
Improving the Comprehension of
Domain-Specific Languages by

Utilizing Visualizations

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Alexander Altenhuber

Matrikelnummer 1125773

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel

Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.rer.soc.oec. BSc Tanja Mayerhofer

Univ.Ass. Dipl.-Ing. Dr.techn. Philip Langer

Wien, 20.11.2016

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Improving the Comprehension of
Domain-Specific Languages by

Utilizing Visualizations

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Alexander Altenhuber

Registration Number 1125773

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel

Assistance: Univ.Ass. Dipl.-Ing. Dr.rer.soc.oec. BSc Tanja Mayerhofer

Univ.Ass. Dipl.-Ing. Dr.techn. Philip Langer

Vienna, 20.11.2016

(Signature of Author) (Signature of Advisor)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Alexander Altenhuber

Beethovenstraße 16/14, 4020 Linz

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-

ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-

lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

First and foremost, I would like to thank my parents, Andrea and Gerald, without whom my

studies would not have been possible. I am grateful for their financial, motivational, and inspi-

rational support.

Moreover, I owe special thanks to Barbara for constantly supporting me over the last five

years, showing understanding during work-intensive periods, and celebrating every single achieve-

ment with me.

I would also like to thank my fellow students and friends for countless hours of puzzling

over assignments, wonderful discussions, and motivational burger dinners.

Last but not least, this diploma thesis would not have been possible without my advisors Prof.

Dr. Gerti Kappel and Dr. Tanja Mayerhofer, who sparked my interest in Model Engineering

throughout my Master’s studies. I would especially like to thank Philip for the constant support,

invaluable feedback, and creative suggestions.

iii

Abstract

Domain-specific languages (DSLs) are popular for many reasons such as increasing productivity

for developers and improving communication with domain experts. DSLs can be divided into

textual and graphical DSLs. Textual DSLs let users create models by using a textual concrete

syntax (TCS). Graphical DSLs render the model by means of a graphical concrete syntax (GCS),

which is based on graphical shapes and also facilitates graphical editing. Using a TCS may lead

to higher productivity due to editor functionalities like search and replace, syntax highlighting,

and code completion. Textual models, however, may be hard to understand for novice devel-

opers and domain experts in particular. Graphical representations of models, such as GCSs,

aim at improving the comprehension of models and the communication with domain experts. A

GCS, however, mostly visualizes structural aspects of the model by defining a mapping between

semantic elements and graphical elements. Furthermore, graphical editing capabilities may im-

pose restrictions on the design of a GCS. Therefore, a GCS might not be the best option when

solely aiming at improving the comprehension.

This thesis analyzes a way of combining both representations by using a textual DSL for

editing purposes and read-only graphical representations which entirely aim at improving the

comprehension of the DSL. This allows developers to fully concentrate on building graphical

representations which highlight specific aspects of models and help users to better understand or

interpret them. These graphical representations are referred to as visualizations in this thesis. A

visualization is a graphical representation that cannot be edited and highlights a particular aspect.

This thesis mainly aims at investigating if visualizations can increase users’ comprehension of

models. Furthermore, it intends to evaluate the feasibility of using JavaFX as a base technology

for creating visualizations. The results of this work are evaluated based on two use cases. The

first use case aims at exploring and illustrating the technical capabilities of using JavaFX as a

technology for creating visualizations. The second use case intends to evaluate the practical

relevance of visualizations in the domain of automotive testing by creating visualizations for

an existing DSL. The answers to our research questions are based on the results of in-depth

interviews, which have been conducted with engineers professionally using the DSL.

v

Kurzfassung

Domänen-spezifische Sprachen (DSS) zielen darauf ab, die Produktivität von Entwicklern zu

verbessern und die Kommunikation mit Domänenexperten zu vereinfachen. DSS können in tex-

tuelle und grafische DSS unterteilt werden. Bei textuellen DSS werden Modelle mit Hilfe einer

konkreten textuellen Syntax (KTS) formuliert. Grafische DSS zeigen das Modell mit Hilfe ei-

ner konkreten grafischen Syntax (KGS), welche auf grafischen Formen basiert und auch ein

grafisches Editieren ermöglicht. Die Verwendung einer KTS kann die Produktivität durch Edi-

torfunktionen wie Suchen und Ersetzen, Syntaxhervorhebung und Codevervollständigung ver-

bessern. Textuelle Modelle können aber den Nachteil haben für neue Entwickler und speziell für

Domänenexperten schwer verständlich zu sein. Grafische Repräsentationen von Modellen, z.B.

in Form einer KGS, beabsichtigen das Verständnis von Modellen sowie die Kommunikation mit

Domänenexperten zu verbessern. Eine KGS visualisiert aber vor allem strukturelle Aspekte des

Modells indem eine Zuordnung zwischen semantischen Elementen und grafischen Elementen

definiert wird. Weiters können Funktionen zum grafischen Editieren von Modellen das Design

einer KGS einschränken. Eine KGS ist deshalb möglicherweise nicht die beste Möglichkeit,

wenn nur die Verbesserung des Verständnisses angestrebt wird.

Diese Arbeit untersucht einen Ansatz der beide Repräsentationen kombiniert und eine tex-

tuelle DSS für das Editieren des Modells, sowie nicht-editierbare grafische Repräsentationen,

welche nur das Ziel haben das Verständnis der DSS zu verbessern, verwendet. Entwickler kön-

nen sich dadurch ausschließlich darauf konzentrieren, grafische Repräsentationen zu entwerfen,

welche einen spezifischen Aspekt eines Modells hervorheben und es dem Benutzer dadurch

vereinfachen das Modell interpretieren zu können. Diese grafischen Repräsentationen werden

in dieser Arbeit als Visualisierungen bezeichnet. Eine Visualisierung ist eine nicht editierba-

re, grafische Repräsentation, welche einen bestimmten Aspekt eines Modells hervorhebt. Diese

Arbeit erforscht hauptsächlich, ob Visualisierungen das Verständnis von Benutzern für Model-

le verbessern können. Weiters soll untersucht werden, ob JavaFX eine praktikable Technologie

zur Entwicklung von Visualisierungen darstellt. Die Ergebnisse dieser Arbeit basieren auf zwei

Anwendungsfällen. Der erste Anwendungsfall beabsichtigt die technischen Möglichkeiten von

JavaFX bei der Entwicklung von Visualisierungen auszuloten. Der zweite Anwendungsfall soll

die praktische Relevanz von Visualisierungen in der Domäne des Testens von Geräten im Auto-

mobilbereich analysieren. Dabei werden Visualisierungen für eine existierende DSS erstellt. Die

Forschungsfragen dieser Arbeit werden anhand der Ergebnisse mehrerer Interviews beantwortet,

welche mit Ingenieuren, die die DSS regelmäßig verwenden, durchgeführt werden.

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 1

1.3 Aim of the Work . 3

1.4 Methodological Approach . 3

1.5 Structure of the Work . 4

2 Domain-specific languages (DSLs) 5

2.1 Introduction to DSLs . 5

2.2 Benefits and Challenges . 6

2.3 Examples . 8

2.4 Language concepts . 10

3 Visualization of DSLs 13

3.1 Concrete Syntax . 13

3.2 Visualizations . 15

3.3 Reports . 19

4 Use Case 1: A Game Level Design Language 21

4.1 Game level design language . 21

4.2 Visualizing LDL . 23

5 Existing Visualization Frameworks 31

5.1 GEF3 . 31

5.2 GMF . 32

5.3 Graphiti . 33

5.4 Sirius . 34

5.5 Discussion of Existing Approaches . 35

6 Visualizations based on JavaFX 37

6.1 Diagram Editors vs Diagram Views . 37

6.2 Usability and Aesthetics . 39

6.3 JavaFX . 40

6.4 Frameworks based on JavaFX . 44

ix

6.5 Conceptional Architecture . 47

7 Implementation 53

7.1 Technological Background . 53

7.2 Details . 55

7.3 Challenges . 58

8 Evaluation 65

8.1 Use Case 2 . 65

8.2 Interviews . 69

9 Related Work 79

9.1 Improving Comprehension by using Visualization 79

9.2 Other Related Work . 82

10 Summary and Conclusion 83

10.1 Interpretation of Results . 83

10.2 Comparison with Related Work . 85

10.3 Limitations and Future Work . 85

A Interview documents 87

Bibliography 101

x

CHAPTER 1
Introduction

1.1 Motivation

Domain-specific languages (DSLs) are popular for many reasons such as increasing productiv-

ity for developers and improving communication with domain experts [11]. DSLs consist of

a concrete syntax and a metamodel. The metamodel defines language concepts and how these

concepts can be combined. The concrete syntax, which is mostly textual or graphical, defines

the notation with which users can express programs. A DSL can have both graphical and textual

concrete syntaxes. Using a textual concrete syntax may lead to higher productivity due to text

editor functionalities like copying, pasting, searching, replacing, syntax highlighting, and code

completion. However, compared to graphical representations, textual programs are often harder

to understand for novice developers and for domain experts in particular. The goal of graphical

concrete syntaxes and software visualization in general is to produce “computer images which

evoke mental images for comprehending software better” [10]. Therefore, using both textual

syntaxes for increasing productivity and graphical syntaxes for improving comprehension and

communication clearly facilitates the main strengths of DSLs which have been mentioned above.

1.2 Problem Statement

Software visualization in the area of DSLs is mostly realized by designing graphical concrete

syntaxes for textual languages. Graphical representations are usually used for improving com-

prehension and are most often designed in a way that allows editing of the program in a graphical

form as well. Therefore, graphical languages mostly visualize structural aspects of the program

by defining a mapping between semantic elements and graphical elements. Graphical editing

capabilities may impose restrictions on the design of a graphical concrete syntax which might

weaken the graphical language’s power to improve comprehension. For example, a DSL’s users

may require a complex three-dimensional model visualization in order to improve communi-

1

cation with domain experts. Developers may be intimidated by the complexity of facilitating

graphical editing support for a three-dimensional representation and, therefore, choose to imple-

ment a two-dimensional representation instead. However, this graphical representation may not

sufficiently address the users’ needs.

This thesis analyzes a way of designing graphical representations which entirely aim at im-

proving comprehension of DSLs by dropping the need of graphical editing. This allows design-

ers to fully concentrate on building graphical representations which highlight specific aspects

of a program and help users to better understand or interpret them rather than worrying about

facilitating the editing process. Based on the definition by Voelter et al. [30] these graphical

representations are referred to as visualizations in this thesis. “A visualization is a graphical rep-

resentation of a model that cannot be edited. It is created from the core model using some kind

of transformation, and highlights a particular aspect of the source program.” [30] A visualization

can also consider additional semantics and can include structural, behavioral, and evolutional in-

formation. In case of a circuit diagram, a visualization could, for example, show which elements

of the circuit are not energized considering a given input voltage. Another visualization of tex-

tual information can be found in most LaTex editors in form of a PDF preview. In a language

similar to state-machines a visualization could check for and show impasses.

Developers and users have high expectations of a technology used for realizing visualiza-

tions. Users expect highly customized and modern graphics, suggestive metaphors, and a strong

emphasis on usability. It should be possible to only view areas of interest and discover other

parts of the visualization if necessary. Dynamic visualizations (e.g. used for visualizations of

program executions) often require advanced animations. Sophisticated graphical representations

are hardly useful if users cannot easily access them. Heavy-weight Integrated Development En-

vironments (IDEs) for using DSLs are a major barrier for domain experts and should make way

for browser-based editors and graphical views.

For these requirements current graphical editor frameworks like Sirius1, Graphiti2, or GMF3

are limited. The main reason for this limitation is the fact that all of these frameworks are based

on GEF34. Since the release of GEF3 in 2004 no breaking API changes have been introduced

due to multiple important commercial stakeholders. This long term backward compatibility pre-

vented framework developers from applying necessary major API refactorings. The dependency

of GEF3 on Draw2D5 results in outdated graphical visualizations. Draw2D is based on integer

coordinates which often leads to rendering issues. Moreover, it does not support complex ge-

ometry such as Bézier curves. Furthermore, GEF3 lacks support for advanced transformations,

rotations, and multi-touch gestures.

1eclipse.org/sirius
2eclipse.org/graphiti
3eclipse.org/modeling/gmp
4eclipse.org/gef
5eclipse.org/gef/draw2d

2

eclipse.org/sirius
eclipse.org/graphiti
eclipse.org/modeling/gmp
eclipse.org/gef
eclipse.org/gef/draw2d

JavaFX6 provides superior graphics and animations, allows to focus on usability, leverages

the hardware, and, therefore, is a highly promising technology for implementing visualizations.

It is used in the practical part of this thesis.

1.3 Aim of the Work

This thesis aims at investigating the potential of using visualizations for fostering the compre-

hension of DSLs. The results of this work are evaluated based on two use cases. The first use

case is a fictional one and aims at exploring and illustrating the technical capabilities of JavaFX

for implementing visualizations. In the course of this use case a DSL for designing game levels

is developed using Xtext7. Based on the DSL, visualizations highlighting various aspects of the

model are created using JavaFX. In the second use case it is intended to evaluate the practical

relevance of visualizations in the domain of automotive testing. Using an existing DSL of an

Austrian automotive supplier, again graphical visualizations using JavaFX are constructed. The

created visualizations are evaluated by performing interviews with real domain experts from the

automotive domain.

From the requirements given in the previous section, the following research questions (RQ)

can be derived:

RQ1. Do visualizations increase users’ comprehension of models?

RQ2. Are visualizations superior to reports which highlight a particular aspect in textual nota-

tion?

RQ3. Is JavaFX a feasible technology for implementing visualizations for DSLs?

The main questions (RQ1 and RQ2) are concerned with answering how visualizations can

be designed and if visualizations actually foster comprehension of DSLs. RQ2 analyzes whether

comprehension is improved in consequence of using graphical views or due to the information

obtained from interpreting a model. This question is answered by comparing visualizations,

which graphically represent information gathered from interpreting a model, to reports, which

sum up this information in textual form. As using JavaFX as a base technology for creating

diagram views has not yet been discussed in scientific literature RQ3 aims at summing up the

experiences gained with JavaFX during this thesis’ practical part.

1.4 Methodological Approach

As the main result of this work is the creation of new software artifacts, i.e. graphical visualiza-

tions, the methodological approach used is design science [13]. Following the guidelines and

principles of this methodology, the two main steps are design and evaluation. The first step

contains the “creation of an innovative purposeful artifact for a specified problem domain” [13].

This includes the implementations of the graphical visualizations of the previously described

6docs.oracle.com/javafx
7eclipse.org/Xtext

3

docs.oracle.com/javafx
eclipse.org/Xtext

use cases (fictional and practical). The second step should demonstrate the utility, quality, and

efficacy of the developed artifacts via well-executed evaluation methods. In particular, the eval-

uation should yield answers for RQ1 and RQ2. To evaluate the practical use, we develop visu-

alizations for a real-world DSL that is used by engineers in automotive testing and conducted

in-depth interviews with users to learn about the visualizations’ impact on users’ comprehension.

1.5 Structure of the Work

This thesis consists of eight further chapters and a concluding summary in Chapter 10. Chapter

2 is concerned with domain-specific languages in general. Approaches for visualizing DSLs and

a definition of visualizations and reports are outlined in Chapter 3. Chapter 4 presents the first

use case and the implemented visualizations. Chapter 5 is concerned with existing frameworks

for implementing visualizations. Chapter 6 discusses visualizations based on JavaFX and in-

troduces a technology-independent architecture of visualizations. Chapter 7 reveals the detailed

experiences that were gained during the implementation of the visualizations using JavaFX. The

results of the evaluation are described in Chapter 8. Related work is presented in Chapter 9.

4

CHAPTER 2
Domain-specific languages (DSLs)

This chapter aims at providing an overview of the most important characteristics of domain-

specific languages (DSLs). The core properties of DSLs - especially goals, the concrete syntax,

the metamodel, and the semantic model - are also important for creating effective visualizations

and will, therefore, be introduced in the following sections. Please note that the term textual

model refers to the text written using a DSL’s Concrete Syntax and not to the underlying model.

2.1 Introduction to DSLs

Although DSLs usually have blurred boundaries we would like to start this chapter by presenting

a definition by Martin Fowler [11].

“Domain-specific language (noun): a computer programming language of limited expres-

siveness focused on a particular domain. ”

A DSL is a programming language and, therefore, used by humans to instruct computers to

do something. It should be designed in a way that users can understand it easily, should, however,

also be executable by a computer. The language nature determines that a DSL should have a

sense of fluency. The expressiveness comes from expressions and the way they are composed

together. A DSL has a limited expressiveness and should, therefore, restrict the amount of

features to the ones needed to support its domain. DSLs are used for a particular aspect of a

system rather than building an entire software system. Finally, a DSL has a clear focus and

is optimized and used for tasks, which are relevant in a small domain. DSLs are usually not

Turing-complete and, therefore, avoid imperative control structures such as conditions, loops,

and subroutines.

A general purpose language (GPL), in contrast, is Turing-complete, which means that it can

be used to implement anything that is computable by a Turing machine. Table 2.1 highlights the

main differences between GPLs and DSLs.

There are two main categories of DSLs, namely internal and external DSLs [11, 30].

5

GPLs DSLs

Domain large and complex smaller and well-defined

Language size large small

Turing completeness always often not

User-defined abstractions sophisticated limited

Execution via intermediate GPL native

Lifespan years to decades months to years (driven by

context)

Designed by guru or committee a few engineers and domain

experts

User community large, anonymous and

widespread

small, accessible and local

Evolution slow, often standardized fast-paced

Deprecation/incompatible

changes

almost impossible feasible

Table 2.1: General purpose languages vs domain-specific languages [30]

• Internal DSLs are embedded into GPLs. This means that a textual model in an inter-

nal DSL is valid code in its GPL but only uses a subset of the language’s features in a

particular style to handle one small aspect of the overall system. The result should have

the feel of a custom language, rather than its host language. Internal DSLs are often also

referred to as fluent interface and describe more language-like APIs. Language designers

are strongly constrained by this type of DSL as any expression has to be a legal expression

in the host language. Additionally, IDE support is usually missing as the IDE is not aware

of the grammar, constraints, or other properties of the embedded DSL.

• External DSLs are languages which usually have a custom syntax and are separated from

the main language of the application they work with. A textual model in an external DSL

is usually processed by a parser, which interprets the language or translates it into another

one. Examples of external DSLs are introduced in Section 2.3.

Due to the mentioned restrictions of internal DSLs we will only address external DSLs in

this thesis.

2.2 Benefits and Challenges

In the following we summarize some of the benefits identified by Fowler [11] and Voelter et

al. [30].

• Improve development productivity. DSLs aim at providing a means to more clearly

show the intent of a part of a system. The clarity of models written in DSLs makes them

easier to read. If it is easier to read a model, it is usually also easier to find and correct

6

mistakes and modify the system. The limited expressiveness of the DSL makes it harder

to say wrong things, and makes it easier to see when a user has made an error.

• Communication with domain experts. Communication with domain experts can be im-

proved by providing a clear and precise language that they can understand. This does not

mean that programmers should be replaced by domain experts, but that domain experts are

able to read and understand models and are, ideally, able to spot mistakes. Thereby, do-

main experts can also see how their ideas are represented in the system. This benefit might

be the most difficult to achieve but also has the broadest gain as it addresses one of the

worst bottlenecks in software development — the communication between programmers

and their customers.

• Quality. The limited expressiveness removes unnecessary degrees of freedom for pro-

grammers and can, thus, increase the quality of the created product. A well designed DSL

can lead to fewer bugs, better architectural conformance, increased maintainability, and

avoidance of duplicate code.

• Validation and Verification. Due to the higher abstraction level of DSLs, models are not

cluttered with implementation details and are more semantically rich than GPLs. Analyses

are easier to implement and error messages can use the domain’s vocabulary. Manual

reviews and validation are easier as well, as domain experts can be involved.

Of course, there are also some challenges when applying DSLs [11, 30].

• Language cacophony. Users often have the concern that languages are hard to learn.

Using multiple languages might, therefore, be more complicated than using a single one.

One should, however, keep in mind that the limited expressiveness of DSLs should make

them much easier to learn then GPLs. Nevertheless, when using multiple DSLs in a

project it has to be considered if learning multiple abstracting DSLs is actually easier than

understanding the underlying model.

• Effort of building the DSL. One main challenge of using a DSL is the fact that the DSL

has to be built first. Before using a DSL it should first be analyzed if the benefits of having

a DSL outweigh the effort and cost of language development and maintenance. Learning

curve costs of building DSLs can be amortized across multiple times that the language is

used in the future.

• Language engineering skills. Strongly related to the previous point, building a language

requires experience and skill. Although language workbenches have simplified language

engineering, it has to be considered that there still is a learning curve and that building

elegant languages requires experience and practice that can only be established over time.

• DSL hell. If language engineering and the development of new DSLs has become techni-

cally easy, there is a danger that developers create a new DSL instead of searching for and

learning existing DSLs. This may lead to a collection of multiple similar but immature

languages which may have overlapping domains but are still incompatible. This problem

7

can be addressed by making DSLs incrementally extensible and effective communication

in the team.

These benefits and challenges should also be considered when applying graphical represen-

tations or visualizations (discussed in Chapter 3). Each visualization can beneficially and/or

disadvantageously affect a DSL.

2.3 Examples

This section presents three DSLs and should help illustrate the theoretical aspects discussed in

the previous sections. DSLs are extremely versatile and frequently used in everyday software

projects. All of the discussed DSLs are either directly or indirectly used in the practical part of

this thesis.

CSS

Cascading Style Sheets (CSS) 1 is a DSL for adding style to web documents. An example is

given in Listing 2.1.

h1, h2 {

color: #926C41;

font-family: sans-serif;

}

b {

color: #926C41

}

*.sidebar {

color: #928841

font-size: 80%;

font-family: sans-serif;

}

Listing 2.1: CSS example [11]

CSS is mostly used by web designers rather than by programmers. It is, therefore, a good

example of a DSL which is not just read but also written by domain experts. The code example

reveals CSS’ declarative nature which is often used in DSLs. CSS plays a well-focused role

in the web ecosystem and is used in combination with other DSLs and GPLs. The limited

expressiveness of CSS is given by the absence of some features such as naming of color schemes

or the lack of arithmetic functions. Another DSL which provides these missing features in the

form of arithmetic operations and variables is SASS 2, which is similar to CSS and generates

CSS as output [11].

CSS can be used within JavaFX for skinning components and is used for applying styles to

the created visualizations of Use Case 1 and Use Case 2.

1w3.org/Style/CSS
2sass-lang.com

8

w3.org/Style/CSS
sass-lang.com

Graphviz

Graphviz 3 is a library for producing graphical renderings of node-and-arc graphs. Diagrams are

created by defining them using the DOT language, which is an external DSL. A code example

of this language is shown in Listing 2.2.

digraph finite_state_machine {

rankdir = LR;

size="8,5"

node [shape = doublecircle]; LR_0 LR_3;

node [shape = circle];

LR_0 -> LR_2 [label = "SS(B)"];

LR_0 -> LR_1 [label = "SS(S)"];

LR_1 -> LR_3 [label = "S($end)"];

LR_0 -> LR_2 [label = "SS(B)"];

}

Listing 2.2: Graphviz example [11]

Nodes can optionally be declared by using the node keyword. Arcs are declared using the

-> operator. Attributes can be given to nodes and arcs by using square brackets. Semicolons

are optional in this language. After populating the in-memory representation of the DSL (the

Semantic Model , see Section 2.4) Graphviz computes a suitable layout for the graph and renders

it in various graphics formats. FXDiagram, the framework used in this thesis’ practical part, uses

Graphviz as a basis for the animated auto-layout feature.

