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Abstract

Cartilaginous fish are particularly vulnerable to anthropogenic stressors and environmental

change because of their K-selected reproductive strategy. Accurate data from scientific sur-

veys and landings are essential to assess conservation status and to develop robust protec-

tion and management plans. Currently available data are often incomplete or incorrect as a

result of inaccurate species identifications, due to a high level of morphological stasis, espe-

cially among closely related taxa. Moreover, several diagnostic characters clearly visible in

adult specimens are less evident in juveniles. Here we present results generated by the

ELASMOMEDConsortium, a regional network aiming to sample and DNA-barcode the Medi-

terranean Chondrichthyans with the ultimate goal to provide a comprehensive DNA barcode

reference library. This library will support and improve the molecular taxonomy of this group

and the effectiveness of management and conservation measures. We successfully bar-

coded 882 individuals belonging to 42 species (17 sharks, 24 batoids and one chimaera),

including four endemic and several threatened ones. Morphological misidentifications were

found across most orders, further confirming the need for a comprehensive DNA barcoding

library as a valuable tool for the reliable identification of specimens in support of taxonomist
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who are reviewing current identification keys. Despite low intraspecific variation among their

barcode sequences and reduced samples size, five species showed preliminary evidence of

phylogeographic structure. Overall, the ELASMOMED initiative further emphasizes the key

role accurate DNA barcoding libraries play in establishing reliable diagnostic species specific

features in otherwise taxonomically problematic groups for biodiversity management and

conservation actions.

Introduction

To assess and conserve biodiversity, it is critical to correctly identify species that occur in a

given ecosystem in order to evaluate species richness and abundance. In recent years, methods

of identification based on morphology were gradually integrated with methods based on DNA

sequences, such as DNA barcoding thereby forming the so called molecular taxonomy. DNA

barcoding seeks to advance both specimens identification and species discovery through the

analysis of patterns of sequences divergence of a universal, standardized gene region. Many

studies have shown the effectiveness of the mitochondrial cytochrome c oxidase subunit I

(COI) gene as a universal barcode sequence for species identification in animal lineages [1,2].

Molecular taxonomy overcomes some problems posed by traditional morphological identi-

fication such as homoplasy [3] and phenotypic plasticity [4] of characters used for species

identification. Secondly, because often the adopted morphological keys are effective only for a

particular life stage, many individuals, especially in their juvenile phases, cannot be assigned to

species [5]. Finally, traditional taxonomy doesn’t allow the identification of cryptic species [6].

DNA barcoding has been fundamental in case studies related to immature specimens’ identifi-

cation (e.g. fish larvae, [5,7]; amphibians and reptiles, [8,9]). In many cases it has been success-

fully employed to resolve species boundaries between morphologically conserved taxa (e.g.

tribe Bombini, [10]).

In the marine realm, the conservation of similar morphological traits appears quite common

among sibling species [11–14] and it is often combined with the lack of visual communication

in many taxa, in favour of chemical [15] or electrical signals [16–18], both intrinsic conditions

to the definition of cryptic species. Among marine organisms, Chondrichthyans seem to have

experienced frequent cryptic speciation events across different taxa: large lantern sharks [19],

skates [20–22], blacktip sharks [23], hammerhead sharks [24] and guitarfish [25] might have

undergone isolating mechanisms which precluded mating between co-occurring species.

Despite controversies and criticisms [26,27], cryptic species discovery and, in general, species

cataloguing are fundamental, as species represent the basic unit for the management, conserva-

tion, and legal protection of biodiversity and for the distribution of limited resources [28–33].

To maximize the potential of molecular taxonomy is necessary to have solid and compre-

hensive DNA barcodes reference libraries. The Fish Barcode of Life campaign (Fish-BOL,

http://www.fishbol.org) is an initiative started in 2005 with the goal to barcode all fish species

[34–36]. As of August 2016, 665 out of 1228 chondrichthyan species have been barcoded.

Fish-BOL’s efforts comprise of numerous projects covering low-level taxonomic groups and

several projects that have targeted specific regional chondrichthyan faunas [37–43]. In addi-

tion, recent studies demonstrated the effectiveness of DNA barcodes in describing phylogeo-

graphic patterns in this class [22,44,45].

One of those targeted Fish-BOL projects is the ELASMOMED Consortium, a regional net-

work active since 2009 involving fish biologists, fishery scientists, and molecular zoologists

from 15 research institutions, most of which also participate in the Mediterranean
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International Trawl Survey (MEDITS) scientific program[46]. The aims of this network are

the sampling and barcoding Chondrichthyans of the Mediterranean Sea.

The Mediterranean Sea is appraised as a global marine biodiversity hotspot and it is home

to 89 chondrichthyan species (sharks, skates, rays and chimaeras), which corresponds to about

7% of the global species diversity of the group [47–51]. In detail, the Mediterranean Chon-

drichthyans include one chimaera, 49 sharks belonging to 17 families and 27 genera, and 39

batoids consisting of nine families with 16 genera. Five batoids are considered endemic: Leu-

coraja melitensis, Raja asterias, Raja radula, Raja polystigma, andMobula mobular, although

the endemic status of the latter is uncertain as its separation from the widespread congener

Mobula japonica has been recently questioned [52]. In parallel, a total of 86 Mediterranean

Chondrichthyan species (S1 Table) was reviewed for the European Red List of Marine Fishes

[53]. This list includes species threatened by extinction in European waters. Assessed taxa were

categorized as Critically Endangered (15), Endangered (13), Vulnerable (11), Near Threatened

(15), Least Concern (12) and Data Deficient (20).

