
Improving the CS1 Experience with Pair Programming

Nachiappan Nagappan1, Laurie Williams1, Miriam Ferzli2, Eric Wiebe2, Kai
Yang1, Carol Miller1, Suzanne Balik1
1Department of Computer Science

2Department of Math, Science and Technology Education
North Carolina State University, Raleigh, NC 27695

{nnagapp, lawilli3, mgferzli, wiebe, kyang, miller, spbalik}@unity.ncsu.edu

Abstract

Pair programming is a practice in which two programmers
work collaboratively at one computer, on the same design,
algorithm, or code. Prior research indicates that pair
programmers produce higher quality code in essentially half
the time taken by solo programmers. An experiment was run
to assess the efficacy of pair programming in an introductory
Computer Science course. Student pair programmers were
more self-sufficient, generally perform better on projects and
exams, and were more likely to complete the class with a
grade of C or better than their solo counterparts. Results
indicate that pair programming creates a laboratory
environment conducive to more advanced, active learning
than traditional labs; students and lab instructors report labs
to be more productive and less frustrating.

Categories & Subject Descriptors
K.3 [Computers & Education]: Computer &
information science Education- Computer Science
Education.

General Terms
Management, Human Factors

Keywords
Pair programming, collaborative environment, Computer
Science education.

1 Introduction
In industry, software developers generally spend 30% of
their time working alone, 50% of their time working with
one other person, and 20% of their time working with two or
more people. [3] However, most often in an academic
environment, programmers must learn to program alone, and
collaboration is considered cheating. Unfortunately, this time
spent working alone is inconsistent with a student’s future

Permission to make digital or hand copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, require prior specific permission and/or a fee.
SIGCSE’03, February 19-23, 2003, Reno, Nevada, USA.
Copyright 2003 ACM 1-58113-648-X/03/0002…$5.00.

professional life in which collaboration is both encouraged
and required. In addition, studies show that cooperative and
collaborative pedagogies are beneficial for students [6, 7].
In pair programming one person, called the driver, is
responsible for typing at the computer or documenting a
design. The other partner, called the navigator, observes the
work of the driver, looking for defects in the work of the
driver and is an ever-ready brainstorming partner. Research
results [2, 8, 11] indicate that pair programmers produce
higher quality code in about half the time when compared
with solo programmers. These research results are based on
experiments held at the University of Utah in a senior-level
Software Engineering course. The focus of that research was
the affordability of the practice of pair programming and the
ability of the practice to yield higher quality code. However,
the researchers observed educational benefits for the student
pair programmers. These benefits included superior results
on graded assignments, increased satisfaction/reduced
frustration from the students, increased confidence from the
students on their project results, and reduced workload of the
teaching staff.
These observations inspired further research directed at the
use of pair programming in educating Computer Science
students. Educators at the University of California-Santa
Cruz [1, 5] and North Carolina State University [9, 10] have
reported on the use of pair programming in introductory
undergraduate programming courses. Experiments
specifically designed to assess the efficacy of pair
programming in an introductory Computer Science
classroom found that pair programming improved retention
rates and performance on programming assignments.

This paper details the results of our experiment carried out at
North Carolina State University. We provide results from a
larger sample size than previously reported. The remainder
of this paper is organized as follows: Section 2 provides a
description of the experiment; Section 3 discusses qualitative
findings on pair programming in the CS1 laboratory; Section
4 shares the results of our quantitative findings; Section 5
highlights a few challenges we faced during this experiment
and Section 6, summarizes our findings and discusses our
future work.

