higher the expectation

values would become. At first glance, however, this doesn’t seem to be the case; the

values under mutation rate of 0.00001 are smaller than the values under mutation rate of

0.0001.

The chances are that the anomalous values seen above are a product of the simulation

that produced the numbers and is not due to an actual effect. With low probability of

mutation the convergence rate for the fixed-point iteration used to simulate the infinite

series for the expectation seem to be very slow. In fact a very large number of iterations

where needed to produce the expectation values for those mutation rates). Over time

small increments can add up to large differences, as long as the increments are decreasing

slowly enough. My suspicion is that if a less naïve method for determining convergence

were to be used, the effect will go away. The same argument holds for the drop in the

expectation values seen under the above two mutation rates when the chromosome

Probability of Mutation Chr.

Lgth 1E-05 1E-04 0.01 0.05 0.1 0.25 0.5 0.55 0.6 0.75 0.8 0.99 0.999

2 15233 11333 167.0 33.68 17.04 7.111 4 3.771 3.611 3.556 3.750 35.02 334.0

3 11947 14871 277.0 56.55 29.01 12.73 8 7.722 7.562 7.873 8.440 94.87 849.1

4 8743 17567 459.1 95.20 49.66 23.08 16 15.67 15.52 16.31 17.40 179.6 1674

5 6039 18297 762.3 161.6 85.91 42.45 32 31.63 31.50 32.89 34.73 335.1 3013

6 3969 16754 1282 277.1 150.61 79.31 64 63.58 63.48 65.64 68.56 603.3 5107

7 2516 13401 2141 480.5 268.17 150.23 128 127.53 127.46 130.6 135.0 1070 8163

Table 12: The average expected number of mutational steps between chromosomes,
assuming that all chromosomes but the originating chromosome x are equally likely to be
the target chromosome y.

Appendix B 278

lengths become large.

The final observation is perhaps the most surprising. It was pointed out that the

exploratory power of the completely random search done when the mutation rate is 0.5 is

far greater than under smaller mutation rates, so every chromosome is visited in less time

thus the target is hit in less time. After all, the search is directionless and so the only way

of discovering the target is by happening on it by chance. Now, as demonstrated earlier,

when using mutation rates that are greater than 0.5, the systems produce changes in the

chromosomes which are less random than those produced when the mutation rate is

exactly 0.5. So one would expect to see larger expectation values in these cases as well.

However in Table 12, we find at mutation rates above 0.5 expectation values that are

actually lower than those found at the 0.5 mutation rate. The lowest expectation values

tabulated occur when the mutation rate is 0.6 and the effect is still seen with a 0.75

mutation rate, at least when the chromosome lengths are small.

The reason for the above effect seems to reside in the asymmetrical behavior that

occurs when the target chromosome is the originating as opposed to when it is the

antipodal chromosome. However, since the expected number of mutational steps is

smaller when the target is the originating chromosome, one would expect the expectation

values to be smaller on that side of the 0.5 divide. Obviously more research will be

needed to explain this phenomenon.

 279

Appendix C

Algorithms, Programs and

Time Complexities

C-1 An O(l ⋅⋅⋅⋅n)Algorithm for Computing the All-Possible-Pair

Diversity of a Population

The normalized all-possible-pairs diversity measure can be written as

 Div(P) =
a

l (a −1)
fk (α) (1 − fk(α))

∀ α ∈ A

∑
k =1

l

∑ (2.20)

as was seen in Ch6 §2.2.3 What follows is an algorithm to compute this diversity in

O(l ⋅ n) time.

To keep its time complexity down, each alphabet symbol is replaced in the

chromosome with its corresponding index in the alphabet set. For example, if the

alphabet is A = {a,t,c, g}, then the corresponding indices are a=1, t=2, c=3 and g=4, and

Appendix C 280

the chromosome aatccgctatag becomes 112334321214. This is done to allow constant

time indexing into the gene frequency array, based on the gene values.

The calculation is done in two parts. First the gene frequencies are found, see

Program 1, and then the actual diversity is calculated, as presented in Program 2.

Finding the gene frequencies costs O(l ⋅ n) time while the actual diversity is

population.function findGeneFrequencies(l, a)

args: population self – a population of chromosome;

int l – the length of the chromosome; int a – the size of the alphabet
vars: int gene, gene-freq

1 gene-freq := make-array((l by a), init-values := 0)

2 for k := 1 to l

3 for each member in self

4 gene := member.chr[k]

5 gene-freq[k, gene] := gene-freq[k, gene] + 1

6 return gene-freq

Program 1: Computes the gene frequency vector of a population

population.function APP-Diversity (l, a)

args: population self – the population the gene frequencies are based on;

int l – the length of the chromosome; int a – the size of the alphabet
vars: int diversity, gene-freq; float max

1 gene-freq := self.findGeneFrequencies(l, a)

2 max := l * (a – 1) / a

3 for k := 1 to l

4 For α := 1 to a

5 diversity := gene-freq[k, α] * (1 - gene-freq[k, α])
6 return diversity / max

Program 2: Computes the all-possible-pair diversity of a population

Appendix C 281

calculated in O(l ⋅a) time. Since the alphabet size is considered to be a constant of the

system (this is definitely true with the standard binary alphabet), the overall time

complexity is O(l ⋅ n) + O(l) = O(l ⋅ n). This is optimal time for this problem (each

chromosome must at least be looked at once to affect the diversity value), so the all-

possible-pairs diversity algorithm can be computed in Θ(l ⋅n) time.

Finally, two short notes. First, to use any of the other formulas for normalized

diversity just insert the appropriate max value. Second, the gene frequencies will be used

for many different calculations in this dissertation. Consequently it can be computed just

once and thus its time complexity would be amortized over all the functions using it, not

just diversity.

Appendix C 282

C-2 Computing the Distance between a Chromosome and a Population

The distance between a chromosome and a population was derived in Ch6 §6.1. As a

reminder, the formula itself is

 Dist (chr, P) =
1
l

1 − fP |k(gk)()
k=1

l

∑ . (2.35)

First, the gene frequency vector must be computed, since the formula makes direct

reference to the gene frequencies. This can be done in O(l ⋅ n) time (see Appendix C-1 for

the algorithm). Fortunately, the gene frequency vector is very useful for calculations

other than the distance between a chromosome and a population such as the diversity of a

population. Therefore it will usually have been computed previously and stored within

the population in an instance variable called gene-frequencies.

 The actual algorithm based on definition (2.35) is presented as Program 6. It can be

computed in O(l) time, i.e. linear in the length of the chromosome. Therefore every

chromosome in the system can compute its distance to a population in O(l ⋅ n), which is

the same time that it takes to compute the gene frequency vector or run the GA. As a

result one can compute the distance to a population for every chromosome in the system

with only an (amortized) constant slowdown.

chromosome.function distance(target-Popn)

args: string self – the chromosome (a member of a population)

population target-Popn – the pop
n
 to which the chrom. is compared

vars: float total-distance := 0

1 for each gene in self

2 total-distance += 1 - target-Popn.gene-frequencies[gene]

3 return total-distance / self.size

Program 3: Computes the distance from a chromosome to a population.

Appendix C 283

C-3 Reproduction in the SBGA using the Modified VEGA Algorithm

A summary of the reproduction algorithm is presented as Program 4. Here, the

population class is a collection of <chromosome, value> pairs, called population

members or just members, and κ is chosen such that κ ⋅ m and (1 −κ) ⋅ m are integer

valued and even (since the simple GA reproduction produces an even number of

offspring).

The reproduction algorithm as given is just the top-level algorithm, of course. Most of

the work is being done in the Colony.reproduction(κ) method invoked in line 4 and which

is presented in detail in Program 7. Before this main routine is called, however, the new

colonies have to be created (line 1), and the distance from each member in all the old

colonies has to have its distance to the core computed (line 2). These distances are

computed in Program 5, which evaluates the distance to the core of all members from all

colonies with the help of Program 6, which evaluates the distance of all members from a

single colony.

colonies.function reproduction (Core, κ)

args: colonies self – the set of all colonies; core Core – the core pop
n
;

float κ – the percentage-similarity value that divides a colony into two

 regions: too close to core and far enough away
vars: list new-colony-list; population new-colonies;

synonym old-colonies := self

1 new-colonies := make-population(template old-colonies)

2 old-colonies..evaluateDistancesTo(Core)

3 for each Colony in old-colonies

4 collect Colony.reproduction(�) into new-colony-list

5 new-colonies.colony-list := new-colony-list

6 return new-colonies

Program 4: Top level algorithm that is responsible for the reproduction of all the
colonies

Appendix C 284

After looking at Program 5, it may occur to the reader that this method is not

necessary. One could simply call Colony.evaluateDistancesTo(target-pop
n) from inside

the for loop in the original reproduction method. However the distance evaluation is

being kept separate from the main reproduction loop for reasons that will become clear in

Appendix C-4.

The actual distance evaluation method for a colony in Program 6 looks just as

simple. Here we are just calculating the distance from each member to the target-pop
n,

which of course is the core in our case, using the chromosome to population distance

method developed in Part 2Ch6 §6. The implementation of this distance can be found in

Appendix C-2.

Finally we can turn our attention to the main reproduction routine of the colony,

where most of the work is being done. It can be found in Program 7.

colonies.procedure evaluateDistancesTo (target-popn)

args: colonies self – the set of all colonies; population target-popn – the

population to which all colonies are finding their distance

1 for each Colony in self

2 Colony.evaluateDistancesTo(target-popn)

Program 5: Evalutates the distance of all member of each of the colonies to the
target population (usually the core)

population.procedure evaluateDistancesTo(target-popn)

args: population self – the pop
n
 whose member’s are being evaluated;

population target-popn – the pop
n
 to which all members are compared

1 for each member in self

2 member.distance := member.chr.dist(target-popn)

Program 6: Evalutates the distance of each of member of one population to another
‘target’ population

Appendix C 285

At a quick glance, one can see that there are four main steps in the procedure. This

should not be surprising, as the reproductive routine is based on the modified VEGA

algorithm. Since that was shown to have four steps, so must Program 7.