Several exotic elasmobranchs have recently been recorded in the Mediterranean (S1 Table),

however their particular status (vagrant, alien, or established) is still under debate [48,54–57].

The presence of six species (Carcharhinus melanopterus, Dipturus batis complex, Torpedo alex-

andrinsis, Leucoraja fullonica, Raja africana), however, has not been confirmed [50,58–61]. In

contrast, the presence of Dipturus nidarosiensis in the Mediterranean, a species formerly

reported only from the North-Eastern Atlantic, has been ascertained by recent studies [58,62].

Chondrichthyans’ reproductive strategy makes them particularly vulnerable to anthropo-

genic stressors, such as the use of different fishing gears and the direct and indirect effects of

environmental changes and habitat fragmentation [63]. For example, neritic species such as

Squatina spp. and Scyliorhinus stellaris are highly depleted as a consequence of the use of unse-

lective fishing gear [64]. Available fisheries data for Chondrichthyes are incomplete and incor-

rect, because they are often recorded at higher taxonomic levels than species, with frequent

misidentifications of individuals [51,65,66]. In 2012, the General Fisheries Commission for the

Mediterranean (GFCM) issued Recommendation GFCM/36/2012/3 on fisheries management

measures for conservation of sharks and rays in the GFCM area stating that “cartilaginous

fish are kept on board, trans-shipped, landed and marketed at first sale in a way that species

are recognizable and identifiable and catches, incidental takings and, whenever appropriate,

releases by species can be monitored and recorded” [67]. However, morphological identifica-

tion of cartilaginous fish remains difficult because of low levels of differentiation among spe-

cies across multiple taxa and several diagnostic taxonomic characters are clearly exhibited by

adult specimens but are less pronounced in juveniles [22,51,65,66]. This can lead to erroneous

species attribution even among skate species that are not closely related, e.g. Leucoraja fullonica

and L. circularis. Such taxonomic uncertainties often occur within a larger group constituted

of Raja polystigma, R.montagui, R. asterias and R. brachyura [22,66]. For sharks, similar diffi-

culties were reported for the congeneric species Squalus blainville and Squalus megalops

[68,69] and forMustelus mustelus andMustelus punctulatus [70]. Finally, cryptic species (sensu

Bickford et al. [6]) have frequently been reported in elasmobranchs as shown by molecular

studies of the common skate Dipturus batis, once one of the most abundant skate resources in

the North-Eastern Atlantic trawl fishery and today heavily depleted in most of its range [63].

D. batis actually comprises two cryptic species, Dipturus cf intermedia and Dipturus cf flossada

[20,71,72]. A genetic analysis of Eastern Atlantic and Mediterranean species of the genus Raja

revealed several recently diverged peripatric sibling species, such as Raja clavata and R. strae-

leni [73], R. polystigma and R.montagui [22,74], as well as the R.miraletus complex [75,76].

Here we report the establishment of DNA reference barcodes for 42 chondrichthyan

species, mostly collected as part of the MEDITS program, as an integrative tool to improve the
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effectiveness of the above mentioned measures for conservation. This new library will: i) offer a

valuable tool for reliable identification of specimens and clarify the taxonomic status of important

cartilaginous fishes; ii) support taxonomists who are reviewing the current identification keys,

and iii) provide a robust scientific baseline for management and conservation actions, especially

in relation to endemic and endangered species. Finally, the comparison and integration of the

ELASMOMED dataset with other public barcode datasets will also allow the preliminary identifi-

cation of geographical population structure and help to determine candidate conservation units.

In general, the assembly of a comprehensive DNA barcode reference library for biological

species would mean to compile a biodiversity inventory on different scales and dimensions,

making molecular systematics a fundamental tool for the implementation of biodiversity mon-

itoring programmes worldwide. Several of such programmes already exploit the potential of

accurate DNA reference libraries by integrating environmental DNA analyses in their stan-

dard monitoring programmes [77–79].

Materials and Methods

Sampling

Specimens used in this study were collected fromMediterranean individuals caught during sci-

entific research programs. No specific approval of this vertebrate work is required since the indi-

viduals sampled in this study were obtained from scientific and commercial fishing activities. A

total of 998 individuals were collected from several locations within six Mediterranean FAO

fishing divisions (http://www.fao.org/fishery/area/Area37/en). Starting in 2009, dedicated sam-

pling was performed mainly in the framework of the MEDITS scientific surveys (http://www.

sibm.it/SITO%20MEDITS/principaleprogramme.htm) or by contracted commercial fishermen

on designated cruises (S2 Table). Additional samples were provided by each partner of the

ELASMOMED Consortium, from each Institute’s collections. Specimen and collection data, as

well as voucher digital images (when recorded) were uploaded to the “ELASMOMED Consor-

tium” project (Project Code: ELAMO) accessible through the Barcode of Life Data system

(BOLD, http://www.barcodinglife.org, [80]). Individual fin clips or skeletal muscle tissue sam-

ples were collected and preserved in 96% ethanol and kept at -20˚C until laboratory analyses.

