
Statistical Science
2011, Vol. 26, No. 3, 332–351
DOI: 10.1214/11-STS365
© Institute of Mathematical Statistics, 2011

Improving the Convergence Properties of
the Data Augmentation Algorithm with an
Application to Bayesian Mixture Modeling
James P. Hobert, Vivekananda Roy and Christian P. Robert

Abstract. The reversible Markov chains that drive the data augmentation
(DA) and sandwich algorithms define self-adjoint operators whose spectra
encode the convergence properties of the algorithms. When the target distri-
bution has uncountable support, as is nearly always the case in practice, it is
generally quite difficult to get a handle on these spectra. We show that, if the
augmentation space is finite, then (under regularity conditions) the operators
defined by the DA and sandwich chains are compact, and the spectra are fi-
nite subsets of [0,1). Moreover, we prove that the spectrum of the sandwich
operator dominates the spectrum of the DA operator in the sense that the or-
dered elements of the former are all less than or equal to the corresponding
elements of the latter. As a concrete example, we study a widely used DA
algorithm for the exploration of posterior densities associated with Bayesian
mixture models [J. Roy. Statist. Soc. Ser. B 56 (1994) 363–375]. In particular,
we compare this mixture DA algorithm with an alternative algorithm pro-
posed by Frühwirth-Schnatter [J. Amer. Statist. Assoc. 96 (2001) 194–209]
that is based on random label switching.

Key words and phrases: Compact operator, convergence rate, eigenvalue,
label switching, Markov operator, Monte Carlo, operator norm, positive op-
erator, reversible Markov chain, sandwich algorithm, spectrum.

1. INTRODUCTION

Suppose that fX : Rp → [0,∞) is a probability den-
sity function that is intractable in the sense that ex-
pectations with respect to fX cannot be computed an-
alytically. If direct simulation from fX is infeasible,
then classical Monte Carlo methods cannot be used to
explore fX and one might resort to a Markov chain
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Monte Carlo (MCMC) method such as the data aug-
mentation (DA) algorithm (Tanner and Wong, 1987;
Liu, Wong and Kong, 1994; Hobert, 2011). To build
a DA algorithm, one must identify a joint density, say,
f : Rp × R

q → [0,∞), that satisfies two conditions:
(i) the x-marginal of f (x, y) is fX , and (ii) sampling
from the associated conditional densities, fX|Y (·|y)

and fY |X(·|x), is straightforward. (The y-coordinate
may be discrete or continuous.) The first of the two
conditions allows us to construct a Markov chain hav-
ing fX as an invariant density, and the second ensures
that we are able to simulate this chain. Indeed, let
{Xn}∞n=0 be a Markov chain whose dynamics are de-
fined (implicitly) through the following two-step pro-
cedure for moving from the current state, Xn = x, to
Xn+1 (see Procedure 1).

It is well known and easy to establish that the DA
Markov chain is reversible with respect to fX , and
this of course implies that fX is an invariant den-
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PROCEDURE 1
Iteration n + 1 of the DA Algorithm

1. Draw Y ∼ fY |X(·|x), and call the observed value y.
2. Draw Xn+1 ∼ fX|Y (·|y).

sity (Liu, Wong and Kong, 1994). Consequently, if the
chain satisfies the usual regularity conditions (see Sec-
tion 2), then we can use averages to consistently esti-
mate intractable expectations with respect to fX (Tier-
ney, 1994). The resulting MCMC algorithm is known
as a DA algorithm for fX . (Throughout this section,
fX is assumed to be a probability density function,
but, starting in Section 2, a more general version of the
problem is considered.)

When designing a DA algorithm, one is free to
choose any joint density that satisfies conditions (i) and
(ii). Obviously, different joint densities will yield dif-
ferent DA chains, and the goal is to find a joint den-
sity whose DA chain has good convergence properties.
(This is formalized in Section 3 using χ2-distance to
stationarity.) Unfortunately, the “ideal” joint density,
which yields the DA chain with the fastest possible rate
of convergence, does not satisfy the simulation require-
ment. Indeed, consider f⊥(x, y) = fX(x)gY (y), where
gY (y) is any density function on R

q . Since f⊥(x, y)

factors, fX|Y (x|y) = fX(x) and it follows that the DA
chain is just an i.i.d. sequence from fX . Of course, this
ideal DA algorithm is useless from a practical stand-
point because, in order to simulate the chain, we must
draw from fX , which is impossible. We return to this
example later in this section.

It is important to keep in mind that there is no
inherent interest in the joint density f (x, y). It is
merely a tool that facilitates exploration of the tar-
get density, fX(x). This is the reason why the DA
chain does not possess a y-coordinate. In contrast, the
two-variable Gibbs sampler based on fX|Y (·|y) and
fY |X(·|x), which is used to explore f (x, y), has both
x and y-coordinates. So, while the two-step procedure
described above can be used to simulate both the DA
and Gibbs chains, there is one key difference. When
simulating the DA chain, we do not keep track of the
y-coordinate.

Every reversible Markov chain defines a self-adjoint
operator whose spectrum encodes the convergence
properties of the chain (Mira and Geyer, 1999; Rosen-
thal, 2003; Diaconis, Khare and Saloff-Coste, 2008).
Let X ∼ fX and consider the space of functions g such

that the random variable g(X) has finite variance and
mean zero. To be more precise, define

L2
0(fX) =

{
g : Rp → R :

∫
Rp

g2(x)fX(x) dx < ∞

and
∫

Rp
g(x)fX(x) dx = 0

}
.

Let k(x′|x) be the Markov transition density (Mtd) of
the DA chain. (See Section 3 for a formal definition.)
This Mtd defines an operator, K :L2

0 → L2
0, that maps

g(x) to

(Kg)(x) :=
∫

Rp
g(x′)k(x′|x)dx′.

Of course, (Kg)(x) is just the expected value of g(X1)

given that X0 = x. Let I :L2
0 → L2

0 denote the identity
operator, which leaves functions unaltered, and con-
sider the operator K − λI , where λ ∈ R. By defini-
tion, K − λI is invertible if, for each h ∈ L2

0, there
exists a unique g ∈ L2

0 such that ((K − λI)g)(x) =
(Kg)(x) − λg(x) = h(x). The spectrum of K , which
we denote by Sp(K), is simply the set of λ such that
K −λI is not invertible. Because K is defined through
a DA chain, Sp(K) ⊆ [0,1] (see Section 3). The num-
ber of elements in Sp(K) may be finite, countably infi-
nite or uncountable.

In order to understand what “good” spectra look like,
consider the ideal DA algorithm introduced earlier. Let
k⊥ and K⊥ denote the Mtd and the corresponding op-
erator, respectively. In the ideal case, Xn+1 is indepen-
dent of Xn and has density fX . Therefore, the Mtd is
just k⊥(x′|x) = fX(x′) and

(K⊥g)(x) =
∫

Rp
g(x′)fX(x′) dx′ = 0,

which implies that(
(K⊥ − λI)g

)
(x) = −λg(x).

It follows that K⊥ − λI is invertible as long as λ 	= 0.
Hence, the “ideal spectrum” is Sp(K⊥) = {0}. Loosely
speaking, the closer Sp(K) is to {0}, the faster the
DA algorithm converges (Diaconis, Khare and Saloff-
Coste, 2008).

Unfortunately, in general, there is no simple method
for calculating Sp(K). Even getting a handle on Sp(K)

is currently difficult. However, there is one situation
where Sp(K) has a very simple structure. Let Y = {y ∈
R

q :fY (y) > 0}, where fY (y) = ∫
Rp f (x, y) dx. We

show that when Y is a finite set, Sp(K) consists of a
finite number of elements that are directly related to
the Markov transition matrix (Mtm) of the so-called
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conjugate chain, which is the reversible Markov chain
that lives on Y and makes the transition y → y′ with
probability

∫
Rp fY |X(y′|x)fX|Y (x|y)dx. In particular,

we prove that when |Y| = d < ∞, Sp(K) consists of
the point {0} together with the d − 1 smallest eigen-
values of the Mtm of the conjugate chain. We use this
result to prove that the spectrum associated with a par-
ticular alternative to the DA chain is closer than Sp(K)

to the ideal spectrum, {0}.
DA algorithms often suffer from slow convergence,

which is not surprising given the close connection be-
tween DA and the notoriously slow to converge EM al-
gorithm (see, e.g., van Dyk and Meng, 2001). Over the
last decade, a great deal of effort has gone into mod-
ifying the DA algorithm to speed convergence. See,
for example, Meng and van Dyk (1999), Liu and Wu
(1999), Liu and Sabatti (2000), van Dyk and Meng
(2001), Papaspiliopoulos, Roberts and Sköld (2007),
Hobert and Marchev (2008) and Yu and Meng (2011).
In this paper we focus on the so-called sandwich al-
gorithm, which is a simple alternative to the DA al-
gorithm that often converges much faster. Let r(y ′|y)

be an auxiliary Mtd (or Mtm) that is reversible with
respect to fY , and consider a new Markov chain,
{X̃n}∞n=0, that moves from X̃n = x to X̃n+1 via the fol-
lowing three-step procedure (see Procedure 2).

A routine calculation shows that the sandwich chain
remains reversible with respect to fX , so it is a viable
alternative to the DA chain. The name “sandwich algo-
rithm” was coined by Yu and Meng (2011) and is based
on the fact that the extra draw from r(·|y) is sand-
wiched between the two steps of the DA algorithm.
Clearly, on a per iteration basis, it is more expensive to
simulate the sandwich chain. However, it is often pos-
sible to find an r that leads to a substantial improve-
ment in mixing despite the fact that it only provides
a low-dimensional (and hence inexpensive) perturba-
tion on the Y space. In fact, the computational cost of
drawing from r is often negligible relative to the cost
of drawing from fY |X(·|x) and fX|Y (·|y). Concrete ex-
amples can be found in Meng and van Dyk (1999), Liu
and Wu (1999), van Dyk and Meng (2001), Roy and
Hobert (2007) and Section 5 of this paper.