Xtext’s grammar language

Xtext 4 is a framework for the development of programming languages and DSLs. The DSLs

created and used in the practical part of this thesis were both created using Xtext. Informa-

tion about Xtext can, therefore, be found in Chapter 7. DSLs in Xtext are created by using the

Xtext grammar language. It is a DSL used for the description of textual languages. The gram-

mar language describes the language’s concrete syntax and how it is mapped to an in-memory

representation (the Semantic Model, see Section 2.4). The Xtext grammar language itself is

implemented with Xtext. An example of a grammar defined using Xtext can be found in Listing

2.3

grammar org.xtext.example.mydsl.MyDsl with

org.eclipse.xtext.common.Terminals

generate myDsl "http://www.xtext.org/example/mydsl/MyDsl"

Model:

greetings+=Greeting*;

Greeting:

’Hello’ name=ID ’!’;

Listing 2.3: Xtext grammar example

3graphviz.org
4eclipse.org/Xtext

9

graphviz.org
eclipse.org/Xtext

2.4 Language concepts

Before discussing the various representations of DSLs in the next chapter we would like to

address the technical corner stones of DSLs in this section. There are various keywords such as

abstract syntax, grammar, abstract syntax tree, semantic model, and concrete syntax which need

to be clarified before talking about visualizations. The terms will be exemplified by Fowler’s

security system DSL [11]. The DSL is a state machine like language and uses events and states.

We refer the interested reader to Martin Fowler’s book for further information on the DSL. The

examples should, however, be easy to follow without in-depth knowledge of the language.

Concrete Syntax (CS)

The Concrete Syntax (CS) is the notation used to illustrate the language concepts intuitively.

The user interacts with the CS in order to create models. As we will show in the next chapter,

the CS can be textual, graphical, symbolic, or tabular. In the remaining section and the following

example we assume the CS to be textual. A textual model demonstrating the CS of the DSL is

depicted in Listing 2.4.

events

doorClosed D1CL

end

state idle

doorClosed => active

end

state active end

Listing 2.4: Concrete syntax [11]

Grammar

A grammar formally defines the concrete syntax of a (textual) language. Note that there does not

exist the grammar for a language but that it is possible that more than one grammar recognizes

the same language. A grammar can be used to derive the metamodel of a language, which

determines how language concepts can be combined. The grammar of the example DSL is

shown in Listing 2.5, the respective metamodel in Figure 2.1.

root : eventBlock stateDec*
eventBlock : Event-keyword eventDec* End-keyword

eventDec : Identifier Identifier

stateDec : State-Keyword Identifier transitionDec* End-keyword

transitionDec : Identifier Transition-Keyword Identifier

Listing 2.5: Grammar [11]

There are two ways of developing a DSL and linking the CS with the metamodel.

• Grammar first. Using this approach, first the grammar of the language is designed. The

metamodel is then derived from the grammar either automatically or by providing hints

in the grammar specification. This is the default approach of Xtext, where the Ecore

metamodel is derived from an Xtext grammar.

10

Figure 2.1: Metamodel

Figure 2.2: Syntax Tree

• Metamodel first. In the second approach, first the metamodel of the language is de-

signed. Afterwards, the grammar is created and includes references to the already existing

metamodel. It is also possible to use this approach in Xtext.

Syntax Tree

A Syntax Tree is a hierarchical representation of the textual model. It is a better structural

representation for later manipulation than the words of the textual model. We can distinguish

between Concrete Syntax Trees (CST) and Abstract Syntax Trees (AST). The CST retains all

information of the textual model (e.g. white spaces). An AST may simplify and reorganize the

input data (e.g. remove superfluous parenthesis, white space, and comments). It, however, still

takes fundamentally the same form as the CST. A Syntax Tree which was generated from the

textual model shown in Listing 2.4 is given in Figure 2.2.

Semantic Model

Fowler [11] defines the Semantic Model as “a representation, such as an in-memory object

model, of the same subject that the DSL describes”. A DSL for describing a state machine

could, for example, have a Semantic Model which is an object model and consists of objects

of type state, event, etc. The textual model written using the DSL constitutes the input which

ultimately populates the Semantic Model. A textual model which defines states and events would

thus populate the Semantic Model with a state instance for each state and an event instance for

11

Figure 2.3: Semantic Model

each event. The language’s metamodel defines the structure of the Semantic Model. A grammar

includes lots of aspects that describe the input language and also implies the structure of the

Syntax Tree. The metamodel, however, will be independent of any DSL used to populate the

Semantic Model. The Semantic Model is, therefore, independent from the notation of concepts

(i.e. the CS) and is depicted using the Abstract Syntax (AS). The Semantic Model of the textual

model example is shown in Figure 2.3. The Semantic Model is based on what will be done

with the information from a textual model and will often have a substantially different structure,

which usually is not a tree structure. There are occasions when an AST is an effective Semantic

Model for a DSL but these are the exception rather than the rule.

There are two ways of populating the Semantic Model [30].

• In parser-based systems the user only interacts with the CS and the Semantic Model is

constructed from the text via a parser. In the parsing step the input (the textual model) is

first transformed into a Syntax Tree. Afterwards, the parser translates the Syntax Tree into

the Semantic Model. Xtext uses this parser-based approach.

• In projectional systems the users only see the CS but all editing gestures directly influ-

ence the Semantic Model. The CS is rendered from the Semantic Model via projection

rules.

To conclude, this chapter should have given the reader an overview of DSLs, their benefits

and challenges, as well as the technical corner stones of language design. The Concrete Syntax

and Semantic Model are concepts which are heavily utilized when creating graphical represen-

tations of DSLs such as graphical concrete syntaxes or visualizations, which are discussed in the

next chapter.

12

CHAPTER 3
Visualization of DSLs

This chapter introduces multiple possibilities of how users can interact with and perceive DSLs.

In most cases users interact with a DSL by using a Concrete Syntax (CS). While a CS is very

often of a textual nature, also graphical or tabular representations, or a mix of the two is possible.

Even more possibilities arise if non-editable views such as visualizations or reports can be used.

The following sections describe all of these representations in detail and show the potential of

using visualizations for fostering the comprehension of DSLs.

3.1 Concrete Syntax

The design of a DSL’s CS has an important impact on the user’s acceptance of the language. The

notation used should directly reflect the domain in order to ensure the success of the DSL.

Concerns

Voelter et al. [30] identify four main design concerns for a CS. The concerns do not only depend

on the CS but also on the expressiveness of the language and the metamodel.

• Writability. A syntax is writable if it can be written efficiently. Conciseness, i.e. how

much the user has to write, but also editing support of IDEs (e.g. code completion, quick

fixes, etc.) affect the writability of a language.

• Readability. A syntax is readable if it can be read efficiently. It has to be considered that

a very concise syntax is not necessarily also readable. This is especially the case if the

writer and reader of a model are not the same person.

• Learnability. Learnability describes how easy a language can be learned by novice users.

A syntax which uses concepts that are directly connected to the domain or IDE support

(e.g. suggestions) can improve learnability.

13

• Effectiveness. A syntax is effective if it allows users to effectively express typical domain

problems after they have learned the language.

Already when comparing writability and readability it becomes apparent that the design of a

CS always leads to some tradeoffs. As has been mentioned, a very writable language might not

be very readable or easy to learn. A very learnable language might be verbose and, therefore,

lead to a syntax that is not easily writable or effective.

One way of addressing this challenge is by providing multiple CS for one language. Thereby,

users can choose individually which syntax they prefer. Novice users may use a syntax which

fosters comprehension and improves the learning process. In contrast, experienced users can use

a syntax which focuses on writability and effectiveness.

As we will show later, besides the CS, also visualizations and reports can affect the above

mentioned concerns. One of this thesis’ main questions is concerned with analyzing in how far

visualizations can improve the comprehension of DSLs.

Classes of CS

As previously indicated, there are multiple classes of CS [30].

• Textual. A textual CS uses linear textual notations and is usually based on ASCII or

unicode characters. DSLs using this class of syntax look like traditional programming

languages. Purely textual DSLs integrate well with existing development infrastructures,

which makes their adoption easy. Text editor functionalities like copying, pasting, search-

ing, replacing, syntax highlighting, and code completion can be used when using a textual

CS. Furthermore, they are well suited for detailed or algorithmic descriptions. Referring

to the concerns mentioned above, a textual language can be very effective.

• Graphical. Graphical DSLs use graphical shapes. Box-and-line diagrams that look like

UML class diagrams or state diagrams represent an important subgroup. Graphical no-

tations are useful when describing relationships, flow, or timing and causal relationships.

They are often considered easy to learn. However, DSLs using a graphical CS may be per-

ceived as less effective by experienced users. Building the necessary editor for a graphical

CS can also involve considerable work. It has to be considered that a model is not simply

’drawn’ but rather constructed in an interactive editor [31]. This editor requires features

such as zooming, panning, context menus, buttons, and palettes including drag and drop

functionality. An example of a graphical CS and a graphical editor based on Sirius 1 is

shown in Figure 3.1.

• Symbolic. DSLs using a symbolic notation are textual languages having an extended set

of symbols. Typical symbols are fraction bars, mathematical symbols, or subscript and

superscript. Symbolic DSLs are well suited for scientific and mathematical domains that

make heavy use of symbols and special notations.

1eclipse.org/sirius

14

eclipse.org/sirius

Figure 3.1: Graphical CS and editor created using Sirius [2]

• Tabular. Tables are useful when the CS should be able to express collections of similarly

structured data items. A tabular CS can also be used for showing how two independent

dimensions of data relate.

Ideally a DSL provides multiple CS and lets the user choose which one he or she prefers.

Defining several notations for the same language concepts is usually easier for DSLs using pro-

jectional editing. However, in general, providing multiple syntaxes can be very work-intensive.

This is especially true when developing a graphical CS: While the graphical CS might improve

learnability for a DSL, defining graphical notations and especially graphical editors can be very

time consuming.

Furthermore, the fact that a graphical CS mainly focuses on editing capabilities, of course,

imposes restrictions on the graphical CS itself and its design. On the one hand this might impact

the DSL’s expressiveness as graphical editing has to be possible for all language concepts. On the

other hand, as the graphical notations are mainly designed for enabling editing of the model, also

the graphical language’s power to improve comprehension and learnability might be restricted.

We, therefore, advocate the approach of using a textual CS for editing purposes and using read-

only visualizations, which will be introduced in the next section, for improving comprehension.

3.2 Visualizations

As this thesis is mainly about visualizations it is sensible to start this section with a definition.

Voelter [30] defines visualizations as follows:

“A visualization is a graphical representation of a model that cannot be edited. It is created

from the core model using some kind of transformation, and highlights a particular aspect of the

15

source program.”

Similar to the graphical CS of a DSL, a visualization has the goal of showing the model in a

graphical representation. The need for a graphical representation, however, does not necessarily

mean that the model has to be edited in a graphical form as well. A visualization, therefore, is

read-only. This means that there has to be some alternative possibility for the user to edit the

Semantic Model. Providing any class of CS, discussed in the previous section, is suitable. It is

also possible to not have a CS at all and directly interact with the Semantic Model.

Young and Munro [33] identified the following desirable properties of a visualization:

• Simple navigation with minimum disorientation. Visualizations should be well-structured

and designed in a way that users become familiar with navigating and do not get ‘lost’.

• High information content. “Visualisations should present as much information as possi-

ble without overwhelming the user” [33]. There is a trade-off between high information

content and low visual complexity.

• Low visual complexity Although the visual complexity greatly depends on the complex-

ity of the information, the visual complexity should be reduced as far as possible. This

often also leads to an understandable layout, well-structured visualizations, and simple

navigation.

• Varying levels of detail. It should be possible for users to explore the visualization using

varying levels of detail. A user might want to see the entirety of of the visualized model

first, and investigate areas of interest in detail later.

• Resilience to change. Small additions or changes to the Semantic Model should not result

in major changes in the visualization. A full re-positioning of elements in the visualization

may result in the user becoming disoriented.

• Good use of visual metaphors. Metaphors use familiar concepts of the user in the visu-

alization. Metaphors support the user in gaining understanding of the visualization.

• Approachable user interface. The user interface should be intuitive and flexible in order

to enable simple navigation, and should avoid unnecessary overheads. Shneiderman [26]

states that a user interface should support seven tasks, namely overview, zoom, filter,

details-on-demand, relate, history, and extract.

• Integration with other information sources. Visualizations are a different representa-

tion of some information source. In most cases the visualization cannot entirely replace

that source. It is, therefore, desirable to have a correlation between the visualization and

its source, e.g. the source code.

• Good use of interaction. Allowing the user to interact with the visualization in various

ways helps maintaining interest and gaining more information.

16

• Suitability for automation. Visualizations are only of practical value if automation can

be applied to some extent.

The fact that a visualization cannot be edited releases developers from many restrictions.

A graphical CS usually is mainly designed having editing functionality in mind. Many opera-

tions on graphical elements, therefore, have to be translated and applied to the Semantic Model.

Similarly, most of the Semantic Model’s elements have to be mapped to graphical elements.

This bidirectional relationship may affect the design of the graphical CS and might even have

an effect on the design of the language itself (i.e. the metamodel). In contrast, a visualization is

directly created from the Semantic Model and, therefore, completely decoupled from the DSL.

By applying some kind of transformation to the Semantic Model, developers can create arbitrary

visualizations showing some interesting aspect of the model. The type of information shown in

the visualization can be chosen freely and independently from any CS. Furthermore, developers

can choose an arbitrary technology for implementing visualizations.

The visualization itself can take on various forms and is often automatically laid out. The

Semantic Model could, for example, be transformed to a static representation, e.g. an image file.

It is also possible to have fully interactive visualizations, where users can show, hide, and focus

on different parts of the visualization. Interactive visualizations may also support functionality

for linking elements of the visualization with another representation of the model, e.g. a textual

CS in an editor. One could, for example, double-click on a graphical element in the visualiza-

tion, and the respective element is automatically selected in the textual model. The other way

around, i.e. selecting a section of the textual model in the editor and revealing the respective

graphical element in the visualization, is possible as well.

The main reason for using visualizations is highlighting a particular aspect of the model. As

previously discussed, developers are mostly unrestricted when creating visualizations for DSLs.

Therefore, literature related to the general term software visualization can be used to identify

the aspects of models which are potential candidates for visualization and the tasks where those

visualizations are of actual help for users.

“Software visualization is the art and science of generating visual representations of various

aspects of software and its development process” [10]. Diehl et al. [10] identified three main

aspects of software:

• Structure. Structural aspects consist of static parts and relations of the system that can

be computed or inferred without running the model. The source code, data structures,

the static call graph, and the organization of the model into modules are examples for

structural aspects.

• Behavior. Behavioral aspects refer to the execution of the model, which can be seen as a

sequence of program states. A program state can contain the current code and data of the

program. The execution can be viewed on different levels of abstraction.

• Evolution. This aspect focuses on the task of changing a software system over time.

Particular focus is on issues such as reconfiguration, adaption, extension, debugging, opti-

17

mization, evaluation, and project management. Moreover, the analysis of software history,

i.e. multiple versions of the model, is an evolutional aspect.

As has been mentioned previously visualizing these aspects should “evoke mental images

for comprehending software better” [10]. Petre et al. [22] note that “fundamentally, software

visualisation is concerned with software comprehension, because comprehension underpins all

stages and tasks of software development: design, debugging, maintenance and modification all

require sufficient understanding of the software”. Visualizations should be designed in order to

help users with one or more tasks in these stages. Different tasks may require different infor-

mation and, therefore, different visualizations. After reviewing existing literature in the area of

software visualization we identified the following tasks, which are well applicable in the field of

DSLs [10, 22].

• Design and development. This task is concerned with the interpretation of the problem

to solve, the structure of the solution, and determining if the conceptual design meets the

specification.

• Comprehension of inherited code. As defined, comprehension is required for all tasks.

Nevertheless, a separate task is defined here because, one of developers’ main tasks is to

understand existing models. This involves understanding how the code works, where the

complexity lies and how it can be made visible.

• Anomaly detection. Anomaly detection is about finding quality defects and bugs in a

model efficiently. Debugging may be used during the completion of this task.

• Maintenance. Maintenance is concerned with changing a model after delivery. Mainte-

nance activities can be either adaptive, perfective, corrective, or preventive [18].

Maintenance tasks usually can be divided into the same stages of classical software develop-

ment and, therefore, include the three tasks design and development, comprehension of inherited

code, and anomaly detection. Visualizations for maintenance will basically be concerned with

these three tasks and thus not separately addressed in this thesis.

Visualizations can, thus, be classified with respect to the aspect they are based on, and their

goal, e.g. the user’s task they should simplify. It is, of course, possible that a visualization of one

specific aspect can support the user in one or more tasks. For example, a visualization showing

the execution of a model could help the user with comprehension of inherited code and anomaly

detection. The inversion is possible as well, meaning that a user can be supported in one task

by one or more visualizations which are based on one or more aspects. For example, the task of

comprehending inherited code could be simplified by visualizations of structural and behavioral

aspects.

The aspects and goals of visualizations can be much more detailed than the previous exam-

ple. A visualization could, for example, visualize a specific type of relationship in the source

18

code (i.e. a structural aspect), in order to help users during the design and development by in-

creasing the user’s overview of the model.

RQ1, which is concerned with investigating if visualizations can improve comprehension,

will be answered in the practical part by creating various visualizations and analyzing their ca-

pabilities of supporting users during the tasks identified above. By looking at a visualization’s

desirable properties and the requirement to be able to create them with as little restrictions as

possible, it becomes apparent that the technology used for the implementation is very important.

This is especially relevant when visualizing behavioral aspects of a DSL, as behavior is usually

illustrated by means of advanced animations. As we will show in Chapter 5 the well-known

frameworks for creating graphical editors are not very well suited for implementing visualiza-

tions. We, therefore, need a technology or framework which is capable of fulfilling these high

requirements. JavaFX and the framework FXDiagram (both will be introduced in detail in Chap-

ter 6) are very promising candidates for technologies and were chosen in this thesis.

This choice co-determines the structure of this thesis’ practical part and leads to the work

being based on two use cases. In both use cases, visualizations which should improve user’s

comprehension are implemented for a DSL. The first use case is a fictional one and additionally

aims at exploring and illustrating the technical capabilities of JavaFX for implementing visu-

alizations. In the second use case it is intended to evaluate the relevance of visualizations in

practice. For the second use case an existing DSL of an Austrian automotive supplier will be

used.

3.3 Reports

Similar to visualization, reports are used to highlight a particular aspect of the source model,

while not being editable. Reports are also created directly from the Semantic Model. The main

difference is that instead of using a graphical representation, reports use a textual notation [30].

Visualizations do not have to be graphical. Often simple text outputs may be enough for

helping users during tasks such as debugging. Plain text output, or textual visualization in Excel

can similarly to visualizations help users in understanding the underlying model and improve

the communication with domain experts.

We believe that reports can be created with less effort than visualizations, however, are prob-

ably not as effective as graphical representations. The effectiveness of textual versus graphical

visualizations will be addressed in RQ2.

To conclude, there are three main ways of visualizing DSLs. A CS lets users directly edit

the Semantic Model. However, the bidirectional relationship between CS and Semantic Model

results in a lot of effort for creating these visualizations. Additionally, from a visualization per-

spective, a CS restricts visualization developers. Visualizations and reports are directly created

from the Semantic Model and cannot be edited. It is, therefore, much easier to add different

visualizations or reports as soon as the Semantic Model is created [11]. Each visualization or

report can focus on different aspects of the core model. Visualizations and reports are a good

19

possibility if the primary users of a DSL prefer a very writable notation (e.g. a very concise

textual CS), and other stakeholders would like a more readable representation.

20

CHAPTER 4
Use Case 1: A Game Level Design

Language

As has been previously discussed, creating visualizations for DSLs requires a suitable technol-

ogy. We show advantages and disadvantages of frameworks for creating graphical editors in

Chapter 5. The first use case aims at exploring the capabilities of using FXDiagram, which uses

JavaFX as a rendering platform. Firstly, this section introduces the scenario and language chosen

for this use case, i.e. the game level design language. Secondly, the implemented visualizations

are discussed with respect to the visualized aspect and the visualization’s goals. Implementation

details are addressed in Chapter 7.

4.1 Game level design language

As the fictional use case should mainly show the power of JavaFX we had to come up with a

language providing means to do so. We chose the domain of computer games as it facilitates the

application of complex geometry, animation, and simulation. The language was created using

Xtext (Details on Xtext can be found in Chapter 7).

The Level Design Language (LDL) is used by level designers in order to conveniently define

the levels of a two dimensional game. A level consists of multiple rooms which are connected

by doors. Each room has a size defined by its length and width, an entrance, and an exit. An

exit of one room is connected with the entry of another one. The entrance of the first room is the

starting point of the level. The exit of the last room constitutes the goal of the level. The first

room, and last room can be defined by the level designer.

A room can comprise multiple walls, which cannot be passed through by characters. A level

designer can define walls by specifying the coordinate, i.e. row and column, where the wall

should start and the coordinate where the wall should end. There usually are some kinds of

enemies and dangers included in levels. The LDL enables the developer to position trapdoors

and monsters. The game is over if the player steps on a trapdoor field. A monster has a certain

21

amount of hit points and attacks with a specific speed and damage. Additionally, a monster has

an aggro radius, i.e. the distance from a player at which the monster will stop its normal behavior

and engage the player in combat.

A possible model of the LDL showing all important concepts is shown in Listing 4.1. The

model defines three rooms including walls, trapdoors, and monsters. Please note that the detailed

specification of the monsters are partly removed due to space reasons.

spawn => firstroom

goal => thirdroom

room firstroom {

columns = 20

rows = 20

entry entry1 @ (19,0)

exit exit1 @ (0,0) ’stairs’ => secondroom

wall wall1 from (5, 0) to (5, 12)

wall wall2 from (0, 8) to (1,8)

wall wall3 from (10, 15) to (19,15)

trapdoor @ (1,1)

trapdoor @ (10,5)

trapdoor @ (9,9)

monster mage1 @ (1,3) {

hp 500

damage 10

speed 1.0

range 5

aggroradius 2

}

monster mage2 @ (3,7) {

...

}

monster mage3 @ (10,12) {

...

}

}

room secondroom {

columns 10

rows 10

entry entry2 @ (0,0)

exit exit2 @ (9,9) ’hallway’ => thirdroom

monster mage4 @ (8,8) {

...

}

}

room thirdroom {

columns 15

rows 15

entry entry3 @ (0,0)

exit exit3 @ (9,9)

monster mage5 @ (8,8) {

...