DNA extraction, amplification and sequencing

Laboratory work was jointly carried out by the Centre for Biodiversity Genomics (CBG) and

at the University of Bologna (UNIBO). At CBG 650bp of the mitochondrial COI region were

obtained by following standardized high-throughput protocols for DNA barcode amplification

and sequencing [81]. At UNIBO the same COI fragment was amplified using the primer set

FishF2 and FishR2 following the protocol described in Ward et al. [82]. Amplification prod-

ucts were checked on a 1.5% agarose gel. A commercial sequence service provider (Macrogen

Europe, Amsterdam, Netherlands) performed sequencing employing the same primers used

for the amplification. Trace files and sequence data were uploaded to BOLD and subsequently

submitted to GenBank (Accession numbers are provided in S3 Table).

Specimens’ identification and spatial scale of barcode variation

Specimens were identified on board or in the lab using morphological taxonomic characters

according to guidelines provided in [83]. A p-distance metric with pairwise deletion was used

for sequence comparisons [84]. Genetic distances and Neighbour-joining (NJ) tree clustering

[85] were obtained using MEGA version 6 [86]. Confidence in estimated relationships of NJ

tree topologies was evaluated by a bootstrap analysis with 1,000 replicates [87].
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The mean and maximum intraspecific genetic distances and the mean distance to the Near-

est Neighbour (NN) were computed using the ‘Barcoding Gap Analysis’ tool on BOLD [80].

Maximum intraspecific distance was plotted against the mean distance to the NN for each spe-

cies to infer the presence of a “barcode gap”, which is defined as a distinct gap between intra-

specific and interspecific variability [84].

The Barcode Index Number (BIN) System clusters sequences using a Refined Single Link-

age algorithm to produce operational taxonomic units that closely correspond to species. BINs

were automatically assigned by BOLD and assessed using the ‘BIN Discordance Report’ analy-

sis tool [88]. This tool labels a BIN as “concordant” when it comprises sequences attributed to

the same species, and “discordant” when it comprises sequences of different species.

An arbitrary measure of taxonomic reliability was attributed to each barcoded taxon

according to the criteria proposed by Costa et al. [89]. Representative barcode sequences for

each species were queried using the BOLD Identification Engine with the Species Level option.

Grades ranging from A (full concordance) to E (full discordance) were attributed according to

the following criteria:

• Grade A- External concordance: unambiguous species match with specimens from other

BOLD projects or published sequences. Monophyletic species with a maximum of 2%

(patristic) sequence divergence.

• Grade B- Internal concordance: species congruent within our dataset, where at least 3 speci-

mens of the same species are available, with a maximum of 2% (patristic) sequence diver-

gence. No matching sequences found through the BOLD-IDS.

• Grade C- Sub-optimal concordance (possible within species genetic structure): at least 3

specimens of the same species are available within the library and form a monophyletic clus-

ter; however intraspecific distance is greater than 2%; and/or the BOLD-IDS indicates

monophyletic nearest neighbour of the same species, with more than 2% patristic distance.

• Grade D- Insufficient Data: low number of specimens analysed (1 or 2 individuals) and no

matching sequence available in BOLD.

• Grade E- Discordant species assignments: sequences for a given species in our dataset did

not match with the same species in BOLD. The specimen may match with a different species

or may display paraphyly or polyphyly.

Because of the several Mediterranean geographical areas covered by ELASMOMED, we

tested for the presence of phylogeographic signal at regional level for species with barcode data

from multiple FAO divisions. Species-specific haplotype networks were created using Haplo-

viewer (http://www.cibiv.at/~greg/haploviewer). Parsimony trees required for Haploviewer

were reconstructed with the dnapars of the PHYLIP package version 3.6 [90,91].

Results

DNA barcodes could be recovered for 884 of the 998 individuals. Stop codons were recorded

only for two specimens: ELAMO028-15 (S. blainville) and ELAME1143-11 (Torpedo marmor-

ata), which were excluded from further analyses. The newly generated Mediterranean barcode

library ELASMOMED includes 42 species: 17 sharks, 24 skates/rays and one chimera, belong-

ing to eight orders and 18 families (S2 Table). Overall nucleotide frequencies were 25.16% ade-

nine (A), 26.12% cytosine (C), 16.78% guanine (G) and 31.94% thymine (T), with an average

GC content of 42.90%.

Barcoding of Mediterranean Chondrichthyans

PLOSONE | DOI:10.1371/journal.pone.0170244 January 20, 2017 5 / 21

http://www.cibiv.at/~greg/haploviewer


A first Neighbour-Joining tree of 882 barcode sequences showed that 77 specimens

(8.73%), representing 11 species, clustered with individuals of a closely related and morpholog-

ically similar species (Table 1), probably because of identification errors during field sampling.

All these specimens were reassessed and subsequently renamed.

All further analyses were conducted using this curated and corrected dataset and the result-

ing Neighbour-Joining tree (Figs 1 and 2) indicated that most of the species formed cohesive

units, concordant with the morphological identification. Species-specific clusters were supported

by high bootstrap values (�80), with the exception of theD. pastinaca cluster, which split into

two fully supported sub-clusters (1 and 2; Fig 2, S1 Fig). The families Scyliorhinidae andMylio-

batidae did not form a monophyletic clade, as did the genera Raja andDasyatis (Figs 1 and 2).