In the first step, an empty colony population is produced of to hold all the new

members that will be generated during the reproduction. Eventually (in step 4) it will be

this new population that is returned as the next generation of the colony.

colony.function reproduction(κ)

args: colony self – the colony population that is undergoing reproduction;

float κ – the percentage of a colony that is too ‘close’ to the core
vars: population new-colony; int m, l, a;

synonym old-colony := self

“Step 1: prepare for reprodution”

1 m := old-colony.size;

l := old-colony[1].chr.size;

a := old-colony.alphabet.size

2 new-colony := make-population(template old-colony)

“Step 2: reproduce members, fitness = objective funtion”
3 old-colony.prepareForReproduction(using obj-function)

4

new-colony.regionReproduction(old-colony, start:= 1,

size := (1 - κ) * m))

“Step 3: reproduction section-2: fitness = distance from the core”
5 old-colony.prepareForReproduction(using distance)

6

new-colony.regionReproduction(old-colony, start:= (1 - κ) * m + 1,

size := κ * m)

“Step 4: recompute general colony instance variables and return the new colony”
7 new-colony.gene-freqs := findGeneFrequencies(new-colony, l, a)

8 return new-colony

Program 7: Reproduce the old colony into a newly created colony using the
modified VEGA algorithm.

Appendix C 286

In step two, regular reproduction is performed, where selection is based on the

objective function80. This proceeds in two phases:

 First the old colony is prepared for the reproduction. The “prepareForReproduction”

method will differ depending on the selection technique used. When rank selection is

used, the old core is sorted according to the fitness. Under fitness proportional selection,

a cumulative fitness area is produced and stored in an instance variable in the core.

Finally, when using tournament selection, nothing needs to be done at all except move

the fitness value into the fitness instance variable for each member.

Second, after the preparation has been done, the actual reproduction is performed

using the population method regionReproduction. This method is just the standard GA

population reproduction algorithm, modified to fill only a given region of the new

population, starting from the start argument and extending for size members. Thus, only

the (1 −κ) proportion of the new population will be filled by members selected for

maximizing the objective function.

Step three repeats the same process used for reproduction by step two, only this time

the fitness is based on each member’s distance to the core. The children from the

reproduction are placed in the slots in the new colony that had not been already filled

during step two. The percentage of those free slots to the population size is, of course, κ .

Finally, there are two tasks left to perform, which are handled by step four. First any

general colony instance variables that are dependent on the make up of the population are

recomputed. In this case there is only the gene frequencies of the new population, which

will be needed to for distance calculations (see C-1). After the gene frequency vector has

been recomputed and stored, the new population is then returned as the colony’s next

generation.

80 Note: Before using Program 7, both the distance to the core (stored in the dist instance variable) and
the objective function (stored in the obj-function instance variable) must be previously computed for each
member of the old colony.

Appendix C 287

C-4 Reproduction in a Colony using Percentage Similarity

The Algorithm

The reproduction method for the colonies, as implemented in Appendix C-3, needs to

be modified such that κ can be computed as the percentage similarity of a colony instead

of just being passed in as a parameter. This modification to the algorithm is presented in

Program 8.

The first difference, of course, is the removal of the κ parameter as it is being

calculated internally. Two other changes have been made to the routine: one line as been

added and one modified.

The modification is done to Line 2. It replaces the distance evaluation of the colonies

to the core with the computation of each colony member’s r-value for every colony. The

r-value is the number of core members that are less similar to the rest of the core than the

colony member itself is. In Ch9 §4.4 the r-value for the ith member was symbolized as ri .

During this process a side effect occurs in the core: the distances for each core member

colonies.function reproduction (Core)

args: colonies self – the set of all colonies; core Core – the core
vars: population new-colonies; list new-colony-list;

synonym old-colonies := self

1 new-colonies := make-population(template old-colonies)

2 old-colonies.compute-all-r-values(Core)

3 for each Colony in self

4 κ := Colony.percentageSimilarity(Core)

5 collect Colony.reproduction(κ) into new-colony-list

6 new-colonies.colony-list := new-colony-list

7 return new-colony-list

Program 8: The modification to the reproduction method for colonies necessary
when computing κ as the percentage similarity.

Appendix C 288

has been computed to the core population itself. This information is used nowhere but in

the computation of the r-values and so is quite safe. The actual computation of the r-

values is handled by the ‘compute-all-r-values’ function, which will be presented

momentarily.

With the r-values computed for all colonies, each colony can then compute its

percentage similarity and set the local variable κ it to. This occurs in line 4, which is the

new line in the algorithm, replacing the use of κ as a passed in argument. The actual

computation of the percentage similarity is handled by Program 11 and will be dealt

with below.

We now return to the computation of the r-values from line 2. The calculations are

performed by the ‘compute-all-r-values’ routine summarized in Program 9.

colonies.procedure compute-all-r-values(ref-Popn)

args:colonies self – the set of all colonies;

population core – the core, from which the colonies are trying to stay away

vars:population combined – a single pop
n
 to hold all members from all pop

n
s

1 target-Popn.evaluateDistancesTo(target-Popn)

2 self.evaluateDistancesTo(target-Popn)

3 for each Colony in self do Colony.setType(SOURCE)

4 ref-Popn.setType(TARGET)

5 combined := combinePopns(target-Popn, self, shallow copy)

6 combined.compute-r(.r-exclude, ↑) “calculate r values - exclude ties”

7 combined.compute-r(.r-include, ↓) “calculate r values - include ties”

8 for each Colony in self

9 for each member in the Colony

10 member.r := average(member.r-include, member.r-exclude)

Program 9: Computes ri for all members of every colony.

Appendix C 289

First the distances to the target population81 are evaluated for each member in every

colony (line 2) as well as for the target population itself (line 1).

Following this, the type instance variable is set for every member of each population

in lines 3 and 4. The member will be labeled with either the TARGET constant, if it

belongs to a target population, or with the SOURCE constant if it is a member of a

population that is trying to keep away from the target population. For purpose of

comparison, when the members of a population are being ordered, such as for selection,

the TARGET constant is considered to be greater than the SOURCE constant (e.g. SOURCE = 0

and TARGET = 1). This is an arbitrary decision; the two need only be different yet

comparable. One can reverse the settings, if so desired, as long as consistency is

maintained throughout the implementation.

With lines 5 through 7 we have reached the heart of the function. First, in line 5, all

populations are combined into a single population, called the combined population
82. The

members of the populations being combined are shallow copied into the new population

to allow any effects done on a member within the combined population to be seen by the

originating population. Shallow copying accomplishes this since both collections are

sharing that self-same member.

Next the r-values are computed for each colony member within the combined

population. This is performed twice, in lines 6 and 7, to handle ties, once to compute the

r-values when ties are included and once for when ties are excluded. These two values

will, of course, be averaged together as required by the tie handling procedure discussed

in 0. This averaging is done at the end of the program in lines 8-10

81 At this juncture it should be explained why the population which the colonies are trying to keep their
distance from is called ‘the target population’ instead of just ‘the core’. There actually are other populations
that can be the ‘target’, such as another colony. This flexibility will be useful in Ch9 §7.
82 It should now become clear why the distance evaluations were kept outside of the reproduction loop in
the original ‘colonies reproduction’ method. Since the computation of the r-values has to be done using all
members from every colony in order to later compute the percentage similarity inside the main
reproductive loop, it makes sense to think of this as a separate step that precedes that loop.

Appendix C 290

Let us go back, however, to lines 6 and 7. Since the mechanism for computing the r-

values is generally the same, whether we include or exclude ties, a general routine called

compute-r (Program 10) was created. To distinguish between the two tie breaking

mechanisms, the routine is specialized through the use of two passed parameters.

The first of the two parameters is used to distinguish where the r-value is to be stored.

Since there are two different r-values being computed, one with and one without ties,

they are placed one of the two instance variables within the colony member created for

that purpose: the first called r-exclude and the second called r-include. For compute-r to

know where the value is to be place, the accessor method for the appropriate instance

variable is passed to the routine.

The second parameter is used to control r-compute so that the correct r-value is

created. It all comes down to how r-compute does sorting. If one wants to exclude ties,

one could just place the tied core members after the colony member in a sorted array.

Then when the r-value is being computed by reading the array from smaller to larger

distances and tallying all the core members with smaller distances than the colony

member, the tied core members will not be encountered. To include the tied core

members the opposite setting is used for sorting: tied core members are place ahead of

the colony member. For a more detailed exposition of this algorithm, see the discussion

for the ‘compute-r’ routine, below. In any case, the compute-r routine needs to know how

ties are to be broken and so the appropriate sort control symbol, either ↑ for exclusion or

↓ for inclusion, must be passed as an argument.

Now let us look in detail at compute-r, as presented in Program 10. The population

that the procedure is acting on is the combined population of source populations and the

target population. The combined population is sorted in descending order by distance to

the target population (which should have been computed previously and is stored in the

distance instance variable).

Ties are broken by the sort order on the member type as described when discussing

Program 9. To reiterate, if ties are to be excluded then a target population member

Appendix C 291

should be placed after the source members that are tied with it. This will ensure that it

will not be included in the running count, which is being tallied in the outside-count

variable. Therefore tied members should be sorted in ascending order using the secondary

key type. This will produce the desired sort order since the value of TARGET is greater

than SOURCE by the convention described above.

After the members of the population have been properly sorted, they are then

traversed in the sort-order. If the member belongs in the target population then it is

outside of (less similar than) any of the source population members that haven’t been

seen yet and so gets added to the running total stored in the outside-count variable. If the

member is from a source population then the outside-count found so far becomes its r-

value. This completes the algorithm for computing r-values. For a working example of

the algorithm see the first half of Figure 16.

Now we can finally look at the computation of the percentage similarity for each

colony. This is calculated in Program 11 and is based on the formula κ =
1

m ⋅n
ri

i =1

m

∑ from

(3.6) after care is taken that the regions produced by κ when applied to the colony are

integer valued.

population.procedure compute-r (r-value, ↕)

args: population self; population[member].function .r-value;

sort direction ↕
vars: int outside-count

1 outside-count := 0

2 self.sort(by ↓ .distance + ↕ .type)

3 for each member in self

4 if (member.type = TARGET) then

5 outside-count := outside-count + 1

6 else “member is from a colony”

7 member.r-value := outside-count

Program 10: Computes ri for every member in the combined population of the target
population and all populations that must stay away from it.

Appendix C 292

The sum of the r-values of the colony, which is the key to the computation, is

performed in line 2 and is symbolized by R. Rewriting (3.6) in terms of R we get

κ =
R

m ⋅n
 and consequently κ ⋅ m =

R

n
. Since κ ⋅ m is the actual population size of the

region of the colony that has been subdivided byκ , it must be ensured that this value has

meaningful properties. First κ ⋅ m is computed in line 3. Then in line 4 it is rounded to the

nearest even integer. The value must be an integer because a population size must be of

integer value; the value must be even because the children produced by crossover for the

next generation come in pairs.