}

}

Listing 4.1: Level definition example using the LDL

22

4.2 Visualizing LDL

This section introduces the implemented visualizations for the LDL. Firstly, some consequences

of using FXDiagram concerned with integration, interaction, and navigation are discussed. After

that, visualizations based on static and dynamic aspects are considered.

Integration, Interaction and Navigation

Before concentrating on the specific visualizations we would like to quickly describe some basic

properties of all visualizations which are predefined when using FXDiagram.

As stated above, visualizations should have a good use of interaction and should have some

sort of integration with other information sources. When using FXDiagram, the user is pro-

vided with two views which are shown side by side when opening the IDE. The first view, is

the textual editor which can be used to edit the model. The second view shows the graphical

visualization. Visualizations can be opened by right-clicking on an element in the editor and

selecting the desired visualization. Visualizations which are only useful in the context of an-

other visualization can be opened using the graphical context menu, which can be opened by

right-clicking somewhere in the graphical view. By double-clicking elements in the graphical

view, the corresponding element in the textual view is selected.

Users can interact with the graphical representation intuitively by either using the graphical

context menu, keyboard shortcuts, or touch gestures. FXDiagram provides features such as

zooming, auto-layout, navigation, undo and redo, and exporting graphical representations in

image format out of the box.

Static aspects

As described in Section 3.2, visualizations can illustrate a model’s structural aspects. One of

the desired properties of visualizations is to provide the user with varying levels of detail. The

first visualization thus intends to give the user an overview of the models entirety. The level is

visualized by showing the rooms as nodes. Two nodes are connected if the respective rooms are

connected by a door. The visualization is shown in Figure 4.1.

By double-clicking on one of the nodes, a more detailed representation of the respective

room such as depicted in Figure 4.2 is shown. Images are used for creating the background and

for representing language elements such as entries and exits, trapdoors, monsters, and walls.

Double-clicking on any of the elements selects the respective element in the editor. This visual-

ization intends to give the user a more detailed structural overview of a room and the positioning

of its elements. While the textual CS lets the user quickly create new rooms, it might be easier

for the user to assess the correct positioning, the distance between elements, and the correct

definition of walls in the graphical view.

It is often helpful to graphically add supplementary information to an existing visualization.

While the detailed room visualization gives the user a great overview, it is hard for the level

designer to assess which of the monsters a player, going from the entry to the exit, would have

23

Figure 4.1: Level overview

Figure 4.2: Detailed view of a room

24

Figure 4.3: Detailed view of a room including the monsters’ aggro radius

to fight, i.e. which monsters’ aggro radius the player has to enter. This is very difficult to find

out by looking at the source code only, but not even obvious with the additional detailed room

view. The information about the aggro radius can, however, be highlighted by a very simplistic

visualization which is added on top of the detailed room view. The visualization is activated

through the graphical context menu and shown in Figure 4.3. Looking at the visualization it can

easily be observed that a player going from the entry to the exit has to fight at least two monsters.

In the context of the room visualization, a second very simple additional visualization was

implemented which has the goal of improving the representation of the strength of monsters.

Again, by activating the visualization using the graphical context menu, the size of each monster

is adjusted in a way that it correlates to the monster’s strength, i.e. health points, damage, and

speed. This visualization, of course, can be combined with the aggro range visualization. A

combination of multiple visualization can give the user a comprehensive overview of multiple

aspects and may help level designers even more than individual views in some situations.

In order to explore the possibilities developers have using JavaFX and FXDiagram, we also

developed an experimental visualization. While the LDL is primarily used for defining two di-

mensional levels, this does not mean that visualizations need to be two dimensional as well.

Figure 4.4 shows our results in form of a three dimensional visualization of a room. This gives

a level designer a completely new perspective and allows for inspecting the defined room in a

very different way. FXDiagram by default does not support 3D content and there are a lot of

challenges that have to be addressed when implementing 3D visualizations. The technical de-

25

Figure 4.4: 3D visualization of a room

tails and found limitations of FXDiagram are described in Chapter 7.

Finally, it is also possible to analyze the structure of models and derive information that is

relevant for dynamic aspects. Level designer might, for example, be interested in the difficulty

of a designed level. The difficulty in the LDL is mainly defined by which and how many mon-

sters a player has to fight in order to successfully traverse the level, i.e. go from the entry of the

first room to the exit of the last one. This difficulty can easily be computed and analyzed by

looking at the structure of the model. Using another kind of visualization, this data is presented

in the form of a chart such as shown in Figure 4.5. The chart shows how much power is required

for reaching a specific goal in the game, e.g. completing the first room, or completing the whole

level.

It already becomes apparent when looking at the previous examples that information can

be shown in different forms and that visualizations can be very diverse. Some visualizations

are simplistic node-and-edge-diagrams, others require advanced graphics, and again others can

be simple charts. A very powerful base technology, offering all those possibilities, is vital for

developers for creating the best-suitable visualizations.

Dynamic aspects

Nelson [21] states that game designers “have mental models of how the game they’re designing

should work, and spend considerable time mentally tracing through possibilities”. Analyzing

and visualizing the model should speed up this process and support level designers. Nelson

26

Figure 4.5: Visualization showing the required power for traversing the level

identifies several strategies for analyzing games. Answering questions such as ‘Is this possi-

ble?’, ’How is this possible?’ and analyzing necessities and dependencies can greatly help level

designers. The answers to these questions, and the results of analyses can, of course, be pre-

sented using visualizations.

‘Is it possible for a player to complete the level?’ is an obvious question a designer using

LDL could ask him- or herself. By initially providing the player stats this question can be an-

swered by looking at the model again. The player stats are gathered by means of a form which

is shown prior to the visualization. For this visualization a slightly more complex computation

is required as the optimal path for traversal has to be found and fights with monster have to

be simulated. After these computations, however, a visualization with a very high information

content can be created. The visualization in Figure 4.6 shows the player’s health points during a

traversal. Using this visualization a designer can on the one hand see if it is possible to complete

the level. On the other hand, one can also see how monsters are distributed over the rooms. A

consistent monster distribution might be preferred over one with many empty rooms.

Another interesting question for level designers is ‘How is it possible to achieve X?’. If, for

example, it is possible for a character to traverse a level, it might be interesting how it can ex-

actly traverse it. Ideally, a designer would like to see the exact path, the monsters the player has

to fight, and how the health points change. This is, therefore, already very similar to a full game

simulation. As soon as the path is calculated this simulation can, however, easily be implemented

utilizing the animation features of JavaFX. Animation features are vital for visualizations of be-

27

Figure 4.6: Health points during traversal

havior. This is one of the main reasons why existing frameworks for creating graphical editors

are not suitable for creating visualizations. While we address implementation details again in

Chapter 7, the traversal requires the parallel execution of two or more animations. The move-

ment of the player, for example, is created by simultaneously playing a sprite animation (the

walk cycle), and moving the player in the room. Animations are also required for fighting and

dying sequences. The traversal is shown on top of the detailed room view and is started after

specifying the player’s stats and the simulation speed. Additionally, a progress bar showing the

player’s health points is inserted. Figure 4.7 shows the described traversal visualization.

The traversal has also been implemented in the three dimensional view, which from a tech-

nical point of view could be done very similarly to the two dimensional traversal.

Summary

To sum up, Use Case 1 shows that depending on the type of information to be visualized, the

types of visualization can greatly vary. By simply trying to find helpful visualizations for level

designers we came across node-and-edge-diagrams, views mainly relying on graphics, charts,

three dimensional views, forms, and visualizations heavily utilizing animations. Our assumption

that visualization can take on very different forms was, therefore, correct.

Use Case 1 also has the goal of showing the capabilities of using FXDiagram and JavaFX

for implementing these very diverse visualizations. We can confirm that FXDiagram in fact only

adds a very thin abstraction layer on top of JavaFX. FXDiagram makes it easy to define basic

node-and-edge diagrams and the framework greatly helps developers when defining integration

28

Figure 4.7: Room traversal simulation

behavior between the textual and graphical views. At the same time, FXDiagram, does not

get into the way when language specific graphical visualizations have to be created. JavaFX

makes it very easy to use forms, layouts, images, 3D content, charts, and animations. The first

use case, thus, already indicates that JavaFX and FXDiagram can be well-suited technologies

for implementing visualizations. We refer the interested reader to Chapter 6 for the detailed

visualization architecture and Chapter 7 for implementation details.

29

CHAPTER 5
Existing Visualization Frameworks

This chapter discusses the most well-known frameworks for creating diagram editors and views.

The first sections introduce GEF3, GMF, Graphiti, and Sirius. A discussion including advantages

and disadvantages of these technologies in the context of visualizations is provided in Section

5.5.

5.1 GEF3

The Graphical Editing Framework (GEF) 1 [20, 24] was contributed by IBM in 2002. GEF

was initially composed of two components, namely Draw2d and GEF (MVC). Draw2d is a 2D

rendering framework and is a lightweight extension to SWT. It does not provide any interactive

behavior and is solely used for displaying graphical information on an SWT canvas. Draw2d

may be used stand-alone or as a visualization technology for GEF (MVC). GEF (MVC) is a

framework used for implementing SWT-based tree editors and Draw2d-based graphical editors

and views. It provides features such as a palette, drag-and-drop support, a command stack for

undoing and redoing, and support for printing. GEF (MVC) uses the Model-View-Controller

pattern.

GEF3 was introduced in 2004 and offered most of the features that make up GEF including

rulers and guides, grid, snap-to-geometry, cloning, panning, fly-out palette, and shortest path

connection routing. In 2007 Zest was added to GEF as a third component. Zest is a visualization

toolkit based on SWT and Draw2d and provides a JFace-like interface for binding a Java model

with a Draw2d diagram. In 2009 support for SWT line style attributes and advanced graphics

support were added to Draw2d. Zest added curved connections and offered nested contents.

Releases in 2010 and 2011 added support for improved clipping and scrollable feedback as well

as refactorings. A release in 2012 included mostly bug-fixes and clean-ups, but no significant

innovations. The development of Zest 2 was started in 2010 and GEF4 was initiated in 2011.

We refer the reader to Chapter 6 for further information on GEF4.

1eclipse.org/gef

31

eclipse.org/gef

EditParts are the central elements in GEF applications and play the role of the controllers

that specify how model elements are mapped to visual figures and how these figures behave in

different situations. A figure is a graphical view, implemented in the lower-level Draw2d frame-

work. Figures can have arbitrary, non-rectangular shapes, can be nested, can be transparent or

opaque, and can be ordered into layers. Usually an EditPart is created for each model element,

which leads to a hierarchy similar to that of the model. There are two main types of EditParts

related to diagrams, namely GraphicalEditParts and ConnectionEditParts. The first provide a

graphical representation for their model element, while the latter represent connections between

GraphicalEditParts. Most EditParts require an EditPolicy, which turns event request into com-

mands. GEF uses a command pattern to implement an undo stack, i.e. each command has to

store its own undo information and implement an undo method. This leads to the following

communication chain: A user executes an operation, e.g. delete, by interacting with a tool. The

tool creates a request and forwards it to an EditPart. The EditPart does not process the request

itself but forwards it to an EditPolicy. The EditPolicy then creates a command which will be ex-

ecuted in order to fulfill the request. A command can finally modify the model. EditParts have

to monitor the model for changes. When a change is observed, the EditParts have to refresh their

visual representation [20].

GEF3 gives developers a lot of freedom when developing graphical editors and views. This

freedom, however, comes at a high price. Developers have to understand the essentials of GEF’s

complex architecture and a lot of technical details about the underlying communication chain.

Furthermore, the rendering platform Draw2d does not provide any behavior or higher-level ge-

ometric abstractions which may result in a lot of effort for implementing very basic things.

Moreover, Draw2d is integer-based, which may result in rendering errors, and does not support

complex geometry (e.g. Bézier curves). The frameworks discussed in the following build on

GEF3 and aim at offering developers higher-level abstractions in order to reduce the effort for

creating graphical editors and views.

5.2 GMF

GEF laid the basis for the development of graphical editors. However, understanding the com-

plex framework was very time-consuming and led to uncomfortable development as well as

redundant code. GEF enabled the use of custom models, which resulted in developers often

using Plain Old Java Objects (POJOs). POJOs, however, lack functionality such as serialization

and the ability to listen to model changes. The Eclipse Modeling Framework (EMF) provided

serialization and listening to model changes out of the box. It was, therefore, a logical step to in-

tegrate EMF models with GEF. The Graphical Modeling Framework (GMF) 2 was first released

in June 2006 and aims at providing a generative bridge between EMF and GEF.

The GMF project can be split into the tooling and runtime components. GMF Tooling pro-

vides a model-driven approach to generate graphical editors in Eclipse. By defining a tooling-,

graphical-, and mapping definition, one can generate a fully functional graphical editor based

on the GMF Runtime. GMF Runtime offers a set of reusable components for graphical editors,

such as printing, image export, actions, and toolbars.

2eclipse.org/modeling/gmp

32

eclipse.org/modeling/gmp

A set of models needs to be created in order to generate a graphical editor 3. GMF supports

wizards for creating these models and provides a tree-editor for defining the specific models.

• Graphical definition. The graphical definition defines the visual aspects of the generated

editor. Figures can be created using abstractions for rectangles, rectangles with rounded

corners, ellipses, or polygons, and can be further customized using multiple properties

(e.g. fill, line kind, line width, etc.). Using layout classes, figures can be combined in order

to create more complex figures without directly accessing underlying GEF components.

Besides figures, also diagram nodes and connections can be created. A diagram node

refers to a figure. Figures can be reused because multiple nodes can refer to the same

figure.

• Tooling definition. This definition comprises things related to the editor palettes, menus,

etc. A palette can easily be created again in a tree-editor. Tools, e.g. a creation tool, can

be added to the palette. A creation tool can be further specified by a name and an image.

• Mapping definition. The mapping definition is used to define the mapping between the

EMF model and the visual model (graphical definition and tooling definition). Again, a

wizard can be used for defining these mappings. After defining the diagram’s root element,

the individual model elements can be mapped to visual elements.

After creating these three definitions the graphical editor can be generated. This results in a new

Eclipse plugin project which can be launched in a new Eclipse runtime workbench. There are, of

course, much more features included in GMF. Diagrams can be validated, for example by allow-

ing connections only between specific types of nodes. Collapsed and expanded compartments

are supported as well as animated zoom and layout, image export, diagram assistants, and direct

editing (e.g. text inside the diagram).

GMF makes it much easier for developers to create graphical editors by providing higher-

level abstractions and hiding most of the more complex aspects of GEF. The framework can,

of course, not fully compensate the previously discussed problems of Draw2d. This means that

rendering problems may also occur when using GMF.

5.3 Graphiti

Graphiti 4 was released in 2010 by SAP, targeting similar objectives as GMF, i.e. enabling the

easy development of graphical diagram editors. Graphiti provides a plain Java API for building

graphical tools, tries to limit the dependencies to an absolute minimum, and provides the ability

to use any existing layout algorithms for autolayouting a diagram. Several differences between

GMF and Graphiti were defined in the proposal of Graphiti 5. These differences are shown in

Table 5.1.

3ibm.com/developerworks/library/os-ecl-gmf
4eclipse.org/graphiti
5eclipse.org/proposals/graphiti

33

ibm.com/developerworks/library/os-ecl-gmf
eclipse.org/graphiti
eclipse.org/proposals/graphiti

Graphiti GMF

Architectural concept runtime centric API generative

API self-contained refers to GEF functionality

Client logic centralized (feature concept) functionality distributed since

there are no constraints

Look & Feel sophisticated defaults defined by

usability specialists (highly cus-

tomizable according to the tool

requirements)

simple defaults (highly cus-

tomizable according to the tool

requirements in generated cod-

ing)

Table 5.1: Differences between Graphiti and GMF [1]

Just like GMF, Graphiti is based on GEF and Draw2d and also supports EMF on the domain

side. Diagrams are described using a metamodel and diagram data is strictly separated from the

domain data. This allows to render diagrams in different environments using various engines.

Graphiti tries to completely hide GEF and Draw2d, which means that users write plain Java code

when building an editor. Knowledge about the base technologies is not required.

From a technical point of view, developers write so-called features to add functionality to

the graphical editor. The complete life cycle (creating, editing, renaming, moving, deleting,

etc.) of model elements and their graphical representations is implemented by means of fea-

tures. Default-features are provided by the framework and can later be replaced or extended

with special behavior. Graphiti consists of two main components namely, the interaction com-

ponent and the diagram type agent. The user interacts with the interaction component (provided

by Graphiti), to manipulate models. The diagram type agent consists of the code written by

the developer. It provides tool behavior providers which define how tools behave in specific

situations. Tools can influence, for example, what will be displayed in the editor, how selec-

tions, double-clicks, and zooms are handled, and which context menus and context buttons are

available. Context buttons appear around the currently hovered shape and can be used to trigger

object specific operations. Operations are defined by the tools by implementing features [29].

Overall, Graphiti is very similar to GMF. It is based on GEF and Draw2d, and tries to

provide abstractions to simplify the development of graphical editors. Rendering issues caused

by Draw2d which were previously discussed may occur here as well. The focus on usability and

better visual defaults is an important step towards improving the user experience, which is very

important for visualizations in general.

5.4 Sirius

Sirius 6 is a framework for creating graphical modeling workbenches that was first released in

2014. Sirius is based on EMF and GMF and is, therefore, on the highest abstraction level of the

frameworks discussed so far. Sirius aims at providing specific multi-view workbenches through

graphical, table, or tree modeling editors. All of those modeling editors are synchronized which

6eclipse.org/sirius

34

eclipse.org/sirius

means that models can be edited and viewed in all viewpoints. As opposed to other frameworks,

users should be able to define their own modeling workbenches even with very little technical

knowledge and knowledge of Eclipse. However, at the same time workbenches should be deeply

customizable.

A Sirius modeling tool is defined by means of a configuration file in a Viewpoint Specifi-

cation project. A tree-editor and property views can be used to edit the configuration file. The

configuration can be used to style model elements, add behavior and navigation tools, add ad-

ditional layers, and add viewpoints such as tables, matrices, and trees. The definition of the

modeling tool is interpreted at runtime, which provides the developer with instant feedback.

Sirius offers many high level features which should help developers in quickly creating new

workbenches. Nodes can be rendered using predefined graphical shapes, images, and custom

shapes. Nodes can be connected by two types of edges. Element-based edges can be used

when a semantic model element exists which represents the connection. Relation-based edges

define the source and target mappings, i.e. at which types of graphical elements the edges start

and end, and a Target Finder Expression. The Target Finder Expression is evaluated in the

context of the source elements and should return the target elements. Elements can be structured

using containers and compartments. Sirius also provides bi-directional links between the model-

browser and diagram view. The release of Sirius 4.0 in June 2016 introduced new features such

as support for internationalization, better SVG rendering, and user-configurable filters for hiding

diagram elements according to rules.

All in all, Sirius aims at providing many advanced features for creating modeling work-

benches with a minimum amount of effort. While this may significantly speed up the develop-

ment process, it may also restrict developers due to the high level abstractions. Again, rendering

issues may occur because of the underlying base technologies.

5.5 Discussion of Existing Approaches

Koehnlein [15] identified a mismatch between diagram editor frameworks and the final product

users want.

Diagram editor frameworks are designed for developers and provide high level abstractions.

Diagram editor frameworks aim at giving developers a maximum amount of features with mini-

mum effort. Furthermore, diagram editors based on GEF3, provide standard behavior and often

expose rendering issues.

However, the product the user wants, should be specifically targeted at users of the language.

The user wants a custom — not generic — solution. The product should focus on usability,

should provide great visuals, and should also be fun to use.

Therefore, developers have to solve a very specific (not generic) use case which requires a

custom solution. Generic high level abstractions can only be provided for a unified use case. This

use case, however, usually does not exist and visualizations always require a lot of customization.

This means that from a user’s perspective developers should not use a diagram editor framework

because their use case is very specific. In a specific use case the higher level abstractions of

diagram editor frameworks can greatly restrict developers. Often developers have to go beyond

the levels the abstractions try to hide in order to customize some details. Sometimes changes

35

might not even be possible at all. The restrictions imposed by diagram editor frameworks also

have a direct effect on the usability. Behavior and metaphors are often predefined in diagram

editors. This leads to the misunderstanding that usability is automatically addressed by the

framework. Usability, however, is something that cannot be provided out of the box and usually

has to be addressed by the developer. Customization and usability are also very important when

developing visualization.

To sum up the previous sections, Sirius, Graphiti, and GMF are diagram editor frameworks

used for building graphical editors. All of these frameworks are based on GEF3. On the one

hand, GEF3 is on the lowest possible abstraction level and, therefore, does not impose lim-

itations on developers and enables customization. However, it is hard to use and limited in

respect to rendering capabilities. On the other hand, frameworks on a higher abstraction level

such as Sirius, Graphiti, and GMF are easier to use, but try to solve a generic problem and thus

restrict developers. The restrictions of higher-level frameworks and the limitations of the under-

lying technology GEF3 discussed in Section 5.1 do not allow for the development of modern

visualizations. The discussed diagram editor frameworks, thus, do not seem to be reasonable

technologies for implementing visualizations. Developing visualizations completely without a

framework, however, is a very complex and costly task. This does not appear to be an option

either.

Koehnlein addresses this problem by developing FXDiagram, a framework which uses JavaFX

as a rendering platform. It adds only a thin layer on top of JavaFX which provides abstractions

for nodes and edges. Developers can arbitrarily customize visualizations utilizing the capa-

bilities of JavaFX. At the time of working on this thesis, FXDiagram appeared to be the best

framework for developing visualizations and is, therefore, used in this thesis’ practical part.

FXDiagram is described in detail in Chapter 6.

36

CHAPTER 6
Visualizations based on JavaFX

This chapter introduces basic concepts that are important when implementing visualizations.

Firstly, it is explained why unidirectional views are usually easier to implement than bidirec-

tional ones. We highlight why usability and aesthetics are of major importance when imple-

menting modern visualizations and that a proper rendering technology is necessary. After that

we introduce JavaFX as a base technology, and frameworks that are based on JavaFX. Finally,

we present a technology-independent visualization architecture which could be defined after the

experience gained from implementing the visualizations of Use Case 1.

6.1 Diagram Editors vs Diagram Views

While Chapter 5 analyzed the properties of diagram editor frameworks, this section discusses

some issues concerned with the overall idea of a diagram editor.

Providing both graphical and textual editing is a very complex task. Koehnlein highlights in

a talk given in 2015 [16] several technical challenges that emerge when trying to provide both

in parallel. Koehnlein also states that solutions to these challenges always include some kind of

trade-off, and that these trade-offs often are trade-offs in the user experience. The challenges are

described in the following.

• Cross-reference semantics. When referring to an element in text one usually uses its

name. When referring to elements in a diagram a technical ID may be used. After chang-

ing a name in a diagram, one expects that some property of an object is changed. When

changing a name in text, users are required to execute a rename refactoring operation in

order to update all the cross references correctly. Therefore, if rename behavior is im-

plemented correctly, a name change in the diagram should trigger a rename operation on

the textual side. This operation could, however, fail. The operation could fail because of

introducing ambiguities in a completely different part of the model. A common solution

is to display a dialog which informs the user that there was a problem during the refac-

toring operation. The user, however, is usually not even aware of the fact that he or she

37

is performing a refactoring. This is a major usability issue that cannot easily be solved

without negatively affecting the user experience.