PROCEDURE 2
Iteration n + 1 of the Sandwich Algorithm

1. Draw Y ∼ fY |X(·|x), and call the observed value y.
2. Draw Y ′ ∼ r(·|y), and call the observed value y′.
3. Draw X̃n+1 ∼ fX|Y (·|y′).

Let k̃(x′|x) denote the Mtd of the sandwich chain.
Also, let K̃ and Sp(K̃) denote the corresponding oper-
ator and its spectrum. The main theoretical result in this
paper provides conditions under which Sp(K̃) is closer
than Sp(K) to the ideal spectrum. Recall that when
|Y| = d < ∞, Sp(K) consists of the point {0} and the
d − 1 smallest eigenvalues of the Mtm of the conjugate
chain. If, in addition, r is idempotent (see Section 4
for the definition), then Sp(K̃) consists of the point
{0} and the d − 1 smallest eigenvalues of a different
d ×d Mtm, and 0 ≤ λ̃i ≤ λi for all i ∈ {1,2, . . . , d−1},
where λ̃i and λi are the ith largest elements of Sp(K̃)

and Sp(K), respectively. So Sp(K̃) dominates Sp(K)

in the sense that the ordered elements of Sp(K̃) are uni-
formly less than or equal to the corresponding elements
of Sp(K). We conclude that the sandwich algorithm is
closer than the DA algorithm to the gold standard of
classical Monte Carlo.

One might hope for a stronger result that quantifies
the extent to which the sandwich chain is better than
the DA chain, but such a result is impossible without
further assumptions. Indeed, if we take the auxiliary
Markov chain on Y to be the degenerate chain that is
absorbed at its starting point, then the sandwich chain
is the same as the DA chain.

To illustrate the huge gains that are possible through
the sandwich algorithm, we introduce a new example
involving a Bayesian mixture model. Let Z1, . . . ,Zm

be a random sample from a k-component mixture den-
sity taking the form

k∑
j=1

pjhθj
(z),(1)

where θ1, . . . , θk ∈ � ⊆ R
l , {hθ(·) : θ ∈ �} is a para-

metric family of densities, and the pj ’s are non-
negative weights that sum to one. Of course, a Bayesian
analysis requires priors for the unknown parameters,
which are θ = (θ1, θ2, . . . , θk)

T and p = (p1,p2, . . . ,

pk)
T . In typical applications we have no prior infor-

mation on p, and the same (lack of) prior information
about each of the components in the mixture. Thus,
it makes sense to put a symmetric Dirichlet prior on
the weights, and to take a prior on θ that has the form∏k

j=1 π(θj ), where π :� → [0,∞) is a proper prior
density on �. Let z = (z1, . . . , zm) denote the observed
data. It is well known that the resulting posterior den-
sity, π(θ ,p|z), is intractable and highly multi-modal
(see, e.g., Jasra, Holmes and Stephens, 2005). Indeed,
let E denote any one of the k! permutation matrices of
dimension k and note that π(θ ,p|z) = π(Eθ ,Ep|z).
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Thus, every local maximum of the posterior density
has k! − 1 exact replicas somewhere else in the param-
eter space.

The standard DA algorithm for this mixture prob-
lem was introduced by Diebolt and Robert (1994) and
is based on the following augmented model. Assume
that {(Yi,Zi)}mi=1 are i.i.d. pairs such that Yi = j with
probability pj , and, conditional on Yi = j , Zi ∼ hθj

(·).
Note that the marginal density of Zi under this two-
level hierarchy is just (1). Let y = (y1, . . . , ym) denote
a realization of the Yi ’s. The so-called complete data
posterior density, π((θ ,p),y|z), is just the posterior
density that results when we combine our model for
{(Yi,Zi)}mi=1 with the priors on p and θ defined above.
It is easy to see that∑

y∈Y

π((θ ,p),y|z) = π(θ ,p|z),

where Y is the set of all sequences of length m con-
sisting of integers from the set {1, . . . , k}. Hence,
π((θ ,p),y|z) can be used to build a DA algorithm as
long as it is possible to sample from the conditionals,
π((θ ,p)|y, z) and π(y|(θ ,p), z). We call it the mixture
DA (MDA) algorithm. Note that the state space for the
MDA chain is the Cartesian product of R

kl and the
k-dimensional simplex, but |Y| = km < ∞.

The MDA algorithm often converges very slowly
because it moves between the symmetric modes of
π(θ ,p|z) too infrequently (Celeux, Hurn and Robert,
2000; Lee et al., 2008). Frühwirth-Schnatter (2001)
suggested adding a random label switching step to each
iteration of the MDA algorithm in order to force move-
ment between the modes. We show that the resulting
Markov chain, which we call the FS chain, is a spe-
cial case of the sandwich chain. Moreover, our theo-
retical results are applicable and imply that the spec-
trum of the operator defined by the FS chain dominates
the spectrum of the MDA operator. To illustrate the ex-
tent to which the label switching step can speed con-
vergence, we study two specific mixture models and
compare the spectra associated with the FS and MDA
chains. The first example is a toy problem in which
we are able to get exact formulas for the eigenvalues.
The second example is a normal mixture model that
is frequently used in practice, and we approximate the
eigenvalues via classical Monte Carlo methods. The
conclusions from the two examples are quite similar.
First, the MDA chain converges slowly and its rate
of convergence deteriorates very rapidly as the sam-
ple size, m, increases. Second, the FS chain converges

much faster and its rate does not seem as adversely af-
fected by increasing sample size.

The remainder of this paper is organized as follows.
Section 2 is a brief review of the operator theory used
for analyzing reversible Markov chains. Section 3 con-
tains a string of results about the DA operator and its
spectrum. Our main result comparing the DA and sand-
wich chains in the case where |Y| < ∞ appears in Sec-
tion 4. Section 5 contains a detailed review of the MDA
and FS algorithms, as well as a proof that the FS chain
is a special case of the sandwich chain. Finally, in Sec-
tion 6, the MDA and FS chains are compared in the
context of two specific examples. The Appendix con-
tains an eigen-analysis of a special 4 × 4 Mtm.

2. OPERATOR THEORY FOR REVERSIBLE
MARKOV CHAINS

Consider the following generalized version of the
problem described in the Introduction. Let X be a gen-
eral space (equipped with a countably generated σ -
algebra) and suppose that fX : X → [0,∞) is an in-
tractable probability density with respect to the mea-
sure μ. Let p(x′|x) be a Mtd (with respect to μ)
such that p(x′|x)fX(x) is symmetric in (x, x′), so the
Markov chain defined by p is reversible with respect to
fX(x). Assume that the chain is Harris ergodic, which
means that it is irreducible, aperiodic and Harris recur-
rent (Meyn and Tweedie, 1993; Asmussen and Glynn,
2011).

Define the Hilbert space

L2
0(fX) =

{
g : X → R :

∫
X
g2(x)fX(x)μ(dx) < ∞

and
∫

X
g(x)fX(x)μ(dx) = 0

}
,

where inner product is defined as

〈g,h〉 =
∫

X
g(x)h(x)fX(x)μ(dx).

The corresponding norm is given by ‖g‖ = √〈g,g〉.
The Mtd p defines an operator P :L2

0(fX) → L2
0(fX)

that acts on g ∈ L2
0(fX) as follows:

(Pg)(x) =
∫

X
g(x′)p(x′|x)μ(dx′).

It is easy to show, using reversibility, that for g,h ∈
L2

0(fX), 〈Pg,h〉 = 〈g,Ph〉; that is, P is a self-adjoint
operator. The spectrum of P is defined as

Sp(P ) = {λ ∈ R :P − λI is not invertible}.
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There are two ways in which P − λI can fail to be in-
vertible (Rudin, 1991, Chapter 4). First, P − λI may
not be onto, that is, if there exists h ∈ L2

0(fX) such
that there is no g ∈ L2

0(fX) for which ((P − λI)g) =
h, then the range of P − λI is not all of L2

0(fX),
so P − λI is not invertible and λ ∈ Sp(P ). Second,
P − λI may not be one-to-one, that is, if there ex-
ist two different functions g,h ∈ L2

0(fX) such that
((P −λI)g) = ((P −λI)h), then P −λI is not one-to-
one, so P − λI is not invertible and λ ∈ Sp(P ). Note
that if ((P − λI)g) = ((P − λI)h), then Pg∗ = λg∗
with g∗ = g − h, and λ is called an eigenvalue with
eigen-function g∗. We call the pair (λ, g∗) an eigen-
solution.

Let L2
0,1(fX) denote the subset of functions in

L2
0(fX) that satisfy

∫
X g2(x)fX(x)μ(dx) = 1. The (op-

erator) norm of P is defined as

‖P‖ = sup
g∈L2

0,1(fX)

‖Pg‖.

A simple application of Jensen’s inequality shows that
the non-negative quantity ‖P‖ is bounded above by 1.
The norm of P is a good univariate summary of Sp(P ).
Indeed, define

lP = inf
g∈L2

0,1(fX)
〈Pg,g〉 and uP = sup

g∈L2
0,1(fX)

〈Pg,g〉.

