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Abstract. The Advanced Laser Interferometer Gravitational-wave Observatory
(LIGO) detectors have completed their initial upgrade phase and will enter
the first observing run in late 2015, with detector sensitivity expected to
improve in future runs. Through the combined efforts of on-site commissioners
and the Detector Characterization group of the LIGO Scientific Collaboration,
interferometer performance, in terms of data quality, at both LIGO observatories
has vastly improved from the start of commissioning efforts to present. Advanced
LIGO has already surpassed Enhanced LIGO in sensitivity, and the rate of noise
transients, which would negatively impact astrophysical searches, has improved.
Here we give details of some of the work which has taken place to better the
quality of the LIGO data ahead of the first observing run.

PACS numbers: 04.80.Nn.

ar
X

iv
:1

5
0
8
.0

7
3
1
6
v
2
  
[g

r-
q
c]

  
2
8
 J

an
 2

0
1
6



Improving the Data Quality of Advanced LIGO Based on Early Engineering Run Results2

1. Introduction

The Laser Interferometer Gravitational-wave Observatory (LIGO), comprised of two
4-kilometer laser interferometers in Hanford, WA (LHO) and Livingston, LA (LLO),
has been in an upgrade phase since 2010 to bring about the second generation of
gravitational-wave detectors. Prior to this, LIGO was operated in two iterations,
named Initial and Enhanced LIGO. The former data taking period spanned 2002−2007
in five separate science runs; the fifth science run (November 2005 - September 2007)
achieved design sensitivity in a continuous data-taking fashion [1]. The laser source
and readout system were then upgraded [2], with Enhanced LIGO (science run six
(S6): July 2009 - October 2010) reaching a root-mean-square strain sensitivity of
2× 10−22 in its most sensitive frequency region (∼100 Hz), approximately 30% more
sensitive than Initial LIGO [3].

The Advanced LIGO (aLIGO) project has completely upgraded the interferome-
ters (this will be discussed in further detail in Section 2 [3]), which at design sensitivity
will yield a factor of 10 increase in strain sensitivity. In terms of distance, aLIGO ex-
pects to be capable of detecting the merger of a binary neutron star system, averaged
over sky location and orientation, to ∼200 Mpc [4]. When achieving this detection
range, aLIGO is likely to detect the merger of tens of compact binary coalescences
(CBCs) every year [5].

Construction of Advanced LIGO began in April 2008; early 2011 saw the first
new hardware being installed. The Livingston detector was completed in mid-2014,
with Hanford finishing later in the same year [3]. Both detectors have since achieved
lock stretches in excess of two hours, with all of the detector’s core control systems
engaged. Commissioners have since been optimizing the operation of the detectors
and hunting sources of noise to improve sensitivity ahead of the first observing run
(scheduled for Fall 2015).

Gravitational wave interferometer data are typically non-stationary; there are
many long and short duration artifacts in the data. Long duration continuous wave
searches and gravitational wave background searches are most affected by elevated
noise at a given frequency, such as variations in spectral line amplitudes. This reduces
the ability to search over the data at these given frequencies. However, transient
gravitational wave searches (including CBCs and gravitational wave bursts) are most
sensitive to short duration noise events or ‘glitches’. These can occur for a variety
of reasons, including environmental or instrumental mechanisms, some of which are
not fully understood. Utilizing knowledge of the expected gravitational waveform,
signal-based methods are used by CBC search pipelines to distinguish between noise
and a gravitational wave signal [6, 7, 8, 9]. The search pipelines also rely on studies
of the behaviour of the detector to accurately remove or ‘veto’ data which are likely
to contain noise artifacts. Such studies during LIGO’s sixth science run, and the
improvements made to gravitational wave analyses, can be found in [10].

This paper describes efforts made to characterize the aLIGO detectors before the
first observing run. Engineering runs are stretches of time where the detectors are
operated as though in an observing run. Several runs have been performed to date,
each scheduled at various stages of installation or detector configuration. The work
presented focusses around the sixth engineering run (ER6: 8th - 17th December 2014),
where only the Livingston detector participated. Many of the cases presented were
found in the Livingston data, however similar artifacts were found in the Hanford data
at a later date and were easily mitigated due to this early work.
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The goal of this work is to identify sources of noise which would limit gravitational
wave searches, track down their causes, and fix the issues at the sources (i.e. the
detector). This will improve the quality of the data, reduce the amount of time needed
to be vetoed from an analysis, and improve the searches performed. This work will
also reduce the likelihood that a real signal will be rendered ‘suspicious’ by looking
like a known glitch.