The mean and maximum p-distance within species showed average values of 0.29%

(range = 0–3.06%) and 0.93% (range = 0–8.72%), respectively (Table 2). The highest values for

both distances occurred in Dasyatis pastinaca. Excluding this outlier taxon, highest mean and

maximum p-distances were reduced to 0.43% (Raja asterias) and 1.55% (Galeus melastomus),

respectively. The distances to the Nearest Neighbour (Table 2) varied from 1.71% (R.montagui

vs. R. polystigma) to 12.83% (T.marmorata vs. Torpedo nobiliana) for congeneric taxa; while

higher values were observed for comparisons at higher taxonomic levels (Table 2). Note that

the maximum value of intraspecific p-distance was always lower than the distance to the Near-

est Neighbour with the exception of D. pastinaca, highlighting the absence of a “barcode gap”

for this species (Fig 3).

The BIN discordance analysis showed 17 discordant BINs out of 42 (40.47%). After review-

ing the reasons for the observed discordance, 11 BINs could be reclassified as concordant

(Table 3). This included cases such as theM.mustelus BIN with 72 records ofM.mustelus and

three sequences attributed to a provisional name, indicating that the discordance was caused

by the use of an interim name. Other cases could be ascribed to erroneous morphological iden-

tifications of one or two records associated with the BIN, e.g. Raja clavata, where a few records

were assigned differently. The five remaining discordant BINs contained several individuals

belonging to more than one species, indicating that for these species either the barcode

sequence or the BIN algorithm is not sufficient to discriminate them. However, the possibility

of misidentification cannot be excluded either. Lastly, BIN AAD5036 associated with the D.

pastinaca sub-cluster 2 consists of six individuals of Dasyatis tortonesei from the Muséum

National d’Historie Naturelle, Paris, indicating a possible species misidentification of the four

ELASMOMED specimens (Table 3).

Table 1. Cases of specimens’ misidentification by FAO fishing division. The number of misidentified individuals over the total number of barcoded indi-
viduals is given in parenthesis.

Barcode ID Morphological ID FAO Division

Dasyatis centroura Pteroplatytrygon violacea 37.1.3—Sardina (1/1)

Pteroplatytrygon violacea Dasyatis centroura 37.1.1—Balearic (1/1)

Leucoraja circularis Leucoraja fullonica 37.1.3—Sardinia (2/8); 37.2.2—Ionian (1/5)

Raja polystigma Raja montagui 37.1.1—Balearic (2/5)

Torpedo marmorata Torpedo nobiliana 37.3.2—Levant (3/9)

Torpedo marmorata Torpedo torpedo 37.2.1—Adriatic (1/1)

Scyliorhinus canicula Scyliorhinus stellaris 37.2.1—Adriatic (4/20)

Mustelus punctulatus Mustelus mustelus 37.1.1—Balearic (5/5); 37.2.1—Adriatic (45/146)

Centrophorus granulosus Centrophorus uyato 37.1.1—Balearic (1/5)

Squalus blainville Squalus acanthias 37.1.1—Balearic (2/3); 37.3.2—Levant (5/5)

Squalus blainville Squalus megalops 37.2.2—Ionian (4/12)

doi:10.1371/journal.pone.0170244.t001
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We applied a ranking system analysis to all the barcoded species, treating the subclusters 1

and 2 of D. pastinaca as different species. The analysis ranked 36 species at Grade A (85.72%)

and six species at Grade E (14.28%) (Table 4), with the last showing the post-revision BIN dis-

cordance. As all prior analyses confirmed the misidentification of specimens in the D. pasti-

naca sub-cluster 2, the four specimens belonging to this group were assigned to D. tortonesei,

upgrading this cluster to Grade A. Both species are differentiated by 26 nucleotide substitu-

tions (3.66%; S1 Fig). Individuals of D. tortonesei were found only in the Ionian division (FAO

37.2.2). All four samples were collected in the Strait of Sicily (South-Eastern part of the Ionian

Fig 1. Neighbour-Joining tree based on genetic p-distances of COI barcode sequences of 17 shark
species.Numbers near nodes indicate bootstrap values (>50%). The distance scale bar is given. Each
species’ sample size and geographic origin are detailed in S2 Table.

doi:10.1371/journal.pone.0170244.g001
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FAO division), while those of D. pastinaca were collected from the divisions Balearic (FAO

37.1.1), Sardinia (FAO 37.1.2) and Ionian (FAO 37.2.2).

Among juvenile specimens, cases of species misidentification were encountered among

smooth hound sharks, cat sharks and dogfish. Misidentification of skates and electric rays

were recorded both for juveniles and adults (Table 1). Five juveniles ofM. punctulatus from

the Balearic division (FAO 37.1.1) as well as 45 juvenile specimens from the Adriatic division

(FAO 37.2.1) were misidentified asM.mustelus, confirming that the characters used in the tax-

onomic keys are not adequate for immature individuals. The congeneric species Scyliorhinus

canicula and S. stellaris collected in the Adriatic division (FAO 37.2.1) were confused in four

cases. Moreover, four out of the 12 dogfishes collected in the Ionian (Strait of Sicily) division

(FAO 37.2.2) were initially assigned morphologically to S.megalops, but were barcoded as S.

blainville. A similar taxonomic confusion between Squalus acanthias and S. blainville occurred

in both Balearic (FAO 37.1.1) and Levant (FAO 37.3.2) divisions.