With these checks in place, κ can be returned after dividing the resulting κ ⋅ m term

by m, the size of the colony. For a completely worked out example of the computing κ

using the percentage similarity, see Figure 16 in Ch9 §4.4.3.

The Time Complexity of the Percentage Similarity Algorithm

The difference between the colonies.reproduction algorithm from Appendix C-1 and

the version from Appendix C-4, which was modified to compute κ using the percentage

similarity, lies in line 2 with the call to Program 9 and the added line 4, which calls

Program 11.

colony.function percentageSimilarity (Core)

args: colony self – a colony population; core Core – a core population

vars: int m – the colony size; int n – the core size; float R;

float κ ⋅m – the pop
n
 count within the colony’s κ partition

1 m := self.size; n := Core.size

2 R := self.sum(by r)

3 κ ⋅m := R / n

4 κ ⋅m := 2 * round(κ ⋅m / 2) “make sure κ ⋅ m is an even integer”

5 return κ ⋅m / m “returns κ ”

Program 11: Computes the percentage similarity for a colony. Note: use only after the
ri values have been computed for each member of the population

Appendix C 293

The colony.percentageSimilarity method of Program 11 basically sums all distances

from the members of the colony then does a simple computation on this number.

Consequently it is an O(m) operation, which is done for each colony in the

colonies.reproduction method, and so consequently has a time complexity of O(k ⋅m) .

The colonies.compute-all-r-values method of Program 9 first evaluates all distances

of each member of each colony and each member of the core to the core population (lines

1 and 2). Each distance computation takes O(l) time, where l is the size of a

chromosome, and since this is being done for all members in every population, then the

time complexity of this step is O(l ⋅ N) , where N is the total size of the population.

The appropriate type (either TARGET or SOURCE) is then set for every member in all

populations (lines 3 and 4). This takes O(N) time. So does the procedure of combining

all populations into one. This is because the members are shallow copied and hence only

a pointer is created and not the entire chromosome structure.

We will deal with lines 6 and 7 in the next paragraph and so move on to lines 8-10.

Here each member in every colony performs an average of two numbers. This is linear in

the number of members and so has a time complexity of O(k ⋅m)

In both lines 6 and 7 of colonies.compute-all-r-values, colony.compute-r is called,

which was presented in Program 10. This method can be divided into two sections: a

sort (line 2) and the setting of the r-value of each colony member during the counting of

each core member encountered while iterating through the combined populations (lines

3-7). The latter section comprises a single-pass iteration through all members, and so

takes O(N) time. The sort is of course O(N log N).

We have now taken into account the time complexity of all additional procedures

produced by using the percentage-similarity method for computing κ . Adding all of

these the time complexities together we get:

 T (%similarity) = O(k ⋅m) + O(l) + O(l ⋅ N) + O(N) + O(k ⋅ m) + O(N) + O(N log N)

By the same argument as presented in Ch9 §4.3.3, O(k ⋅m) = O(N). So, after combining

lower order terms, we getT (%similarity) = O(l ⋅ N) + O(N log N). Now l must be larger

Appendix C 294

than log N , otherwise the search space would be linear in size (since the search space is

a
l = a

log N ≈ N , where a is the alphabet size) and so can be enumerated83. Thus, for the

GA to be useful, l > log N and so O(l ⋅ N) > O(N log N) . Consequently,

T (%similarity) = O(l ⋅ N) .

83 In practice the value of l usually lies somewhere between N and N.

Appendix C 295

C-5 Migration from Colony to Core

A complete implementation of the algorithm that performs migration of members

from the Colonies to the core is given in pseudo-code in Program 12 and Program 13.

Program 12 allows the SBGA to inspect every colony and add migrants from the

colony to the core if it is the colony’s turn to emigrate. The addMembers function

appends to the core the members stored as a list or array in arg1. Of course the data

structure used for the core has to be designed to accept new members84. Unlike in the

method combinePop
n
s, introduced in Appendix C-4, the members are deep copied (i.e. a

duplicate is made of each member object instead of just a pointer to the member being

transferred). This is done since the members need to be both in the core and in the colony

from which they were selected, and will react differently in each. For example the fitness

evaluation of a member will be different in the colony, where the distance from the core

is taken into account, than in the core where the fitness relies on the objective function

alone. The “select-best” function selects arg2 elite of the population in arg1 and returns

the temporary population to which they have been shallow copied.

84 If the population in implemented as an array, this is usually done by allocating the maximum number
of members that the core will need to hold and then using a fill pointer.

core.procedure migration(Colonies, gen, µ , µ∆)
args: core self – the core population that is accepting the migrants;

colonies Colonies – the populations that are sending the migrants;

int gen – the current generation; int µ – the number of migrants;

int µ∆ – the migration interval

1 for each Colony in the Colonies

2 if Colony.emigrate?(µ∆, gen) then

3 Core.addMembers(Colony.select-best(µ), deep copy)

Program 12: Migration to the Core of members from each Colony respectively.

Appendix C 296

In Program 12, the colony is only added to the core if the “emigrate?” predicate

returns true. Program 13 holds the pseudo-code of that predicate. Here the index of the

colony is the colony’s id, from 0 to m −1. If the migration interval, µ∆, is k, then every

kth generation the Colony.index + gen, the current generation, will return 0 and the

function returns true; it is time to emigrate. The addition of the Colony’s index allows for

colony rotation when sending members, so not every colony sends at once.

colony.function emigrate?(µ∆, gen)

args: colony self – a the population that wants to send emigrants;

int µ∆ – the migration interval; int gen – the current generation
 vars: colony := self

1 return (0 = (colony.index + gen) mod µ∆)

Program 13: When a colony should send immigrants to the core.

Appendix C 297

C-6 Integrating the Immigrants

To handle the immigrants from the colonies, the reproduction algorithm for the core

must be modified slightly from that of the traditional GA (see Ch10 §4). The pseudo-

code for the implementation of the algorithm can be found in Program 14.

All the procedures used in core.reproduction are ignorant of how large the core

should be; they work on the population that has been given to them and do not know, nor

need to know, it ‘proper’ size. Consequently all members in the core, including

immigrants, will be properly prepared for selection and the regionReproduction (see

Appendix C-3) will select members for reproduction from the entire population.

However, regionReproduction only creates enough children to fill a population region of

size members. Consequently the Core will have selection performed over both original

core members and immigrants, but the new population will only be original core sized, as

required.

One final note, the prepareForReproduction procedure will be different depending on

the selection technique used. With rank selection the old core is sorted, with fitness

core.function reproduction(core-size)

args: population self –the old core; int core-size – size of the new core, the

old core size may have increased from immigration
vars: population new-core; int l; int a

1 new-core := make-population(template self, size core-size)

2 l := self.chr-length; a := self.alphabet-size

“fitness evaluation must already be done”

3 self.prepareForReproduction(using fitness)

4 new-core.regionReproduction(self, start := 1, size := core-size)

5 new-core.gene-freqs := new-core.findGeneFrequencies(l, a)

6 return new-core

Program 14: A reproduction algorithm for the core that is designed to handle
immigrants from the colonies

Appendix C 298

proportional selection a cumulative fitness area is produced and stored in an instance

variable in the core, and when using tournament selection, nothing needs to be done at

all.

Appendix C 299

C-7 The SBGA Top-level Algorithm

The three procedural additions to the GA are actually reasonably straightforward.

First migration must be added. Secondly, reproduction of the GA population must be

changed to reproduction of the core population thus allowing for the incorporation of the

migrants into the core. Finally colony reproduction is added, both because the colonies

need to reproduce and because the changes to the selection mechanism used to keep the

colonies from the core is done during the reproduction of the colonies. With these

changes made to the standard GA algorithm the SBGA is complete and is presented in

Program 15.

Calling the SBGA in a Stationary Environment

When solving an optimization problem that does not change over time, the SBGA

will be invoked in a similar fashion as the standard GA. The use of the SBGA when

solving a stationary problem is shown in Program 16.

There are only two differences outside the inner loop when compared to the regular

populations.function SBGA (gen, n, f, µ∆, µ)

args: populations self – the object that contains both the core and colonies;

int gen – the current generation, function f – the objective function;

int µ∆ – the migration interval; int µ – the number of migrants
vars: synonym Core := self.core, Colonies := self.colonies,

synonym all-popns := self

1 Core.migration(Colonies, gen, µ∆, µ)

2 all-popns.core := Core.reproduction(n)

3 all-popns.colonies := Colonies.reproduction(Core)

4 all-popns.evaluate(f)

5 return all-popns.best(using the obj-function)

Program 15: The SBGA top-level algorithm.

Appendix C 300

GA, which was presented in Part 3Ch11 §1.1 (in a simplified form). The first is the

addition of the 4 new parameters: m, k, µ∆ and µ . The first two control the creation of

the populations; the latter two control the migration process. The changes to colony

selection are self-contained and require no new parameter settings. The second is the

creation of the multiple populations (the core and colonies) by the ‘create-population’

function instead of the single population that it normally returns. The two algorithms are

otherwise identical.

Calling the SBGA in a Dynamic Environment

The program that uses the SBGA when solving a dynamic optimization problem is

structured very differently from the stationary SBGA program, as can be seen by looking

at Program 17, below, in comparison to Program 16.

function stationary-SBGA (n, m, k, f, µ∆, µ , file)

args: int n – the core size; int m – the colony size;

int k – the colony count; function f – the objective function;

int µ∆ – the migration interval; int µ – the number of migrants;

output file – to record statistics (if requested)
vars: int gen; populations all-popns;

popn_member best-member, new-member

1 gen := 0; best-member := NULL

2 all-popns := create-populations(n, m, k, f) “does evaluations”
3 loop until all-popns.end-condition-met?(gen)

4 new-member := all-popns.SBGA(gen, n, f, µ∆, µ)

5 best-member := best_fitness(new-member, best-member)

6 unless null(file) do all-popns.print-statistics(file)

7 gen := gen + 1

8 return best-member

Program 16: The calling procedure for the SBGA applied to a stationary problem.

Appendix C 301

The overall best solution, discovered after many generations, is no longer a sensible

goal as it was for stationary problems. In dynamic environments, the solution that had the

highest fitness at a given generation, by the end of the run may no longer be at all fit.

Consequently, the goal must be changed. So under dynamic environments, the task of the

SBGA is just to try and keep as close to the global optimum as possible in each

generation. As a result, the lines of code that keep track of the most fit member over the

generations have been omitted; in its stead continuous on-line monitoring of the best

member found in a given generation is used.