• Identity and transaction. Identities and the lifecycle of objects is usually very different

on the textual and the graphical side. In the diagram, objects are usually long-living,

while objects in the textual side are short-living and generated while parsing. Having

direct references between these in order to edit both at the same time can be very difficult.

This also boils down to marrying two transactions frameworks that have very different

semantics.

• Persistence. The previous challenge also yields the question of when to synchronize

models from the graphical and textual side. One possibility is to synchronize when the

user saves. That way, one view is locked and cannot be edited when the other is used for

editing. This already introduces a new usability problem because the user can only edit

one side at a time. The main issue, however, is that users can only save valid models. If

the model is invalid in terms of the text, this means that there is a syntax error. Then it is

impossible to derive the model from it that the diagram refers to. The other way around is

similar. If the user saves the diagram, for example, in a state where there are multiple root

objects, it will not be possible to save the textual model.

• Bidirectional mapping. Having two editors means that there are also two models. As an

example we will use a model which represents nodes in the form of a tree. This example

is visualized in Figure 6.1. A node class can have multiple children as indicated by the

reflexive containment relationship. One possible textual representation of a node A con-

taining nodes B and C is depicted on the left bottom side of Figure 6.1. In the diagram,

this model will usually be visualized by representing each element in the form of a graph-

ical node. Node A will be connected by directed connections with nodes B and C in the

diagram. The semantics of the containment define that if a user deletes node A, also node

B and C are deleted. This is, however, not the expected behavior in the diagram. Even if

deleting the graphical node A, the user usually expects that B and C persist. This means

that operations (e.g. the delete operation) cannot simply be mapped between the textual

and graphical side. Operations such as create, delete, cut, paste, or drag and drop, thus, all

have to be manually implemented in order to guarantee consistency.

While we do not want to state that these problems are unsolvable, it at least requires a lot

of effort and thought to provide a correct and usable solution. All of the above challenges can

immediately be solved by using a unidirectional mapping instead of a bidirectional one. This

means that the underlying model can only be changed in the textual editor and the graphical

representation is read-only. By using this approach developers can fully concentrate on creating

good and usable graphical views, which aim at improving comprehension, instead of having to

deal with the technical challenges named above.

As we have shown in Chapter 4, visualizations can come in very different forms and often

graphical editing is not even possible or necessary. We, therefore, also use a unidirectional

relationship between text and visualization.

38

Figure 6.1: Metamodels of textual instance (left) and diagram instance (right) [16]

6.2 Usability and Aesthetics

As discussed in the previous section, diagram editor frameworks are not perfectly suited for

creating visualizations due to multiple technical challenges that would have to be solved when

graphical editing is involved. We would also like to stress that creating good visualizations

also greatly relies on the base technology’s capabilities of supporting usability and aesthetics.

While programming languages can be seen as a means for communicating between computer

and human, visualizations are solely for and used by humans. Usability and aesthetics are thus

very important aspects developers should be able to focus on.

Bresciani et al. [6] tried to answer the question which factors foster business diagram adop-

tion by concentrating on qualitative visualizations. They identify two dimensions that are also

directly applicable to visualizations:

Perceived ease of use. Describes the “degree to which a person believes that using a par-

ticular system would be free of effort” [9]. The dimension can be subdivided into the following

key factors.

• easy to understand

• easy to learn

• content categories relevance

• aesthetic value

Perceived usefulness. Describes the “degree to which a person believes that using a particular

system would enhance his or her job performance” [9]. Key factors of this dimension include:

• allows to work faster

• improves job performances

39

• immediate insight

• adaptability to task

Especially aesthetic value and its effect on usability is often undervalued when develop-

ing visualizations. Cawthon et al. [7] investigate on the correlation between task abandonment,

erroneous response time, and perceived aesthetic. The study’s results are based on an online

survey using 11 different data visualization techniques. The results illustrate that the visualiza-

tions that were perceived by the users as most aesthetic also perform relatively high in metrics

of effectiveness, rate of task abandonment, and latency of erroneous response. Cawthon et al. ,

therefore, showed that aesthetics affect usability, which means that it should be considered when

developing visualizations. Of course, aesthetic design requires a suitable rendering platform.

6.3 JavaFX

Introduction and Features

JavaFX is a software technology that allows developers to create rich cross-platform applica-

tions. JavaFX takes advantage of modern GPUs through hardware-accelerated graphics. It also

provides well-designed programming interfaces which allow developers to combine graphics,

animation, and UI controls. The goal of JavaFX is to be used across a wide variety of plat-

forms and devices, such as smartphones, tablets, computers, desktops, embedded devices, and

TVs [3, 12].

Before the introduction of JavaFX, rich-client applications were created by combining mul-

tiple separate libraries and APIs for media, UI controls, Web, 3D, and 2D APIs. As a graphical

user interface toolkit, JavaFX tries to provide all of these capabilities out of the box. The lan-

guage itself is compiled, statically typed, and declarative, and offers automatic data binding,

triggers, animation, sequences, function types, inferred types, and error handling with Java-like

exceptions. JavaFX lets developers access the complete Java API which allows to use existing

Java libraries and tools. Oracle [23] names the following key features of JavaFX 8:

• Java APIs. JavaFX is a Java library. It consists of classes and interfaces which are written

in Java.

• FXML and Scene Builder. UIs can be defined not only by using the APIs, but also

by using FXML, which is an XML-based declarative markup language. It can also be

considered to be a DSL and can be used by designers to create GUIs. The scene builder is

a graphical editor for creating UIs and generates FXML markup.

• WebView. A component that uses WebKitHTML technology and makes it possible to

embed web pages within JavaFX applications. Java-APIs can call JavaScript running in

WebView and JavaScript can also call Java-APIs. HTML5 features such as Web Sockets,

Web Workers, Web Fonts, and printing capabilities are supported as well.

• Swing operability. Swing applications can be updated with JavaFX features and Swing

content can be embedded into JavaFX.

40

• Built-in UI controls and CSS. JavaFX supports all major UI controls including DatePicker

and TreeTableView controls. Applications can be skinned using CSS.

• 3D graphics features. Developers can use 3D geometry, cameras, and lights to create,

display, and manipulate objects in 3D space.

• Canvas API. Allows drawing directly within an area of the JavaFX scene that consists of

one graphical element.

• Rich text support. JavaFX supports bi-directional text and complex text scripts, such as

Thai and Hindu in controls. It also supports multi-line and multi-style text in text nodes.

• Multitouch support. JavaFX supports multitouch gestures such as rotate, scroll, swipe,

and zoom.

• Hi-DPI support. Hi-DPI displays are supported.

• Hardware-accelerated graphics pipeline. Graphics in JavaFX are based on the graph-

ics rendering pipeline Prism. Prism is used for rendering graphics if the system uses a

supported graphics card or GPU.

• High-performance media engine. The media pipeline facilitates the playback of web

multimedia content. The media framework is based on the GStreamer multimedia frame-

work.

This already indicates the power that comes with using a modern rendering platform. Almost

all of the given features also have a great impact on visualizations for DSLs.

History

The language was initially created by Chris Oliver at a company called SeeBeyond and was

known as F3 (Form Follows Function). Sun Microsystems acquired SeeBeyond in 2005 and

unvealed F3 at the 2007 JavaOne conference as JavaFX. Sun Microsystems was later acquired by

Oracle in 2009. In 2010, Oracle announced its plans to phase out the JavaFX scripting language

and recreate the JavaFX platform for the Java platform as Java-based APIs. In October 2011

JavaFX 2.0 was released and Oracle announced its plans to take steps to open-source JavaFX to

allow for an increase in adoption and faster bug fixes and enhancements. JavaFX 8 was released

together with Java 8 in 2014. Table 6.1 shows a timeline of major JavaFX releases, including

the features introduced in the respective versions [12].

Architecture

In the following we would like to provide a high level description of the JavaFX architecture and

describe the most important architectural components. A layered diagram of the architecture is

given in Figure 6.2. Although most of the shown components are not exposed publicly, knowing

about them can improve users’ understanding of how JavaFX applications work [23].

41

Release Date Version Platform Description

December 4th 2008 1.0 Windows, MacOS JavaFX Script Language, Production

Suite, Media Playback

February 12th 2009 1.1 Windows, MacOS New mobile development

June 2nd 2009 1.2 Windows, MacOS,

Linux, Solaris

Skinnable UI controls, Charting API,

and Performance improvements

April 22nd 2010 1.3 Windows, MacOS,

Linux, Solaris

JavaFX Composer, TV Emulator, Mo-

bile Emulator

October 3rd 2011 2.0 Windows Rewritten for the Java Language

April 27, 2012 2.1 Windows, MacOS The official version for the MacOS

platform was released. Media sup-

ports H.264/MPEG-4 AVC. Supports a

JavaScript bridge for web engine.

August 14, 2012 2.2 Windows, MacOS

and Linux

The official version for the Linux plat-

form was released. The following are

the new APIs and tools: Canvas, HTTP

Live Streaming, Touch events, Ges-

tures, Image manipulation APIs and

native application packaging.

March 18, 2014 8.0 Windows, MacOS

and Linux

JavaFX 8 supports the following APIs:

3D graphics, Rich text support, Print-

ing APIs and a JVM/JDK for embed-

ded systems.

Table 6.1: Historical timeline of major JavaFX releases [12]

Figure 6.2: JavaFX architecture [23]

42

Scene Graph. The scene graph is a hierarchical tree of nodes that represents all visual ele-

ments of the created UI. It can handle input and can be rendered. Each node, except for the root

node, in the scene graph has exactly one parent and zero or more children. A node has an ID,

a style class, and a bounding volume and can also have effects (e.g. blurs and shadows), opac-

ity, transforms, event handlers, and an application-specific state. The scene graph can directly

include graphic primitives, text, controls, layout containers, images, and media. Animating ele-

ments in the scene graph can be accomplished by using the respective APIs.

JavaFX Public APIs. The top layer shown in Figure 6.2 also provides public APIs that sup-

port the development of rich client applications. The APIs allow the use of Java features such

as generics, annotations, multithreading, and lambda expressions. They also facilitate the use

of binding which includes high performance lazy binding, binding expressions, bound sequence

expressions, and partial bind reevaluation. Furthermore, these APIs extend Java collections to

include observable lists and maps, which enables the wiring of UI elements to data models.

Graphics System. The graphics system is comprised of the blue components in Figure 6.2.

It supports 2D and 3D scene graphs and provides software rendering when hardware-accelerated

rendering is not supported by the graphics hardware on a system. Prism processes rendering jobs

and is responsible for rasterization and rendering JavaFX scenes. Depending on the device either

DirectX 9, DirectX 11, OpenGL, or software rendering is used. Quantum Toolkit is comprised

of Prism and Glass Windowing Toolkit and makes them available to the JavaFX layer above.

Threading rules related to rendering versus events handling are managed by Quantum Toolkit as

well.

Glass Windowing Toolkit. Glass Windowing Toolkit is the lowest level in the JavaFX

graphics stack and responsible for providing native operating services, such as managing the

windows, timers, and surfaces. It connects the JavaFX platform to the native operating system.

It also manages the event queue by using the native operating system’s event queue functionality

to schedule thread usage. The system can run multiple threads including the JavaFX application

thread, the Prism render thread, and a Media thread. We refer the interested reader to the official

documentation for further information on these threads [23].

Media Engine. The Media Engine was designed for providing consistent behavior across

platforms. It supports both visual and audio media in the form of MP3, AIFF, WAV, and FLV

files. Media functionality is provided as three separate components, including the Media object,

the MediaPlayer, and the MediaView. Live streaming is supported as well.

Web Engine. The Web Engine component is based on WebKit and provides a web viewer

and full browsing functionality. WebKit is an open source web browser engine and supports

HTML5, CSS, JavaScript, DOM, and SVG. Java calls can be controlled through JavaScript and

vice versa.

43

6.4 Frameworks based on JavaFX

This section introduces two frameworks, namely FXDiagram and GEF4, which are based on

JavaFX. Both of them were initially considered when selecting a technology for implementing

visualizations for the practical part of this thesis.

FXDiagram

In 2011 Jan Koehnlein 1 made first attempts to implement unidirectional graphical views for tex-

tual representations of an object model. In a first prototypical framework called Generic Graph

View, graphical views could be configured using two textual DSLs. One was used for mapping

semantic objects to graphical elements, and the other for styling the graphical representation.

The graphics were implemented using GEF and Zest layouts. Also in 2011, support for visualiz-

ing the syntax of a DSL grammar in Xtext was added. However, this visualization was unrelated

to Generic Graph View. The graphical view supported navigation between the editor and the

view. The diagram was implemented in Draw2d using a custom layout algorithm.

In 2012 Koehnlein added diagram discovery support to Generic Graph View which allowed

users to step-by-step extend the diagram content starting from an initial node and focus on a

specific part of the model. Hovering over nodes which have connections to other nodes that

are not yet shown resulted in buttons appearing around that node. The buttons could then be

used to incrementally add new neighbor nodes and connections. In order to improve the user

experience during selecting potential neighbor nodes Koehnlein later added multitouch gestures

to the framework. GEF, by default, does not support multitouch gestures. Therefore, Koehnlein

extended multiple GEF classes in order to add behavior for implementing zoom, swipe, and

rotate gestures.

Due to rising expectations and the many insufficiencies of GEF3, Koehnlein started using

JavaFX as a base technology in 2013. Using JavaFX and Xtend, Koehnlein started developing a

framework, which was later released as FXDiagram 2.

FXDiagram adds a thin abstraction layer on top of JavaFX. The framework only defines

abstractions for nodes and edges in order to solve hard issues like edge routing and autolay-

out. It, thus, allows developers to leverage the full power of JavaFX. FXDiagram has already

addressed multiple challenges and supports the following features, which can be reused when

implementing visualizations.

• Moving nodes. In FXDiagram nodes can be fluently moved and edges are automatically

rerouted while doing so. This behavior is opposed to other frameworks, where edges are

not changed during the moving operation but rerouted after dropping the node at the final

position.

• Edges. FXDiagram supports cubic Bézier splines, quadratic spline and polylines for con-

necting nodes. Off-by-one rendering errors are avoided by relying on double-coordinates.

1koehnlein.blogspot.co.at
2jankoehnlein.github.io/FXDiagram

44

koehnlein.blogspot.co.at
jankoehnlein.github.io/FXDiagram

Edge labels are aligned in parallel to the corresponding edges in order to avoid overlapping

elements.

• Autolayout. FXDiagram includes advanced autolayout functionality based on KIELER3

and Graphviz4.

• Infinite canvas. Diagrams can be viewed on an infinite canvas.

• Diagram nesting. Nodes can contain other diagrams. FXDiagram provides two ways of

nesting diagrams. When using level of detail nesting the inner diagram is revealed after the

user zoomed into the container node far enough. When using the second nesting approach,

the inner diagram is opened using a transition animation when the user double-clicks on

the container node.

• Diagram discovery. FXDiagram handles very large diagrams by displaying only specific

points of interest and letting the user discover other parts of the diagram if requested.

• Diagram repair. FXDiagram avoids using automatic synchronization when the model is

changed. Changed and repairable elements are highlighted by adding a blinking animation

to nodes, unrestorable elements are made transparent. The user can then manually repair

the diagram.

• Undo and redo. This feature allows browsing the diagram changes over time. FXDia-

gram restores the view-ports and uses animated transitions in order to improve usability.

• Xtext integration. FXDiagram is integrated well with Xtext and provides integration

between the graphical view and the textual editor.

• Gestures and transformations. FXDiagram supports multitouch gestures including zoom-

ing, rotating, and scrolling.

Besides providing many features out of the box, one of FXDiagram’s main goals is to im-

prove the user experience. This includes the use of modern visuals, real-life metaphors, and

short transitions that guide the user’s eye. FXDiagram also avoids dialogs, property panes, and

toolbars in order to use the maximum amount of screen space for the diagram. A graphical menu

is shown only when the user needs it. Metaphors are an important means of improving usability

and are extensively used in FXDiagram. When selecting a node, the node’s size is increased and

a shadow is added. This is a metaphor for lifting up something from the desktop. Control points

of Bézier curves may be hard to understand for users. FXDiagram uses the metaphor of mag-

netism for this, and renders control points as magnets. Graphical choosers are used for selecting

neighbor nodes in diagram discovery and alignment lines are shown for arranging nodes.

3rtsys.informatik.uni-kiel.de/en/research/kieler
4graphviz.org

45

rtsys.informatik.uni-kiel.de/en/research/kieler
graphviz.org

GEF4

The new version of GEF has been a vision since 2010 when developers started to revise the Zest

API, which has been backwards compatible since 2007. At that time Draw2d and JFace were

still used as underlying rendering technologies. The developers realized that many issues could

not be resolved without breaking the API. In 2011 Nyssen 5 initiated the renewal of the Draw2d

and GEF (MVC) 3 components, whose API have been kept stable since 2004. The new double-

based geometry API was later finalized in 2012. At that time multiple GEF components were

independently developed by different engineers. In order to improve the development process,

developers decided to unite and work on the new generation of GEF under the name GEF4.

GEF4 was initially developed without dependencies to Draw2d, GEF (MVC), and Zest, in order

not to affect any adopters. As a first step the revised Zest component was migrated to the GEF4

namespace, and the new geometry component was adopted. After that, the replacing of Draw2d

and GEF (MVC) 3, using JavaFX instead of SWT as a rendering platform, was initiated.

In June 2015 the first GEF4 components were released with the Mars release of Eclipse.

The components offered a comparable functionality to Draw2d and GEF (MVC) while using

JavaFX for rendering purposes. In June 2016 the GEF4 components were released in version

1.0.0. The release included a cleaned up API, improvements in connection handling, and an

improved MVC component.

GEF4 includes the following features:

• Geometric abstractions. GEF4 offers different abstractions (euclidean, projective, pla-

nar), to perform double-based geometric calculations in two-dimensional space. Beside

many other basic planar abstractions GEF4 includes Bézier curves of arbitrary degree,

poly-Béziers, curved polygons, quadratic and cubic curves, and polylines. Furthermore,

visual anchors and connection abstractions are provided.

• Live feedback. Similar to FXDiagram, the user receives live feedback, e.g. in the form of

edges being automatically rerouted while moving nodes.

• Autolayout. GEF4 provides abstractions to integrate layout algorithms. It is intended

to align the provided abstractions in order to also use layout algorithms provided by the

KIELER framework.

• Diagram nesting. GEF4 includes nesting of diagrams and includes a semantic zoom

feature.

• Editors and views. GEF4 allows developers to create both graphical editors and views.

Editors and views can be deployed as part of standalone Java applications and may also

be deployed in the web.

• Infinite canvas. As opposed to previous versions, GEF4 uses an infinite canvas approach.

• Gestures and transformations. GEF4 supports multitouch gestures and offers rotations

and other affine transformations.

5nyssen.blogspot.co.at

46

nyssen.blogspot.co.at

Figure 6.3: Visualization architecture

• Undo and redo. This feature was also available in prior versions to GEF4.

The shown features are similar to the ones provided by FXDiagram. Both frameworks could,

thus, be used for implementing visualizations and one is not clearly superior to the other. The

fact that GEF4 is mainly still focused on developing graphical editors and that usability features

are less sophisticated than in FXDiagram, lead to the decision of preferring FXDiagram over

GEF4 in the practical part of this thesis. A detailed comparison of the two frameworks is beyond

the scope of this thesis and reveals potential for future work.

6.5 Conceptional Architecture

This section introduces a technology-independent architecture showing the main components of

a visualization. The components and their interactions are depicted in Figure 6.3. Please note

that the actual architecture may vary depending on the framework used. Different frameworks

may apply different architectural styles. However, most of the shown components are usually

required for visualizations and included in all architectures in some form. Interaction types,

e.g. procedure calls or events, may also vary depending on the concrete architecture and are

not specifically indicated in Figure 6.3. In the following the components are described in more

detail. References to the respective concepts of the visualizations implemented for Use Case 1

are given if appropriate.

Editor. Users usually require means to modify the Semantic Model in some form. The

Editor component allows the user to view and edit the Semantic Model. As described in Section

3.1, there are various types of Concrete Syntaxes of DSLs that can be used for interacting with

the underlying model. The Semantic Model can, of course, also be directly modified without the

need for an additional CS. The Editor component should offer a view and means for conveniently

and effectively interacting with the DSL.

47

In Use Case 1 visualizations were developed for languages, which were created using Xtext.

Xtext provides a textual editor for created languages out of the box. The editor can be used

within IDEA, Eclipse, and all common web browsers. It supports features such as syntax col-

oring, semantic coloring, error checking, auto-completion, automatic formatting, and rename

refactoring.

VisualizationView. Besides the view provided by the Editor, also a view for showing the

visualizations is required. The VisualizationView component should offer means for viewing

visualizations and interacting with them. The view itself should provide a canvas for displaying

graphical elements. Users should be able to navigate inside the canvas by mouse and gestures.

The respective handlers are managed by the VisualizationView component and events are for-

warded to other components if required.

FXDiagram, which was used in Use Case 1, uses an SWT-based Eclipse View within Eclipse.

JavaFX-content is embedded into the view by using FXCanvas, which bridges SWT and JavaFX.

Mouse and gesture events are converted respectively and can be handled by JavaFX event han-

dlers. FXDiagram offers functionality for navigating within the canvas and moving graphical

elements by drag and drop, as well as scroll and zoom gestures. The view uses tabs for manag-

ing multiple open visualizations at a time.

Menu. The user interface often offers menus for managing visualizations and accessing

features. The Menu component manages general and visualization-specific menus. A general

menu is necessary for letting the user decide which visualization to show. Visualization-specific

menus may be used for letting the user access operations and features related to the currently

shown visualization.

Using Xtext and FXDiagram, visualizations can be opened by accessing a context menu on

textual elements within the editor. The general menu shows all visualizations that can be opened

for the selected element. Selecting a menu entry opens the graphical view or a new tab, if a

visualization is already shown. A visualization-specific graphical context menu can be opened

by right-clicking in the graphical view. Actions such as zooming, autolayout, or opening new

visualizations that are based on the current visualization, can be accessed through this menu.

SemanticModelAccessor. The Editor component needs to access the Semantic Model for

viewing and editing its contents. Furthermore, the components responsible for creating visual-

izations need to access the Semantic Model as well. These components may, of course, not edit

the Semantic Model as visualizations are read only. The SemanticModelAccessor represents a

component for reading and editing the elements of the Semantic Model. The component is used

by the Editor as well as visualization and mapping components.

FXDiagram uses DomainObjectDescriptors for accessing domain objects. A method

allows reading domain objects safely by opening an appropriate transaction, executing a given

lambda, and finally closing the transaction and returning the result. The descriptors are used to

avoid having hard references to EMF objects, and for persisting domain objects when storing

diagrams.