Among rays and skates, T.marmorata individuals, one from Adriatic (FAO 37.2.1) and

three from Levant (FAO 37.3.2) divisions were morphologically misidentified as T. nobiliana

Fig 2. Neighbour-Joining tree based on genetic p-distances of COI barcode sequences of 23 skate
species.Numbers near nodes indicate bootstrap values (>50%). The distance scale bar is given. Each
species’ sample size and geographic origin are detailed in S2 Table.

doi:10.1371/journal.pone.0170244.g002
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or T. torpedo because diagnostic spots are absent in juvenile specimens (Table 1). Two speci-

mens of R. polystigma were misidentified as R.montagui. Both were collected in the Balearic

Table 2. Mean andmaximum intraspecific distances and Nearest-Neighbour distance (p-distance values) of the 41 chondrichthyan species bar-
coded for the ELASMOMED library. TheDasyatis pastinaca cluster is not separated.

Species Within-species distance Nearest Neighbour Distance to theNearest Neighbor

Mean Maximum

Chimaera monstrosa 0.08 0.31 Raja polystigma 21.42

Dasyatis centroura 0 0 Pteroplatytrygon violacea 5.77

Dasyatis pastinaca 3.06 8.72 Pteroplatytrygon violacea 7.89

Pteroplatytrygon violacea 0.24 0.46 Dasyatis centroura 5.77

Mobula mobular N/A N/A Myliobatis aquila 16.36

Myliobatis aquila 0.29 1.02 Pteroplatytrygon violacea 15.59

Pteromylaeus bovinus 0.11 0.17 Myliobatis aquila 16.79

Dipturus nidarosiensis 0.03 0.16 Dipturus oxyrinchus 5.96

Dipturus oxyrinchus 0 0 Dipturus nidarosiensis 5.96

Leucoraja circularis 0.03 0.16 Leucoraja melitensis 3.60

Leucoraja melitensis 0.34 0.63 Leucoraja circularis 3.60

Leucoraja naevus N/A N/A Leucoraja circularis 5.02

Raja asterias 0.43 0.79 Raja radula 3.96

Raja brachyura 0.08 0.16 Raja polystigma 4.09

Raja clavata 0.06 0.47 Raja radula 2.51

Raja miraletus 0.30 1.28 Raja polystigma 6.79

Raja montagui N/A N/A Raja polystigma 1.71

Raja polystigma 0.31 1.26 Raja montagui 1.71

Raja radula 0.35 1.11 Raja clavata 2.51

Raja undulata 0.31 0.64 Raja polystigma 3.68

Rostroraja alba 0.05 0.18 Leucoraja melitensis 12.24

Torpedo marmorata 0.42 1.30 Torpedo torpedo 10.77

Torpedo nobiliana 0.19 0.33 Torpedo marmorata 12.83

Torpedo torpedo 0.05 0.34 Torpedo marmorata 10.77

Prionace glauca 0.19 0.19 Galeorhinus galeus 10.63

Galeus melastomus 0.24 1.55 Galeorhinus galeus 13.63

Scyliorhinus canicula 0.35 1.40 Scyliorhinus stellaris 7.10

Scyliorhinus stellaris 0 0 Scyliorhinus canicula 7.10

Galeorhinus galeus 0 0 Mustelus punctulatus 9.25

Mustelus mustelus 0.07 0.64 Mustelus punctulatus 7.46

Mustelus punctulatus 0 0.18 Mustelus mustelus 7.46

Heptranchias perlo 0 0 Centroscymnus coelolepis 17.85

Alopias vulpinus 0.12 0.18 Cetorhinus maximus 13.72

Cetorhinus maximus 0 0 Alopias vulpinus 13.72

Centrophorus granulosus 0.08 0.52 Squalus acanthias 9.36

Dalatias licha 0.05 0.16 Squalus acanthias 12.40

Etmopterus spinax 0.28 1.15 Centrophorus granulosus 13.91

Oxynotus centrina 0 0 Centroscymnus coelolepis 7.82

Centroscymnus coelolepis N/A N/A Oxynotus centrina 7.82

Squalus acanthias 0.11 1.10 Squalus blainville 6.87

Squalus blainville 0.33 1.30 Squalus acanthias 6.87

Average 0.29 0.93 8.79

doi:10.1371/journal.pone.0170244.t002
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division (FAO 37.1.1), a unique Mediterranean area where both species co-occur in sympatry.

Other minor morphological misidentifications concern a few specimens of Centrophorus gran-

ulosus, Pteroplatytrygon violacea,D. centroura and L. circularis (Table 1).

Thirty-four out of the 42 barcoded species were assessed for spatial variation as multiple

records were obtained from several FAO divisions (S2 Table). Among those, five batoids

showed noticeable phylogeographic signals in the COI sequence variation, mainly represented

by private haplotypes of some FAO divisions (Fig 4; the complete list of mutations and posi-

tions characterizing each haplotype is reported in S4 Table). Even if the present sample size is

too limited to allow solid and definitive phylogeographic inferences, the data allow some pre-

liminary insights from the patterns observed (Fig 4).

Raja miraletus showed eight COI haplotypes, with a single private haplotype (Hrm8) com-

prising all samples from the Levant division. Raja asterias consisted of three slightly different

haplotype groups: Hra4 and Hra5 for the Balearic division, Hra1-3 for Sardinia and Ionian

divisions, and Hra6-9 from the Adriatic division. The latter group also included haplotype

Hra10 that contained only a single specimen from the Strait of Sicily. Raja polystigma exhibited

five haplotypes with the private haplotype Hrp5 of the Adriatic division, while all the others

are shared among areas of the Western and Central Mediterranean. Two specimens of Raja

radula from the Levant division formed private haplotype Hrr6, differentiated by three muta-

tions from the Balearic haplotypes (Hrr1-5). Torpedo marmorata contained three haplotype

groups: one formed by Htm1 and Htm2 found in the Balearic, Sardinia and Ionian divisions,

the second formed by Htm3 and Htm4 found in individuals from Ionian and Adriatic divi-

sions, and the third included the haplotypes Htm5 and Htm6 found only in the Levantine indi-

viduals (Fig 4).