It follows from standard linear operator theory that
inf Sp(P ) = lP , sup Sp(P ) = uP , and ‖P‖ =
max{−lP , uP }. Consequently,

Sp(P ) ⊆ [−‖P‖,‖P‖] ⊆ [−1,1].
Another name for ‖P‖ in this context is the spectral
radius, which makes sense since ‖P‖ represents the
maximum distance that Sp(P ) extends away from the
origin. The quantity 1−‖P‖ is called the spectral gap.

It is well known that ‖P‖ is closely related to the
convergence properties of the Markov chain defined
by p (Liu, Wong and Kong, 1995; Rosenthal, 2003).
In particular, the chain is geometrically ergodic if and
only if ‖P‖ < 1 (Roberts and Rosenthal, 1997). There
is an important practical advantage to using an MCMC
algorithm that is driven by a geometrically ergodic
Markov chain. Indeed, when the chain is geometric,
sample averages satisfy central limit theorems, and
these allow for the computation of asymptotically valid
standard errors for MCMC-based estimates (Jones et
al., 2006; Flegal, Haran and Jones, 2008). We note
that geometric ergodicity of reversible Monte Carlo
Markov chains is typically not proven by showing that

the operator norm is strictly less than 1, but rather
by establishing a so-called geometric drift condition
(Jones and Hobert, 2001).

If |X| < ∞, then P is simply the Mtm whose (i, j)th
element is p(j |i), the probability that the chain moves
from i to j . In this case, Sp(P ) is just the set of eigen-
values of P (see, e.g., Mira and Geyer, 1999). The
reader is probably used to thinking of 1 as an eigen-
value for P because P satisfies the equation P 1 = 1,
where 1 denotes a vector of ones. However, the only
constant function in L2

0 is the zero function, so (1,1)

is not a viable eigen-solution in our context. Further-
more, irreducibility implies that the only vectors v that
solve the equation P v = v are constant. It follows
that 1 /∈ Sp(P ). Aperiodicity implies that −1 /∈ Sp(P ).
Hence, when X is a finite set, ‖P‖ is necessarily less
than one. In the next section we return to the DA algo-
rithm.

3. THE SPECTRUM OF THE DA CHAIN

Suppose that Y is a second general space and that
ν is a measure on Y. Let f : X × Y → [0,∞) be a
joint probability density with respect to μ × ν. As-
sume that

∫
Y f (x, y)ν(dy) = fX(x) and that simulat-

ing from the associated conditional densities, fX|Y (·|y)

and fY |X(·|x), is straightforward. (For convenience, we
assume that fX and fY are strictly positive on X and Y,
respectively.) The DA chain, {Xn}∞n=0, has Mtd (with
respect to μ) given by

k(x′|x) =
∫

Y
fX|Y (x′|y)fY |X(y|x)ν(dy).(2)

It is easy to see that k(x′|x)fX(x) is symmetric in
(x, x′), so the DA chain is reversible with respect to
fX . We assume throughout this section and the next
that all DA chains (and their conjugates) are Harris er-
godic. [See Hobert (2011) for a simple sufficient con-
dition for Harris ergodicity of the DA chain.] If the in-
tegral in (2) is intractable, as is nearly always the case
in practice, then direct simulation from k(·|x) will be
problematic. This is why the indirect two-step proce-
dure is used.

Liu, Wong and Kong (1994) showed that the DA
chain satisfies an important property that results in a
positive spectrum. Let K denote the operator defined
by the DA chain. For g ∈ L2

0(fX), we have

〈Kg,g〉
=

∫
X
(Kg)(x)g(x)fX(x)μ(dx)
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=
∫

X

[∫
X
g(x′)k(x′|x)μ(dx′)

]
g(x)fX(x)μ(dx)

=
∫

X

[∫
X
g(x′)

[∫
Y
fX|Y (x′|y)fY |X(y|x)ν(dy)

]

· μ(dx′)
]
g(x)fX(x)μ(dx)

=
∫

Y

[∫
X
g(x)fX|Y (x|y)μ(dx)

]2

fY (y)ν(dy)

≥ 0,

which shows that K is a positive operator. It follows
that lK ≥ 0, so Sp(K) ⊆ [0,‖K‖] ⊆ [0,1] and ‖K‖ =
sup Sp(K).

In most applications of the DA algorithm, fX is a
probability density function (with respect to Lebesgue
measure), which means that X is not finite. Typically,
when |X| = ∞, it is difficult to get a handle on Sp(K),
which can be quite complex and may contain an un-
countable number of points. However, if K is a com-
pact operator,1 then Sp(K) has a particularly simple
form. Indeed, if |X| = ∞ and K is compact, then the
following all hold: (i) the number of points in Sp(K)

is at most countably infinite, (ii) {0} ∈ Sp(K), (iii) {0}
is the only possible accumulation point, and (iv) any
point in Sp(K) other than {0} is an eigenvalue. In the
remainder of this section we prove that, if |X| = ∞ and
|Y| = d < ∞, then K is a compact operator and Sp(K)

consists of the point {0} along with d − 1 eigenvalues,
and these are exactly the d − 1 eigenvalues of the Mtm
that defines the conjugate chain. It follows immediately
that the DA chain is geometrically (in fact, uniformly)
ergodic. Moreover, K has a finite spectral decomposi-
tion that provides very precise information about the
convergence of the DA chain (Diaconis, Khare and
Saloff-Coste, 2008). Indeed, let {(λi, gi)}d−1

i=1 denote a
set of (orthonormal) eigen-solutions for K . If the chain
is started at X0 = x, then the χ2-distance between the
distribution of Xn and the stationary distribution can
be expressed as

∫
X

|kn(x′|x) − fX(x′)|2
fX(x′)

μ(dx′) =
d−1∑
i=1

λ2n
i g2

i (x),(3)

where kn(·|x) is the n-step Mtd, that is, the density of
Xn given X0 = x. Of course, the χ2-distance is an up-
per bound on the total variation distance (see, e.g., Liu,

1The operator K is defined to be compact if for any sequence of
functions gi in L2

0(fX) with ‖gi‖ ≤ 1, there is a subsequence gij

such that the sequence Kgij converges to a limit in L2
0(fX).

Wong and Kong, 1995). Since the λi ’s are the eigen-
values of the Mtm of the conjugate chain, there is some
hope of calculating, or at least bounding them.

Let L2
0(fY ) be the set of mean-zero, square inte-

grable functions with respect to fY . In a slight abuse of
notation, we will let 〈·, ·〉 and ‖ ·‖ do double duty as in-
ner product and norm on both L2

0(fX) and on L2
0(fY ).

We now describe a representation of the operator K

that was developed and exploited by Diaconis, Khare
and Saloff-Coste (2008) (see also Buja, 1990). Define
Q :L2

0(fX) → L2
0(fY ) and Q∗ :L2

0(fY ) → L2
0(fX) as

follows:

(Qg)(y) =
∫

X
g(x)fX|Y (x|y)μ(dx)

and

(Q∗h)(x) =
∫

Y
h(y)fY |X(y|x)ν(dy).

Note that

〈Qg,h〉
=

∫
Y
(Qg)(y)h(y)fY (y)ν(dy)

=
∫

Y

[∫
X
g(x)fX|Y (x|y)μ(dx)

]
h(y)fY (y)ν(dy)

=
∫

X
g(x)

[∫
Y
h(y)fY |X(y|x)ν(dy)

]
fX(x)μ(dx)

= 〈g,Q∗h〉,
which shows that Q∗ is the adjoint of Q. [Note that we
are using the term “adjoint” in a somewhat nonstandard
way since 〈Qg,h〉 is an inner product on L2

0(fY ), while
〈g,Q∗h〉 is an inner product on L2

0(fX).] Moreover,

(Kg)(x)

=
∫

X
g(x′)k(x′|x)μ(dx′)

=
∫

X
g(x′)

[∫
Y
fX|Y (x′|y)fY |X(y|x)ν(dy)

]
μ(dx′)

=
∫

Y

[∫
X
g(x′)fX|Y (x′|y)μ(dx′)

]
fY |X(y|x)ν(dy)

=
∫

Y
(Qg)(y)fY |X(y|x)ν(dy)

= ((Q∗Q)g)(x),

which shows that K = Q∗Q. As in Section 1, consider
the conjugate Markov chain whose Mtd (with respect
to ν) is given by

k̂(y′|y) =
∫

X
fY |X(y′|x)fX|Y (x|y)μ(dx).(4)
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Obviously, k̂(y′|y) is reversible with respect to fY .
Furthermore, it is easy to see that K̂ = QQ∗, where K̂ :
L2

0(fY ) → L2
0(fY ) is the operator associated with k̂.

Now suppose that (λ, g) is an eigen-solution for
K , that is, (Kg)(x) = λg(x), which is equivalent to
((Q∗Q)g)(x) = λg(x). Applying the operator Q to
both sides yields (Q((Q∗Q)g))(y) = λ(Qg)(y), but
we can rewrite this as (K̂(Qg))(y) = λ(Qg)(y), which
shows that (λ,Qg) is an eigen-solution for K̂ . [See
Buja (1990) for a similar development.] Of course,
the same argument can be used to convert an eigen-
solution for K̂ into an eigen-solution for K . We con-
clude that K̂ and K share the same eigenvalues. Here
is a precise statement.

PROPOSITION 1. If (λ, g) is an eigen-solution for
K , then (λ, (Qg)) is an eigen-solution for K̂ . Con-
versely, if (λ,h) is an eigen-solution for K̂ , then
(λ, (Q∗h)) is an eigen-solution for K .

REMARK 1. Diaconis, Khare and Saloff-Coste
(2008) describe several examples where the eigen-
solutions of K and K̂ can be calculated explicitly.
These authors studied the case where fX|Y (x|y) is an
univariate exponential family (with y playing the role
of the parameter), and fY (y) is the conjugate prior.