2 Experiment
In the 2001-2 academic year, an experiment was conducted
in the CS1 course at North Carolina State University. The
course was taught with two 50-minute lectures and one three-
hour lab each week. Students attended labs in groups of 24

with others in their own lecture section. The lab period was
run as a closed lab where students were given a weekly
assignment to complete during the allotted time. Lab
assignments are “completion” assignments whereby students
fill in the body of methods in a skeleton of the program
prepared by the instructor. Student grades are based on two
midterm exams, one final exam, lab assignments, and
programming projects that are completed outside of the
closed lab. The programming projects are generative, that is,
the students start the project from scratch without any
structure imposed by the instructor. The course is a service
course and is therefore taken by many students throughout
the university. Most students are from the College of
Engineering and are either freshmen or sophomores.
However, students of all undergraduate and graduate levels
may take the course.
The Fall 2001 experiment was run in two sections of the
course; the same instructor taught both sections.
Additionally, the midterm exams and the final exam were
identical in both sections. One section had traditional, solo
programming labs. In the other section, students were
required to complete their lab assignments utilizing the pair
programming practice. When students enrolled for the class,
they had no knowledge of the experiment or if their section
would have paired or solo labs. In the pair programming
labs, students were randomly assigned partners based on a
web-based computer program; pair assignments were not
based on student preferences. Students worked with the
same partner for two to three weeks. If a student’s partner
did not show up for a particular lab, after 10 minutes, the
student was assigned to another partner. If there were an odd
number of students, three students worked together; no one
worked alone. Closed labs are excellent for controlled use
of pair programming [1]. The instructor or teaching assistant
can ensure that people are, indeed, working in pairs at one
computer. He or she can also monitor that the roles of driver
and navigator are rotated periodically.
Our course also includes programming projects that require
work outside of the closed lab. We gave the students in both
sections the option of working alone or in pairs for these
projects. Only students who attained a score of 70% or better
on the exams could opt to pair. (We felt those who did not
attain a score of 70% or above should not work with a pair
on the project lest they rely too heavily on their partner to
produce the project.) Most students, who were eligible to
pair, chose to pair program on projects. However, the
instructors now feel that the 70% eligibility might be unfair
to the students, and this practice has been discontinued as of
Fall 2002.
Using this Fall 2001 research design, we also completed a
study on a larger scale in the Spring 2002 semester. In the
fall, 112 students were in the solo section and 87 were in the
paired section, whereas in the spring 156 students worked
solo and 346 students worked in pairs. Our study was
specifically aimed at the effects of pair programming on
beginning students. Therefore, we analyzed the results of the
freshman and sophomores only. We also only analyzed
students who took the course for a grade, concluding that
students who audited the class or took it for credit only were
not as motivated to excel as other students. This reduced our
sample size to N=69 in the solo section and N=44 in the

paired section for the Fall semester, and N=102 for the solo
section and N=280 in the paired section for the Spring
semester.
In our experiment (spanning both Fall and Spring semesters),
we examined the following five hypotheses:
H1. A higher percentage of students who have participated

in pair programming in CS1 will succeed in completing
the class with a grade of C or better when compared
with students who have worked solo in CS1.

H2. Students’ participation in pair-programming in CS1 will
lead to better performance (higher scores) on the
examinations when compared with students who have
worked solo in CS1. (Examinations are completed solo
by all students)

H3. Students’ participation in pair-programming in CS1 will
lead to better performance on course projects (higher
project scores) in that class when compared with
students who have worked solo in CS1.

H4. Students’ participation in pair-programming will lead to
a reduced workload in terms of grading, questions
answered, and teaching effort for the course staff when
compared with the teaching staff for students who
worked solo in CS1.

H5. Students in paired labs will have a positive attitude
towards collaborative programming settings when
compared with students who have worked solo in CS1.

3 Qualitative Results
Each semester, we observed and codified many paired and
solo lab sections. In addition, two focus groups were held,
one with a randomly selected group of students and the other
with a randomly selected group of lab instructors (LIs). (See
focus group technical report [4].) Analysis of qualitative
data from lab observations and focus groups strongly support
pair programming in the CS1 laboratory. The next sections
detail student and lab instructor perspectives on pair
programming.