Fig 3. Maximum intraspecific distance plotted against Nearest Neighbour distance (p-distance
values) for the COI barcode sequences of the 41 chondrichthyan species. The black rhombus
represents the value for Dasyatis pastinaca before its separation into two sub-clusters 1 and 2. The 1:1
equivalence (straight line) is indicated.

doi:10.1371/journal.pone.0170244.g003
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Discussion

Towards completion of a DNA barcode reference library of the
mediterranean chondrichthyes

The ELASMOMED initiative sampled and barcoded 42 out of the 89 chondrichthyan species

occurring in the Mediterranean Sea, contributing ex novo barcodes for 24 species. In addition,

it added several barcoded specimens from different geographical areas to those from previous

initiatives. The integration of our results with those of other recent major fish barcoding initia-

tives carried out in the Mediterranean [39,92] raises the total count to 51 species with DNA

barcodes (S1 Table), comprising the holocephalan Chimaera monstrosa, 26 sharks (53%), and

24 skates and rays (62%).

As the main source of specimens for the ELASMOMED initiative was the MEDITS pro-

gram, demersal and bathydemersal species (N = 32) outnumbered pelagic and benthopelagic

ones (N = 10; S1 Table). Regarding endemic species, barcode sequences of R. asterias, R.

Table 3. Species with discordant BINs found by the ‘BIN Discordance Report’ sequence analysis tool on BOLD. Taxonomic ranks of conflict are
reported including species of the same genus up to taxa belonging to different orders. The column BIN Taxon Variation shows the number of records for each
taxon in parenthesis.

Species Discordant
BIN

Rank of
conflict

BIN Taxon Variation After review

Dasyatis pastinaca 1 BOLD:
ACK8259

Family Dasyatidae[20], Rhinobatidae[1] Concordant

Squalus blainville BOLD:
AAA1550

Family Squalidae[131], Centrophoridae[1] Concordant

Prionace glauca BOLD:
AAA7096

Genus Prionace[68], Carcharhinus[1] Concordant

Dasyatis centroura BOLD:
AAD5044

Species Dasyatis ushiei[7], Dasyatis centroura[7] Discordant

Dasyatis pastinaca 2 BOLD:
AAD5036

Species Dasyatis tortonesei[6], Dasyatis pastinaca[4] Discordant

Mobula mobular BOLD:
AAB8636

Species Mobula japanica[27],Mobula mobular[2],Mobula sp.[1],Mobula japonica[1] Discordant

Dipturus oxyrinchus BOLD:
ABZ4263

Species Dipturus oxyrinchus sp1[56], Dipturus oxyrinchus[49] Concordant

Raja brachyura BOLD:
AAA4358

Species Raja brachyura[36], Raja sp.[1] Concordant

Raja clavata BOLD:
ACF2419

Species Raja clavata[107], Raja undulata[1] Concordant

Raja polystigma BOLD:
ABY6158

Species Raja polystigma[24], Raja sp.[1] Concordant

Torpedo nobiliana BOLD:
AAC6970

Species Torpedo nobiliana[9], Torpedo macneilli[5], Torpedo fairchildi[4], Torpedo
tokionis[1], Torpedo sp. A[1]

Discordant

Mustelus mustelus BOLD:
AAA4345

Species Mustelus mustelus[72],Mustelus sp.[3] Concordant

Mustelus punctulatus BOLD:
AAA4347

Species Mustelus punctulatus[164],Mustelus sp. zpl 00058[1] Concordant

Centrophorus
granulosus

BOLD:
AAB4327

Species Centrophorus granulosus[59], Centrophorus zeehaani[28], Centrophorus
lusitanicus[1]

Discordant

Oxynotus centrina BOLD:
AAF2493

Species Oxynotus centrina[8],Oxynotus paradoxus[1] Concordant

Centroscymnus
coelolepis

BOLD:
AAB8284

Species Centroscymnus coelolepis[20], Centroscymnus sp.[1] Concordant

Squalus acanthias BOLD:
AAA1547

Species Squalus acanthias[242], Squalus suckleyi[32] Discordant

doi:10.1371/journal.pone.0170244.t003
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polystigma andM.mobular were newly obtained and the number of records for L.melitensis

and R. radula greatly increased. As a symptom of the dangerously limited knowledge charac-

terising the Mediterranean chondrichthyans faunas, only one sequence for each species was

available until this study [92]. Multiple sequences from each species are needed to properly

assess intra- vs inter-specific sequences variation and thus improve the robustness of the

molecular assignment. Only one out of nine known alien species (C. altimus) was barcoded

[39]. Of the 38 Mediterranean species without a barcode, 32 have been barcoded from other

regions and only six have not been barcoded at all (Rhinoptera marginata, Glaucostegus halavi,

Pristis pristis, Rhinobatos cemiculus, Torpedo alexandrinsis and Raja africana; S1 Table).