48

VisualizationController. The VisualizationController is the central component for creating

and managing visualizations as well as propagating actions on a visualization. It is thus accessed

by components that are responsible for tasks related to visualization creation, synchronization,

mapping, and persistence.

In the implementation of Use Case 1 each visualization has a separate controller which is

linked with the visualization itself by means of FXDiagram’s XDiagram class which is used

for initializing diagrams and managing nodes and connections. This enables initiating the in-

terpretation and graphical construction of the visualization as well as the registration of menu

actions.

Interpreter. Often, the visualization cannot be created by simply mapping the Semantic

Model’s elements to graphical elements. The Interpreter component is used to analyze the Se-

mantic Model with respect to a specific aspect. After interpreting the model, the creation of the

visualization can be initiated. It is also possible to generate a textual report based on the data

obtained from the Interpreter. In fact, one of this thesis’ research questions aims at investigat-

ing if transforming the Interpreter’s output to a graphical visualization is necessary in order to

improve comprehension, or if a direct textual output of the Interpreter is sufficient.

In Use Case 1, the model has to be interpreted, for example, in order to find a valid path for

the traversal visualizations. The Interpreter transforms the room’s model into a graph and then

applies Dijkstra’s algorithm for finding the shortest path from the entry to the exit. Interpretation

is also necessary prior to creating the chart visualizations. We refer the reader to Chapter 4 for

detailed descriptions of the visualizations.

Execution. Models can not only be interpreted but may also be executed [19]. Models can

be made executable by using code generators or by using model interpreters. Model execution is

the basis for debugging, which allows step-wise execution, setting breakpoints, and inspecting

variables. The visualization and animation of an execution can support the user and may increase

comprehension of the designed system. The Execution component generates a sequence of

actions that can be visualized and corresponds to the execution of the model.

In Use Case 1 the Execution component is used to generate player actions for simulating the

level traversal. The actions are then visualized by transforming actions to animations.

Graphics. The Graphics component is used for generating static visualizations consisting of

graphical nodes and edges. By directly accessing the underlying media and graphics technology,

it should be possible to include images, video, audio, controls, as well as arbitrarily complex

geometric 2D and 3D shapes.

FXDiagram allows developers to use JavaFX for creating a diagram’s graphical elements.

Therefore, all of the features described in Section 6.3 can be used to create visualizations. Vi-

sualizations in Use Case 1, use the Graphics component for creating basic nodes and edges,

images, layouts, UI controls, charts, basic 3D shapes, and 3D models.

Animation. Animations are very important and should be used in order to guide the user’s

eye during all operations. Animations should also be extensively used in dynamic visualizations

49

required for visualizing executions and simulations. The Animation component is responsible

for creating these animations and adding dynamic images on top of static visualizations.

FXDiagram uses animations when executing operations such as zoom, autolayout, undo-

redo, opening nested diagrams, or opening the graphical menu. The visualizations of Use Case

1 use sprite animations for visualizing walk and fight cycles and transition animations in parallel

which are all created by the Animation component.

Dialog. Visualizations can and should be interactive. Users may need to declare some

information before a visualization can be created. The Dialog component is used for creating ar-

bitrary dialogs or forms which can be shown in the VisualizationView by themselves, or inserted

in visualizations.

In Use Case 1 the Dialog component is, for example, used for configuring the level traversal

simulation. Before the visualization is shown and the simulation is started, the user has to enter

the players properties, as well as the simulation speed. The Dialog component also inserts an

information dialog showing the player’s health points during the traversal.

Mapping. Elements shown in the editor view should be linked with their graphical repre-

sentation in the visualization if possible. As visualizations should improve the comprehension

of textual models, it may be beneficial for developers to highlight an element in one view if the

corresponding element is selected in the other view. The Mapping component manages the links

between elements of the Semantic Model and graphical elements such as nodes and edges.

Mappings are usually managed by FXDiagram and can be defined using the diagram con-

figuration. The default implementation allows to highlight elements in the editor by double-

clicking on graphical elements. Graphical elements can be revealed by using the context menu

on textual elements in the editor. All visualizations of Use Case 1 were created by using the de-

fault mapping behavior. Custom mapping implementations were required in Use Case 2, which

is introduced in Chapter 8. Because graphical elements which could not be mapped to any el-

ement of the Semantic Model were visualized, the diagram configuration could not be used for

specifying the mappings. In such cases, custom implementations are required.

Synchronization. Using a unidirectional relation between the editor and graphical view

greatly simplifies the synchronization between the two model representations. However, the

view has to be synchronized at some point after the developers changed the underlying model

in the editor. This is handled by the Synchronization component. Depending on the implemen-

tation, the graphical view can be synchronized automatically after performing changes in the

editor, after saving, or manually by explicitly requesting the graphical view to be synchronized.

The user should receive some kind of graphical feedback about how changes in the editor affect

the graphical view.

In FXDiagram synchronization is based on the mappings defined in the diagram configu-

ration and mostly handled by the framework out of the box. Changed and repairable elements

are highlighted by adding a blinking animation to nodes. Unrestorable elements are made trans-

parent. After manually requesting a synchronization, repairable elements are restored and un-

restorable elements removed.

50

Persistence. Depending on the framework and visualization, it might be possible for users

to edit parts of the visualization. It is important to note that changes to the visualization do,

however, not change the Semantic Model. For example, the position of graphical nodes may be

changed without affecting the underlying model. It may also be possible to delete elements in

order to view only specific parts of the visualization. Again, these changes are not propagated

to the model. After having edited a visualization, users may want to save the current state. The

Persistence component is responsible for storing and loading visualizations.

FXDiagram does not have a separate diagram model, but serializes the JavaFX scenegraph

directly in JSON notation. Using an active annotation developers can define which properties of

a class, e.g. representing a node, are important for saving. Some properties may be recoverable

from the domain object and do not have to be stored.

This section presented the main architectural components that may be used when creating

visualizations. As has been mentioned previously, the components should illustrate a visualiza-

tion from a conceptional point of view and should provide a basic insight into which components

are usually required. The architecture is technology-independent and components can be imple-

mented using an arbitrary language and framework.

The next chapter addresses implementation specific details, which are relevant when creating

visualizations with the technologies used in the practical part.

51

CHAPTER 7
Implementation

This chapter presents details on the implementation of visualizations. We first define the tech-

nologies used besides FXDiagram, namely Xtext and Xtend. After that, we show how some of

the components described in the previous chapter can be implemented and how developers can

utilize FXDiagram’s features. Finally, we present some of the challenges we discovered during

implementing the first use case. Most of these challenges are relevant when developing visual-

izations in general, and do not only occur when using FXDiagram. The implementation of Use

Case 1 is available on GitHub 1.

7.1 Technological Background

Xtext

Xtext 2 is a framework for the development of programming languages and DSLs. Languages

are defined using a dedicated grammar language. Starting from the defined grammar, a full

language infrastructure including a parser, linker, typechecker, compiler, and editing support for

Eclipse, IntelliJ IDEA and all common browsers is generated.

The grammar language consists of a collection of parser rules which define both the lan-

guage’s textual concrete syntax and its mapping to elements of the metamodel. The language

used in Use Case 1 was implemented using Xtext. A part of the language’s grammar, including

the parser rules Level and Room, is given in Listing 7.1. A parser rule begins with a name and

a colon, and is followed by the rule body. Each parser rule creates a corresponding class in the

metamodel. By default the parser rule’s name defines the name of the respective metaclass. This

means that objects in the Semantic Model are of a type that is defined by means of production

rules. For example, the parser rule Room creates a metaclass Room in the metamodel. Instances

of rooms, e.g. ’Room 1’, ’Room 2’, are represented in the Semantic Model as separate objects of

1github.com/alealt/ldl-visualization
2eclipse.org/Xtext

53

github.com/alealt/ldl-visualization
eclipse.org/Xtext

type Room. The first parser rule in every grammar defines where the parser starts. It also defines

the root element of the metamodel. String literals, which in Xtext can be expressed with either

single or double quotes, define keywords, i.e. parts of the DSL’s CS.

Attributes of metaclasses can be defined using three different assignment operators. The

simple = operator is used for attributes taking only one element. The += operator is used for

defining attributes of a list type. Finally, the ?= operator results in a boolean attribute, which is

set to true if the right side of the assignment was consumed. The symbol on the right side of the

assignment can specify one of four possible cardinalities. The possibilities are exactly one (no

operator), zero or one (operator ?), zero or more (operator *), and one or more (operator +). The

right hand side of an assignment can also be a cross-reference, which is indicated by a rule name

in square brackets. The rule name, however, does not refer to another rule but to a metaclass.

Level:

’spawn’ ’=>’ spawnRoom=[Room]

’goal’ ’=>’ goalRoom=[Room]

rooms+=Room+

;

Room:

’room’ name=ID ’{’

’columns’ ’=’? columns=INT

’rows’ ’=’? rows=INT

entry = Entry

exit = Exit exitConnection = Connection?

walls += Wall*
trapdoors += Trapdoor*
monsters += Monster*

’}’

;

...

Listing 7.1: LDL grammar

Xtext internally relies on the Eclipse Modeling Framework (EMF) and uses EMF models as

the in-memory representation, i.e. the Semantic Model. Ecore is a variant of the EMOF standard

and acts as EMF’s meta-metamodel. Ecore models, thus, are used for representing a language’s

metamodel. Instances of the metamodel correspond to the Semantic Model. The metamodel

defines the types of the Semantic Model as EClasses, which can have EAttributes. The

Semantic Model consists of EObjects. This model is created by the parser when processing a

textual input file.

Xtend

Xtend 3 is a dialect of Java which compiles into readable Java source code. Xtend aims at having

a more concise and readable syntax than Java and provides features such as type inference, ex-

tension methods, lambda expressions, and multi-line template expressions. Xtend is completely

interoperable with Java, which means that all Java libraries can be reused.

The language itself is implemented in Xtext and is a proof of concept of how involved a

language implemented using Xtext can be [4]. Xtend is statically typed and uses the Java type

3eclipse.org/Xtend

54

eclipse.org/Xtend

system. Most of the language concepts are similar to Java. However, Xtend aims at avoiding

redundant linguistic features that make programs verbose. For example, semicolons are optional,

and methods are public by default. Furthermore, variables are declared using var or val and

their type is inferred. Xtend also provides some syntactic sugar for getter- and setter-methods.

For example, instead of writing p.setName(”...”) developers can simply write p.name

= ”...”. Furthermore, parenthesis are optional when invocating methods without parameters.

One of Xtend’s features is especially useful for the initialization of objects. Objects repre-

senting layout containers, or graphical shapes often have many parameters used for customiza-

tion. Builder classes were introduced for simplifying the initialization of such objects. The

implementation, however, was based on two bugs in JDK6 and JDK7 4. The bugs were fixed in

JDK8 which lead to Builders not working anymore in later versions. The code usually used for

the initialization of a rectangle in JavaFX 8 is shown in Listing 7.2. There are, obviously, many

redundant parts. The only way of writing this code more concisely is by using constructors with

many parameters. In the given example, the use of the constructor does, however, worsen the

readability.

Rectangle rectangle = new Rectangle(50,30, Color.BLUE);

rectangle.setStroke(Color.RED);

rectangle.setStrokeWidth(1.5);

rectangle.setArcWidth(15);

rectangle.setArcHeight(12);

Listing 7.2: Rectangle creation in Java

Xtend’s with operator is very useful for improving the readability of such initialization. The

with operator (=>) passes the left hand side argument to the lambda on the right side and returns

the left hand after that. This enables to write very readable initialization code such as shown in

Listing 7.3. The with operator also facilitates the creation of object trees. This is very useful as

JavaFX’ scene graph consists of a hierarchical tree of nodes.

val rectangle = new Rectangle => [

width = 50

height = 30

fill = Color::BLUE

stroke = Color::RED

strokeWidth = 1.5

arcWidth = 15

arcHeight = 12

]

Listing 7.3: Rectangle creation in Xtend

FXDiagram is almost entirely written in Xtend and also promotes the use of Xtend when

creating diagram views. Therefore, some of the code snippets in the following sections are

written in Xtend as well.

7.2 Details

This section provides implementation specific information gained during this thesis’ practical

part. It is also demonstrated how a framework for creating visualizations could implement the

most important components described in the previous chapter.

4mail.openjdk.java.net/pipermail/openjfx-dev/2013-March/006725.html

55

mail.openjdk.java.net/pipermail/openjfx-dev/2013-March/006725.html

Diagram Configuration

FXDiagram provides a high-level mapping API 5 which can be used for creating diagram views

for models. The mapping configuration can be registered using an extension point, which is

offered by both the Eclipse and IDEA 6 integration. A diagram configuration serves three pur-

poses:

1. Define how domain objects are mapped to nodes, edges, and diagrams.

2. Define on which domain objects a “Show in FXDiagram” action is available.

3. Define how the domain objects can be accessed and serialized.

Diagram configurations can be implemented in Java or Xtend. The structure of a diagram

configuration for a state machine is given in Listing 7.4. FXDiagram also provides abstract

superclasses for Xtext-based models, Eclipse-based models, and IDEA’s PSI models.

class StatemachineDiagramConfig extends AbstractDiagramConfig {

// fields to define mappings (1)

val stateNode = new NodeMapping<State>...

val stateLabel = new NodeHeadingMapping<State>...

val transitionConnection = new ConnectionMapping<Transition>...

val eventLabel = new ConnectionLabelMapping<Event>...

// method to define entry points (2)

override protected <ARG> entryCalls...

// method defining the domain object access (3)

override protected createDomainObjectProvider...

}

Listing 7.4: FXDiagram diagram configuration structure (taken from the FXDiagram website)

Mappings are implemented as fields in the diagram configuration class and are used to map

domain objects to diagram elements. Domain objects can be mapped to nodes, connections,

labels, and diagrams. Mappings allow the developer to specify what else to create when a

mapping is executed (e.g. connections when a node is created). Mappings can also be used to

specify that a custom implementation of a node, connection, or diagram should be used. This

enables developers to create arbitrary diagram elements utilizing JavaFX. Listing 7.5 shows a

mapping definition for the 2D room diagram used in Use Case 1.

val roomDiagram = new DiagramMapping<Room>(this, ’roomDiagram’, ’RoomDiagram’) {

override XDiagram createDiagram(IMappedElementDescriptor<Room> descriptor) {

new RoomDiagram(descriptor)

}

override calls() {

// when adding a room diagram also add a node for monster, wall, trapdoor, ...

monsterNode.nodeForEach[monsters]

wallNode.nodeForEach[walls]

trapdoorNode.nodeForEach[trapdoors]

entryNode.nodeFor[entry]

exitNode.nodeFor[exit]

}

}

Listing 7.5: Mapping definition

5http://jankoehnlein.github.io/FXDiagram/hla
6jetbrains.com/idea

56

http://jankoehnlein.github.io/FXDiagram/hla
jetbrains.com/idea

Entry points are used to define on which kind of language elements the user can execute

which mappings. Listing 7.6 shows a part of the entry point definition of the diagram definition

used in Use Case 1. Users can execute a “Show in FXDiagram as” action on elements of type

Level and Room by right clicking on these elements in the editor. When selecting an element of

type Level, users can execute the levelDiagram mapping which opens the level overview

diagram in which rooms are represented as simple nodes. When selecting an element of type

Room, users can choose between three mappings: The level overview diagram, the 2D room

visualization, and the 3D visualization. References to the respective domain objects are passed

to the mapping, and can then be accessed when initializing custom diagrams and nodes.

override protected <ARG> entryCalls(ARG domainArgument, extension MappingAcceptor<ARG>

acceptor) {

switch domainArgument {

Level:

add(levelDiagram, [domainArgument.getContainerOfType(Level)])

Room: {

add(levelDiagram, [domainArgument.getContainerOfType(Level)])

add(roomDiagram, [domainArgument])

add(room3DDiagram, [domainArgument])

}

....

}

}

Listing 7.6: Entry point definition

The access and serialization of domain objects is defined by means of domain object providers.

This is predefined for developers when using abstract diagram configuration classes, e.g. for

Xtext-based models.

After having defined the diagram configuration developers have to specify how the runtime

infrastructure of the IDE can pick up the configuration. Using Xtext and Eclipse, configurations

are registered to the extension point in the plugin.xml or fragment.xml in the ui project. This is

demonstrated in Listing 7.7.

<extension point=de.fxdiagram.mapping.fxDiagramConfig">

<config

id="at.ac.tuwien.big.leveldesign.LevelDiagramConfig"

label="Level"

class="at.ac.tuwien.big.leveldesign.ui.LevelDesignExecutableExtensionFactory:

at.ac.tuwien.big.leveldesign.ui.config.LevelDiagramConfig">

</config>

</extension>

Listing 7.7: Registration of diagram configuration

External Interpretation

As described in the previous chapter, the Interpreter component is used to analyze the Seman-

tic Model with respect to a specific aspect prior to creating the visualization. The Interpreter,

however, does not necessarily have to be implemented in the language used for creating the vi-

sualizations. In the second use case, which is introduced in Chapter 8, the main interpretation

was done using Prolog. Prolog is a declarative language and a program’s logic is expressed in

57

terms of relations. A computation is initiated by running queries over the relations. The Prolog-

Interpreter was integrated using Projog 7, which is an implementation of the Prolog language

for the Java platform, and SWI-Prolog 8, a Prolog environment. The Interpreter component

can, thus, be constructed using the frameworks and languages best suited for interpreting the

underlying model.

7.3 Challenges

This section discusses some of the particularities and challenges of implementing visualizations.

The challenges were identified while working with the technologies used in the practical part.

Developers, however, face most of these challenges irrespective of the technology they use. The

solutions may, of course, vary depending on the technologies used.

Mapping Non-Existing Semantic Elements

As illustrated in Section 7.2, using the high-level mapping API provided by FXDiagram, graph-

ical elements can be conveniently mapped to elements of the Semantic Model. A visualization

framework should provide a mapping concept similar to this, in order to facilitate the fast de-

velopment of visualizations. By doing so the framework can provide default implementations

for synchronization and interactions between the editor view and the visualization view (e.g.

selecting an element in one view, and highlighting the corresponding element in the other view).

While developing the visualizations for the second use case, we experienced a common

situation which could not be easily handled by the framework used. It may be necessary to view

graphical elements, e.g. nodes or connections, which can not be uniquely mapped to an element

of the Semantic Model. This was the case in Use Case 2 as a model for describing a multi-

dimensional state machine consisted of a sequence of nested rules which describe when and

how state transitions can occur. One visualization, which basically is a state machine diagram,

aims at making these implicit state transitions explicit. Nodes representing the overall state of

the system, however, do not have a corresponding element in the Semantic Model. Therefore, the

high-level mapping API provided by FXDiagram could not be used for defining these mappings.

While it is very easy to manually add nodes and edges to a diagram in FXDiagram, manually

adding functionality for the interactions and synchronization between the textual and graphical

element is a bit more cumbersome.

Another common situation which also hindered the usage of the mapping API in the use

case given above, are multiplicities between graphical elements and semantic elements different

than 1:1. The framework assumes that one graphical element, always has exactly one corre-

sponding element in the textual editor and, therefore, also in the Semantic Model. However, in

the example given above it is possible that one rule can yield multiple transitions in the state

machine diagram. It might even be possible (although this was not the case in Use Case 2), that

a transition is yielded by multiple rules. Visualizations may, therefore, require 1:1, 1:n, and even

n:m relations between graphical elements and semantic elements.

7projog.org
8swi-prolog.org

58

projog.org
swi-prolog.org

A final interesting challenge with respect to mappings are languages which make use of

Xtext’s cross-references. Intuitively a cross-reference may be visualized by means of a connec-

tion, which starts at the element in which the cross-reference is defined and ends at the referenced

element. To the best of our knowledge, this is also not possible using the high-level mapping

API. This is due to the fact that a graphical element, e.g. the connection, again has to be mapped

to an element of the Semantic Model, which in the case of a cross-reference does not exist.

Connections can, of course, be added to the diagram manually. Interaction behavior has to be

implemented manually, however, as well.

In the following we present our solutions for adding interaction behavior to elements which

were not added to diagrams using the mapping API.

The first direction — from the graphical view to the editor — can simply be added by using

the functionality already provided by FXDiagram. The code shown in Listing 7.8 shows the

construction of a connection for a given transition t. Besides setting the source and target nodes

of the connection the handling of the click event is important. By accessing the domain object

provider, the editor can be accessed. The method getCachedEditor accesses the Xtext

editor and selects the text region corresponding to the given transition’s XtextEObjectID

which uniquely identifies the semantic element. Using FXDiagram, it is thus very easy to select

arbitrary elements in the textual view by using the respective IDs. We refer the interested reader

to the source code of FXDiagram for details on the implementation of getCachedEditor.

var conn = new XConnection => [

source = t.source

target = t.target

onMouseClicked = [it |

if (it.getClickCount() ==1) {

root.getDomainObjectProvider(XtextDomainObjectProvider)

.getCachedEditor(t.xtextEObjectID, true, true)

}

]

]

Listing 7.8: Interaction from view to editor

The second direction — from the editor to the graphical view — is slightly more involved

and is based on the interaction implementations of FXDiagram. We would like to reveal the

graphical elements by selecting a context menu entry of the corresponding textual element. The

Eclipse IDE uses commands to contribute actions to the user interface. There are three extension

points which are relevant when adding a context menu and the respective actions to the editor.

• org.eclipse.ui.commands. A command is a declarative description of a component with-

out implementation details.

• org.eclipse.ui.handlers. The handler defines the behavior. This is done by referencing

the Java class, which contains the behavior implementation.

• org.eclipse.ui.menus. This extension point is used to define where the command should

be included in the user interface.

A code snippet showing the relevant configuration of these three extension points in the

plugin.xml is given in Listing 7.9. The command name specifies the name of the context menu

59

entry. The menu’s extension point specifies that the entry is shown in context menus in the

text editor. The position of the menu entry is defined by before=group.edit. Finally, the

behavior when selecting the context menu entry is defined in the class ShowInViewHandler.

The ShowInViewHandler extends AbstractHandler and implements the method

execute. The most important parts of the implementation, without error handling, are shown

in Listing 7.10. Starting from the selected text the corresponding selected EObject is computed.

After that, the active graphical view and its current diagram is located. Finally, the method for

highlighting the respective elements in the diagram is called.