3.1 Students
Solo lab sessions were quiet and appeared to be very
frustrating for the students. Frequently, a student needed to
wait 10-30 minutes to ask a question, often a fairly simple
one. During this waiting period or “down time”, students
were often very unproductive (i.e. “stuck”). Alternately,
paired labs were vocal and interactive. Students in paired
labs engaged in extensive discussion throughout the entire
lab session, and students seemed to help each other resolve
questions. Most often, each pair could piece together the
knowledge they needed to figure out questions and remain
productive. Because most pairs were self-sufficient, lab
instructors had time to get around to more students than in
the unpaired sections. Paired students who needed help,
found it easy to get help from the LI, and had little “down
time.” [9]
During the focus group discussion, students stressed the
advantages of pairing. Primarily, students brought up the
benefits of having their questions answered immediately by
their partner rather than having to wait for an LI. Having

someone there while working on problems also seemed to
help them pick up on minor errors and to focus on
understanding conceptual knowledge.
Since communication skills and collaboration are important
components of paired learning, students recognized that the
paired labs made them work on these skills. Students
realized that the paired format mimics real world settings
where people are often randomly matched to work and
collaborate on programming projects.
3.2 Lab Instructors
In solo lab sections, the LIs were often overwhelmed with
questions. LIs often spent a minimum of five minutes and a
maximum of 20 minutes with each student. LIs remained
busy answering basic questions for the duration of the lab
sessions. In paired labs, instructors spent more time
discussing advanced issues with students, rather than
answering basic questions.[9] For example, students in
paired labs would ask the LIs how to improve their
algorithm, or how to apply it to another scenario. Questions
from students in solo labs were mostly about fixing syntax
errors or getting compilation errors clarified
In the focus groups, the LIs all agreed that implementing the
paired protocol gave them flexibility and time to give
students equal opportunities for questions, discussions, and
other support. As a result of having more time for
meaningful exchanges with students, LIs found their jobs
more satisfying and rewarding when teaching in paired labs.
An added benefit is that LIs of paired labs graded half the
number of projects and labs as compared to the LIs of solo
labs.
LIs noted that students in paired labs displayed more active
participation in their learning than students in the unpaired
labs. Paired student questions displayed higher order
thinking such as application, synthesis, and evaluation. LIs
observed that paired students’ efforts and willingness to learn
seemed to surpass their “traditional” counterparts.
(H4) We hypothesized that students’ participation in pair
programming will lead to a reduced workload for course
staff. Our qualitative findings support this claim.
3.3 Common Concern
In both focus groups, the students and LIs noted the
importance of having “compatible” partners. Two
suggestions for constructing compatible pairings were to
have them be based on personality type and/or on skill level.
We address our research plans in this area in Section 5.

4 Quantitative Findings
In the prior section, we shared our qualitative findings that
pairing creates a laboratory environment conducive to more
advanced, active learning; both students and lab instructors
reported this lab time to be more productive and less
frustrating. In this section, we discuss quantitative results
from data comparing paired to solo students.
 4.1 Success Rate/Retention
First, we examined the percentage of students who succeeded
in the class by completing the course with a grade of C or
better. Historically, beginning Computer Science classes

have poor success rates. Despite the good intentions and
diligent work of computer science educators, students find
introductory computer science courses very dauntingso
daunting that typically one-quarter of the students drop out of
the classes and many others perform poorly (by receiving a
grade of D or F).
Using the above criteria, we combined results for the Fall
2001 and Spring 2002 semesters as shown in Table 1. Our
results indicate that pairing helped the non-CS majors but did
not cause any significant improvement among the CS majors.
A Chi-Square test was run on the success rates and it showed
the solo and paired sections to be statistically independent
(χ2(1)=0.0043, p < 0.98). These results are consistent with a
similar study at the University of California UC-Santa Cruz
that reported 92% of their paired class and 76% of their solo
class completed the course [5].