Two time plots can be used to present the relevant data: the first is of the solution

phenotype across the generations, provided the phenotype canto present the relevant data:

the first is of the solution phenotype across the generations, provided the phenotype can

be charted; the second is the solution’s corresponding fitness value for each generation.

procedure sbgaDynamicWrapper(end-gen, n, m, k, f, µ∆, µ , file)

args: int end-gen – end of the experiment; int n – the core size;

int m – the colony size; int k – the colony count;

function f – the dynamic objective function,

int µ∆ – the migration interval; int µ – the number of migrants;

output file – records statistics if requested
vars: populations all-popns; popn_member best-member;

function new-f

1 new-f := f.at_time(0)

2 all-popns := create-populations(n, m, k, new-f) “does evaluations”
3 for gen := 1 to end-gen

4 new-f := f.at-time(gen)

5 best-member := all-popns.sbga(gen, n, new-f, µ∆, µ)

6 all-popns.print-statistics(file)

7 plot gen vs best-member.decode to ‘Best Sol
n
 over Time’

8 plot gen vs best-member.fitness to ‘Fitness of Best Sol
n
 over Time’

Program 17: The calling procedure for the SBGA applied to a dynamic problem.

Appendix C 302

The final difference between stationary and dynamic environment in the calling

routines of the SBGA is the most obvious. The objective function, which had been passed

to the SBGA for evaluation of the populations, must be modified after every generation,

as one would expect of a dynamic function. The updating of the dynamic function occurs

in lines 1 and 4.

Appendix C 303

C-8 What is the Maximal Slope Possible in Linear Rank Selection?

Baker actually made a slight mistake in his paper. Let us first look at what he did. He

implicitly defined the probability of selection as

 Ps (r) =
inc

N
(r −1) +

inc

2N
+

min

N
=

inc

N
(r −1) + low ,

where
inc

N
 is the slope of the line,

low

N
 is the probability of selecting the lowest ranking

member, ‘min’ is defined as

 min ≡ low −
inc

2
,

and ‘r’ is the rank (r ∈ [1, N] , with 1 being the worst and N the best). Since the

probabilities must sum to one, it follows that inc =
2(1− min)

N
=

2(1 − low)
N −1

. Finally,

Baker introduced an input variable ‘max’ that he defined as “the upper bound for the

expected values” and determined that max = 2 − min .

So far, so good. However, Baker then stated that the steepest slope occurred when

max = 2 and hence min = 0 . This is not correct. To understand why, we will introduce a

new variable, ‘high’, where
high

N
 is the probability of selecting the highest ranking

member (note: max ≡ high +
inc

2
 and high = 2 − low). Notice that the variable ‘high’ is

related to ‘low’ in the same way that ‘max’ is related to ‘min’. Now, the steepest slope

occurs when low = 0 and high = 2 . To verify this, notice that when the slope is defined

in this way the probability distribution remains linear and all rank probabilities stay

within [0,1] ; however, at smaller values of low (and hence larger values of high), some of

the rank probabilities fall outside this range. At any rate, when the slope is steepest and

both low = 0 and high = 2 , then min = −
1

N −1
< 0 and max =

2N −1
N −1

> 2 , which is not

within the range stipulated by Baker.

 304

Appendix D

Topics on Statistics

D-1 The Scheffé Comparison Test

The Scheffé procedure for a linear model with two factors will now be presented. The

procedure generalizes easily for systems with greater than two factors. Let a be the
number of level for factor A and let b be the number of levels for factor B . Also let Yi , j, k

be the response variable where the subscripts i and j specify the treatment levels for

factors A and B respectively, and let k be a given case or trial. To make the computation

easy, we design the experiment such that each setting of i and j have n trials associated

with it (the repetition of a given setting is n). Let D be a comparison of interest, which

for our purposes is a difference of level means. There are two different types of

comparisons: one between levels of factor A or between levels of factor B when there is

no interaction between the two factors, and one between two different level settings for

Appendix D 305

both factors when there are interactions between factors. As an example of the former, if
µ • j is the mean85 of level j for factor B, and µ • ′ j is the mean of level ′ j then the

difference of interest is µ • j − µ• ′ j . An example of a comparison of interest when A and B

interact is µ i j − µ ′ i ′ j . The estimated variance for each type of difference is

 s
2{ ˆ D i • , ′ i •} =

2MSE

bn
,s 2{ ˆ D • j, • ′ j } =

2MSE

an
 and s 2{ ˆ D i j, ′ i ′ j } =

2MSE

n

where MSE is the mean squared error (i.e. the sum of the squared differences of the

observations to the complete model, divided by the degrees of freedom). Finally, to use

the Scheffé procedure to test whether H0 :µ i• − µ ′ i • = 0 (the default hypothesis), or

whether Ha :µ i• − µ ′ i • ≠ 0 (the alternative hypothesis) construct the following F-test:

 F
* =

ˆ D i• , ′ i •

(a −1)s2{ ˆ D i• , ′ i •}
=

bn(Y i • − Y ′ i •)
2(a −1)MSE

. If F
* > F[1 − α; a −1,(n −1)ab], conclude Ha .

Similarly, testing whether Ha :µ • j − µ• ′ j ≠ 0 uses the F-test:

 F
* =

ˆ D • j ,• ′ j

(b −1)s2{ ˆ D • j ,• ′ j }
=

an(Y • j −Y • ′ j
)

2(b − 1)MSE
. If F

* > F[1 − α;b −1,(n −1)ab] , conclude Ha .

Finally, testing whether Ha :µ i j − µ ′ i ′ j ≠ 0 uses the F-test:

85 In this notational convention, • symbolizes a summation over all cases across the levels of the

subscript. So, Y i • = Y
i j k

j=1

b

∑
k = 1

n

∑ , Y • j = Y
i j k

i=1

a

∑
k =1

n

∑ , andY ij = Yi j• = Y
i j k

k =1

n

∑ . Furthermore, µ
i • = E(Y

i •) ,

µ • j
= E(Y • j

) and µ
i j

= E(Y
i j

) .

Difference Estimate ± Error

µ i• − µ ′ i • ˆ D i• , ′ i • ± S s(ˆ D i • , ′ i •) where S 2 = (a −1)F[1 − α;a −1,(n −1)ab]

µ • j − µ• ′ j ˆ D • j ,• ′ j ± Ss(ˆ D • j ,• ′ j) where S 2 = (a −1)F[1 − α;b −1,(n −1)ab]

µ i j − µ ′ i ′ j ˆ D i j, ′ i ′ j ± S s(ˆ D i j , ′ i ′ j) where S 2 = (a −1)F[1 − α;ab −1,(n −1)ab]

General
(with g inferences)

ˆ Y h ± S s{pred} where S 2 = g F(1 − α; g,n − 2)

Table 13: Confidence intervals around level mean differences using the Scheffé
procedure

Appendix D 306

 F
* =

ˆ D
i j, ′ i ′ j

(b −1)s2{ ˆ D i j, ′ i ′ j }
=

n(Y i j − Y ′ i ′ j
)

2(ab −1)MSE
. If F

* > F[1 − α; ab −1,(n −1)ab], conclude Ha .

Each difference also has an associated confidence interval based on the Scheffé test, see

Table 13 for a summary. For more information on the Scheffé procedure see (Neter,

Kutner et al. 1996) pp. 158-159,732-736,854-856,861.

Appendix D 307

D-2 Graphs of the Runs Performed When Testing the Ability of the

GA and SBGA to Track Moving Environments (Ch14 §3.1)

Figure 40 presents sample graphs of the response of the fitness of the best member of

the GA population or core population of the SBGA for every generation in all runs within

the F8F2 environment of dimension 2 moving at the phenotypic speed of 0.833 units /

generation. The first graph shows the response of each repetition separately plotted.

Unfortunately in this form it is difficult to see the trends in the data, although in this

0.04

0.08

0.12

0.16

0 200 400

f
i
t
n
e
s
s

generation

All 6 Rep s

Speed = 0.833
Dim = 2

F8F2

GA

S(10)

S(6)

S(2)

f
i
t
n
e
s
s

generation

0.01

0.02

0.03

0.04

0.05

0 200 400

Media n

0.01

0.02

0.03

0.04

0.05

0 200 400

Mean
f
i
t
n
e
s
s

generation

Figure 40: The response curves across all generations of the GA and SBGA systems
for pgm=F8F2, dim = 2 and spd = 0.833 units/gen. In the first graph, all runs were plotted
separately. In the second graph, the mean of the 6 reps performed for each system was
taken. In the third graph the median was taken.

Appendix D 308

particular example it is clear that the GA is not performing nearly as well as the SBGA

systems (remember F8F2 is a minimization function – lower is better).

To make the trends more clear, two more sample graphs were created from the

original graph. In the first, all 6 repetitions of the same system are averaged together,

while in the second the median of the 6 is taken. As can be seen the two statistics produce

radically different results, especially for the GA. This is evidence that the data is not

normally distributed (under normal distribution the mean and the median produce the

same results). By averaging, we are putting more weight on the large values that occur

when the population performs poorly. Thus by averaging we are measuring the worst

case performance of the population, not the ‘average’ case performance. The median

measure, which is the nonparametric statistic, is therefore the preferred means of

summarizing the data to see the trends. The median response of all treatments is

presented in the next few pages as Figure 41, a through d.

When looking at the graphs, please remember, without a proper statistical analysis,

any differences between the various systems that can be seen in the trend lines may are

may not be statistically significant. To determine which trend lines have statistically

significant differences from each other, see Table 8 in Ch14 §4.4, which summarizes the

results of an ANCOVA analysis on the data.

Appendix D 309

0.01

0.02

0.03

0.04

0.05

0 200 400

generation

f
i
t
n
e
s
s

Speed = 0.833

0.00

0.05

0.10

0 200 400

f
i
t
n
e
s
s

Speed = 1.667

generation

0.00

0.04

0.08

0.12

0 200 400

generation

f
i
t
n
e
s
s

Speed = 2.5

Dim = 2 GA

S(10)
S(6)

S(2)

0.1

0.3

0.5

0.7

0 100 200 300 400

f
i
t
n
e
s
s

generation

0.1

0.3

0.5

0.7

0 100 200 300 400

f
i
t
n
e
s
s

generation

Speed = 1.667

0.1

0.3

0.5

0.7

0 100 200 300 400

generation

f
i
t
n
e
s
s

Speed = 0.833

Speed = 2.5

Dim = 4

Figure 41a: The median response of the GA and SBGA systems in an environment that
uses the F8F2 function with dimensionality of both 2 and 4, for each of the three
different speeds.