Table 4. Attribution of grades from A (full concordance) to E (full discordance) to DNA barcodes of the 42 chondrichthyan species of the ELAS-
MOMED reference library, following the ranking system proposed by Costa et al. (2012). TheDasyatis pastinaca sub-clusters 1 and 2 are graded
separately.

Species Grade Species Grade Species Grade

Chimaera monstrosa A Raja brachyura A Scyliorhinus stellaris A

Dasyatis centroura E Raja clavata A Galeorhinus galeus A

Dasyatis pastinaca 1 A Raja miraletus A Mustelus mustelus A

Dasyatis pastinaca 2 E Raja montagui A Mustelus punctulatus A

Pteroplatytrygon violacea A Raja polystigma A Heptranchias perlo A

Mobula mobular E Raja radula A Alopias vulpinus A

Myliobatis aquila A Raja undulata A Cetorhinus maximus A

Pteromylaeus bovinus A Rostroraja alba A Centrophorus granulosus E

Dipturus nidarosiensis A Torpedo marmorata A Dalatias licha A

Dipturus oxyrinchus A Torpedo nobiliana E Etmopterus spinax A

Leucoraja circularis A Torpedo torpedo A Oxynotus centrina A

Leucoraja melitensis A Prionace glauca A Centroscymnus coelolepis A

Leucoraja naevus A Galeus melastomus A Squalus acanthias E

Raja asterias A Scyliorhinus canicula A Squalus blainville A

doi:10.1371/journal.pone.0170244.t004

Fig 4. Haplotype parsimony networks ofRajamiraletus,Raja asterias,Raja polystigma,Raja radula

and Torpedomarmorata reconstructed using ELASMOMEDCOI barcode sequences. Each circle
represents one haplotype and its size is proportional to frequency. Colours indicate the origin of samples
according to FAO fishing divisions. Mutations and positions characterizing each haplotype, as well as the size
(bp), and the number of the sequences included in each species network, are provided in S4 Table.

doi:10.1371/journal.pone.0170244.g004
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The ELASMOMED network allowed for an unprecedented large spatial coverage of data

encompassing five FAO fishing divisions (S2 Table).Notably, ELASMOMED increased the

number of barcoded species from North African countries, as 25 species collected from the

Algerian waters were added to those of an earlier study [39]. About 43% of the Mediterranean

Chondrichthyan diversity remains to be inventoried and ongoing efforts are needed to

increase the number of species collected from both already targeted and remaining areas.

Despite a slower mutation rate of mtDNA genes in sharks [93], our results showed that

COI barcoding is a reliable and efficient method for specimens identification, consistent with

the findings of previous studies in marine fish [82,89,94,95]. The effectiveness of DNA barcod-

ing was also demonstrated by the cohesive monophyletic clustering in our Neighbour-Joining

analysis, the high number of concordant BINs and the majority of Grade A rankings (37 out of

42 species—88.1%) following the Costa el al. [89] criteria. Only in five species, categorized as

Grade E, barcode sequences did not allow the discrimination of Mediterranean species from

congeners inhabiting the Indo-Pacific Ocean, namely C. granulosus from Centrophorus zee-

haani, D. centroura from Dasyatis ushiei,M.mobular fromM. japanica, S. acanthias from

Squalus suckley and T. nobiliana from Torpedo macneilli, Torpedo fairchildi and Torpedo tokio-

nis. This barcode sharing could be attributed to various reasons, such as incomplete lineage

sorting, past lineage introgression, taxonomic uncertainties, or matched sequences on BOLD

were generated from misidentified specimens.

Although Neighbour-Joining trees based on COI sequence divergence alone are not useful

as a phylogenetic tool, they allow limited insights into relationships at higher taxonomic levels

[82]. All skate orders and two shark orders (Lamniformes, Squaliformes) were resolved as

monophyletic groups with high bootstrap support (98–100)). Intermediate taxonomic levels

such as family and genus were not well resolved. For example, the blackmouth catshark, Galeus

melastomus (Scyliorhinidae) appears closer related to Prionace glauca (Carcharhinidae),M.

mustelus,M. punctulatus and Galeorhinus galeus (Triakidae) than to other scyliorhinid sharks

such as S. canicula and S. stellaris;Myliobatidae (Myliobatis aquila and Pteromylaeus bovinus)

did not form a monophyletic clade, but rather cluster with the whiptail stingrays of the family

Dasyatidae. Paraphyletic clusters were also observed for some Raja, Dasyatis and Dipturus spe-

cies. These data emphasize the need for a classification revision and illustrate the limits of a

single marker gene as phylogenetic tool [82]. However, some clusters might reflect insufficient

taxonomy, e.g. the placement of D. centroura close to P. violacea as opposed toD. pastinaca

and D. tortonesei, which supports the need for a taxonomic revision of the Mediterranean

Dasyatidae. Such unresolved cases could be clarified by using a combined morphological and

molecular phylogenetic analyses, as successfully performed for the Indo-Pacific stingrays [96].

The barcode-referenced library of voucher tissues held by ELASMOMED represents a unique

opportunity for subsequent research intended to achieve taxonomic improvements.