Table 1: Success Rate
Semester Paired (%) Solo (%)

Non-CS Majors 66.4 (N=274) 55.9 (N=145)
CS Majors 83.0 (N=50) 84.0 (N=26)

(H1) We hypothesized that pair programming would increase
the success rate of the students who used the practice
(measured by taking students with a grade of C or higher).
Our results validated this claim for non-CS majors.
4.2 Performance on Examinations
In the fall semester, students in the paired section performed
better on the two-midterm examinations and the final
examination, as shown in Table 2. We removed 0 scores
from our analysis, making these results based on scores of
students who attempted to take the exam.

Table 2: Examination Scores Fall 2001
Exam Paired

Mean
Paired
Std Dev

Solo
Mean

Solo
Std Dev

Midterm 1 78.7 11.8 73.4 13.8
Midterm 2 65.8 24.2 49.5 27.2
Final 74.1 16.5 67.2 18.4

As stated earlier, students chose their class section without
knowledge of the experiment or pair programming. We had
hoped that their random enrollment in the class would yield
equivalent sample groups based on their SAT-Math scores.
However, the students in the paired group had a mean SAT-
Math score of 662.1 while the solo group had a mean score
of 625.4. When using SAT-Math as a covariate, an
ANCOVA test does not show any significant difference
between sections with regards to any of the exams. Based on
these results, we cannot conclude that pair programming in
the laboratory helped students perform better on exams.
Correspondingly, in the Spring semester we obtained exam
results that did not yield any statistically significant
improvement in test results by pair programmers. Educators
can be concerned that pairs will learn less because they had
the ability to lean on their partner. We have certainly not
found this to be the case.

(H2) We hypothesized that Students’ participation in pair-
programming in CS1 will lead to better performance
measured by higher scores on the examinations. Our results
have not validated this claim to a statistically significant
level.
4.3 Performance on Programming Projects
In the fall semester, students in the paired section performed
better on the first two of three programming projects, as
shown in Table 3.

 Table 3: Programming Projects-Fall 2001
Exam Paired

Mean
Paired
Std Dev

Solo
Mean

Solo
Std Dev

Project 1 94.6 5.3 78.2 26.5
Project 2 86.3 19.7 68.7 33.7
Project 3 73.7 27.1 74.4 29.0

To validate the statistical significance of these results, we ran
an ANCOVA test on the data (again examining possible
correlation between project scores and the student’s SAT-
Math scores). The ANCOVA demonstrated a statistically
significant improvement in performance of the pairs on
Project 1 (F(1,94)=8.12, p<0.0054) and Project 2
(F(1,78)=4.52, p<0.0367). However, this analysis did not
demonstrate improved performance on Project 3. Perhaps,
this is because by Project 3 the lower performing students
had dropped in the solo section but were still working in the
paired section. In the Spring 2002 semester, we saw no
statistically significant difference in project scores by either
group, though the paired students often performed
marginally better.
(H3) We hypothesized that students who pair programmed
would have higher project scores compared with the solo
programmers. From our results, paired and solo
programmers have comparable scores in the projects,
though in some cases paired programmers have marginally
higher scores than the solo students.
4.4 Results Commentary
We wish to discuss two factors that may influence these
results on both the examinations and the projects. First, the
implementation of pairing in the lab portion of the course
may have enough of a positive influence to keep students
from dropping out of the course, or it could have boosted
their grades enough to allow them to pass the course. As a
result, the poorer performing students may have negatively
influenced the calculation results of the paired section.
These poorer performing students dropped the class or did
not take exams in the solo section, removing themselves
from the calculation pool. Researchers at UC-Santa Cruz
have also made this same speculation, [5] because their
paired section also did not achieve statistically significant
higher test scores than the unpaired section. Additionally,
only approximately 40% of the exam content required
program code to be written in the answers. The rest of the
exams were short answer and multiple choices. Quite
feasibly, pair programming might not help improve students’
answers to short-answer and multiple-choice questions.

4.5 Attitude
Students in paired labs will have a positive attitude toward
working in collaborative software development
environments. A survey was conducted among the students
who worked in pairs throughout the spring semester. Eighty
percent of the students in the paired section indicated that
they were neutral (19.8%) or positive (59.9%) about pairing
in the future.
(H5) We hypothesized that students in paired labs will have a
positive attitude towards working in collaborative software
development environments. Our survey results supported
these claims.