The next result, which is easily established using mi-
nor extensions of results in Retherford’s (1993) Chap-
ter VII, shows that compactness is a solidarity property
for K and K̂ .

PROPOSITION 2. K is compact if and only if K̂ is
compact.

Here is the main result of this section, which relates
the spectrum of the DA chain to the spectrum of the
conjugate chain.

PROPOSITION 3. Assume that |X| = ∞ and |Y| =
d < ∞. Then K is a compact operator and Sp(K) =
{0} ∪ Sp(K̂).

PROOF. Since |Y| < ∞, K̂ is a compact operator.
It follows from Proposition 2 that K is also compact.
Hence, {0} ∈ Sp(K), and aside from {0}, all the ele-
ments of Sp(K) are eigenvalues of K . But we know
from Proposition 1 that K and K̂ share the same eigen-
values. �

REMARK 2. Liu, Wong and Kong’s (1994) Theo-
rem 3.2 states that ‖K‖ = ‖K̂‖ (regardless of the car-
dinalities of X and Y). Proposition 3 can be viewed as
a refinement of this result in the case where |Y| < ∞.
See also Roberts and Rosenthal (2001).

In the next section we use Proposition 3 to prove
that the spectrum of the sandwich chain dominates the
spectrum of the DA chain.

4. IMPROVING THE DA ALGORITHM

Suppose that R(y, dy′) is a Markov transition func-
tion on Y that is reversible with respect to fY (y). Let
{X̃n}∞n=0 be the sandwich chain on X whose Mtd is
given by

k̃(x′|x) =
∫

Y

∫
Y
fX|Y (x′|y′)R(y, dy′)

(5)
· fY |X(y|x)ν(dy).

Again, routine calculations show that the sandwich
chain remains reversible with respect to the target den-
sity fX . Moreover, if we can draw from R(y, ·), then
we can draw from k̃(·|x) in three steps. First, draw Y ∼
fY |X(·|x), call the result y, then draw Y ′ ∼ R(y, ·), call
the result y′, and finally draw X′ ∼ fX|Y (·|y′).

Note that k̃ is not defined as the integral of the prod-
uct of two conditional densities, as in (2). However,
as we now explain, if R satisfies a certain property,
called idempotence, then k̃ can be re-expressed as the
Mtd of a DA chain. The transition function R(y, dy′)
is called idempotent if R2(y, dy′) = R(y, dy′) where
R2(y, dy′) = ∫

Y R(y, dw)R(w,dy′). This property
implies that, if we start the Markov chain (defined
by R) at a fixed point y, then the distribution of the
chain after one step is the same as the distribution af-
ter two steps. For example, if R(y, dy′) does not de-
pend on y, which implies that the Markov chain is
just an i.i.d. sequence, then R is idempotent. Here is a
more interesting example. Take Y = R and R(y, dy′) =
r(y′|y)dy′ with

r(y′|y) = e−|y′|[I[0,∞)(y)I[0,∞)(y
′)

+ I(−∞,0)(y)I(−∞,0)(y
′)

]
.

It is easy to show that
∫
R

r(y′|w)r(w|y)dw = r(y′|y),
so R is indeed idempotent. Note that the chain is re-
ducible since, for example, if it is started on the posi-
tive half-line, it can never get to the negative half-line.
In fact, reducibility is a common feature of idempotent
chains. Fortunately, the sandwich chain does not inherit
this property.

Hobert and Marchev (2008) proved that if R is idem-
potent, then

k̃(x′|x) =
∫

Y
f ∗

X|Y (x′|y)f ∗
Y |X(y|x)ν(dy),(6)
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where

f ∗(x, y) = fY (y)

∫
Y
fX|Y (x|y′)R(y, dy′).

Note that f ∗ is a probability density (with respect to
μ × ν) whose x and y-marginals are fX and fY . What
is important here is not the particular form of f ∗, but
the fact that such a density exists, because this shows
that the sandwich chain is actually a DA chain based
on the joint density f ∗(x, y). Therefore, we can use the
theory developed in Section 3 to analyze the sandwich
chain. Let K̃ :L2

0(fX) → L2
0(fX) denote the operator

defined by the Mtd k̃. Hobert and Marchev’s (2008)
Corollary 1 states that ‖K̃‖ ≤ ‖K‖ (see also Hobert
and Román, 2011). Here is a refinement of that result
in the case where |Y| < ∞.

THEOREM 1. Assume that |X| = ∞, |Y| = d < ∞
and that R is idempotent. Then K and K̃ are both com-
pact operators and each has a spectrum that consists
exactly of the point {0} and d − 1 eigenvalues in [0,1).
Furthermore, if we denote the eigenvalues of K by

0 ≤ λd−1 ≤ λd−2 ≤ · · · ≤ λ1 < 1,

and those of K̃ by

0 ≤ λ̃d−1 ≤ λ̃d−2 ≤ · · · ≤ λ̃1 < 1,

then λ̃i ≤ λi for each i ∈ {1,2, . . . , d − 1}.
PROOF. Since R is idempotent, the chains defined

by k and k̃ are both DA Markov chains. Moreover,
in both cases, the conjugate chain lives on the finite
space Y, which has d elements. Therefore, Proposi-
tion 3 implies that K and K̃ are both compact and each
has a spectrum consisting of the point {0} and d − 1
eigenvalues in [0,1). Now, Corollary 1 of Hobert and
Marchev (2008) implies that K − K̃ is a positive oper-
ator. Thus, for any g ∈ L2

0(fX),

〈K̃g, g〉
〈g,g〉 ≤ 〈Kg,g〉

〈g,g〉 .

The eigenvalue ordering now follows from an exten-
sion of the argument used to prove Mira and Geyer’s
(1999) Theorem 3.3. Indeed, the Courant–Fischer–
Weyl minmax characterization of eigenvalues of com-
pact, self-adjoint operators (see, e.g., Voss, 2003)
yields

λ̃i = min
dim(V )=i−1

max
g∈V ⊥,g 	=0

〈K̃g, g〉
〈g,g〉

≤ min
dim(V )=i−1

max
g∈V ⊥,g 	=0

〈Kg,g〉
〈g,g〉 = λi,

where V denotes a subspace of L2
0(fX) with dimension

dim(V ), and V ⊥ is its orthogonal complement. �
Theorem 1 shows that, unless the two spectra are ex-

actly the same, Sp(K̃) is closer than Sp(K) to the ideal
spectrum, {0}. In fact, in all of the numerical compar-
isons that we have performed, it has always turned out
that there is strict inequality between the eigenvalues
(except, of course, when they are both zero). When the
domination is strict, there exists a positive integer N

such that, for all n ≥ N ,∫
X

|k̃n(x′|x) − fX(x′)|2
fX(x′)

μ(dx′)

<

∫
X

|kn(x′|x) − fX(x′)|2
fX(x′)

μ(dx′).

Indeed, let {(λ̃i, g̃i)}d−1
i=1 denote a set of (orthonormal)

eigen-solutions of K̃ . Then, according to (3), the χ2-
distance between the distribution of X̃n and the station-
ary distribution is given by

d−1∑
i=1

λ̃2n
i g̃2

i (x).(7)

Now, fix i ∈ {1, . . . , d − 1}. If λ̃i = λi = 0, then the
ith term in the sum is irrelevant. On the other hand, if
0 ≤ λ̃i < λi , then, no matter what the values of gi(x)

and g̃i(x) are, λ̃2n
i g̃2

i (x) will be less than λ2n
i g2

i (x) for
all n eventually.

In the next section we provide examples where the
sandwich chain converges much faster than the DA
chain, despite the fact that the two are essentially
equivalent in terms of computer time per iteration.

5. IMPROVING THE DA ALGORITHM FOR
BAYESIAN MIXTURES

5.1 The Model and the MDA Algorithm

Let � ⊆ R
l and consider a parametric family of den-

sities (with respect to the Lebesgue or counting mea-
sure on R

s ) given by {hθ(·) : θ ∈ �}. We work with a
k-component mixture of these densities that takes the
form

f (z|θ ,p) =
k∑

j=1

pjhθj
(z),(8)

where θ = (θ1, . . . , θk)
T ∈ �k and p = (p1, . . . ,

pk)
T ∈ Sk , where

Sk := {p ∈ R
k :pi ∈ [0,1] and p1 + · · · + pk = 1}.
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Let Z1, . . . ,Zm be a random sample from f and con-
sider a Bayesian analysis of these data. We take the
prior for θ to be

∏k
j=1 π(θj ), where π :� → [0,∞) is

a proper prior density on �. The prior on p is taken to
be the uniform distribution on Sk . (The results in this
section all go through with obvious minor changes if
the prior on p is taken to be symmetric Dirichlet, or if
p is known and all of its components are equal to 1/k.)
Letting z = (z1, . . . , zm) denote the observed data, the
posterior density is given by

π(θ ,p|z)
(9)

= (k − 1)!ISk
(p)[∏k

j=1 π(θj )]f (z|θ ,p)

m(z)
,

where

f (z|θ ,p) =
m∏

i=1

[
k∑

j=1

pjhθj
(zi)

]
,

and m(z) denotes the marginal density. The complex-
ity of this posterior density obviously depends on many
factors, including the choices of hθ and π , and the ob-
served data. However, the versions of π(θ ,p|z) that
arise in practice are nearly always highly intractable.
Moreover, as we now explain, every version of this pos-
terior density satisfies an interesting symmetry prop-
erty, which can render MCMC algorithms ineffectual.