<extension point="org.eclipse.ui.commands">

<command name="Reveal Rule In Diagram"

id="org.xtext.example.mydsl.ui.handler.showInViewCommand">

</command>

</extension>

<extension point="org.eclipse.ui.handlers">

<handler class="org.xtext.example.mydsl.ui.MDML04ExecutableExtensionFactory:

org.xtext.example.mydsl.ui.overallstate.ShowInViewHandler"

commandId="org.xtext.example.mydsl.ui.handler.showInViewCommand">

</handler>

</extension>

<extension point="org.eclipse.ui.menus">

<menuContribution locationURI="popup:#TextEditorContext?before=group.edit">

<command commandId="org.xtext.example.mydsl.ui.handler.showInViewCommand">

</command>

</menuContribution>

</extension>

Listing 7.9: Context menu configuration

override Object execute(ExecutionEvent event) {

val editor = EditorUtils.getActiveXtextEditor(event)

val selection = editor.selectionProvider.selection as ITextSelection

editor.document.readOnly [

var selectedElement = eObjectAtOffsetHelper.resolveElementAt(it, selection.offset)

val page = PlatformUI?.workbench?.activeWorkbenchWindow?.activePage

val activePart = page?.activePart

val view = activePart.site.page.showView("de.fxdiagram.eclipse.FXDiagramView")

((view as FXDiagramView).currentRoot.diagram).highlightElement(selectedElement)

]

}

Listing 7.10: Handler implementation

Node Positioning in 2D Space

Frameworks used for creating graphical editors and views often allow the user to move and ar-

range graphical elements on the canvas. The autolayout feature also re-positions elements in

order to find a layout which presents the graphical contents as clear as possible. FXDiagram, for

example, by default supports the fluent movement of nodes and connections as well as rearrang-

ing elements by using autolayout. This, however, is not possible if the position of a graphical

element on the canvas represents semantic information in the underlying model. For example,

the visualization of a room in Use Case 1 heavily relies on correctly positioning elements on

the canvas. Monsters, trapdoors, entries, and exits have to be positioned with respect to the co-

ordinates defined in the Semantic Model. Walls are constructed and positioned by interpreting

60

coordinates correctly. Moving or automatically arranging these elements would, therefore, result

in a change of the underlying model and has to be prevented.

FXDiagram implements behavior by means of dedicated classes. Any kind of user inter-

operability or liveness of a graphical shape is encompassed in such a behavior. This allows to

compose multiple behaviors instead of implementing everything in the shapes. Avoiding the

movement of nodes can, therefore, simply be achieved by removing the move behavior from

nodes, which are positioned based on semantic information.

3D Visualizations and 3D Modeling

JavaFX offers interesting and easy to use 3D graphics features. The creation of three dimensional

scenes using basic polygons such as boxes and spheres can easily be achieved by using well

designed APIs. Introducing cameras, adjusting perspectives and introducing lighting is possible

as well. JavaFX’ capabilities of creating 3D content is also very interesting for visualizations.

We, therefore, also tried implementing a 3D visualization in the first use case. This immediately

yielded the question of in how far FXDiagram can be used for visualizing 3D content. In the

following we present our findings.

FXDiagram is definitely a great framework for implementing two dimensional diagrams.

However, at the time of writing it seems that FXDiagram was not designed with the aim of sup-

porting the creation of 3D diagrams. We, therefore, identified some of the areas that are affected

by changes when extending a 2D visualization framework in order to support 3D content.

• Navigation. Navigating in a 3D scene is very different than in 2D. In a 2D diagram it

is sufficient to support exploring the canvas by two scrollbars or drag-and-drop gestures.

Exploring a scene in 3D requires gestures for navigating along all three axes, as well as

changing the user’s perspective on the scene.

• Interaction. The interaction with and transformation of graphical elements is also more

complex in 3D scenes. Usually nodes are moved by drag-and-drop gestures in 2D. This

is, however, not sufficient for moving nodes to an arbitrary position in 3D. Implementing

intuitive ways for modifying connections may is also be more difficult in 3D. The same

holds for transformations such as rotation or scaling. Furthermore, the integration between

editor and view may need to be revised.

• Autolayout. Usually layout algorithms have to be changed for supporting the autolayout

feature in 3D. Automatic edge routing may also need to be changed.

• Animations. Animations used by the framework for improving the user experience may

need to be extended. FXDiagram extensively uses animations for guiding the user’s eye,

for example, during undo and redo, when opening nested nodes, or during autolayouting.

Most of these areas are deeply rooted in the case of FXDiagram. Therefore, it appears not

to be possible to create 3D visualizations without loosing any of the framework’s main features.

However, JavaFX provides a class named SubScene for embedding 3D content into a 2D

scene. This allows developers to include arbitrary 3D content in FXDiagram’s 2D canvas. By

61

Figure 7.1: 3D Model in Maya

deactivating FXDiagram’s tools used for handling selections, gestures, and mouse events, it

is possible to implement custom event handlers for the 3D scene. This enables implementing

the navigation behavior users expect when exploring 3D visualizations. Using SubScene, of

course, has the major disadvantage that non of FXDiagram’s features can be used anymore. This

also includes the high-level mapping API and thus, the predefined integration between textual

editor and graphical view. The integration needs to be added manually, similar as shown in the

previous section.

When moving from 2D to 3D scenes, this also has an effect on the included media used.

Images in 2D may need to be replaced by 3D models. Creating these more complex models

may be tedious when using the Java API for creating 3D content. 3D models are hardly created

using textual programming languages. 3D modeling is the process of creating a virtual three-

dimensional model of some physical object by using specialized software. Well-known appli-

cations for 3D modeling, animation, and rendering are, for example, Blender 9 and Autodesk

Maya 10. Maya is mostly used for creating 3D assets for use in cinematic films, television, and

game development. 3D models are often based on polygons, which consist of geometry based

on vertices, edges, and faces. By combining many individual polygons, polygon meshes are

created, which can later be rendered. A 3D model in Maya is shown in Figure 7.1. The shown

wireframe lines represent the edges of each individual polygon.

Ideally, it should be possible to import 3D models, which are created in these modeling ap-

plications, into JavaFX. There are various model importers by InteractiveMesh 11 which allow

the import of models in 3ds, COLLADA, FXML8, OBJ, STL, and X3D formats. The STL and

9blender.org
10autodesk.com/products/maya
11http://www.interactivemesh.org/models/jfx3dbrowser.html

62

blender.org
autodesk.com/products/maya
http://www.interactivemesh.org/models/jfx3dbrowser.html

Figure 7.2: 3D Model including the skeleton

OBJ importers were used in Use Case 1 in order to show complex 3D models of monsters, en-

tries, and exits.

As discussed previously, dynamic visualizations using animations are a great way of visu-

alizing behavior. Animation classes provided by JavaFX such as TranslateTransition

or RotateTransition can easily be used also in 3D scenes. The walk cycle of the player

during a level traversal simulation was implemented by means of a very simple sprite animation

in the 2D visualization. A walk cycle in a 3D traversal visualization, however, is only possible

if the 3D model is animated. Animation of 3D models, however, is a bit more complex again.

3D models are usually animated by once more using applications such as Maya.

3D models are animated by creating a transform hierarchy to which the 3D geometry is

attached. This task is usually called rigging or character setup. Just like humans, 3D models

need a skeleton for moving. The skeleton has to be attached to the initially created geometry.

This process is called skinning. Figure 7.2 shows the rigged 3D model. The image was created

by José Pereda12.

Finally, the 3D model can be animated. Motion is defined by specifying the model’s key

poses and using interpolators for creating the frames between those key poses. A very simple

walk cycle can already be created by only defining four key poses.

Once again, a way to import these animated 3D models would be worth striving for. In

2009, an experimental demo application called 3DViewer was created by Oracle for importing

3D models into JavaFX. 3DViewer supports Maya and OBJ files and is also capable of importing

animated models. Basically, this importer translates the Maya dependency graph into a corre-

sponding JavaFX dependency graph. Concerning animation, Maya’s keyframes are converted

to JavaFX timelines. Unfortunately we were not able to successfully import the animated 3D

models created for the first use case. The importer only supports a subset of Maya’s nodes and

does not appear to be working correctly with models created with more recent versions of Maya.

After all, 3DViewer is an experimental project for demonstration purposes and it is not actively

maintained.

12jperedadnr.blogspot.co.at

63

jperedadnr.blogspot.co.at

To conclude, switching from 2D to 3D views introduces a lot of technical challenges which

have to be addressed in order to provide developers with a reliable and usable framework for

creating 3D visualizations.

64

CHAPTER 8
Evaluation

Use Case 1 was created to investigate on the suitability of using FXDiagram and JavaFX as

technologies for implementing visualizations. Use Case 2 aims at exploring the usefulness of

visualizations in practice and is utilized for evaluation purposes. This chapter introduces Use

Case 2, and describes the evaluation method as well as the results of the evaluation.

8.1 Use Case 2

While we invented Use Case 1 for demonstrating the capabilities of FXDiagram, Use Case 2

intends to show the actual impact of visualizations in practice. We, therefore, needed a textual

DSL that is used on a regular basis by engineers. An Austrian automotive supplier permitted us

to work with a DSL that is concerned with integration tests of devices utilizing work benches.

The work benches are used to analyze the measured devices properties in different states. It is

often not obvious which states are reachable, which are not reachable, which states have already

been covered, and which states are impasses. This represents an ideal use case for applying

visualizations, and analyzing the impact of visualizations on users’ comprehension.

The DSL and Requirements

The language is a state-machine-like language that uses multidimensional states. This means

that a user can define multiple state variables and each state variable can take on a state of a

given range. Events are represented in the form of one or more inputs, having a predefined

range as well. A model’s behavior is defined by given-when-then clauses which can also be

nested. An example model is depicted in Listing 8.1. When taking a look at the example model,

the language has a very concise syntax which lets developers quickly and precisely define the

behavior in specific situations. There are, however, many aspects that might make it hard for a

user to fully understand the model.

65

device example {

public statevar DeviceState {Pause,Standby,Measure} = Pause;

public statevar UserLevel {Manual,Remote} = Remote;

input UserAction{SPAU,STBY,SMES,SMAN,SREM};

given UserLevel = Manual when UserAction = SREM then UserLevel -> Remote;

given UserLevel = Remote {

given DeviceState != Measure when UserAction = SMAN then UserLevel -> Manual;

given DeviceState = Pause {

when UserAction = STBY then DeviceState -> Standby;

when UserAction = SMES then DeviceState -> Measure;

}

given DeviceState = Standby {

when UserAction = SPAU then DeviceState -> Pause;

when UserAction = SMES then DeviceState -> Measure;

}

given DeviceState = Measure {

when UserAction = SPAU then DeviceState -> Pause;

when UserAction = STBY then DeviceState -> Standby;

}

}

}

Listing 8.1: Example model written in the DSL of Use Case 2

Firstly, the user is mainly interested in the overall system state. One system state is composed

of all current states of the state variables. The rules in the model change only one state variable

in one then-clause. It might be difficult for users to relate these changes to the overall state of

the system. Secondly, negations such as DeviceState != Measure in given statements

make it harder for users to understand in which states rules can actually be applied. When

trying to understand the rule with the given negation, users first have to check, which states

DeviceState can be in. Thirdly, when-statements can not only be an input event such as

UserAction = SREM, but also state transitions, such as UserLevel -> Remote. This

means that it is possible that a transition based on one rule, can trigger a transition defined in a

completely different rule. Fourthly, nesting of rules might also result in models that are not very

easily comprehensible.

Considering all of these aspects in one model, might make it really hard for developers

to understand how a model works, to comprehend the consequences of changing, adding, or

removing rules, and to spot impasses or errors. Exactly in situations like this visualizations

should help developers. Visualizations, therefore, should make implicit transitions explicit, show

reachable and unreachable states, highlight impasses, and support developers with tasks such as

design, development, understanding code of other developers, and anomaly detection.

Implementation

We implemented a total of seven visualizations for the DSL described previously. In the follow-

ing we shortly describe these visualizations and show the most important ones that were also

used in the interviews.

One of the most important visualizations shows the textual model in the form of a state

machine diagram. Nodes represent an overall state in the system and contain the values of all

state variables. A node is, according to the number of state variables, divided into a respective

66

Figure 8.1: Overall state diagram

number of subareas, having different background colors and containing the value of the state

variable. The state machine’s transitions are implicitly defined in the text by defining rules. The

visualization makes these transitions explicit in the form of connections between nodes. The

initial state is indicated similar to UML notation by a small solid filled circle. Impasses are

highlighted by adding a red border to a node that constitutes an impasse. Unreachable states

have a higher opacity than reachable ones. The overall state diagram for the example model

given above is shown in Figure 8.1.

This visualization should mainly help developers get an overview of the model and show

all overall states the system can be in. Explicitly showing possible transitions should make it

easier for users to understand which states are reachable from a given state. The textual view is

integrated with the diagram, in a way that selecting a connection in the diagram selects the rule

that yielded this transition in the textual editor. By right-clicking on a rule in the textual editor

and selecting a context menu entry, all corresponding connections of that rule can be revealed

in the diagram view. This integration could, for example, help users trying to understand the

model of another developer. This visualization should also help users during design and devel-

opment by showing the structure of the system and highlighting impasses and unreachable states.

Based on the overall state diagram we implemented another visualization which aims at

showing the execution of the state machine. After activating the visualization using the graph-

ical context menu a panel with buttons for all possible input events is shown. Using the panel,

the user can simulate input events. The current state is indicated by applying a blink-animation

to the respective node. Previously visited nodes and connections are colored to highlight the

67

Figure 8.2: Diagram discovery

chosen paths. A chart visualization with statistical information about the theoretical number of

nodes and actually reachable nodes can also be accessed through the graphical context menu.

The overall state diagram can, of course, get unclear very quickly if the number of state

variables and states in the textual model increases. Our customer ensured that not too many

state variables and states are used in their models, however, the case of having a large number of

states has to be addressed. We used a feature provided by FXDiagram for handling this situation.

Using diagram discovery users can explore a diagram and only view the parts they are interested

in. Starting from the initial node users can discover neighbors of nodes using a chooser. When

selecting a node in the chooser, the node and the respective connections are added to the dia-

gram. This should help users get a better overview of diagrams containing a large amount of

states. The choosing of a new neighbor node is shown in Figure 8.2.

While the overall state diagram aims at giving the user an overview of the whole system, we

also implemented a visualization that shows only a smaller part of the system. The separate state

visualization shows separate state machines for each state variable. This enables developers to

understand which states of a state variable are actually reachable, and how these states can be

reached. Figure 8.3 shows the visualization for the textual example model given above.

Often users may not be interested in the overall diagram, and also do not want to incremen-

tally explore the overall diagram, by adding more and more states to an initial state. Users may

only be interested in a state, and its neighbors. When selecting one of the neighbors the diagram

68

Figure 8.3: Separate state diagram

should be cleared and only the selected state and its neighbors should be shown. This is yet

another way of exploring a diagram by displaying even a smaller part of the whole diagram.

This should also help users in the process of trying to understand a model of another developer.

Figure 8.4 shows this neighbor discovery visualization.

Finally, we wanted to give developers a possibility to analyze models. Two questions that

may be of importance for developers are ‘Is the following state reachable?’, and ‘Is an impasse

reachable from the following state?’. We implemented a visualization in which users first can

interactively select the state to analyze and if a reachability and/or impass analysis should be

performed. The user then gets the result of this analysis in the form of another diagram. One

result of an analysis is shown in Figure 8.5. The blue connections highlight the path from the

initial node to the selected node, whereas the red connections show the path to an impasse from

the selected node. This visualization could be helpful during anomaly detection and debugging

activities.

8.2 Interviews

Interviews are one of the best evaluation approaches for getting a detailed assessment by users

for answering the research questions defined in the introduction. This section describes the

interview method and design as well as the results.

69

Figure 8.4: Neighbor discovery

Figure 8.5: State analysis

70

Method and Design

The interviews were designed according to Boyce and Neale’s [5] guide for conducting in-depth

interviews. An in-depth interview is “a qualitative research technique that involves conducting

intensive individual interviews with a small number of respondents to explore their perspectives

on a particular idea, program, or situation”. In-depth interviews are especially appropriate when

detailed information about a person’s thoughts are required, or when a new issue should be ex-

plored in detail. Investigating on if and how visualizations can improve the comprehension of

a textual model requires detailed information about the thoughts of developers. We, therefore,

think that conducting in-depth interviews is a suitable evaluation method for this thesis.

During the interview, four selected visualizations are shown to the interviewee. The selected

visualizations are the overall state diagram, separate state diagram, neighbor discovery, and state

analysis. After introducing the interviewee to a visualization, the interviewer always asks the

same four questions. The first question addresses in how far the visualizations are useful and

during which tasks the visualization can help developers. It should also show if the interviewees

identify the same goals as the developer of the visualization. The second question explicitly asks

if the visualization helps in understanding a textual model faster. The third question addresses

RQ2 and asks the interviewee if the comprehension improvement of reports and visualizations

differ. A potential report containing as much information as the visualization is shown to the

interviewee on a sheet of paper. The fourth visualization-specific question asks the interviewee

for remarks on the shown visualization. These four questions are asked after showing each of

the four visualizations.

After that, three general questions are asked. The first general question aims at getting feed-

back on the navigation and interaction in the graphical view as well as the integration between

textual and graphical view. The second general question asks for potential additional visual-

izations. The third general question should help with identifying problems the user has or had

when working with the DSL, that are not solved by the visualizations shown previously. The

user does not have to provide a solution in the form of a visualization to these problems. We

refer the interested reader to the Appendix A for the full interview guide including the detailed

questions and the reports.

In total, 6 in-depth interviews were conducted by the same interviewer over a period of two

weeks. Each session was audio-recorded and the interviewer additionally wrote down the most

important information on questionnaires. All interviewees are experts in using the respective

textual DSL described above. The interviewees have, however, not been using visualizations for

this DSL prior to the interview sessions and were confronted with our developed visualizations

for the first time during the sessions.

Results

In the following, we present the results of the interview sessions, which, according to Boyce

and Neale [5], should be done by using qualitative descriptors rather than trying to quantify the

information. They state that “numbers and percentages sometimes convey the impression that

results can be projected to a population, and this is not within the capabilities of this qualitative

71

Figure 8.6: Overall state diagram (repeated from page 67)

research procedure” [5]. As the interview addressed four visualizations and some general ques-

tions we will also divide this section accordingly. The results presented in this section will be

interpreted further in Chapter 10. We will also answer our research questions there.

Overall State Diagram

Most participants agreed that the Overall State Diagram (see Figure 8.6) is helpful. They had

different motivations for classifying the visualization as helpful including

• the improved general overview of a model

• the depiction of state changes and state transitions

• the faster identification of unreachable states

• the depiction of testable parts

• the visualization of concurrent states

• a simplification in checking the correctness of existing models

• support during development of firmware behavior

• support during debugging

• simplified exploration of existing state machines

72

Furthermore, most interviewees agreed that the visualization helps to understand textual

models faster. Several participants justified this feeling by stating that the visualization provides

a better overview of the model, especially if the model size increases, and that relationships

between states are shown.

When designing the visualizations we intended to make implicit transitions explicit, improve

the overview of models, and show impasses as well as unreachable states with this visualizations.

We also expected that these improvements should support users during development and during

comprehending foreign code. Based on the results of the interview, the participants identified

the visualization’s main goals.

Concerning the comparison of the visualization and the report, all users agreed that the visu-

alization is preferred. The prevalent feeling was that the visualization gives a better overview and

is easier to understand. Users stated that “images are usually clearer and faster to read” (“Bilder

sind in der Regel übersichtlicher und schneller zu lesen”) and that “the graphical [representa-

tion] is more intuitive and easier to comprehend cases of high complexity” (“ die Graphisch[e]

[Darstellung] ist intuitiver und bei großer Komplexität leichter zu verstehen”). One user also

stated that there is no difference if the model is small enough.

There are also some important suggestions for improvement. First of all, one user would

like to have a possibility for filtering the visualization based on state variables, i.e. collapsing

all state variables except for one. Secondly, some users identified problems with the used layout

algorithm, e.g. unnecessary intersections of edges and misplaced or overlapping labels. Thirdly,

users expected line breaks within state names. Finally, there were some remarks with respect to

adding more information to the legend and changing colors for improving the usability.

Separate State Diagram

All users agreed that the Separate State Diagram (see Figure 8.7) can be helpful. The intervie-

wees stated that the visualization could support users with

• getting an overview by separating the state variables

• analyzing the completeness of models

• understanding models better because of reducing the complexity

• simplifying development in teams

Several participants felt that the visualization can help understand a textual model faster due

to the fact that it can decrease the complexity of very large models. It may also be easier and

faster to understand the behavior of a single state variable and might be useful for new developers

trying to understand an existing model.

We expected that the visualization should reduce the complexity by only showing some

parts of the overall model, should show reachable and unreachable nodes, and should support

developers during the design and development phase. We can, therefore, say that the users

identified the most important goals we had in mind while designing the visualization.

73

Figure 8.7: Separate state diagram (repeated from page 69)

Concerning the preference for visualization or reports, several users preferred the visualiza-

tion due to the clarity and improved overview. However, some users also favored the report as it

does not have any disadvantages compared to the visualization.

All participants agreed that the visualization should include the dependencies between the

state variables. Besides that, some users would prefer other colors (not only gray), and state

variable names that are not cut off (which again is a space problem).

Neighbor Discovery

Several participants felt that the Neighbor Discovery visualization (see Figure 8.8) is helpful.

They stated that the visualization could be potentially beneficial for

• getting to know a model

• highlighting the possible next states which is helpful in manual test case definition

• understanding larger models

• developing state machines

Some users stated that the visualization is not that useful because the previous states disap-

pear when selecting a new node. Users, which require to see previous states and require a ‘his-

tory’ can use the State Discovery visualization, which has not been separately evaluated in the

interviews. State Discovery was even mentioned by some users who ‘accidentally’ discovered

74

Figure 8.8: Neighbor discovery (repeated from page 70)

this visualization during the interview. We, therefore, conclude that exploration visualizations

such as Neighbor Discovery and State Discovery may be helpful for developers.

One half of the users stated that the visualization shows a small part of the overall system

in detail which could be helpful for understanding very large models faster. However, the other

half did not find any advantages in using this visualization for understanding models faster.

We expected that the visualization should help users with exploring models, i.e. possible

states and their neighbors, and understanding models faster. Some of the participants identified

the exploration goal or agreed that the visualization supports faster comprehension of textual

models. However, a similar amount of participants stated the exact opposite. Therefore, most

participants did not identify our intended goals.

Concerning the comparison of the visualization and the report, all users agreed that the vi-

sualization is preferred. One user stated that he or she prefers the report for a small amount of

neighbors and the visualization for states with many neighbors. There was a similar outcome

with the Overall State Diagram. This leads to the assumption that visualizations may only be

clearly superior to reports if the amount of information to visualize is large enough. We, how-

ever, think that the visualization is preferred here also because the interpretation is interactive,

i.e. a state has to be selected in order to view its neighbors. This is simpler in a graphical

representation by simply clicking on the desired node.

Several participants strongly suggested to include the predecessor states in the visualization.

Furthermore, some participants suggested to combine this visualization with the Overall State

Visualization by simply highlighting the currently selected node and hiding irrelevant nodes.

75

Figure 8.9: State analysis (repeated from page 70)

State Analysis

The prevalent feeling was that the State Analysis visualization (see 8.9) could also be helpful.

However, many participants noted that they prefer the Overall State Diagram as it provides a

greater benefit (especially overview) to them. The interviewees stated that the visualization

could support users

• during exploring a model or only parts of a model (in the case of larger models)

• with interactively defining and generating test cases

• with debugging and analysis of test results

• during path determination tasks

• with building the overall diagram step-by-step

• with becoming acquainted with the model through exploration

• with the comprehensibility of paths.