5. Challenges
As with all learning methodologies there were certain
challenges we encountered during this experiment over the
fall and spring semesters.

• In a small percentage of cases, the random pairing led to
incompatible partners, which led to conflicts during
working. We hope to address this in our future work by
matching people according to personality profile and/or
skill type.

• The LIs have to monitor that one partner does not
dominate the pair or that one partner is burdened with
the entire workload. Student peer evaluations often to
not reflect such difficulties. However, to certain degree,
students to not want to “turn in” their partner. As a
result, the LIs must also be observant of the chemistry
and working of the pair in the closed labs

6. Conclusions and Future Work
Our study provides strong results of the following findings:

• Pair programming helps in the retention of more
students in the introductory computer science stream.

• Students in paired labs have a more positive attitude
toward working in collaborative environments; this
should ultimately help the student in his/her
professional life.

• Pair programming in an academic environment reduces
the burden on the LI because the pairs helped each
other, enabling the LI to perform more efficiently.

• From the results we have obtained regarding the tests
and the projects, we can conclude significantly that pair
programming among students is in no way a deterrent
to student performance.

We plan to continue the experiment in the 2002-3 academic
year with some modifications. Personality profiles like the
Myer-Briggs personality tests will be used to determine a
student’s personality. We will experiment with successful
matching patterns. This will help to provide us with more
insight as to how personality profile matters in pair
programming. We will also gather results for minority and
female students to obtain meaningful results for these
important groups.

7. Acknowledgements
The National Science Foundation Grant DUE CCLI 0088178
provided funding for the research in this pair programming
experiment.

References
[1] Bevan, J., Werner, L., and McDowell, C., "Guidelines

for the User of Pair Programming in a Freshman
Programming Class," presented at Conference on
Software Engineering Education and Training,
Kentucky, 2002.

[2] Cockburn, A. and Williams, L., "The Costs and Benefits
of Pair Programming," in Extreme Programming
Examined, G. Succi and M. Marchesi, Eds. Boston,
MA: Addison Wesley, 2001, pp. 223-248.

[3] DeMarco, T. and Lister, T., Peopleware. New York:
Dorset House Publishers, 1977.

[4] Ferzli, M., Wiebe, E., and Williams, L., "Paired
Programming Project: Focus Groups with Teaching
Assistants and Students," North Carolina State
University, Raleigh, NC CSC TR-2002-16, 2002.

[5] McDowell, C., Werner, L., Bullock, H., and Fernald, J.,
"The Effect of Pair Programming on Performance in an

Introductory Programming Course," presented at ACM
Special Interest Group of Computer Science Educators,
Kentucky, 2002.

[6] Slavin, R., Using Student Team Learning. Boston: The
Center for Social Organization of Schools, The Johns
Hopkins University, 1980.

[7] Slavin, R., Cooperative Learning: Theory, Research
and Practice. New Jersey: Prentice Hall, 1990.

[8] Williams, L., Kessler, R., Cunningham, W., and
Jeffries, R., "Strengthening the Case for Pair-
Programming," in IEEE Software, vol. 17, 2000, pp. 19-
25.

[9] Williams, L., Wiebe, E., Yang, K., Ferzli, M., and
Miller, C., "In Support of Pair Programming in the
Introductory Computer Science Course," Computer
Science Education, vol. September, 2002.

[10] Williams, L., Yang, K., Wiebe, E., Ferzli, M., and
Miller, C., "Pair Programming in an Introductory
Computer Science Course: Initial Results and
Recommendations," presented at OOPSLA Educator's
Symposium, Seattle, WA, 2002.

[11] Williams, L. A., "The Collaborative Software Process
PhD Dissertation," in Department of Computer Science.
Salt Lake City, UT: University of Utah, 2000.