The prior distribution on (θ ,p) is exchangeable in
the sense that, if E is any permutation matrix of dimen-
sion k, then the prior density of the point (θ ,p) is equal
to that of (Eθ ,Ep). Furthermore, the likelihood func-
tion satisfies a similar invariance. Indeed, f (z|Eθ ,Ep)

does not vary with E. Consequently, π(Eθ ,Ep|z) is
invariant to E, which means that any posterior mode
has k! − 1 exact replicas somewhere else in the space.
Now, if a set of symmetric modes are separated by ar-
eas of very low (posterior) probability, then it may take
a very long time for a Markov chain [with invariant
density π(θ ,p|z)] to move from one to the other.

We now describe the MDA algorithm for exploring
the mixture posterior. Despite the fact that this algo-
rithm has been around for many years (Diebolt and
Robert, 1994), we provide a careful description here,
as this will facilitate our development of the FS algo-
rithm. Consider a new (joint) density given by

f (z, y|θ,p) =
k∑

j=1

pjI{j}(y)hθj
(z).(10)

Integrating z out yields the marginal mass function
of Y , which is

∑k
j=1 pjI{j}(y). Hence, Y is a multi-

nomial random variable that takes the values 1, . . . , k

with probabilities p1, . . . , pk . Summing out the y com-
ponent leads to

k∑
y=1

f (z, y|θ,p) =
k∑

j=1

pjhθj
(z),(11)

which is just (8). Equation (11) establishes Y as a latent
variable. Now suppose that {(Yi,Zi)}mi=1 are i.i.d. pairs
from (10). Their joint density is given by

f (z,y|θ ,p) =
m∏

i=1

[
k∑

j=1

pjI{j}(yi)hθj
(zi)

]
,

where y = (y1, . . . , ym) takes values in Y, the set of se-
quences of length m consisting of positive integers be-
tween 1 and k. Combining f (z,y|θ ,p) with our prior
on (θ ,p) yields the so-called complete data posterior
density given by

π(θ ,p,y|z)
(12)

= (k − 1)!ISk
(p)[∏k

j=1 π(θj )]f (z,y|θ ,p)

m(z)
.

This is a valid density since, by (11),∑
y∈Y

f (z,y|θ ,p) = f (z|θ ,p),

which in turn implies that∑
y∈Y

π(θ ,p,y|z) = π(θ ,p|z).(13)

In fact, (13) is the key property of the complete data
posterior density. In words, when the y coordinate is
summed out of π(θ ,p,y|z), we are left with the target
density. Hence, we will have a viable MDA algorithm
as long as straightforward sampling from π(θ ,p|y, z)
and π(y|θ ,p, z) is possible. Note that the roles of x

and y from Sections 1, 3 and 4 are being played here
by (θ ,p) and y, respectively.

Now consider sampling from the two conditionals.
First, it follows from (12) that

π(y|θ ,p, z) =
m∏

i=1

[∑k
j=1 pjI{j}(yi)hθj

(zi)∑k
l=1 plhθl

(zi)

]
.(14)

Therefore, conditional on (θ ,p, z), the Yi’s are inde-
pendent multinomial random variables and Yi takes the
value j with probability pjhθj

(zi)/(
∑k

l=1 plhθl
(zi))

for j ∈ {1, . . . , k}. Consequently, simulating from π(y|
θ ,p, z) is simple.
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A two-step method is used to sample from π(θ ,p|
y, z). Indeed, we draw from π(p|y, z) and then from
π(θ |p,y, z). It follows from (12) that

π(p|θ ,y, z) ∝ ISk
(p)

k∏
j=1

p
cj

j ,

where cj = ∑m
i=1 I{j}(yi). This formula reveals two

facts: (i) given (z,y), p is conditionally indepen-
dent of θ , and (ii) the conditional distribution of p
given (z,y) is Dirichlet. Thus, it is easy to draw from
π(p|y, z), and our sequential strategy will be viable as
long as we can draw from π(θ |p,y, z). Our ability to
sample from π(θ |p,y, z) will depend on the particu-
lar forms of hθ and the prior π . In cases where π is a
conjugate prior for the family hθ , it is usually straight-
forward to draw from π(θ |p,y, z). For several detailed
examples, see Chapter 9 of Robert and Casella (2004).

The state space of the MDA chain is X = �k × Sk

and its Mtd is given by

k(θ ′,p′|θ ,p) = ∑
y∈Y

π(θ ′,p′|y, z)π(y|θ ,p, z).

Since |Y| = km, Proposition 3 implies that the operator
K :L2

0(π(θ ,p|z)) → L2
0(π(θ ,p|z)) defined by k(θ ′,

p′|θ ,p) is compact and

Sp(K) = {0, λkm−1, λkm−2, . . . , λ1},
where 0 ≤ λkm−1 ≤ λkm−2 ≤ · · · ≤ λ1 < 1, and the λi’s
are the eigenvalues of the km × km Mtm defined by

k̂(y′|y) =
∫
�k

∫
Sk

π(y′|θ ,p, z)π(θ,p|y, z) dpdθ .

As far as we know, there are no theoretical results avail-
able concerning the magnitude of the λi’s. On the other
hand, as mentioned in Section 1, there is a great deal
of empirical evidence suggesting that the MDA chain
converges very slowly because it moves between the
symmetric modes of the posterior too infrequently. In
the next section we describe an alternative chain that
moves easily among the modes.

5.2 Frühwirth-Schnatter’s Algorithm

One iteration of the MDA chain can be represented
graphically as (θ ,p) → y → (θ ′,p′). To encourage
transitions between the symmetric modes of the poste-
rior, Frühwirth-Schnatter (2001) suggested adding an
extra step to get (θ ,p) → y → y′ → (θ ′,p′), where the
transition y → y′ is a random label switching move
that proceeds as follows. Randomly choose one of
the k! permutations of the integers 1, . . . , k, and then

switch the labels in y according to the chosen per-
mutation to get y′. For example, suppose that m = 8,
k = 4, y = (3,3,4,1,3,3,4,3), and that the chosen
permutation is (1324). Then we move from y to y′ =
(2,2,1,3,2,2,1,2). Using both theory and examples,
we will demonstrate that Frühwirth-Schnatter’s (2001)
Markov chain, which we call the FS chain, explores
π(θ ,p|z) much more effectively than the MDA chain.

To establish that the results developed in Section 4
can be used to compare the FS and MDA chains, we
must show that the FS chain is a sandwich chain with
an idempotent r . That is, we must demonstrate that the
Mtd of the FS chain can be expressed in the form

k̃(θ ′,p′|θ,p)
(15)

= ∑
y∈Y

∑
y′∈Y

π(θ ′,p′|y′, z)r(y′|y)π(y|θ ,p, z),

where r(y′|y) is a Mtm (on Y) that is both reversible
with respect to

π(y|z) =
∫
Sk

∫
�k

π(θ ,p,y|z) dθ dp,

and idempotent. We begin by developing a formula
for r(y′|y). Let Sk denote the set (group) of per-
mutations of the integers 1, . . . , k. For σ ∈ Sk , let
σy represent the permuted version of y. For exam-
ple, if y = (3,3,4,1,3,3,4,3) and σ = (1324), then
σy = (2,2,1,3,2,2,1,2). The label switching move,
y → y′, in the FS algorithm can now be represented as
follows. Choose σ uniformly at random from Sk and
move from y to y′ = σy. Define the orbit of y ∈ Y as

Oy = {y′ ∈ Y : y′ = σy for some σ ∈ Sk}.
The set Oy simply contains all the points in Y that rep-
resent a particular clustering (or partitioning) of the m

observations. For example, the point y = (3,3,4,1,3,

3,4,3) represents the clustering of the m = 8 observa-
tions into the three sets: {1,2,5,6,8}, {3,7}, {4}. And,
for any σ ∈ Sk , σy represents that same clustering be-
cause all we’re doing is changing the labels.

We now show that, if y is fixed and σ is chosen uni-
formly at random from Sk , then the random element
σy has a uniform distribution on Oy. Indeed, suppose
that y contains u distinct elements, so u ∈ {1,2, . . . , k}.
Then, for any fixed y′ ∈ Oy, exactly (k − u)! of the
k! elements in Sk satisfy σy = y′. Thus, the probabil-
ity that σy equals y′ is given by (k − u)!/k!, which
does not depend on y′. Hence, the distribution is uni-
form. [Note that this argument implies that |Oy| =
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k!/(k − u)!, which can also be shown directly.] There-
fore, we can write the Mtm r as follows:

r(y′|y) = 1

|Oy|I{Oy}(y′).

Since the chain driven by r cannot escape from the or-
bit (clustering) in which it is started, it is reducible.
(Recall from Section 4 that reducibility is a common
characteristic of idempotent Markov chains.)

A key observation that will allow us to establish the
reversibility of r is that π(y|z) = π(σy|z) for all y ∈ Y
and all σ ∈ Sk . Indeed,

π(y|z) = (k − 1)!
m(z)

∫
�k

[π(θ1) · · ·π(θk)]

·
{∫

Sk

m∏
i=1

[
k∑

j=1

pjI{j}(yi)hθj
(zi)

]
dp

}
dθ .

Let σy = y′ = (y′
1, . . . , y

′
m). Now, since y′

i = σ(j) ⇔
yi = j , we have

k∑
j=1

pjI{j}(y′
i )hθj

(zi) =
k∑

j=1

pσ(j)I{j}(yi)hθσ(j)
(zi).

Hence,

π(σy|z)
= (k − 1)!

m(z)

∫
�k

[π(θ1) · · ·π(θk)]

·
{∫

Sk

m∏
i=1

[
k∑

j=1

pσ(j)I{j}(yi)hθσ(j)
(zi)

]
dp

}
dθ .

The fact that π(y|z) = π(σy|z) can now be established
through a couple of simple arguments based on sym-
metry.