Appendix D 310

0.2

0.6

1.0

1.4

0 100 200 300 400
generation

f
i
t
n
e
s
s

Speed = 2.5

0.2

0.6

1.0

1.4

0 100 200 300 400

f
i
t
n
e
s
s

generation

Speed = 1.667

0.1

0.3

0.5

0.7

0.9

0 100 200 300 400

generation

f
i
t
n
e
s
s

Speed = 0.833

0.2

0.6

1.0

1.4

0 100 200 300 400

generation

f
i
t
n
e
s
s

Speed = 2.5

0.2

0.6

1.0

1.4

0 100 200 300 400

generation

f
i
t
n
e
s
s

Speed = 1.667

0.2

0.6

1.0

1.4

0 100 200 300 400

generation

f
i
t
n
e
s
s

Speed = 0.833

GA

S(10)

S(6)

S(2)

Dim = 6 Dim = 8

Figure 41b: The median response of the GA and SBGA systems in an environment
that uses the F8F2 function with dimensionality of both 6 and 8, for each of the three
different speeds.

Appendix D 311

0.00002

0.00006

0.00010

0.00014

0 200 400

generation

f
i
t
n
e
s
s

0.0001

0.0002

0.0003

0.0004

0.0005

0 200 400

generation

f
i
t
n
e
s
s

0.0004

0.0008

0.0012

0.0016

0 200 400

generation

f
i
t
n
e
s
s

Speed = 2.5

Speed = 0.833

Speed = 1.667

Dim = 2

0.02

0.06

0.10

0.14

0 200 400

f
i
t
n
e
s
s

generation

Speed = 0.833

0.02

0.06

0.10

0.14

0.18

0 200 400

f
i
t
n
e
s
s

generation

Speed = 1.667

f
i
t
n
e
s
s

0.05

0.15

0.25

0 200 400
generation

Speed = 2.5

Dim = 4GA

S(10)
S(6)

S(2)

Figure 41c: The median response of the GA and SBGA systems in an environment
that uses the F8mF2 function with dimensionality of both 2 and 4, for each of the three
different speeds.

Appendix D 312

0.03

0.09

0.15

0.21

0.27

0 200 400

generation

f
i
t
n
e
s
s

Speed = 0.833

0.1

0.3

0.5

0 100 200 300 400

generation

f
i
t
n
e
s
s

Speed = 1.667

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400

generation

f
i
t
n
e
s
s

Speed = 2.5

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400

f
i
t
n
e
s
s

generation

Speed = 0.833

0.2

0.6

1.0

0 100 200 300 400

f
i
t
n
e
s
s

generation

Speed = 1.667

0.5

1.0

1.5

2.0

2.5

0 100 200 300 400

f
i
t
n
e
s
s

generation

Speed = 2.5

GA

S(10)

S(6)

S(2)

Dim = 6 Dim = 8

Figure 41d: The median response of the GA and SBGA systems in an environment
that uses the F8mF2 function with dimensionality of both 6 and 8, for each of the three
different speeds.

Appendix D 313

D-3 Comparisons between GA and SBGA Implementations when

Testing the Ability to Track Moving Environments (Ch14 §4.4)

Confidence Levels of all Comparisons:

Consolidated By Dimension, Speed and Test Function

 Diff.

in Rank
In Favor Conf.

Level
86

Diff.

in Rank
In

Favor
Conf.
Level

S(2) vs. GA 208864 S(2) 100% 126857 S(2) 100%

S(6) vs. GA 226497 S(6) 100% 104921 S(6) 100%

S(10) vs. GA 129253 S(10) 100% 118560 S(10) 100%

S(6) vs. S(2) 17633 S(6) 0% 21936.4 S(2) 1%

S(10) vs. S(2) 79611 S(2) 100% 8297.85 S(2) 0%

2

S(10) vs. S(6) 97244 S(6) 100% 13638.5 S(10) 0%

S(2) vs. GA 469191 S(2) 100% 500772 S(2) 100%

S(6) vs. GA 301425 S(6) 100% 355996 S(6) 100%

S(10) vs. GA 221348 S(10) 100% 284264 S(10) 100%

S(6) vs. S(2) 167766 S(2) 100% 144776 S(2) 100%

S(10) vs. S(2) 247844 S(2) 100% 216508 S(2) 100%

4

S(10) vs. S(6) 80077 S(6) 100% 71731.8 S(6) 100%

S(02) vs. GA 247189 S(2) 100% 286838 S(2) 100%

S(06) vs. GA 303156 S(6) 100% 128246 S(6) 100%

S(10) vs. GA 204095 S(10) 100% 29541 GA 7%

S(06) vs. S(02) 55967 S(6) 99% 158592 S(2) 100%

S(10) vs. S(02) 43094 S(2) 75% 316379 S(2) 100%

6

S(10) vs. S(06) 99061 S(6) 100% 157788 S(6) 100%

S(02) vs. GA 6394 GA 0% 449121 S(2) 100%

S(06) vs. GA 115916 S(6) 100% 477051 S(6) 100%

S(10) vs. GA 203067 S(10) 100% 648196 S(10) 100%

S(06) vs. S(02) 122310 S(6) 100% 27929.7 S(6) 4%

S(10) vs. S(02) 209461 S(10) 100% 199075 S(10) 100%

D
im

e
n

s
io

n

8

S(10) vs. S(06) 87151 S(10) 100% 171145 S(10) 100%

 F8F2 F8mF2

 Speed = 0.8333 Std. Error
87

 = 9273

86 The confidence levels that are printed in bold are below 95%.
87 The Standard Error is the mean squared error (i.e. the variance of all of the combined data divided by
the appropriate degrees of freedom of the model). The standard error multiplied by a factor determined by

Appendix D 314

 Diff.
in Rank

In Favor of Conf.
Level

Diff.
in Rank

In Favor of Conf.
Level

S(2) vs. GA 373067 S(2) 100% 126707 S(2) 100%

S(6) vs. GA 229475 S(6) 100% 60614 S(6) 100%

S(10) vs. GA 256254 S(10) 100% 92621 S(10) 100%

S(6) vs. S(2) 143592 S(2) 100% 66093 S(2) 100%

S(10) vs. S(2) 116813 S(2) 100% 34086 S(2) 24%

2

S(10) vs. S(6) 26779 S(10) 3% 32007 S(10) 15%

S(2) vs. GA 410185 S(2) 100% 359817 S(2) 100%

S(6) vs. GA 476888 S(6) 100% 293377 S(6) 100%

S(10) vs. GA 389569 S(10) 100% 173409 S(10) 100%

S(6) vs. S(2) 66703 S(6) 100% 66441 S(2) 100%

S(10) vs. S(2) 20616 S(2) 1% 186408 S(2) 100%

4

S(10) vs. S(6) 87319 S(6) 100% 119968 S(6) 100%

S(02) vs. GA 152785 S(2) 100% 418661 S(2) 100%

S(06) vs. GA 230883 S(6) 100% 242148 S(6) 100%

S(10) vs. GA 214033 S(10) 100% 208284 GA 100%

S(06) vs. S(02) 78099 S(6) 100% 176513 S(2) 100%

S(10) vs. S(02) 61248 S(10) 99.93% 626945 S(2) 100%

6

S(10) vs. S(06) 16850 S(6) 0% 450432 S(6) 100%

S(02) vs. GA 32081 GA 15% 21077 GA 0%

S(06) vs. GA 109111 S(6) 100% 319220 S(6) 100%

S(10) vs. GA 124511 S(10) 100% 97778 S(10) 100%

S(06) vs. S(02) 141192 S(6) 100% 340297 S(6) 100%

S(10) vs. S(02) 156592 S(10) 100% 118855 S(10) 100%

D
im

e
n

s
io

n

8

S(10) vs. S(06) 15400 S(10) 0% 221442 S(6) 100%

 F8F2 F8mF2

 Speed = 1.666 Std. Error = 9273

 The confidence levels that are printed in bold are below 95%.

the confidence level in accordance with the Sheffé test will produce a confidence interval around the
difference that does not overlap 0, i.e. the difference is significant to within the given confidence level.

Appendix D 315

 Diff.
in Rank

In Favor of Conf.
Level

Diff.
in Rank

In Favor of Conf.
Level

S(2) vs. GA 517443 S(2) 100% 111057 S(2) 100%

S(6) vs. GA 377730 S(6) 100% 82611 S(6) 100%

S(10) vs. GA 319453 S(10) 100% 97341 S(10) 100%

S(6) vs. S(2) 139713 S(2) 100% 28446 S(2) 5%

S(10) vs. S(2) 197990 S(2) 100% 13716 S(2) 0%

2

S(10) vs. S(6) 58277 S(6) 100% 14730 S(10) 0%

S(2) vs. GA 382022 S(2) 100% 583035 S(2) 100%

S(6) vs. GA 449903 S(6) 100% 405906 S(6) 100%

S(10) vs. GA 353101 S(10) 100% 333301 S(10) 100%

S(6) vs. S(2) 67882 S(6) 100% 177129 S(2) 100%

S(10) vs. S(2) 28921 S(2) 6% 249733 S(2) 100%

4

S(10) vs. S(6) 96802 S(6) 100% 72604 S(6) 100%

S(02) vs. GA 97050 S(2) 100% 355047 S(2) 100%

S(06) vs. GA 258300 S(6) 100% 25066 GA 1%

S(10) vs. GA 188680 S(10) 100% 87835 S(10) 100%

S(06) vs. S(02) 161250 S(6) 100% 380113 S(2) 100%

S(10) vs. S(02) 91630 S(10) 100% 267212 S(2) 100%

6

S(10) vs. S(06) 69620 S(6) 100% 112901 S(10) 100%

S(02) vs. GA 18143 GA 0% 264337 S(2) 100%

S(06) vs. GA 154796 S(6) 100% 400434 S(6) 100%

S(10) vs. GA 145153 S(10) 100% 167032 S(10) 100%

S(06) vs. S(02) 172939 S(6) 100% 136097 S(6) 100%

S(10) vs. S(02) 163296 S(10) 100% 97305 S(10) 100%

D
im

e
n

s
io

n

8

S(10) vs. S(06) 9643 S(6) 0% 233402 S(10) 100%

 F8F2 F8mF2

 Speed = 2.5 Std. Error = 9273

 The confidence levels that are printed in bold are below 95%.