Some participants stated that exploring the model using this visualization could also lead to

faster comprehension. Most participants, however, thought that the visualization does not give

an overview of the model and, therefore, does not help understand the textual model faster. We

also think that the participants often refer to the Overall State Diagram as it is also possible to

analyze impasses and reachability requirements there.

76

Our goal with this visualization was to show if a specific state or an impasse is reachable.

This should enable analyzing models and should help developers during debugging. As we did

not primarily intend to speed up the comprehension process with this visualization we can say

that the users identified the main purposes we thought of.

Concerning the preference for visualization or reports, the results are inconclusive. Some

users prefer the graphical and some the textual representation. One user stated that he prefers the

graphical one “although the textual representation is clear and comprehensible as well” (“aber

die textuelle Darstellung ist auch übersichtlich und nachvollziehbar”). Given the fact that the

reports of the model were short in this example but much longer for the Overall State Dia-

gram, this again indicates that reports may be acceptable if they are not too long. One user also

indicated that he or she prefers textual representations for state sequences. The fact that this vi-

sualization/report is also interactive challenges our assumption that visualizations are preferred

if interaction is required.

Participants again pointed out the layouting issues discussed previously. Furthermore, a user

stated that the text which is selected when clicking on a graphical node does not always match

the user’s expectation. More specifically, the inner most rule should be selected if a transition

corresponding to a nested rule is selected.

General Results

The participants had many suggestions for improving the interaction between textual and graph-

ical views. As previously mentioned, some interviewees pointed out that the inner most rule

should be highlighted in the editor when selecting a transition. One user suggested to also show

reports in addition to the visualization and editor. Some participants would like to have the

possibility of applying filters in order to show only specific parts of a visualization, e.g. only

some state variables. A suggestion that was given multiple times was the integration of two or

more visualizations. The Neighbor Discovery could, for example, be integrated with the Overall

State Diagram by highlighting the relevant parts and decreasing the opacity of other elements.

Finally, users suggested implementing a UML-like sequence diagram and an additional tabular

visualization.

77

CHAPTER 9
Related Work

Improving the comprehensibility of models by means of visualizations is an interdisciplinary

task. Therefore, there is a large body of relevant work from related areas such as software

visualization, program comprehension, model execution, and model simulation. However, few

publications propose new visualization techniques for improving program comprehension and

evaluate the newly introduced approach. At the time of writing we could not find any literature

on the exact topic of improving comprehension of DSLs by utilizing visualization techniques. In

the following we, therefore, introduce some of the relevant related work in the area of improving

comprehension of software in general by using visualization.

9.1 Improving Comprehension by using Visualization

In 2000, Storey et al. [28] explored whether program understanding tools enhance or change

the way developers understand programs. They think that tools should support users with their

preferred strategy for understanding programs, rather than imposing a fixed strategy that may

not be suitable. A user study was conducted that compared three tools for browsing source code

and exploring software structures. In the study 30 participants used the tools for solving several

program understanding tasks that require a broad range of comprehension strategies. The study

was divided into three parts. In the first one the participants had to perform formal tasks on a

given program. In the second one the participants had to complete a questionnaire, and in the

third one an interview was conducted. The results revealed that in general the tools did enhance

the users’ preferred comprehension strategies while solving tasks. For example, the ability to

view dependency relationships and switching between high-level views and source code were

considered useful features. In some instances, however, the tools hindered the user’s progress

due to the fact that the tools did not support some comprehension strategies. This forced users

to change their chosen comprehension strategy, which is undesirable. The interviews revealed

that usability is also very important when using tools for improving program comprehension.

79

In 2007, Lange et al. [17] claimed that existing tooling does not offer sufficient support for

understanding UML models and evaluating their quality. They implemented four additional in-

teractive views and conducted an experiment, validating whether there is a difference between

existing views and the new views with respect to comprehension correctness and comprehension

effort. The MetaView view was used for visualizing relations between diagrams with different

levels of abstraction. ContextView shows a model element, and all the model elements it relates

to in all existing diagrams. In MetricView three different metrics are visualized on top of a regu-

lar class diagram. Finally, the UML-CityView combines MetaView with MetricView, and shows

a colored box indicating the value of the metric on top of the model elements. 100 participants

completed a questionnaire about comprehension tasks on a given model. The results showed that

the effort needed to complete tasks is reduced by 20% and the correctness of the comprehension

tasks is increased by 4.5% .

Cornelissen et al. [8] conducted a controlled experiment, quantitatively evaluating the added

value of execution trace visualization for program comprehension in 2011. The large amount

of trace data usually created by applications can only be used for improving comprehension by

applying automatic reductions and visualization techniques. Execution traces are most often vi-

sualized in the form of directed graphs or UML sequence diagrams. The 34 participants, which

were divided into two groups had to complete eight typical tasks in the context of software

maintenance which aimed at gaining an understanding of a representative system. The control

group completed the tasks only by using the Eclipse IDE, while the experimental group used

the Eclipse IDE as well as EXTRAVIS, a tool for the visualization of large traces. The results

of the experiment show a 22% decrease in time needed for a given task and a 43% increase in

correctness of the results for the group using execution trace visualization.

In 2011, Wettel et al. [32] analyze the capabilities of using the city metaphor, a 3D software

visualization approach, for improving the comprehension of programs. Using CodeCity, a tool

for creating visualizations, they visualize software systems as three-dimensional cities, where

classes are buildings and packages are districts. They map the number of methods on the height

of buildings, the number of attributes on the base size, and the number of lines of code on the

color of buildings. This leads to visualizations such as shown in Figure 9.1. 41 participants were

involved in the experiment and had to complete tasks in adaptive and perfective maintenance.

Each participant was assigned to either the control group or the experimental group. The control

group worked with Eclipse IDE and Excel spreadsheets containing metrics and design problem

data. The experimental group worked with CodeCity. The results of the experiment show that

the visualization approach leads to an improvement in correctness (+24%) and completion time

(-12%) over the Eclipse IDE and spreadsheet approach. Using CodeCity turned out to be very

valuable when working on tasks which require getting an overview of the system. However, the

group using CodeCity did not perform better on tasks which required very precise answers.

In 2013 Sharafi et al. [25] empirically investigated the efficiency of graphical representations

against textual ones in presenting software requirements. They conducted an experiment with

28 participants and used an eye tracking system for analyzing the exact location and duration

80

Figure 9.1: Software system visualized in CodeCity (taken from [32])

of where the subject is looking. Using the gathered data it is possible to compute the subject’s

visual effort and visual paths while reading requirements. The experiment compared structured

textual representations of requirements with graphical representations created by a tool called

TROPOS. By analyzing the participants’ answers on comprehension questions and the data gath-

ered by using the eye tracking system the researchers calculated answer accuracy, overall time,

and the visual effort. Subjects were randomly assigned to four groups. Each subject worked

on one model using the textual representation, on another model using the graphical represen-

tation, and on a third one using both textual and graphical representations. The results show no

statistically-significant differences between the representation types when considering accuracy.

However, subjects spent more time and effort while working with the graphical representation.

The participants did state that they preferred working with the graphical view, however, per-

formed the tasks more efficiently while working with the textual representation. The experiment

also showed that subjects perform significantly better with respect to time and effort spent while

working with the mixed view after first working with the two views separately. This shows that

working with graphical representations requires some training before they can be used benefi-

cially.

In 2013 Sorva et al. [27] provided a comprehensive survey of program visualization systems

intended for teaching beginners about the runtime behavior of computer programs. The review

showed that program visualization systems for beginners are very often short-lived research pro-

totypes, which are discarded as soon as the system had been constructed or an evaluation study

was carried out. The survey also revealed that many of the visualization systems have been eval-

uated informally. It is, therefore, unclear whether using these systems actually has resulted in

significant learning gains. Usually the more rigorously performed experiments were conducted

by the authors themselves, often in their own teaching. Many of these experiments’ results were

positive and showed that the visualizations served some purpose. All in all, Sorva et al. conclude

that the existing literature on program visualization systems largely supports the use of program

81

visualization in introductory programming education, but that it is not possible to draw more

nuanced conclusions with respect to learner engagement.

9.2 Other Related Work

In 2009 Hussein et al. [14] explored the rather unusual but highly interesting approach of sup-

plementing visualizations by sonification in order to improve code comprehension. They imple-

mented an Eclipse plugin which generates sonifications when hovering over a method. Three

values, representing the number of code lines, total number of method calls in this method, and

the total number of calls to a java.utils.io method were used as an information source.

The plugin then generated rain from the left speaker, water stream from the right speaker, and

cello from the central speaker representing these three values. The sonic cue volume increases

with the increased numeric value of the given information. In the experiment 10 participants

answered questions about an unfamiliar code base first by using a visualization and then the

sonification. The results indicate that information sonification can be as effective as information

visualization at some levels, including correctness and comprehension. However, most of the

participants prefer using visualization over sonification in practice. Sonification, therefore, is

rather a supplement to than a replacement for visualization.

82

CHAPTER 10
Summary and Conclusion

This thesis aimed at investigating the potential of using visualizations for improving the com-

prehension of DSLs. We presented general information about DSLs as well as the technical lan-

guage concepts of DSLs. We analyzed and described ways of visualizing the Semantic Model

such as the Concrete Syntax, Visualizations, and Reports. The need for a base technology which

could be used for creating high quality visualizations lead to an analysis of existing frameworks

based on Draw2D as well as new frameworks based on JavaFX. Due to the fact that there was not

any literature about creating visualizations using JavaFX this thesis is based on two use cases.

The first use case aimed at exploring the capabilities of using FXDiagram and JavaFX for cre-

ating visualizations in the domain of game level design. Based on the experience gained from

the first use case we presented a conceptional visualization architecture as well implementation

details and implementation challenges. The second use case intended to explore the practical

relevance of visualizations in the domain of automotive testing and served as an evaluation use

case. We present and interpret our results in the following section and answer the research

questions defined in Chapter 1. Finally, we compare this thesis to the discussed related work

presented in Chapter 9 and present some remaining challenges which can be addressed in future

work.

10.1 Interpretation of Results

We will interpret our results in the process of answering the research questions in detail below.

RQ1. Do visualizations increase users’ comprehension of models?

The results presented in Chapter 8 indicate that visualizations can support users of DSLs

in various ways. All of the participants agreed that the main visualization — the Overall State

Diagram — provided a benefit in some form or another. The answers concerned with the other

visualizations did not yield such clear result because some users assessed the visualizations as

being helpful and others did not consider them as helpful. Nevertheless, we can say that also

83

these visualizations provided benefits to some users. This indicates that the helpfulness of a

visualization greatly depends on the user’s way of working and even on the user’s taste. Both

are very subjective which means that, just like in traditional software engineering, it is very

important to define the exact requirements and design of visualizations in close cooperation with

future users. When designing the visualizations we had our ideas of what goals could be fulfilled

and where the visualization could be used. The results of the interview showed that some users

identified these goals, however, other users identified very different goals and application areas.

Therefore, the extent to which a visualization is helpful for a user greatly depends on the user

and the quality of the visualization. Different users require different visualizations. It is, thus,

reasonable to provide multiple visualizations for one model, similarly to offering multiple CSs

like described in Section 3.1. That way users can choose the perfect visualization based on their

needs. This can, of course, be work-intensive and expensive and has to be evaluated in advance.

Considering the users detailed requirements and suggestions, however, is vital regardless of

creating multiple or just one visualization.

When providing multiple visualizations it is important to find an intuitive way of integrating

them. In Section 3.2 we mention that integrating the textual view and the visualization is im-

portant. However, the interviews revealed that it is also very important for users to conveniently

switch between different visualizations and not get ‘lost’ in the process of doing so. For exam-

ple, users did not immediately see the relation between the State Analysis and the Overall State

Diagram. Integrating analysis functionality into the Overall State Diagram could help users not

lose the context of their operations.

Based on the results of the interview we are convinced that visualizations can increase users’

comprehension of models, especially when considering the factors described above.

RQ2. Are visualizations superior to reports which highlight a particular aspect in textual nota-

tion?

This question aimed at investigating in how far it is necessary to provide visualizations for

the results of a model interpretation or if a textual report is sufficient as well. The interview

results suggest that most users prefer visualizations to reports. There were, however, some

participants stating that the textual report does not have any disadvantages compared to the visu-

alization, especially in the case of small models. We, therefore, conclude that visualizations may

be superior to reports, especially if the amount of information resulting from the interpretation

is very large. This basically boils down to the general question of in how far visualizations can

present data in a more comprehensible way than texts can. Furthermore, which one is preferred

may also depend on in how far the interpretation is interactive or not. For example, the Neighbor

Discovery visualization could also be replaced by an interactive command-line-like report. This

report could output the neighbors in textual form and also take the next state as a textual input.

This leads to the general discussion of command-line versus graphical interface. Therefore, once

again it greatly depends on the users subjective preferences. We, however, believe that visual-

izations are superior to reports especially when a large amount of interpretation data has to be

shown.

RQ3. Is JavaFX a feasible technology for implementing visualizations for DSLs?

84

The interviews’ results revealed that usability and aesthetics are very important for users.

There were many suggestions for changing colors, adding more information to the legend, im-

proving the routing of edges, and enhancing positioning of nodes and labels. This strengthens

our assumption that a base technology used for creating visualizations should be capable of ad-

dressing usability requirements. We presented the capabilities of JavaFX and FXDiagram in

Chapter 4 and have to state that we were not restricted during the development of most of the

visualizations. There were some problems when creating 3D content, however, we are, not sure

if there are base technologies that make this significantly easier. FXDiagram provides many fea-

tures out of the box including basic integration between textual and graphical view, and all major

navigation and interaction features. We cannot claim that FXDiagram is clearly superior to any

of the frameworks discussed in Chapter 5 or GEF4. However, we would recommend FXDiagram

for the development of visualizations as it focuses on usability, provides much functionality out

of the box, and has a suitable abstraction level. Furthermore, it does not restrict developers and

allows to leverage the full potential of JavaFX.

10.2 Comparison with Related Work

As mentioned in Chapter 9 we could not find any literature on the exact topic of using visualiza-

tions in order to improve the comprehension of DSLs. Therefore, the main difference between

the related work and the work at hand is that related work addresses visualization in software

in general, while this thesis focuses on DSLs. Furthermore, most of the related work is mainly

concerned with using tools for visualizing very general aspects, such as software structures

and architecture, dependencies, or metrics. This thesis, however, deals with highly-customized

domain-specific visualizations which do not only focus on visualizing structural aspects of the

textual model, but rather highlighting aspects that can be useful for the developer in specific

situations. Highlighting aspects often requires an interpretation of the underlying model often

under consideration of the languages semantics and the domain. Most of the related work had

more sophisticated experiments for evaluating the visualization approaches and could also quan-

titatively present results. The visualizations created for this thesis were evaluated by interviews

and qualitative descriptors.

10.3 Limitations and Future Work

There are two main concerns about the validity of our results for RQ1. Firstly, we only con-

structed visualizations for one language in a specific domain. The results could theoretically be

very different with a different language or a different domain. Future experiments should, there-

fore, analyze visualizations of multiple languages and domains. Secondly, the results are based

solely on the interviewees’ impressions on the visualization’s usefulness. Future experiments

should test the actual improvement by using questions giving evidence that developers working

with visualizations can actually comprehend models better or faster.

Concerning RQ2 we established the assumption that visualizations are superior to reports es-

pecially if there is a large amount of information resulting from the interpretation. This assump-

tion could be addressed in a dedicated experiment. As this thesis’ focus was on the construction

85

of visualizations, the main effort was put into the visualizations. The reports were only mockups

and not highly sophisticated. A future experiment should, therefore, use well-constructed and

well-designed reports in order to produce reliable results. It would also be interesting to explore

limitations and advantages of reports and visualizations and show whether it is useful to combine

the two.

RQ3 was answered mainly with our experiences gained during this thesis’ practical part.

This thesis was not intended to be a technology comparison. It would, however, be necessary to

implement the same visualization with multiple languages and frameworks in order to find the

best technology for implementing visualizations.

Further challenges include the analysis and implementation of various filters for visualiza-

tions such as suggested by the participants of the interviews as well as finding solutions to the

technical challenges described in Section 7.3.

86

APPENDIX A
Interview documents

87

Interview	Guide	
	

Zweck	des	Interviews	
Die	Aufgaben	eines	Softwareentwicklers	—	unter	anderem	Design,	Implementierung,	

Verständnis	von	Code	anderer	Entwickler,	Fehlerfindung	sowie	Wartung	—	erfordern	alle	

grundlegendes	Verständnis	des	Programms.	Das	Ziel	der	Arbeit	und	dieses	Interviews	ist	es,	

zu	untersuchen,	ob	Visualisierungen	von	domänen-spezifischen	Sprachen	das	Verständnis	

von	textuellen	Programmen	verbessern	können	und	Entwickler	dadurch	bei	ihren	Aufgaben	

unterstützt	werden	können.	Zusätzlich	soll	herausgefunden	werden,	ob	zur	Verbesserung	

des	Verständnisses	graphische	Repräsentationen	(„Visualisierungen“)	verwendet	werden	

sollten	oder	ob	eine	Analyse	/	Interpretation	des	Programms	mit	textueller	Ausgabe	des	

Ergebnisses	(ein	sogenannter	„Report“)	ausreichend	ist.	

	

Ablauf	Einführung	(vor	Interview)	
	

• Begrüßung	

• Vorstellung	Interviewer	

• Zweck	des	Interviews	beschreiben	(siehe	oben)	

• Vertraulichkeit	(siehe	Einwilligungserklärung)	

• Erklärung	zum	Ablauf	des	Interviews	(siehe	unten)	und	der	Dauer	(ca.	30-45	

Minuten)	

• Möglichkeit	für	Fragen	

• Unterschrift	bei	Einwilligungserklärung	

	

Ablauf	Interview	
	

• Interviewer	öffnet	Programm	interview.mDML04	

• Allgemeine	Einführung	in	Entwicklungsumgebung	durch	Interviewer	(Texteditor	vs.	

graphische	Ansicht,	wie	kann	graphische	Ansicht	upgedated	werden)	

• Öffnen	der	ersten	Visualisierung	(Overall	State	Diagram)	

• Dem	Interviewee	einige	Minuten	Zeit	geben	um	sich	mit	der	Visualisierung	vertraut	

zu	machen	(Programmcode	ändern	lassen	und	darauf	hinweisen,	dass	die	graphische	

Ansicht	immer	upgedated	werden	kann;	Programm	evtl.	auch	so	abändern	lassen,	

dass	Sackgassen	entstehen)	

• Anschließend	die	Fragen	zur	Visualisierung	1	(1.1.-1.4.)	stellen	und	Antworten	des	

Interviewees	notieren	

• Öffnen	der	zweiten	Visualisierung	(Separate	State	Diagram)	

• Vorgehen	analog	zur	vorherigen	Visualisierung.	Fragen:	2.1.-2.4.	

• Öffnen	der	dritten	Visualisierung	(Neighbor	Discovery)	

• Vorgehen	analog	zur	vorherigen	Visualisierung.	Fragen:	3.1.-3.4.	

• Öffnen	der	vierten	Visualisierung	(State	Analysis)	

• Vorgehen	analog	zur	vorherigen	Visualisierung.	Fragen:	4.1.-4.4.	

• Abschließend	allgemeine	Fragen	(5-7)	stellen	

• Noch	Fragen	oder	Kommentare?	

• Für	Interview	bedanken	

Details	zu	den	Fragen	(nur	für	Interviewer)	
Es	werden	zuerst	zu	vier	ausgewählten	Visualisierungen	jeweils	die	gleichen	vier	Fragen	

gestellt.	Abschließend	gibt	es	noch	drei	allgemeine	Fragen,	welche	sich	nicht	auf	spezifische	

Visualisierungen	beziehen.	

	

Die	Fragen	1.1.,	2.1.,	3.1.	und	4.1.	untersuchen,	ob	die	Visualisierungen	für	den	Interviewee	

sinnvoll	sind,	wie	genau	sie	ihm	helfen	und	in	welchem	Bereich	die	Visualisierung	hilfreich	

sein	kann.	Die	Visualisierungen	haben	immer	ein	Ziel	und	versuchen	etwas	Bestimmtes	zu	

erreichen	(siehe	unten).	Es	wäre	interessant,	ob	die	Interviewees	durch	die	Beantwortung	

dieser	Fragen	ähnliche	Ziele	identifizieren	oder	ob	die	Visualisierungen	für	sie	andere	(oder	

gar	keine)	Ziele	erreichen.	Die	untenstehenden	Ziele	sollten	dem	Interviewee	gegenüber	

deshalb	natürlich	nicht	direkt	erwähnt	werden.		

	

Ziele	der	Visualisierungen	(aus	Sicht	des	Entwicklers	der	Visualisierungen):	

Visualisierung	1:	Explizit-machen	von	impliziten	Transitions,	Übersicht	über	die	erreichbaren	

Gesamtzustände	verbessern,	Sackgasse	und	Möglichkeiten	in	eine	Sackgasse	zu	laufen	

aufzeigen,	Unterstützung	bei	Design	und	Entwicklung	sowie	beim	Verstehen	fremden	Codes	

Visualisierung	2:	Explizit-machen	von	impliziten	Transitions,	Komplexität	durch	Zeigen	eines	

Teiles	des	Gesamtsystems	verringern,	Erreichbarkeit	von	States	einzelner	Variablen	

veranschaulichen	und	nichtbenötigte/nicht	erreichbare	States	identifizieren,	Unterstützung	

bei	Design	und	Entwicklung	

Visualisierung	3:	Explorativ	Überblick	über	Programm	bzw.	States	und	deren	Nachbarn	

erhalten,	Bedeutung	des	Programms	schneller	verstehen	

Visualisierung	4:	Schnelles	Aufzeigen	ob	ein	bestimmter	Zustand	erreichbar	ist,	wie	dieser	

erreichbar	ist	und	ob	von	dem	gewählten	Zustand	eine	Sackgasse	erreichbar	ist,	genauere	

Analyse	des	Programms	ermöglichen	und	Entwickler	bei	z.B.	Fehlerfinden	/	Debugging	

unterstützen	

	

Die	Fragen	1.2.,	2.2.,	3.2.	und	4.2.	zielen	konkret	darauf	ab,	ob	die	Interviewees	glauben,	

dass	man	durch	die	Visualisierungen	textuelle	Programme	schneller	oder	besser	verstehen	

kann.	

	

Die	Fragen	1.3.,	2.3.,	3.3.	und	4.3.	sollen	feststellen	ob	Visualisierungen	(graphische	nicht-	

editierbare	Repräsentationen)	überhaupt	notwendig	sind,	oder	ob	auch	ein	textueller	

Output	einer	Analyse/Interpretation	ausreicht	um	das	Verständnis	zu	verbessern.	Zu	diesen	

Fragen	gibt	es	zum	Programm	interview.mDML04	textuelle	Darstellungen	der	

Visualisierungen	im	Zusatzdokument	Reports.pdf.	

	

Fragen	1.4.,	2.4.,	3.4.	und	4.4.	sind	für	Anmerkungen	zu	den	entsprechenden	

Visualisierungen	gedacht.	