We now demonstrate that the Mtm r satisfies detailed
balance with respect to π(y|z); that is, we will show
that, for any y,y′ ∈ Y, r(y′|y)π(y|z) = r(y|y′)π(y′|z).
First, a little thought reveals that, for any two ele-
ments y and y′, only one of two things can happen:
either Oy = Oy′ or Oy ∩ Oy′ = ∅. If Oy ∩ Oy′ = ∅,
then I{Oy}(y′) = I{Oy′ }(y) = 0, so r(y′|y) = r(y|y′) = 0
and detailed balance is satisfied. On the other hand, if
Oy = Oy′ , then I{Oy}(y′) = I{Oy′ }(y) = 1 and 1/|Oy| =
1/|Oy′ |, so r(y′|y) = r(y|y′), and the common value
is strictly positive. But y′ ∈ Oy implies that y′ = σy
for some σ ∈ Sk . Thus, π(y|z) = π(y′|z), and detailed
balance holds.

Finally, it is intuitively clear that r is idempotent
since, if we start the chain at y, then one step results

in a uniformly chosen point from Oy. Obviously, the
state after two steps is still uniformly distributed over
Oy. Here’s a formal proof that r2(y′|y) = r(y′|y). For
y,y′ ∈ Y, we have

r2(y′|y) = ∑
w∈Y

r(y′|w)r(w|y)

= ∑
w∈Y

1

|Ow|I{Ow}(y′) 1

|Oy|I{Oy}(w)

= 1

|Oy|
∑

w∈Oy

1

|Ow|I{Ow}(y′)

= 1

|Oy|I{Oy}(y′)
∑

w∈Oy

1

|Oy|
= r(y′|y),

where the fourth equality follows from the fact that w ∈
Oy ⇒ Ow = Oy.

We have now shown that the Mtd of the FS chain can
indeed be written in the form (15) with an appropriate r

that is reversible and idempotent. Hence, Theorem 1 is
applicable and implies that the operators defined by the
two chains are both compact and each has a spectrum
consisting of the point {0} and km − 1 eigenvalues in
[0,1). Moreover, λ̃i ≤ λi for each i ∈ {1,2, . . . , km −
1}, where {λ̃i}km−1

i=1 and {λi}km−1
i=1 denote the ordered

eigenvalues associated with the FS and MDA chains,
respectively.

Interestingly, in the special case where m = 1, the FS
algorithm actually produces an i.i.d. sequence from the
target distribution. Recall that π(y|z) = π(σy|z) for
all y ∈ Y and all σ ∈ Sk . Thus, all the points in Oy
share the same value of π(·|z). When m = 1, Y con-
tains only k points and they all exist in the same or-
bit. Thus, π(y|z) = 1/k for all y ∈ Y. Moreover, since
there is only one orbit, r(y′|y) = 1/k for all y′ ∈ Y,
that is, the Markov chain corresponding to r is just
an i.i.d. sequence from the uniform distribution on Y.
In other words, the label switching move results in
an exact draw from π(y′|z). Now recall the graphi-
cal representation of one iteration of the FS algorithm:
(θ ,p) → y → y′ → (θ ′,p′). When m = 1, the argu-
ments above imply that, given (θ ,p), the density of
(y,y′, θ ′,p′) is

π(y|θ ,p, z)r(y′|y)π(θ ′,p′|y′, z)

= π(y|θ ,p, z)π(y′|z)π(θ ′,p′|y′, z).

Thus, conditional on (θ ,p), y and (y′, θ ′,p′) are inde-
pendent, and the latter has density

π(y′|z)π(θ ′,p′|y′, z) = π(θ ′,p′,y′|z).
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It follows that, marginally, (θ ′,p′) ∼ π(θ ′,p′|z), so
the FS algorithm produces an i.i.d. sequence from the
target posterior density. When m = 1, |Y| = km = k.
Thus, while the spectrum of the MDA operator con-
tains k − 1 eigenvalues, at least one of which is strictly
positive, the spectrum of the FS operator is the ideal
spectrum, {0}.

In the next section we consider two specific mixture
models and, for each one, we compare the spectra asso-
ciated with FS and MDA chains. The first example is a
toy problem where we are able to get exact formulas for
the eigenvalues. The second example is a normal mix-
ture model that is frequently used in practice, and we
approximate the eigenvalues via classical Monte Carlo
methods.

6. EXAMPLES

6.1 A Toy Bernoulli Mixture

Take the parametric family hθ to be the family
of Bernoulli mass functions, and consider a two-
component version of the mixture with known weights
both equal to 1/2. This mixture density takes the form

f (z|r, s) = 1
2rz(1 − r)1−z + 1

2sz(1 − s)1−z,

where z ∈ {0,1} and θ = (r, s). To simplify things
ever further, assume that r, s ∈ {ρ,1 − ρ} where ρ ∈
(0,1/2) is fixed; that is, the two success probabilities,
r and s, can only take the values ρ and 1 − ρ. Hence,
(r, s) ∈ X = {(ρ,ρ), (ρ,1 − ρ), (1 − ρ,ρ), (1 − ρ,1 −
ρ)}. Our prior for (r, s) puts mass 1/4 on each of these
four points. A simple calculation shows that the poste-
rior mass function takes the form

π(r, s|z)

= I{ρ,1−ρ}(r)I{ρ,1−ρ}(s)(r + s)m1(2 − r − s)m−m1

2mρm1(1 − ρ)m−m1 + 2mρm−m1(1 − ρ)m1 + 2
,

where z = (z1, . . . , zm) ∈ {0,1}m denotes the observed
data, and m1 denotes the number of successes among
the m Bernoulli trials, that is, m1 = ∑m

i=1 zi . While we
would never actually use MCMC to explore this simple
four-point posterior, it is both interesting and useful to
compare the FS and MDA algorithms in this context.

As described in Section 5.1, the MDA algorithm is
based on the complete data posterior density, which
is denoted here by π(r, s,y|z). (The fact that p is
known in this case doesn’t really change anything.)
Of course, all we really need are the specific forms
of the conditional mass functions, π(y|r, s, z) and
π(r, s|y, z). It follows from the general development
in Section 5.1 that, given (r, s, z), the components
of y = (y1, y2, . . . , ym) are independent multinomials
with mass functions given by

π(yi |r, s, z)

= I{1}(yi)r
zi (1 − r)1−zi + I{2}(yi)s

zi (1 − s)1−zi

rzi (1 − r)1−zi + szi (1 − s)1−zi
.

Furthermore, it is easy to show that, given (y, z), r and
s are independent so π(r, s|y, z) = π(r|y, z)π(s|y, z).
Now, for j ∈ {1,2} and k ∈ {0,1}, let mjk denote the
number of (yi, zi) pairs that take the value (j, k). (Note
that m10 + m11 = c1 and m11 + m21 = m1.) Then we
have

π(r|y, z)

= I{ρ}(r)ρm11(1 − ρ)m10 + I{1−ρ}(r)ρm10(1 − ρ)m11

ρm11(1 − ρ)m10 + ρm10(1 − ρ)m11
,

and

π(s|y, z)

= I{ρ}(s)ρm21(1 − ρ)m20 + I{1−ρ}(s)ρm20(1 − ρ)m21

ρm21(1 − ρ)m20 + ρm20(1 − ρ)m21
.

The state space of the MDA chain is X = {(ρ,ρ), (ρ,

1−ρ), (1−ρ,ρ), (1−ρ,1−ρ)}, which has only four
points. Hence, in this toy Bernoulli example, we can
analyze the MDA chain directly. Its Mtm is 4 × 4 and
the transition probabilities are given by

k(r ′, s′|r, s) = ∑
y∈Y

π(r ′, s′|y, z)π(y|r, s, z),(16)

where Y = {1,2}m. We now perform an eigen-analysis
of this Mtm. Note that π(r ′, s′|y, z) and π(y|r, s, z) de-
pend on y only through m10, m11, m20 and m21. If we
let m0 = m − m1, then we can express the transition
probabilities as follows:

k(r ′, s′|r, s) =
m1∑
i=0

m0∑
j=0

(
m1
i

)(
m0
j

)[
I{ρ}(r ′)ρi(1 − ρ)j + I{1−ρ}(r ′)ρj (1 − ρ)i

ρi(1 − ρ)j + ρj (1 − ρ)i

]

·
[
I{ρ}(s′)ρm1−i (1 − ρ)m0−j + I{1−ρ}(s′)ρm0−j (1 − ρ)m1−i

ρm1−i (1 − ρ)m0−j + ρm0−j (1 − ρ)m1−i

]
ri(1 − r)j sm1−i(1 − s)m0−j

(r + s)m1(2 − r − s)m0
.
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Now, for k = 0,1,2 define

wk(ρ)

=
m1∑
i=0

m0∑
j=0

(
m1
i

)(
m0
j

)[
ρk(m0−j+i)(1 − ρ)k(m1−i+j)

(ρi(1 − ρ)j + ρj (1 − ρ)i)(ρm1−i (1 − ρ)m0−j + ρm0−j (1 − ρ)m1−i )

]
.

Using this notation, we can write the Mtm as follows:

k =

⎡
⎢⎢⎢⎣

ρm1 (1−ρ)m0

2m w0(ρ) 1
2m w1(ρ) 1

2m w1(ρ)
ρm0 (1−ρ)m1

2m w0(ρ)

ρm1(1 − ρ)m0w1(ρ) w2(ρ) ρm(1 − ρ)mw0(ρ) ρm0(1 − ρ)m1w1(ρ)

ρm1(1 − ρ)m0w1(ρ) ρm(1 − ρ)mw0(ρ) w2(ρ) ρm0(1 − ρ)m1w1(ρ)
ρm1 (1−ρ)m0

2m w0(ρ) 1
2m w1(ρ) 1

2m w1(ρ)
ρm0 (1−ρ)m1

2m w0(ρ)

⎤
⎥⎥⎥⎦ .