Frommolecular taxonomy to conservation and management issues: the
added value of DNA barcoding for chondrichthyans

Persistent problems regarding the morphological taxonomy of elasmobranchs are their pro-

nounced morphological stasis and the fact that distinctive diagnostic characters are only exhib-

ited in adults [51,65,66]. On-board identification of specimens during international trawl

surveys usually involves several fisheries scientists from different research institutes or organi-

zations, with varying levels of taxonomic skills and expertise. Field sorting and taxonomic clas-

sification are generally carried out using dichotomic keys and identification guides based on

characters shown mainly in the adult stage [5]. This approach itself was shown to be mislead-

ing, because most individuals caught are either juveniles or sub-adults [83]. The approach
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adopted by the ELASMOMED Consortium has proven to be effective in detecting cases of

misidentification among gulper sharks, smooth hound sharks, cat sharks, sting rays and elec-

tric rays. These instances are ascribable to a lack of clear traits and diagnostic characters, espe-

cially in immature individuals. The discrimination between Centrophorus granulosus and C.

uyato is challenging and the taxonomy of the genus has been controversial and in need of revi-

sion[97–99]. The absence of characteristic dorsal black dots on the skin of juveniles ofM.

punctulatus (TL< 60cm) can cause confusion withM.mustelus [70]. Similarly, the characteris-

tic dorsal coloration of mottled light on dark background and the knob-rimmed margins of

the spiracles of Torpedo marmorata are not pronounced enough in small-size individuals

which are often confused with the closely related species T. nobiliana. In cat sharks, the traits

for discriminating S. canicula and S. stellaris are the distinct shape of the anterior nasal flap

and the distribution pattern of coloured spots on the animal’s skin [39,100]. These diagnostic

features were not clearly assessed in a few individuals collected in the Adriatic Sea. The genus

Raja and, in particular, the sibling sister species R.montagui and R. polystigma, are prime

examples of taxa with very similar morphological characters both in immature and mature

individuals because of a very high level of stasis [22,73,101,102]. Such groups require very

accurate, detailed, and time-consuming traditional taxonomic analyses of several individuals

in order to assess species-specific characters. DNA barcoding can assign individuals to species

even if this is not possible using morphological characters (e.g. in sibling and cryptic species)

providing a basic yet very efficient tool to establish reliable diagnostic species-specific features

in such problematic taxa. The prerequisite of such an important process is the development

and implementation of large, almost complete and constantly updated barcode reference

libraries with associated voucher specimens as started by ELASMOMED and other similar

studies (e.g. [92]).

Such large repositories consisting of tissues and barcode sequences of dozens of samples

per species collected across its entire known distribution area would also allow preliminary

exploration of population structure. Intraspecific variation of barcode sequences is intrinsically

low, but despite this and the rather low number of individuals and samples analysed we were

able to detect signals of phylogeographic structure within some groups of the ELASMOMED

Mediterranean dataset. Such preliminary evidence is insufficient and requires further infer-

ence of evolutionary patterns suitable for addressing management and conservation issues.

The five batoid species R.miraletus, R. asterias, R. polystigma, R. radula and T.marmorata

exhibited small but detectable phylogeographic structure among the Mediterranean samples,

with divergent private haplotypes detected in the Levant area or, whenever the species do not

occur that far to east (i.e. R. asterias and R. polystigma), in the Adriatic Sea. In addition, R. aste-

rias showed also two private haplotypes in the Balearic area, likely highlighting a more marked

geographical structure than the other four species. Geographical genetic breaks need to be

accurately accounted for when delineating management and conservation units. Behavioural

ecology and life-history traits of demersal and bathydemersal skates and rays [103–105] make

this group particularly prone to genetic structuring and several cases have already been docu-

mented for the region [73,106,107]. Other studies used different mtDNAmarkers such as

parts of the control region or cytochrome b (see for R. clavata [73,106]) to accurately unravel

geographical structuring of populations. Recent studies in the Mediterranean used barcode

data to assess genetic differentiation of the small-spotted catshark [44,45] and their findings

describe phylogeographic signals comparable to those inferred by our ELASMOMED dataset.

Efforts toward the completion of the ELASMOMED database should be continued to

expand taxonomic coverage and to improve the assessment of spatial and temporal patterns of

species diversity of Chondrichthyes in the Mediterranean. The completion of the ELAS-

MOMED barcode library will allow i) more accurate species-specific information from
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scientific survey and landing data essential to correctly assess stock status of Chondrichthyans

[63,108]; ii) the detection of cryptic and invasive species and iii) the forensic traceability of car-

tilaginous fish products to fight illegal and unreported fisheries and support commercial trade

[109].

DNA barcoding is also the starting point for other fast-evolving DNA-based techniques.

The widespread use of environmental DNA allows for the extraction short sequences of multi-

ple-species from complex matrices (e.g. seawater) in form of metabarcoding data [77,110–

113].Because of the nature of this methodology, comprehensive barcoding libraries are even

more essential in providing valid comparative data and strengthening biodiversity monitoring

different geographical scales.
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et al. (2014) and ELASMOMED, as well as other available studies (reported under the

column OTHER). Both the number of barcode records obtained fromMediterranean and

non-Mediterranean specimens are reported. When the number of non-Mediterranean bar-
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(CR = Critically Endangered, EN = Endangered, VU = Vulnerable, NT = Near Threatened,
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(XLSX)

S3 Table. The GenBank Accession Numbers, BIN, Sample ID and Process ID of the 882
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S1 Fig. Haplotype parsimony networks ofDasyatis pastinaca reconstructed using ELAS-

MOMED COI barcode sequences. Each circle represents one haplotype and its size is propor-

tional to frequency. Colours indicate the origin of samples according to FAO fishing divisions.
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