Appendix D 316

Confidence Levels of all Comparisons: Consolidated By Dimension and Test Function

 Diff.
in Rank

In Favor of Conf.
Level

Diff.
in Rank

In Favor of Conf.
Level

S(2) vs. GA 366458 S(2) 100% 121540 S(2) 100%

S(6) vs. GA 277901 S(6) 100% 82715.4 S(6) 100%

S(10) vs. GA 234987 S(10) 100% 102841 S(10) 100%

S(6) vs. S(2) 88557.6 S(2) 100% 38825 S(2) 100%

S(10) vs. S(2) 131472 S(2) 100% 18699.8 S(2) 80%

2

S(10) vs. S(6) 42914.1 S(6) 100% 20125.2 S(10) 88%

S(2) vs. GA 420466 S(2) 100% 481208 S(2) 100%

S(6) vs. GA 409406 S(6) 100% 351760 S(6) 100%

S(10) vs. GA 321339 S(10) 100% 263658 S(10) 100%

S(6) vs. S(2) 11060.7 S(2) 11% 129448 S(2) 100%

S(10) vs. S(2) 99126.8 S(2) 100% 217550 S(2) 100%

4

S(10) vs. S(6) 88066.1 S(6) 100% 88101.2 S(6) 100%

S(02) vs. GA 165675 S(2) 100% 353516 S(2) 100%

S(06) vs. GA 264113 S(6) 100% 115110 S(6) 100%

S(10) vs. GA 202269 S(10) 100% 49996.5 GA 100%

S(06) vs. S(02) 98438.4 S(6) 100% 238406 S(2) 100%

S(10) vs. S(02) 36594.6 S(10) 100% 403512 S(2) 100%

6

S(10) vs. S(06) 61843.8 S(6) 100% 165106 S(6) 100%

S(02) vs. GA 18872.5 GA 81% 230794 S(2) 100%

S(06) vs. GA 126608 S(6) 100% 398901 S(6) 100%

S(10) vs. GA 157577 S(10) 100% 304335 S(10) 100%

S(06) vs. S(02) 145480 S(6) 100% 168108 S(6) 100%

S(10) vs. S(02) 176450 S(10) 100% 73541.6 S(10) 100%

D
im

e
n

s
io

n

8

S(10) vs. S(06) 30969.3 S(10) 100% 94566.1 S(6) 100%

 F8F2 F8mF2

 Std. Error = 5354

 The confidence levels that are printed in bold are below 95%.

Appendix D 317

Confidence Levels of all Comparisons: Consolidated By Speed and Test Function

 Diff.

in Rank
In Favor of Conf.

Level
Diff.

in Rank
In Favor of Conf.

Level

S(2) vs. GA 229713 S(2) 100% 340897 S(2) 100%

S(6) vs. GA 236749 S(6) 100% 266554 S(6) 100%

S(10) vs. GA 189441 S(10) 100% 255370 S(10) 100%

S(6) vs. S(2) 7036 S(6) 11% 74344 S(2) 100%

S(10) vs. S(2) 40272 S(2) 100% 85528 S(2) 100%

25

S(10) vs. S(6) 47308 S(6) 100% 11184 S(6) 56%

S(2) vs. GA 225989 S(2) 100% 221027 S(2) 100%

S(6) vs. GA 261590 S(6) 100% 228840 S(6) 100%

S(10) vs. GA 246092 S(10) 100% 38881 S(10) 100%

S(6) vs. S(2) 35600 S(6) 100% 7813 S(6) 17%

S(10) vs. S(2) 20103 S(10) 100% 182146 S(2) 100%

50

S(10) vs. S(6) 15498 S(6) 92% 189959 S(6) 100%

S(2) vs. GA 244593 S(2) 100% 328369 S(2) 100%

S(6) vs. GA 310182 S(6) 100% 215971 S(6) 100%

S(10) vs. GA 251597 S(10) 100% 171378 S(10) 100%

S(6) vs. S(2) 65589 S(6) 100% 112398 S(2) 100%

S(10) vs. S(2) 7004 S(10) 11% 156991 S(2) 100%

S
p

e
e

d

75

S(10) vs. S(6) 58586 S(6) 100% 44594 S(6) 100%

 F8F2 F8mF2

 Std. Error = 4637

Confidence Levels of all Comparisons: Consolidated By Test Function Only

 Diff.
in Rank

In Favor of Conf.
Level

Diff.
in Rank

In Favor of Conf.
Level

 S(2) vs. GA 233432 S(2) 100% 296764 S(2) 100%

 S(6) vs. GA 269507 S(6) 100% 237121 S(6) 100%

 S(10) vs. GA 229043 S(10) 100% 155209 S(10) 100%

 S(6) vs. S(2) 36075 S(6) 100% 59643 S(2) 100%

 S(10) vs. S(2) 4389 S(2) 56% 141555 S(2) 100%

 S(10) vs. S(6) 40464 S(6) 100% 81912 S(6) 100%

 F8F2 F8mF2

The confidence levels that are printed in bold are below 95%.

 318

References

Angeline, P. J. (1997). Tracking Extrema in Dynamic Environments. Evolutionary

Programming VI (EP97). P. J. Angeline, R. G. Reynolds, J. R. McDonnell and R.
Eberhart. Berlin, Springer: 335-345.

Bäck, T. (1993). Optimal Mutation Rates in Genetic Search. Proceedings of the Fifth

International Conference on Genetic Algorithms (ICGA5). S. Forrest. San Mateo, CA,
Morgan Kaufmann: 2-8.

Baker, J. E. (1985). Adaptive Selection Methods for Genetic Agorithms. Proceedings of

the First International Conference on Genitic Algorithms and Their Applications. J. J.
Grefenstette. Hillsdale, New Jersey, Lawrence Erlbaum Associates.

Branke, J. (1999). Memory Enhanced Evolutionary Algorithms for Changing
Optimization Problems. Proceedings of the 1999 Congress on Evolutionary

Computation (CEC99). P. J. Angeline. Piscataway, NJ, IEEE Press: 1875-1882.

Cobb, H. G. and J. J. Grefenstette (1993). Genetic Algorithms for Tracking Changing
Environments. Proceedings of the Fifth International Conference on Genetic

Algorithms (ICGA5). S. Forrest. San Mateo, CA, Morgan Kaufmann: 523-530.

Coello Coello, C. A. (1999). An Updated Survey of Evolutionary Multiobjective
Optimization Techniques: State of the Art and Future Trends. Proceedings of the 1999

References 319

Congress on Evolutionary Computation (CEC99). P. J. Angeline. Piscataway, NJ,
IEEE Service Center. 1: 3-9.

Cohoon, J., U. Hegde, et al. (1987). Selection in Massively Parallel Genetic Algorithms.
Genetic Algorithms and their Applications : Proceedings of the Second International

Conference on Genetic Algorithms (ICGA2). J. J. Grefenstette. Hillsdale, N.J.,
Lawrence Erlbaum Assoc. Inc.: 148-154.

Cohoon, J. P., W. N. Martin, et al. (1991). A Multi-Population Genetic Algorithm for
Solving the K-Partitiion Problem. Proceedings of the Fourth International

Converence on Genetic Algorithms (ICGA4). R. K. Belew and L. B. Booker. San
Mateo, CA, Morgan Kaufmann: 244-248.

Collins, J. J. and C. Ryan (1999). Non-stationary Function Optimization using Polygenic
Inheritance. GECCO-99: Proceedings of the Genetic and Evolutionary Computation

Conference. W. Banzhaf, J. Daida, A. E. Eibenet al. San Francisco, CA., Morgan
Kaufmann: 781.

Collins, R. J. and D. R. Jefferson (1991). Ant-Farm: Towards simulated evolution.
Artificial Life II. C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen. Reading,
MA, Addison-Wesley.

Collins, R. J. and D. R. Jefferson (1991). Selection in Massively Parallel Genetic
Algorithms. Proceedings of the Fourth International Conference on Genetic

Algorithms (ICGA4). B. R. K. and B. L. B. San Mateo, CA, Morgan Kaufmann: 249-
256.

Cormen, T. H., C. E. Leiserson, et al. (1990). Introduction to Algorithms. Cambridge,
MA, The MIT Press.

Cover, T. M. and J. A. Thomas (1991). Elements of Information Theory. New York, NY,
John Wiley & Sons, Inc.

Cvetkovic, D., I. Parmee, et al. (1998). Optimisation and Prliminary Airframe Design.
The Integration of Evolutionary and Adaptive Computing Technologies with

Product/system Design and Realisation. I. Parmee. Plymouth, UK, Springer-Verlag:

255-267.

Davidor, Y. (1991). A Naturally Occurring Niche & Species Phenomenon: The Model
and First Results. Proceedings of the Fourth International Conference on Genetic

Algorithms (ICGA4). B. R. K. and B. L. B. San Mateo, CA, Morgan Kaufmann: 257-
263.

Davis, L. (1991). Handbook of genetic algorithms. New York, Van Nostrand Reinhold.

References 320

De Jong, K. A. (1975). Analysis of the behavior of a class of genetic adaptive systems.
Ann Arbor, Dept. of Computer and Communication Sciences University of Michigan:

x, 256.

De Jong, K. A. (1993). Genetic Algorithms Are NOT Function Optimizers. Foundations

of Genetic Algorithms 2. L. D. Whitley. San Mateo, CA, Morgan Kaufmann: 5-17.

Derrida, B. (1980). “Random energy model: Limit of a family of disordered models.”
Phys. Rev. Lett. 45: 79-82.

Duran, B. S. and P. L. Odell (1974). Cluster Analysis: A Survey. Berlin, Springer-Verlag.

Eschelman, L. J. and J. D. Schaffer (1991). Preventing Premature Convergence in
Genetic Algorithms by Preventing Incest. Proceedings of the Fourth International

Conference on Genetic Algorithms (ICGA4). B. R. K. and B. L. B. San Mateo, CA,
Morgan Kaufmann: 115-122.

Eshelman, L. J. (1991). The CHC Adaptive Search Algorithm: How to Have Safe Search
When Engaging in Nontraditional Genetic Recombination. Foundations of Genetic

Algorithms. G. J. E. Rawlins. San Mateo, CA, Morgan Kaufmann: 265-283.

Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford, Clarendon.

Futuyma, D. J. (1986). Evolutionary Biology. Sunderland, MA, Sinauer.

Gilmour, J. S. L. and J. W. Gregor (1939). “Demes: a Suggested New Terminology.”
Nature 144: 333.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine

learning. Reading, Mass., Addison-Wesley Pub. Co.