We have ordered the points in the state space as fol-
lows: (ρ,ρ), (ρ,1 − ρ), (1 − ρ,ρ) and (1 − ρ,1 − ρ).
So, for example, the element in the second row, third
column is the probability of moving from (ρ,1 − ρ) to
(1 − ρ,ρ). Note that all of the transition probabilities
are strictly positive, which implies that the MDA chain
is Harris ergodic.

Of course, since k is a Mtm, it satisfies kv0 = λ0v0
where v0 = 1 and λ0 = 1. Again, (v0, λ0) does not
count as an eigen-solution for us because we are us-
ing L2

0(fX) instead of L2(fX), and the only constant
function in L2

0(fX) is 0. For us, there are three eigen-
solutions, and we write them as (vi, λi), i ∈ {1,2,3},
where 0 ≤ λ3 ≤ λ2 ≤ λ1 < 1. Note that the first and
fourth rows of k are identical, which means that λ3 = 0.
The remaining eigen-solutions follow from the general
results in the Appendix. Indeed,

λ1 = w2(ρ) − ρm(1 − ρ)mw0(ρ),

and the corresponding eigen-vector is v1 = (0,1,−1,

0)T . Finally,

λ2 = g(ρ)w0(ρ)

2m
− g(ρ)w1(ρ)

and v2 = (α,1,1, α)T , where g(ρ) = ρm1(1 − ρ)m0 +
ρm0(1 − ρ)m1 and

α = g(ρ)w0(ρ) − 2m

2mg(ρ)w1(ρ)
.

(The fact that λ2 ≤ λ1 actually follows from our analy-
sis of the FS chain below.) We now use these results to
demonstrate that the MDA algorithm can perform quite
poorly for the Bernoulli model.

Consider a numerical example in which m = 10, ρ =
1/10 and the data are z1 = · · · = z5 = 0 and z6 = · · · =
z10 = 1. The posterior mass function is as follows:

π(ρ,ρ|z) = π(1 − ρ,1 − ρ|z) = 0.003

and

π(ρ,1 − ρ|z) = π(1 − ρ,ρ|z) = 0.497.

So there are two points with exactly the same very high
probability, and two points with exactly the same very
low probability. The MDA chain converges slowly due
to its inability to move between the two high probabil-
ity points. Indeed, the Markov transition matrix in this
case is as follows:

k =

⎡
⎢⎢⎣

0.10138 0.39862 0.39862 0.10138
0.00241 0.99457 0.00061 0.00241
0.00241 0.00061 0.99457 0.00241
0.10138 0.39862 0.39862 0.10138

⎤
⎥⎥⎦ .

Suppose we start the chain in the state (ρ,1 − ρ). The
expected number of steps before it reaches the other
high probability state, (1 − ρ,ρ), is quite large. First,
we expect the chain to remain in the state (ρ,1 − ρ)

for about 1/(1−0.99457) ≈ 184 iterations. Then, con-
ditional on the chain leaving (ρ,1 − ρ), the probabil-
ity that it moves to (ρ,ρ) or (1 − ρ,1 − ρ) is about
0.89. And if it does reach (ρ,ρ) or (1 − ρ,1 − ρ),
there is still about a 40% chance that it will jump right
back to the point (ρ,1 − ρ), where it will stay for (ap-
proximately) another 184 iterations. All of this trans-
lates into slow convergence. In fact, the two nonzero
eigenvalues are (λ1, λ2) = (0.99395,0.19795). More-
over, the problem gets worse as the sample size in-
creases. For example, if we increase the sample size
to m = 20 (and maintain the 50 : 50 split of 0’s and 1’s
in the data), then (λ1, λ2) = (0.99996,0.15195). Fig-
ure 1 shows how the dominant eigenvalue, λ1, changes
with sample size for several different values of ρ. We
conclude that, for fixed ρ, the convergence rate deteri-
orates as the sample size increases. Moreover, the (neg-
ative) impact of increasing sample size is magnified as
ρ gets smaller.

Now consider implementing the FS algorithm for
the Bernoulli mixture. Because the mixture has only
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FIG. 1. The behavior of the dominant eigenvalue for the MDA chain in the Bernoulli model. The graph shows how the dominant eigenvalue
of the MDA chain changes with sample size, m, for several different values of ρ, in the case where half the zi ’s are 0 and the other half
are 1. (Only even sample sizes are considered.) The red, blue, brown and green lines correspond to ρ values of 1/10, 1/5, 1/3 and 9/20,
respectively.

two components, the random label switching step, y →
y′, is quite simple. Indeed, we simply flip a fair coin. If
the result is heads, then we take y′ = y, and if the result
is tails, then we take y′ = y, where y denotes y with
its 1’s and 2’s flipped. The Mtm of the FS chain has

entries given by

k̃(r ′, s′|r, s) = 1

2

∑
y∈Y

π(r ′, s′|y, z)π(y|r, s, z)

+ 1

2

∑
y∈Y

π(r ′, s′|y, z)π(y|r, s, z).

It follows that

k̃ =

⎡
⎢⎢⎢⎢⎣

ρm1 (1−ρ)m0

2m w0(ρ) 1
2m w1(ρ) 1

2m w1(ρ)
ρm0 (1−ρ)m1

2m w0(ρ)

ρm1(1 − ρ)m0w1(ρ)
w2(ρ)+ρm(1−ρ)mw0(ρ)

2
w2(ρ)+ρm(1−ρ)mw0(ρ)

2 ρm0(1 − ρ)m1w1(ρ)

ρm1(1 − ρ)m0w1(ρ)
w2(ρ)+ρm(1−ρ)mw0(ρ)

2
w2(ρ)+ρm(1−ρ)mw0(ρ)

2 ρm0(1 − ρ)m1w1(ρ)

ρm1 (1−ρ)m0

2m w0(ρ) 1
2m w1(ρ) 1

2m w1(ρ)
ρm0 (1−ρ)m1

2m w0(ρ)

⎤
⎥⎥⎥⎥⎦ .

Note that this matrix differs from k only in the mid-
dle four elements. Indeed, the (2,2) and (2,3) ele-
ments in k have both been replaced by their average
in k̃, and the same is true of the (3,2) and (3,3) ele-
ments. The matrix k̃ has rank at most two, so there is

at most one nonzero eigenvalue to find. Using the re-
sults in the Appendix along with the eigen-analysis of
k performed earlier, it is easy to see that the nontrivial
eigen-solution of k̃ is (ṽ1, λ̃1) = (v2, λ2). So, the effect
on the spectrum of adding the random label switching
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FIG. 2. The behavior of the dominant eigenvalue for the FS chain in the Bernoulli model. The graph shows how the dominant eigenvalue of
the FS chain changes with sample size, m, for several different values of ρ, in the case where half the zi ’s are 0 and the other half are 1. (Only
even sample sizes are considered.) The red, blue, brown and green lines correspond to ρ values of 1/10, 1/5, 1/3 and 9/20, respectively.

step is to replace the dominant eigenvalue with 0! (Note
that Theorem 1 implies that λ2 = λ̃1 ≤ λ1, which jus-
tifies our ordering of the eigenvalues of k.) Consider
again the simple numerical example with the 50 : 50
split of 0’s and 1’s. In the case m = 10, the result of
adding the extra step is to replace the dominant eigen-
value, 0.99395, by 0.19795. When m = 20, 0.99996
is replaced by 0.15195. This suggests that, in contrast
to the MDA algorithm, increasing sample size does
not adversely affect the FS algorithm. More evidence
for this is provided in Figure 2, which is the analogue
of Figure 1 for the FS algorithm. Note that the domi-
nant eigenvalues are now substantially smaller, and no
longer converge to 1 as the sample size increases. In
fact, based on experimental evidence, it appears that,
for a fixed value of ρ, λ2 hits a maximum and then de-
creases with sample size. It is surprising that such a mi-
nor change in the MDA algorithm could result in such
a huge improvement. In the next section we consider a
mixture of normal densities.

6.2 The Normal Mixture

Assume that Z1, . . . ,Zm are i.i.d. from the density

f (z|μ,τ 2,p)

= p
1

τ1
φ

(
z − μ1

τ1

)
+ (1 − p)

1

τ2
φ

(
z − μ2

τ2

)
,

where p ∈ [0,1], μ = (μ1,μ2) ∈ R
2, τ 2 = (τ 2

1 , τ 2
2 ) ∈

R
2+, and φ(·) denotes the standard normal density func-

tion. The prior for p is Uniform(0,1), and the prior
for (μ, τ 2) takes the form π(μ1, τ

2
1 )π(μ2, τ

2
2 ). As for

π , we use the standard (conditionally conjugate) prior
given by

π(μ1, τ
2
1 ) = π(μ1|τ 2

1 )π(τ 2
1 ),

where π(μ1|τ 2
1 ) = N(0, τ 2

1 ) and π(τ 2
1 ) = IG(2,1/2)

(Robert and Casella, 2004, Section 9.1). By W ∼
IG(α, γ ), we mean that W is a random variable with
density function proportional to w−α−1 exp{−γ /w} ·
IR+(w). In contrast with the Bernoulli example from
the previous subsection, the posterior density associ-
ated with the normal mixture is quite intractable and
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has a complicated (and uncountable) support given by
X = R

2 × R
2+ × [0,1].