	

Frage	5	dient	dazu	Feedback	über	die	Usability	bzgl.	Navigation	und	Interaktion	in	der	

graphischen	Ansicht,	Integration	zwischen	textueller	und	graphischer	Ansicht	etc.	

einzuholen.	

	

Frage	6	und	7	sollen	potentielle	Möglichkeiten	für	weitere	Visualisierungen	identifizieren.	

Frage	6	fragt	dabei	explizit	nach	möglichen	Visualisierungen	und	Frage	7	nach	Problemen	

bei	der	Verwendung	der	DSL	(für	die	der	Interviewee	aber	keine	Lösung	in	Form	einer	

Visualisierung	haben	muss).	

	

Öffnen	der	Visualisierungen	
Nach	Starten	der	IDE	können	die	Visualisierungen	wie	folgt	geöffnet	werden:	

	

Visualisierung	1:	Rechtsklick	auf	„device	Interview“	im	Texteditor	->	„Show	in	FXDiagram	

as...“	->	„Overall	State	Diagram	(Device)“	

Visualisierung	2:	Rechtsklick	auf	„device	Interview“	im	Texteditor	->	„Show	in	FXDiagram	

as...“	->	„Separate	State	Diagram	(Device)“	

Visualisierung	3:	Rechtsklick	auf	„device	Interview“	im	Texteditor	->	„Show	in	FXDiagram	

as...“	->	„Overall	State	Neighbor	Discovery	(Device)“	

Visualisierung	4:	Zuerst	Visualisierung	1	öffnen.	Anschließend	in	der	graphischen	View	

rechtsklicken	um	das	graphische	Kontextmenü	zu	öffnen.	Im	Kontextmenü	das	„Kompass-

Symbol“	(Reachability	and	Impasse	Analysis	(R))	auswählen.	Die	Visualisierung	kann	durch	

erneutes	Klicken	auf	das	„Kompass-Symbol“	wieder	geschlossen	werden.	

	

	

Interaktion	und	Integration	
Navigation	sowie	Positionierung	der	graphischen	Elemente	erfolgt	durch	Drag	&	Drop.	Zoom	

sowie	Undo	und	Redo	können	durch	Standard-Shortcuts	oder	das	graphische	Kontextmenü	

durchgeführt	werden.		

	

Sofern	möglich	und	sinnvoll	sind	die	textuelle	und	die	graphische	Ansicht	verbunden.	

Selektiert	man	z.B.	eine	Connection	in	der	graphischen	Ansicht,	wird	die	entsprechende	

textuelle	Regel	im	Editor	markiert.	Mit	Rechtsklick	auf	eine	Regel	im	Texteditor	und	„Reveal	

rule	in	Diagram“	werden	in	der	graphischen	Ansicht	Connections	markiert	welche	aufgrund	

der	gewählten	Regel	zustande	kommen.	

	

Die	graphische	Ansicht	kann	durch	den	Benutzer	nach	Änderung	des	Programmcodes	

upgedated	werden:	Im	rechten	oberen	Bereich	der	graphischen	Ansicht	befindet	sich	das	

Schraubenschlüssel-Symbol	().	Klickt	man	darauf	wird	die	graphische	Ansicht	

aktualisiert.	

	

Anmerkung:	Bitte	achten	Sie	darauf,	dass	die	Diagramme/graphische	Ansicht	nicht	

gespeichert	werden.	Das	Speichern	bzw.	Laden	von	komplexeren	Visualisierungen	ist	bei	

Verwendung	von	FXDiagram	nicht	einfach	umzusetzen	und	wurde	bei	den	Visualisierungen	

nicht	implementiert.	Falls	sich	eine	Visualisierung	nicht	öffnen	lässt	(es	wird	nur	eine	leere	

weiße	Ansicht	geöffnet)	liegt	dies	höchstwahrscheinlich	daran,	dass	das	Diagramm	zuvor	

gespeichert	wurde.	Dies	lässt	sich	leicht	dadurch	erkennen,	dass	im	Package	Explorer	ein	

fxd-File	vorhanden	ist.	Nach	Löschen	dieses	Files	sollte	wieder	alles	fehlerfrei	funktionieren.	

	

Einwilligungserklärung	zur	Erhebung	und	

Verarbeitung	personenbezogener	Interviewdaten	
	

	

	

Diplomarbeit:	 	 	 	 Visualizing	Domain-Specific	Languages	Utilizing	JavaFX	

Diplomand:	 	 	 	 Alexander	Altenhuber	,	BSc	

Universität:	 	 	 	 TU	Wien	 	 	 	 	

	

	

	

Interviewer:		 	 	 	 ___	

	

Datum:		 	 	 	 ___	

	

	

	

	
Ich	erkläre	mich	dazu	bereit,	im	Rahmen	der	genannten	Diplomarbeit	an	einem	Interview	

teilzunehmen.	Ich	wurde	über	das	Ziel	und	den	Verlauf	des	Projekts	informiert.	Ich	kann	das	

Interview	jederzeit	abbrechen,	weitere	Interviews	ablehnen	und	meine	Einwilligung	in	eine	

Aufzeichnung	und	Niederschrift	des	Interviews	zurückziehen,	ohne	dass	für	mich	dadurch	

irgendwelche	Nachteile	entstehen.		

	

	

Ich	bin	damit	einverstanden,	dass	das	Interview	mit	einem	Aufnahmegerät	aufgezeichnet	

und	dann	von	den	Mitarbeiterinnen	und	Mitarbeitern	des	Studienprojekts	in	Schriftform	

gebracht	wird.	Für	die	weitere	wissenschaftliche	Auswertung	des	Interviewtextes	werden	

alle	Angaben	zu	meiner	Person	aus	dem	Text	entfernt	und/oder	anonymisiert.	Mir	wird	

außerdem	versichert,	dass	das	Interview	in	wissenschaftlichen	Veröffentlichungen	nur	in	

Ausschnitten	zitiert	wird,	um	sicherzustellen,	dass	ich	auch	durch	die	in	den	Interviews	

erzählte	Reihenfolge	von	Ereignissen	nicht	für	Dritte	erkennbar	werde.		

	

	

	

	

	

	

	

Vorname,	Nachname:		 	 ___	

	

Ort,	Datum,	Unterschrift:	 	 ___	

	 	

	

Visualisierung	1:	Overall	State	Diagram	
	

1.1. Ist	die	Visualisierung	für	Sie	hilfreich?	Wenn	ja:	Weshalb	ist	die	Visualisierung	

für	Sie	hilfreich	und	bei	welchen	Tätigkeiten	kann	Sie	die	Visualisierung	

unterstützen?	Wenn	nein:	Weshalb	ist	die	Visualisierung	nicht	hilfreich?		

	

	

	

	

	

	

	

	

	

1.2. Inwiefern	hilft	die	Visualisierung	dabei,	das	entsprechende	textuelle	

Programm	schneller	oder	besser	zu	verstehen?		

	

	

	

	

	

	

	

	

	

1.3. Visualisierung	vs.	Report	(Report	1	im	Zusatzdokument	Report.pdf):	

Präferieren	Sie	die	graphische	oder	textuelle	Repräsentation?	Bitte	begründen	

Sie	Ihre	Antwort.		

	

	

	

	

	

	

	

	

	

1.4. Haben	Sie	Anmerkungen	oder	Verbesserungsvorschläge	zu	dieser	

Visualisierung?	

	

	

	

	

	

	

	

	

	

Visualisierung	2:	Separate	State	Diagram	

	

2.1. Ist	die	Visualisierung	für	Sie	hilfreich?	Wenn	ja:	Weshalb	ist	die	Visualisierung	

für	Sie	hilfreich	und	bei	welchen	Tätigkeiten	kann	Sie	die	Visualisierung	

unterstützen?	Wenn	nein:	Weshalb	ist	die	Visualisierung	nicht	hilfreich?		

	

	

	

	

	

	

	

	

	

2.2. Inwiefern	hilft	die	Visualisierung	dabei,	das	entsprechende	textuelle	

Programm	schneller	oder	besser	zu	verstehen?		

	

	

	

	

	

	

	

	

	

2.3. Visualisierung	vs.	Report	(Report	2	im	Zusatzdokument	Report.pdf):	

Präferieren	Sie	die	graphische	oder	textuelle	Repräsentation?	Bitte	begründen	

Sie	Ihre	Antwort.		

	

	

	

	

	

	

	

	

	

2.4. Haben	Sie	Anmerkungen	oder	Verbesserungsvorschläge	zu	dieser	

Visualisierung?	

	

	

	

	

	

	

	

	 	

	

Visualisierung	3:	Neighbor	Discovery			
	

3.1. Ist	die	Visualisierung	für	Sie	hilfreich?	Wenn	ja:	Weshalb	ist	die	Visualisierung	

für	Sie	hilfreich	und	bei	welchen	Tätigkeiten	kann	Sie	die	Visualisierung	

unterstützen?	Wenn	nein:	Weshalb	ist	die	Visualisierung	nicht	hilfreich?		

	

	

	

	

	

	

	

	

	

3.2. Inwiefern	hilft	die	Visualisierung	dabei,	das	entsprechende	textuelle	

Programm	schneller	oder	besser	zu	verstehen?		

	

	

	

	

	

	

	

	

	

3.3. Visualisierung	vs.	Report	(Report	3	im	Zusatzdokument	Report.pdf):	

Präferieren	Sie	die	graphische	oder	textuelle	Repräsentation?	Bitte	begründen	

Sie	Ihre	Antwort.		

	

	

	

	

	

	

	

	

	

3.4. Haben	Sie	Anmerkungen	oder	Verbesserungsvorschläge	zu	dieser	

Visualisierung?	

	

	

	

	

	

	

	

	

	

Visualisierung	4:	State	Analysis			

	
4.1. Ist	die	Visualisierung	für	Sie	hilfreich?	Wenn	ja:	Weshalb	ist	die	Visualisierung	

für	Sie	hilfreich	und	bei	welchen	Tätigkeiten	kann	Sie	die	Visualisierung	

unterstützen?	Wenn	nein:	Weshalb	ist	die	Visualisierung	nicht	hilfreich?		

	

	

	

	

	

	

	

	

	

4.2. Inwiefern	hilft	die	Visualisierung	dabei,	das	entsprechende	textuelle	

Programm	schneller	oder	besser	zu	verstehen?		

	

	

	

	

	

	

	

	

	

4.3. Visualisierung	vs.	Report	(Report	4	im	Zusatzdokument	Report.pdf):	

Präferieren	Sie	die	graphische	oder	textuelle	Repräsentation?	Bitte	begründen	

Sie	Ihre	Antwort.		

	

	

	

	

	

	

	

	

	

4.4. Haben	Sie	Anmerkungen	oder	Verbesserungsvorschläge	zu	dieser	

Visualisierung?	

	

	

	

	

	

	

	

	

	

Allgemeines	

	
5. Was	könnte	man	bei	den	gezeigten	Visualisierungen	in	Bezug	auf	Navigation	und	

Interaktion	in	der	graphischen	Ansicht	sowie	Integration	zwischen	textueller	und	

graphischer	Ansicht	verbessern?	

	

	

	

	

	

	

	

	

	

	

6. Welche	zusätzlichen	Visualisierungen	wären	für	Sie	noch	hilfreich?	

	

	

	

	

	

	

	

	

	

	

7. Gibt	es	Probleme	bei	der	Verwendung	der	domänen-spezifischen	Sprache	welche	durch	

die	vorhandenen	bzw.	in	Frage	6	vorgeschlagenen	Visualisierungen	noch	nicht	gelöst	

sind?	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	 	 	

Reports	
	

Reports	werden	verwendet	um	einen	gewissen	Aspekt	eines	Programms	zu	beleuchten.	

Ähnlich	wie	Visualisierungen	sind	Reports	readonly,	verwenden	aber	statt	einer	graphischen	

eine	textuelle	Notation.	Die	untenstehenden	Reports	werden	bei	den	Fragen	1.3.,	2.3.,	3.3.	

bzw.	4.3.	benötigt.		Die	Reports	beziehen	sich	auf	das	unveränderte	Programm	

interview.mDML04.	

	

	

	

	 	

	 	 	 	

Report	1:	textuelle	Darstellung	von	Visualisierung	1	(Frage	1.3.)	

	
Reachable States (DeviceState/UserLevel)

Pause/Remote (Initial), Pause/Manual, Measure/Remote,

Standby/Remote, Standby/Manuel

Transitions (DeviceState/UserLevel !Input! ->

DeviceState/UserLevel)

Pause/Manual !UserAction = SREM! -> Pause/Remote

Pause/Remote !UserAction = SMAN! -> Pause/Manual

Pause/Remote !UserAction = STBY! -> Standby/Remote

Pause/Remote !UserAction = SMES! -> Measure/Remote

Measure/Remote !UserAction = SPAU! -> Pause/Remote

Measure/Remote !UserAction = STBY! -> Standby/Remote

Standby/Remote !UserAction = SPAU! -> Pause/Remote

Standby/Remote !UserAction = SMES! -> Measure/Remote

Standby/Remote !UserAction = SMAN! -> Standby/Manual

Standby/Manual !UserAction = SREM! -> Standby/Remote

	

	

	

	

	

Report	2:	textuelle	Darstellung	von	Visualisierung	2	(Frage	2.3.)	

DeviceState

Reachable States (DeviceState): Pause (Initial), Standby,

Measure,

Transitions (DeviceState -> !Input! -> DeviceState):

Pause !UserAction = STBY! -> Standby

Pause !UserAction = SMES! -> Measure

Standby !UserAction = SPAU! -> Pause

Standby !UserAction = SMES! -> Measure

Measure !UserAction = STBY! -> Standby

Measure !Useraction = SPAU! -> Pause

UserLevel

Reachable States (DeviceState): Remote (Initial), Manual

Transitions (DeviceState -> !Input! -> DeviceState):

Manual !UserAction = SREM! -> Remote

Remote !UserAction = SMAN! -> Manual

	

	 	 	 	

Report	3:	textuelle	Darstellung	von	Visualisierung	3	(Frage	3.3.)	
Hier	kann	man	etnweder	Report	1	oder	einen	interaktiven	Report	verwenden.	

Ein	interaktiver	Report	könnte	wie	folgt	aussehen	(Konsoleninput/output):	

	
Please enter state (DeviceState/UserLevel): Pause/Remote

Neighbors: Pause/Manual (!UserAction = SMAN!),

Standby/Remote(!UserAction = STBY!), Measure/Remote

(!UserAction = SMES!)

Please enter state (DeviceState/UserLevel): Pause/Manual

Neighbors: Pause/Remote (!UserAction = SREM!)

	

	

	

	

	

	

	

	

	

	

	

Report	4:	textuelle	Darstellung	von	Visualisierung	4	(Frage	4.3.)	
Auch	hier	benötigt	man	einen	interaktiven	Report	(Konstoleninput/output):	

	
Please enter state (DeviceState/UserLevel): Measure/Remote

Reachability check (y/n)?: y

Impasse check (y/n)?: y

Given state is reachable: Pause/Remote !UserAction = SMES! ->

Measure/Remote

Impasse unreachable from given state

	 	 	

Beispielprogramm	

	

	

device Interview {

 public statevar DeviceState {Pause,Standby,Measure} = Pause;

 public statevar UserLevel {Manual,Remote} = Remote;

 input UserAction{SPAU,STBY,SMES,SMAN,SREM};

 given UserLevel = Manual when UserAction = SREM

then UserLevel -> Remote;

 given UserLevel = Remote {

 given DeviceState != Measure when UserAction = SMAN

then UserLevel -> Manual;

 given DeviceState = Pause {

 when UserAction = STBY then DeviceState -> Standby;

 when UserAction = SMES then DeviceState -> Measure;

 }

 given DeviceState = Standby {

 when UserAction = SPAU then DeviceState -> Pause;

 when UserAction = SMES then DeviceState -> Measure;

 }

 given DeviceState = Measure {

 when UserAction = SPAU then DeviceState -> Pause;

 when UserAction = STBY then DeviceState -> Standby;

 }

 }

}

Bibliography

[1] Graphiti proposal. http://eclipse.org/proposals/graphiti. Accessed:

2016-11-20.

[2] Sirius gallery. http://eclipse.org/sirius/gallery.html. Accessed: 2016-

11-20.

[3] Gail Anderson and Paul Anderson. Essential JavaFX. Pearson Education, 2009.

[4] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend. Packt

Publishing Ltd, 2013.

[5] Carolyn Boyce and Palena Neale. Conducting in-depth interviews: A guide for designing

and conducting in-depth interviews for evaluation input. Pathfinder International Water-

town, MA, 2006.

[6] Sabrina Bresciani and Martin J Eppler. Beyond knowledge visualization usability: toward a

better understanding of business diagram adoption. In 2009 13th International Conference

Information Visualisation, pages 474–479. IEEE, 2009.

[7] Nick Cawthon and Andrew Vande Moere. The effect of aesthetic on the usability of data

visualization. In Proceedings of the 11th International Conference Information Visualiza-

tion, IV ’07, pages 637–648, Washington, DC, USA, 2007. IEEE Computer Society.

[8] B. Cornelissen, A. Zaidman, and A. van Deursen. A controlled experiment for program

comprehension through trace visualization. IEEE Transactions on Software Engineering,

37(3):341–355, May 2011.

[9] Fred D Davis. Perceived usefulness, perceived ease of use, and user acceptance of infor-

mation technology. MIS quarterly, pages 319–340, 1989.

[10] Stephan Diehl. Software Visualization: Visualizing the Structure, Behaviour, and Evolution

of Software. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[11] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition,

2010.

[12] Mark Heckler, Gerrit Grunwald, José Pereda, Sean Phillips, and Carl Dea. JavaFX 8:

Introduction by Example. Apress, 2014.

101

http://eclipse.org/proposals/graphiti
http://eclipse.org/sirius/gallery.html

[13] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science in

information systems research. MIS Q., 28(1):75–105, March 2004.

[14] K. Hussein, E. Tilevich, I. I. Bukvic, and SooBeen Kim. Sonification design guidelines

to enhance program comprehension. In Program Comprehension, 2009. ICPC ’09. IEEE

17th International Conference on, pages 120–129, May 2009.

[15] Jan Koehnlein. Eclipse diagram editors – the fxed generation (eclipsecon france 2014,

toulouse). https://www.youtube.com/watch?v=SiCYv3xgE6U, 2014. Ac-

cessed: 2016-10-15.

[16] Jan Koehnlein. Diagrams, xtext and ux (eclipsecon na 2015, san francisco). https://

www.infoq.com/presentations/xtext-fxdiagram, 2015. Accessed: 2016-

10-15.

[17] Christian F. J. Lange and Michel R. V. Chaudron. Interactive views to improve the com-

prehension of uml models - an experimental validation. In Proceedings of the 15th IEEE

International Conference on Program Comprehension, ICPC ’07, pages 221–230, Wash-

ington, DC, USA, 2007. IEEE Computer Society.

[18] Salvatore Mamone. The ieee standard for software maintenance. SIGSOFT Softw. Eng.

Notes, 19(1):75–76, January 1994.

[19] Tanja Mayerhofer, Philip Langer, Manuel Wimmer, and Gerti Kappel. xmof: Executable

dsmls based on fuml. In Software Language Engineering, pages 56–75. Springer Interna-

tional Publishing, 2013.

[20] Bill Moore, David Dean, Anna Gerber, Gunnar Wagenknecht, and Philippe Vanderhey-

den. Eclipse development using the graphical editing framework and the eclipse modeling

framework (2004). IBM Redbooks.

[21] Mark J Nelson. Game metrics without players: Strategies for understanding game artifacts.

In Artificial Intelligence in the Game Design Process, 2011.

[22] Marian Petre and Ed de Quincey. A gentle overview of software visualisation. Psychology

of Programming Interest Group (PPIG), September 2006.

[23] Jasper Potts, Nancy Hildebrandt, Joni Gordon, and Cindy Castillo. Get-

ting started with javafx. https://docs.oracle.com/javase/8/javafx/

get-started-tutorial/jfx-architecture.htm, 2014. Accessed: 2016-10-

15.

[24] Dan Rubel, Jaime Wren, and Eric Clayberg. The Eclipse Graphical Editing Framework

(GEF). Addison-Wesley Professional, 2011.

[25] Z. Sharafi, A. Marchetto, A. Susi, G. Antoniol, and Y. G. Guéhéneuc. An empirical study

on the efficiency of graphical vs. textual representations in requirements comprehension.

In 2013 21st International Conference on Program Comprehension (ICPC), pages 33–42,

May 2013.

102

https://www.youtube.com/watch?v=SiCYv3xgE6U
https://www.infoq.com/presentations/xtext-fxdiagram
https://www.infoq.com/presentations/xtext-fxdiagram
https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-architecture.htm
https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-architecture.htm

[26] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information vi-

sualizations. In Proceedings of the 1996 IEEE Symposium on Visual Languages, VL ’96,

pages 336–, Washington, DC, USA, 1996. IEEE Computer Society.

[27] Juha Sorva, Ville Karavirta, and Lauri Malmi. A review of generic program visualiza-

tion systems for introductory programming education. Trans. Comput. Educ., 13(4):15:1–

15:64, November 2013.

[28] M.-A.D. Storey, K. Wong, and H.A. Müller. How do program understanding tools affect

how programmers understand programs? Science of Computer Programming, 36(2):183 –

207, 2000.

[29] Christian Stritzke and Sebastian Lehrig. Why and how we should use graphiti to implement

pcm editors. In Symposium on Software Performance – Joint Kieker/Palladio Days 2013,

CEUR Workshop Proceedings. CEUR-WS.org, November 2013.

[30] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats Helander,

Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. DSL Engineering - Designing,

Implementing and Using Domain-Specific Languages. dslbook.org, 2013.

[31] Markus Voelter, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon Helsen. Model-driven

software development: technology, engineering, management. John Wiley & Sons, 2013.

[32] Richard Wettel, Michele Lanza, and Romain Robbes. Software systems as cities: A con-

trolled experiment. In Proceedings of the 33rd International Conference on Software En-

gineering, ICSE ’11, pages 551–560, New York, NY, USA, 2011. ACM.

[33] P. Young and M. Munro. Visualising software in virtual reality. In Program Comprehen-

sion, 1998. IWPC ’98. Proceedings., 6th International Workshop on, pages 19–26, Jun

1998.

103

	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Domain-specific languages (DSLs)
	Introduction to DSLs
	Benefits and Challenges
	Examples
	Language concepts

	Visualization of DSLs
	Concrete Syntax
	Visualizations
	Reports

	Use Case 1: A Game Level Design Language
	Game level design language
	Visualizing LDL

	Existing Visualization Frameworks
	GEF3
	GMF
	Graphiti
	Sirius
	Discussion of Existing Approaches

	Visualizations based on JavaFX
	Diagram Editors vs Diagram Views
	Usability and Aesthetics
	JavaFX
	Frameworks based on JavaFX
	Conceptional Architecture

	Implementation
	Technological Background
	Details
	Challenges

	Evaluation
	Use Case 2
	Interviews

	Related Work
	Improving Comprehension by using Visualization
	Other Related Work

	Summary and Conclusion
	Interpretation of Results
	Comparison with Related Work
	Limitations and Future Work

	Interview documents
	Bibliography