Goldberg, D. E. and J. Richardson (1987). Genetic algorithms with sharing for
multimodal function optimization. Genetic Algorithms and their Applications :

Proceedings of the Second International Conference on Genetic Algorithms (ICGA2).
J. J. Grefenstette. Hillsdale, N.J., Lawrence Erlbaum Assoc. Inc.: 41-49.

Goldberg, D. E. and R. E. Smith (1987). Nonstationary function optimization using
genetic algorithms with dominace and diploidy. Genetic Algorithms and their

Applications : Proceedings of the Second International Conference on Genetic

Algorithms (ICGA2). J. J. Grefenstette. Hillsdale, N.J., Lawrence Erlbaum Assoc. Inc.:
59-68.

Gorges-Schleuter, M. (1989). ASPARAGOS An Asynchronous Parallel Genetic
Optimization Strategy. Proceedings of the Third International Conference on Genetic

Algorithms (ICGA3). J. D. Schaffer. San Mateo, CA, Morgan Kaufmann: 422-427.

References 321

Greenwood, P. J., P. H. Harvey, et al. (1978). “Inbreeding and dispersal in the great tit.”
Nature 271(5): 52-54.

Grefenstette, J. J. (1999). Evolvability in Dynamic Fitness Landscapes: A Genetic
Algorithm Approach. Proceedings of the 1999 Congress on Evolutionary

Computation (CEC99). P. J. Angeline. Piscataway, NJ, IEEE Press: 2031-2038.

Hadad, B. S. and C. F. Eick (1997). Supporting Polyploidy in Genetic Algorithms Using
Dominance Vectors. Evolutionary Programming VI (EP97). P. J. Angeline, R. G.
Reynolds, J. R. McDonnell and R. Eberhart. Berlin, Springer: 223-234.

Handa, H., O. Katai, et al. (1999). Coeveolutionary Genetic Algorithms for Solving
Dynamic Contraint satisfaction Problems. Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO'99). W. Banzhaf, J. Daida, A. E.
Eibenet al. San Fransisco, CA, Morgan Kaufmann: 252-257.

Hartl, D. L. and A. G. Clark (1997). Principles of Population Genetics. Sunderland, MA,
Sinauer.

Hillis, W. D. (1991). Co-Evolving Parasites Improve Simulated Evolution as an
Optimization Procedure. Emergent Computation: Self-Organizing, Collective, and

Cooperative Phenomena in Natural and Artificial Computing Networks. S. Forrest.
Cambridge MA, MIT Press: 228-234.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems : An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence. Ann Arbor,
University of Michigan Press.

Holland, J. H. (1995). Hidden Order. Reading, MA, Addison-Wesley.

Holland, J. H. (1998). Emergence: From Chaos to Order. Reading, MA, Perseus Books.

Hollander, M. and D. A. Wolfe (1973). Nonparametric Statistical Methods. New York,
John Wiley & Sons.

Jelasity, M., B. Tóth, et al. (1999). Characterizations of Trajectory Structure of Fitness
Landscapes Based on Pairwise Transition Probabilities of Solutions. Proceedings of

the 1999 Congress on Evolutionary Computation (CEC99). P. J. Angeline.
Piscataway, NJ, IEEE Press: 623-630.

Jones, T. (1995). Evolutionary Algorithms, Fitness Landscapes and Search. Computer

Science. Albuquerque, New Mexico, The University of New Mexico: pp. xxv, pp.
224.

Kimura, M. (1955). “Solution of a process of random genetic drift with a continuous
model.” Natl. Acad. Sci. USA 41: 144-150.

References 322

Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge, Cambridge
University Press.

Kimura, M. and T. Ohta (1969). “The average number of generations until fixation of a
mutant gene in a finite population.” J. Genet. 61: 763-771.

Li, W.-H. (1997). Molecular Evolution. Sunderland Massachusetts, Sinauer Associates.

Liles, W. and K. De Jong (1999). The Usefulness of Tag Bits in Changing Environments.
Proceedings of the 1999 Congress on Evolutionary Computation (CEC99). P. J.
Angeline. Piscataway, NJ, IEEE Press: 2054-2060.

Lipschutz, S. (1965). Schaum's Outline of Theory and Problems of General Topology.
New York, NY, McGraw-Hill, Inc.

Louis, S. J. and G. J. E. Rawlins (1993). Syntactic Analysis of Convergence in Genetic
Algorithms. Foundations of Genetic Algorithms 2. L. D. Whitley. San Mateo,
California, Morgan Kaufmann: 141-151.

Manderick, B. and P. Spiessens (1989). Fine-Grained Parallel Genetic Algorithms.
Proceedings of the Third International Conference on Genetic Algorithms (ICGA3). J.
D. Schaffer. San Mateo, CA, Morgan Kaufmann: 428-433.

Maresky, J., Y. Davidor, et al. (1995). Selectively Destructive Re-start. Proceedings of

the Sixth International Conference on Genetic Algorithms (ICGA6). L. J. Eshelman.
San Fransisco, CA, Morgan Kaufmann: 144-150.

Mori, N., S. Imanishi, et al. (1997). Adaptation to Changing Environments by Means of
the Memory Based Thermodynamical Genetic Algorithm. Proceedings of the Seventh

International Conference, on Genetic Algorithms. T. Bäck. San Francisco, CA,
Morgan Kaufmann: 299-306.

Mühlenbein, H. (1989). Parallel Genetic Algorithms, Population Genetics and
Combinatorial Optimization. Proceedings of the Third International Conference on

Genetic Algorithms (ICGA3). J. D. Schaffer. San Mateo, CA, Morgan Kaufmann: 416-
421.

Nei, M. and W.-H. Li (1979). “Mathematical model for studying genetic variation in
terms of restriction endonucleases.” Proc. Natl. Acad. Sci. USA 76: 5269-5273.

Neter, J., M. H. Kutner, et al. (1996). Applied Linear Statistical Models. Chicago,
McGraw-Hill.

Ng, K. P. and K. C. Wong (1995). A New Diploid Scheme and Dominance Change
Mechanism for Non-Stationary Function Optimization. Proceedings of the Sixth

References 323

International Conference on Genetic Algorithms. L. J. Eshelman. San Francisco, CA,
Morgan Kaufmann: 151-158.

Pál, K. F. (1994). Selection Schemes with Spatial Isolation for Genetic Optimization.
Parallel Problem Solving from Nature - PPSN III. Y. Davidor, H.-P. Schwefel and R.
Männer. Berlin, Springer-Verlag: 170-179.

Pettey, C. B., M. R. Leuze, et al. (1987). A parallel genetic algorithm. Genetic Algorithms

and their Applications: Proceedings of the Second International Conference on

Genetic Algorithms. J. J. Grefenstette. Hillsdale, NJ, Lawrence Erlbaum Associates:

155-161.

Pielou, E. C. (1975). Ecological Diversity. New York, John Wiley & Sons.

Potts, W. K., C. J. Manning, et al. (1991). “Mating patterns in seminatural populations of
mice influenced by MHC genotype.” Nature 352(15): 619-621.

Provine, W. B. (1986). Sewall Wright and Evolutionary Biology. Chicago, IL, The
University of Chicago Press.

Provine, W. B. E. (1986). Sewall Wright Evolution; Selected Papers. Chicago, IL,
University of Chicago Press.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Francisco, California,
Morgan Kaufmann.

Ramsey, C. L. and J. J. Grefenstette (1993). Case-Based Initialization of Genetic
Algorithms. Proceedings of the Fifth international Conference on Genetic Algorithms.
S. Forrest. San Mateo, CA, Morgan Kaufmann: 84-91.

Sarma, J. and K. De Jong (1997). An Analysis of Local Selection Algorithms in a
Spatially Structured Evolutionary Algorithm. Proceedings of the Seventh International

Conference on Genetic Algorithms (ICGA7). T. Bäck. San Francisco, CA, Morgan
Kaufmann: xiv,808.

Sarma, J. and K. De Jong (1999). The Behavior of Spatially Distributed Evolutionary
Algorithms in Non-Stationary Environments. Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO'99). W. Banzhaf, J. Daida, A. E.
Eibenet al. San Fransisco, CA, Morgan Kaufmann: 572-578.

Schaffer, J. D. (1985). Multiple objective optimization with vector evalued genetic
algorithms. Genetic Algorithms and their Applications: Proceedings of the First

International Confrence on Genetic Algorithms. J. J. Grefenstette. Hillsdale, N.J.,
Lawrene Erlbaum Associates: 93-100.

References 324

Sherrington, D. and S. Kirkpatrick (1975). “Solvable model of a spin-glass.” Physical

Review Letters 35(26): 1792-1795.

Spiessens, P. and B. Manderick (1991). A Massively Parallel Genetic Algorithm.
Proceedings of the Fourth International Conference on Genetic Algorithms (ICGA4).
B. R. K. and B. L. B. San Mateo, CA, Morgan Kaufmann: 279-286.

Stadler, P. F. (1995). Towards a Theory of Landscapes. Santa Fe, NM, The Santa Fe
Institute: 77.

Stanhope, S. A. and J. M. Daida (1998). Optimal Mutation and Crossover Rates for a
Genetic Algorithm Operating in a Dynamic Environment. Evolutionary Programming

VII. V. W. Porto, N. Saravanan, D. Waagen and A. E. Eiben. Berlin, Springer: 693-
702.

Stanhope, S. A. and J. M. Daida (1999). (1 + 1) Genetic Algorithm Fitness Dynamics in a
Changing Environment. Proceedings of the 1999 Congress on Evolutionary

Computation (CEC99). P. J. Angeline. Piscataway, NJ, IEEE Press: 1851-1858.

Sumida, B. H. and W. D. Hamilton (1994). Both Wrightian and ‘Parasite’ Peak Shifts
Enhance Genetic Algorithm Performance in the Traveling Salesman Problem.
Computing With Biological Metaphors. R. Paton. London, Chapman & Hall: 264-279.

Tanese, R. (1987). Parallel Genetic Algorithms for a Hypercube. Genetic Algorithms and

their Applications: Proceedings of the Second International Conference on Genetic

Algorithms. J. J. Grefenstette. Hillsdale, NJ, Lawrence Erlbaum Associates: 177-183.

Theodoridis, S. and K. Koutroumbas (1999). Pattern Recognition. San Diego, Academic
Press.

Trojanowski, K. and Z. Michalewicz (1999). Searching for Optima in Non-stationary
Environments. Proceedings of the 1999 Congress on Evolutionary Computation

(CEC99). P. J. Angeline. Piscataway, NJ, IEEE Press: 1843-1850.