The MDA algorithm is based on the complete-data
posterior density, which we denote here by π(μ, τ 2,p,

y|z). Again, the development in Section 5.1 implies
that, given (μ, τ 2,p, z), the elements of y are indepen-
dent multinomials and the probability that the ith co-
ordinate equals 1 (which is one minus the probability
that it equals 2) is given by(

p
1

τ1
φ

(
zi − μ1

τ1

))
(17) /(

p
1

τ1
φ

(
zi − μ1

τ1

)
+ (1 − p)

1

τ2
φ

(
zi − μ2

τ2

))
.

We sample π(μ, τ 2,p|y, z) via sequential sampling
from π(p|y, z) and π(μ, τ 2|p,y, z). The results in
Section 5.1 show that p|y, z ∼ Beta(c1 + 1, c2 + 1).
Moreover, it’s easy to show that, given (p,y, z), (μ1,

τ 2
1 ) and (μ2, τ

2
2 ) are independent. Routine calculations

show that

μ1|τ 2
1 ,p,y, z ∼ N

(
c1

c1 + 1
z1,

τ 2
1

(c1 + 1)

)

and

τ 2
1 |p,y, z ∼ IG

(
c1 + 4

2
,

1

2

(
s2

1 + c1z
2
1

(c1 + 1)
+ 1

))
,

where z1 = 1
c1

∑m
i=1 I{1}(yi)zi and s2

1 = ∑m
i=1 I{1}(yi) ·

(zi − z1)
2. Of course, the distribution of (μ2, τ

2
2 ) given

(p,y, z) has an analogous form.
The results developed in Section 3 imply that the

spectrum of the operator associated with the MDA
chain consists of the point {0} and the eigenvalues
of the Mtm of the conjugate chain, which lives on
Y = {1,2}m. Unfortunately, the Mtm of the conjugate
chain is also intractable. Indeed, a generic element of
this matrix has the following form:

k̂(y′|y) =
∫ 1

0

∫
R

2+

∫
R2

π(y′|μ,τ 2,p, z)

· π(μ, τ 2,p|y, z) dμdτ 2 dp.

This integral cannot be computed in closed form. In
particular, π(y′|μ,τ 2,p, z) is the product of m prob-
abilities of the form (17), and the sums in the de-
nominators of these probabilities render the integral
intractable. However, note that k̂(y′|y) can be inter-
preted as the expected value of π(y′|μ,τ 2,p, z) with
respect to the density π(μ, τ 2,p|y, z). Of course, for
fixed z, we know how to draw from π(μ, τ 2,p|y, z),

and we have π(y′|μ,τ 2,p, z) in closed form. We there-
fore have the ability to estimate k̂(y′|y) using classical
Monte Carlo. Once we have an estimate of the entire
2m × 2m Mtm, we can calculate its eigenvalues.

The same idea can be used to approximate the eigen-
values of the FS chain. The results in Section 4 show
that we can express the FS algorithm as a DA algo-
rithm with respect to an alternative complete-data pos-
terior density, which we write as π∗(μ, τ 2,p,y|z). The
eigenvalues of the operator defined by the FS chain are
the same as those of the Mtm in which the probability
of the transition y → y′ is given by∫ 1

0

∫
R

2+

∫
R2

π∗(y′|μ,τ 2,p, z)

· π∗(μ, τ 2,p|y, z) dμdτ 2 dp.

It is straightforward to simulate from π∗(μ, τ 2,p|y, z),
and π∗(y′|μ,τ 2,p, z) is available in closed form.

To use our classical Monte Carlo idea to estimate the
spectra associated with the MDA and FS chains, we
must specify the data, z. Furthermore, the Bernoulli
example in the previous subsection showed that the
convergence rates of the two algorithms can depend
heavily on the sample size, m. Thus, we would like to
explore how an increasing sample size affects the con-
vergence rates of the MDA and FS chains in the current
context. To generate data, we simulated a random sam-
ple of size 10 from a 50 : 50 mixture of a N(0,0.552)

and a N(3,0.552), and this resulted in the following
observations:

z = (z1, . . . , z10)

= (0.2519,2.529,−0.2930,2.799,3.397,

0.5596,2.810,2.541,2.487,−0.1937).

We considered 10 different data sets ranging in size
from m = 1 to m = 10. The first data set contained
the single point z1 = 0.25192, the second contained
the first two observations (z1, z2) = (0.25192,2.5287),
the third contained (z1, z2, z3) = (0.25192,2.5287,

−0.29303), and so on up to the tenth data set, which
contained all ten observations. For each of these 10
data sets, we used the classical Monte Carlo tech-
nique described above to estimate the Mtm for both
the MDA and FS algorithms. In particular, for each
row of the Mtm we used a single Monte Carlo sam-
ple of size 200,000 [from π(μ, τ 2,p|y, z) for DA, and
from π∗(μ, τ 2,p|y, z) for FS] to estimate each of the
entries in that row. We then calculated the eigenvalues
of the estimated Mtms and recorded the largest one.
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FIG. 3. The behavior of the dominant eigenvalue for the MDA and FS chains in the normal model. The graph is based on the first simulated
data set and shows how the dominant eigenvalue changes with sample size, m, for the MDA algorithm (red line) and the FS algorithm (blue
line).

The results are shown in Figure 3, which has some in-
teresting features. Note that the dominant eigenvalues
of the MDA chain are much closer to 1 than the corre-
sponding dominant eigenvalues of the FS chain. Even
at m = 5, the dominant eigenvalue of the MDA chain
is already above 0.99. As in the previous example, the
convergence rate of the MDA chain deteriorates as m

increases. It is not clear whether the FS chain slows
down as m increases. It may be the case that the FS
eigenvalue would eventually level off, or perhaps the
FS chain would eventually begin to speed up, as in the
Bernoulli example. Note that, as proven in Section 5.2,
when m = 1, the FS eigenvalue is 0. (To ascertain the
accuracy of our estimates, we repeated the entire clas-
sical Monte Carlo simulation 6 times, with different
random number seeds, and based on this, we believe
that our eigenvalue estimates are correct up to three
decimal places.)

In the case where all 10 observations are considered,
the dimension of the Mtms is 1024 × 1024, and each
element must be estimated by classical Monte Carlo.
Thus, while it would be very interesting to consider

larger sample sizes (beyond 10), and even mixtures
with more than 2 components, the matrices become
quite unwieldy.

We simulated a second set of 10 observations from
the same 50 : 50 mixture and repeated the entire process
for the purpose of validation. The second simulation
resulted in the following data:

z = (z1, . . . , z10)

= (0.6699,3.408,0.1093,3.289,−0.1407,

3.525,2.454,0.2716,−0.7443,3.570).

Figure 4 is the analogue of Figure 3 for the second sim-
ulation. The results are nearly identical to those from
the first simulation.

APPENDIX

Consider a Mtm of the form

M =

⎡
⎢⎢⎢⎣

a b b c

d e f cd
a

d f e cd
a

a b b c

⎤
⎥⎥⎥⎦ ,
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FIG. 4. The behavior of the dominant eigenvalue for the MDA and FS chains in the normal model. The graph is based on the second
simulated data set and shows how the dominant eigenvalue changes with sample size, m, for the MDA algorithm (red line) and the FS
algorithm (blue line).

and assume that all of the elements are strictly positive,
so the corresponding Markov chain is irreducible and
aperiodic. Note that both of the Mtms studied in Sec-
tion 6.1 have this form. Routine manipulation shows
that M is reversible with respect to (π1, π2, π3, π4)

T

where π1 = ad/(ad+2ab+cd), π2 = bπ1/d , π3 = π2

and π4 = cπ1/a. In the remainder of this section we
perform an eigen-analysis of the matrix M .

Of course, since M is a Mtm, it satisfies kv0 = λ0v0

where v0 = 1 and λ0 = 1. Furthermore, since the first
and fourth rows are equal, there is at least one eigen-
value equal to zero. Indeed, Mv3 = 0, where v3 =
(c,0,0,−a)T . We now identify the other two eigen-
solutions of M . Let v1 = (0,1,−1,0)T and note that

Mv1 = (e − f )v1,

so λ1 = (e − f ) is an eigenvalue. If e = f , then the
middle two rows of M are equal and the rank of M is
at most 2. (Note that λ1 could be negative, implying
that the operator defined by M is not always positive.)

Now, let v2 = (α,1,1, α)T , where α is a constant to
be determined, and note that

Mv2 =

⎡
⎢⎢⎢⎣

αa + 2b + αc

αd + e + f + α cd
a

αd + e + f + α cd
a

αa + 2b + αc

⎤
⎥⎥⎥⎦ .

If v2 is an eigenvector with corresponding eigenvalue
λ2, then the first element of Mv2 must equal αλ2, that
is,

αa + 2b + αc = αλ2.

Now, using the fact that 2b = 1 − a − c, we have

(α − 1)(a + c) + 1 = αλ2,

and it follows that

λ2 = (α − 1)(a + c) + 1

α
.(A.1)

Again, if v2 is an eigenvector with corresponding
eigenvalue λ2, then the second element of Mv2 must
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equal λ2, or

λ2 = αd + e + f + α
cd

a
.

Now, using the fact that e = 1 − d − f − cd
a

, we have

λ2 = d

a
(α − 1)(a + c) + 1.

Setting our two expressions for λ2 equal yields

αd(α − 1)(a + c) + aα = a(α − 1)(a + c) + a.

This quadratic in α has two roots: α = 1 and

α = a(a + c − 1)

d(a + c)
.

The second solution is negative and corresponds to a
nontrivial eigenvector. The corresponding eigenvalue
is

λ2 = 1

a
(a + c)(a − d).

If a = d , then the sum of the middle two rows of M is
equal to twice the first row.
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