Tucker, A. and X. Liu (1999). Extending Evolutionary Programming methods to the
Learning of Dynamic Bayesian Networks. GECCO-99: Proceedings of the Genetic

and Evolutionary Computation Conference. W. Banzhaf, J. Daida, A. E. Eibenet al.
San Francisco, CA., Morgan Kaufmann: 923-929.

Velleman, P. F. (1997). DataDesk version 6, Statistics Guide: Learning and using

Statistics Procedures. Ithaca, NY, Data Description inc.

Whitley, D. (1989). The GENITOR Algorithm and Selection Pressure: Why Rank-Based
Allocation of Reproductive Trials is Best. Proceedings of the Third International

Conference on Genetic Algorithms (ICGA3). J. D. Schaffer. San Mateo, CA, Morgan
Kaufmann: 116-121.

References 325

Whitley, D., K. Mathias, et al. (1991). Delta Coding: An Iterative Search Strategy for
Genetic Algorithms. Proceedings of the Fourth International Conference on Genetic

Algorithms (ICGA4). B. R. K. and B. L. B. San Mateo, CA, Morgan Kaufmann: 77-
84.

Whitley, D., K. Mathias, et al. (1996). “Evaluating Evolutionary Algorithms.” Artificial

Intelligence 85: 245-276.

Whitley, L. D. and T. Starkweather (1990). “Genitor II: A distributed genetic algorithm.”
Journal of Experimental and Theoretical Artificial Intelligence 2: 189-214.

Wineberg, M. and F. Oppacher (1996). The Benefits of Computing with Introns. Genetic
Programming 1996: Proceedings of the First Annual Conference, Stanford University,
Palo Alto, CA, MIT Press.

Wright, S. (1931). “Evolution in Mendelian populations.” Genetics 16: 97-159.

Wright, S. (1932). “The roles of mutation, inbreeding, crossbreeding and selection in
evolution.” Proceeding of the Sixth Internation Congress of Genetics 1: 356-366.

Wright, S. (1964). Stochastic Processes in Evolution. Stochastic Models in Medicine an

Biology. J. Gurland, University of Wisconsin Press: 199-241.

Wright, S. (1982). “Character Change, Speciation, and the Higher Taxa.” Evolution
36(3): 427-443.

Zhou, H. H. and J. J. Grefenstette (1989). Learning by Analogy in Genetic Classifier
Systems. Proceedings of the Third International Conference on Genetic Algorithms

(ICGA3). J. D. Schaffer. San Mateo, CA, Morgan Kaufmann: 291-297.

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	Table 1:	Common test functions (from (Whitley, Mathias et al. 1996))	162
	List of Figures
	List of Lemmas
	List of Properties
	List of Theorems
	List of Appendices
	The Shifting Balance �Evolutionary Algorithm
	Introduction and �Dissertation Outline
	
	Introduction
	An Outline of the Dissertation
	Main Contributions of the Dissertation

	Sewall Wright’s Shifting Balance Theory
	
	The Theory
	The Deme Approach in the GA Literature as Inspired by the Shifting Balance Theory
	Parallel GAs and Wright’s ‘Demes’
	Sewall Wright, Demes and Sequential GAs

	Problems With the SBT, both in Theory and in Practice

	Abstracting the SBT: The Shifting Balance Evolutionary Algorithm
	
	The First Level of Abstraction: Core Group and Colonies
	The Colonies as Exploratory Sub-Populations: A Further Abstraction
	Fitness in the Colony
	Prevention versus Promotion of Inbreeding

	The Shifting Balance Evolutionary Algorithm

	WHERE IS ELSEWHERE
	Introduction
	
	Landscapes, Manifolds and the Fitness “Field”
	Ordering the Chromosomes: �Gene Space, Chromosome Space and Population Space
	Distances, Metrics and Norms
	Distances and Metrics
	Norms

	Outline of the Chapters for “Where is Elsewhere”

	Chromosome Space
	
	Introduction
	Hamming Space
	Definition
	Chromosomes as a Coordinate Vector
	The Hypercube
	Distance between Chromosomes ? Hamming Distance

	The Mutational Distance between Chromosomes
	Problems with using the Hamming Distance as the Distance between Chromosomes under Mutation
	The Expected Number of Mutation Operations Between Chromosomes: An Instructive Blind Alley
	The Shortest Path Cost as a Distance
	Converting a Transition Graph to a Distance Graph: �Designing the Edge Weights
	The Chromosome Distance Graph for Mutation
	Structure
	Edge Weights

	For the GA, Mutational Distance ? Hamming Distance

	Towards a Crossover based Chromosome Distance
	Continuing On the Road to an Accurate Reproductive Distance between Chromosomes

	Distance Between Populations
	
	Introduction
	The Need for a Population Metric
	Population Distances and Cluster Analysis
	Chapter Outline

	Diversity
	All-Possible-Pairs Diversity
	The Reformulation of the All-Possible-Pairs Diversity: �A Linear Time Algorithm
	Introduction
	Gene Counts and the Gene Frequencies
	The Reformulation

	Diversity as Informational Entropy

	An All-Possible-Pairs “Distance” Between Populations
	Definition
	Problems
	Correcting the All-Possible-Pairs Population Distance

	The Mutational-Change Distance Between Populations
	The Lk-Norms and the Distance Between Populations
	The Distance between a Chromosome and a Population
	The Definition
	An � Cost Algorithm

	Distances and EC Systems with Numeric Genes
	
	Introduction
	The Distance between Chromosomes
	Using Euclidean Distance
	Standardizing the Unit Distance
	The Problems with Distances when Parameters are Evolved

	Diversity in Populations with Numeric Genomes
	Distances Between Populations
	Distances and Centers
	The Centroid
	Cluster Analysis and Numeric Populations
	The Characteristic Center and the Center of the Population

	THE SHIFTING BALANCE GENETIC ALGORITHM
	Introduction
	
	Adding the Details that Were Missing from the SBEA
	An Outline of the Chapters that detail the SBGA

	Moving the Colony Elsewhere
	
	Introduction
	Keeping Colony Away from Core
	Adding Finesse: Evaluating The Colony Using a �Multi-Objective Function
	A Dynamic ?: Detecting the Similarity Between the Colony’s Search Area and the Core’s
	Defining the Problem: The Fine Balancing Act of Keeping Colony From Core Without Wandering to Infinity
	The Key Idea in an Abstract Form
	From ‘Venn’ Diagrams to Populations in Gene Space Part I:�the Percentage Population Overlap
	From ‘Venn’ Diagrams to Populations in Gene Space: An Overview
	Finding the Percentage Population Overlap
	Time Complexity when Calculating the Percentage Overlap

	From Venn Diagrams to Populations in Gene Space Part II: �Finding the Percentage Population Similarity
	Defining the Percentage Similarity
	Handling Ties
	An Algorithm for Computing the Population Similarity
	The Time Complexity of the Percentage Similarity Algorithm

	Percentage Overlap and Percentage Similarity as Non-Parametric Statistics
	Choosing Between Percentage-Overlap and Percentage-Similarity
	Keeping Colony Away from Colony: A Future Extension
	The Problem
	The Solution

	Migration from Colony to Core
	
	Introduction
	Migration from Core to Colony
	Migration from Colony to Core
	Migrants and the Core: Integrating the Immigrants

	An SBGA Overview
	
	Completing the Algorithm
	Integrating the SBGA Routines into the GA
	The Time Complexity of the SBGA

	The SBGA in a Stationary Environment
	Using the SBGA with Dynamic Environments
	A Comparison of the SBGA with Similar GA Techniques

	EXPERIMENTAL RESULTS �AND ANALYSIS
	Escaping Local Optima Part 1: �Purpose and Experimental Design
	
	Introduction and Outline of Part 4
	Purpose: Determining if the SBGA is better at Escaping from Local Optima than the GA
	Methodology
	Environmental Setup
	Properties that the Test Functions Should Have
	A Hard Multimodal Function: F8F2
	A Multimodal Function with a Large Basin of Attraction Attached to the Global Optimum: F8mF2
	Why a Broadband Test Suite is not Used
	Why F8F2 and F8mF2 Were Chosen Over More Traditional Test Functions
	The Limitations of Using a Single Problem-Specific Test Function:�What Can Be Inferred?
	Implementing the Test Functions

	GA and SBGA Configuration
	Selecting the Probability of Crossover and the Mutation Rate
	Population Sizes
	Selection

	Escaping Local Optima Part 2:�Analysis Design, Results and Discussion
	
	Introduction
	Observational and Analytical Methodology
	Analysis and Design Using the General Linear Model
	The Response Variable (Y)
	Factors (Predictor Variables), Factor Levels and Repetition
	The Factors and their Levels
	How Many Cases are Needed?

	The ‘Migration Interval’ Factor
	Testing for Normality and Constancy of Error Variance
	Normality
	Remedial Measures for Nonnormality
	Constancy of Error Variance

	Summary of the Model

	Results
	Analysis and Discussion

	Comparing the SBGA to the GA �in a Dynamic Environment
	
	Introduction: Does the ‘Shifting Balance’ Extension Aid �the GA when Tracking a Moving Global Optima?
	Experimental Design
	Dimensions
	Motion
	Phenotypic Motion
	Genotypic Motion

	When Should Motion Occur?
	Speed and Velocity
	Phenotypic Velocity and Phenotypic Speed
	Computing the Motion for the Dynamic F8F2 and F8mF2 Functions
	The Average Genotypic Speed of Linear Motional along the Hyperdiagonal

	The Model

	Analysis Procedure: Part 1
	Methodology
	Results and Analysis
	The Stationary Region
	The Dynamic Region – Initial Response
	The Dynamic Region – Main Response

	Analysis Procedure: Part 2
	The ANCOVA
	Models
	Results and Discussion Part 1: The Analysis Under Model 1 (Comparing the GA with the SBGA)
	Results and Discussion Part 2: The Analysis Under Model 2 (Comparing Migration Intervals)
	Breakdown by Dimension, Speed and Test Function
	Breakdown by Dimension and Test Function
	Breakdown by Speed and Test Function
	Breakdown by Test Function Alone

	Random vs. Guided Diversity
	
	Introduction
	Experimental Design
	Results
	Discussion
	Comments on the Diversity Results
	Is an Increase in Random Diversity a Sufficient Explanation?

	Summary, Conclusions �and Future Work
	
	The Shifting Balance Evolutionary Algorithm
	Distances in Gene Space
	Details of The SBEA as Implemented in a GA System: �The SBGA
	Experimentation
	Conclusions
	Future Work