Section 2 discusses the Advanced LIGO detectors, including the upgrades which
have been performed from initial LIGO. Section 3 details some of the tools and
methods used to identify noise sources, with Section 4 describing examples which
have been identified and mitigated. Section 5 discusses the output of the detectors,
comparing early commissioned aLIGO data and data taken in S6 to more recent,
mature aLIGO data. A short conclusion is given in Section 6.

2. The Advanced LIGO Interferometers

The Advanced LIGO instruments are a pair of modified Michelson interferometers
that employ Fabry-Perot cavities in their arms to increase the interaction time with a
gravitational wave signal [3]. A simplified schematic of the aLIGO interferometers can
be seen in Figure 1 [11]. The layout of the advanced interferometers is similar in some
respects to their Enhanced counterparts (for more details of the Enhanced detectors,
see [2, 11, 12]).

Advanced LIGO interferometers rely on the performance of a series of
interconnected subsystems to maintain stable operation. The layout of the
interferometer starts with a Nd:YAG laser that generates a carrier beam at 1064
nm, [13] which is then passed through an electro-optic modulator. Here, radio-
frequency (RF) sidebands are added, which are used for sensing and control of the
test mass suspensions. The input mode cleaner (IMC), a triangular optical cavity,
stabilizes the frequency and spatial mode content of the beam entering the heart of
the interferometer. The effective laser power in the arms is increased using a power
recycling cavity, which helps to improve sensitivity at higher frequencies where the
detectors are limited by shot noise. New to Advanced LIGO is signal recycling, which
allows the interferometer to be operated with a broader frequency response [14]. Using
improved seismic isolation, test mass suspensions and heavier test masses [3], the low
frequency limit on the useful sensitivity where LIGO performs an astrophysical search
is pushed down from 40 Hz to 10 Hz. At higher frequencies, higher input laser power
and better optical coatings [15, 16] are responsible for increased sensitivity.

Detection of gravitational waves in aLIGO interferometers is done by measuring
the phase mismatch incurred when the two arms experience differential motion. The
degree of freedom describing the differential length of the arms is labeled ‘DARM’.
The instrument is considered ‘locked’ when all cavity lengths are held within their
linear operating range. The differential arm length is controlled by a feedback loop
and the error signal of the DARM feedback loop is calibrated to measure the external
strain affecting the cavities. This signal is used to perform the astrophysical searches
and, as such, is the main subject of data quality investigations.

There are a large number of recorded signals used to monitor and control the
interferometers that are not directly used in the astrophysical searches, but are still
extremely useful for detector characterization. These channels are referred to as
auxiliary channels and can be used to track down the causes of systematic noise
in DARM. Examples of these auxiliary channels include environmental monitors and
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Figure 1: A simplified layout of the Advanced LIGO interferometers taken from [11].
The signal recycling mirror is the main change in optical layout from Enhanced
LIGO.

signals used to control the auxiliary degrees of freedom in the instrument. These
channels are used very often in detector characterization and are heavily featured in
Section 4.

3. Detector Characterization Methods

The Detector Characterization‡ group employs a diverse set of methods to assess
data quality and conduct investigations when the need arises. The goal of these
investigations, in general, is to ensure that a gravitational wave detection can be made
should a candidate event occur. This being the case, the definition of data quality is
highly dependent on how a feature in the output of the instrument is witnessed and
processed by a gravitational wave search pipeline. The ideal outcome of a data quality
investigation is to fix the problem at the source so that the data analyzed is clean of
artifacts. The alternative outcome is to find a way to systematically identify the noise
so that it can be excised from the analysis time in the form of a veto.

‡ A data analysis group within the LIGO Scientific Collaboration (LSC) working to characterize
the performance of the LIGO instruments, and quantify data quality as used by the search working
groups [17].
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3.1. Starting a Data Quality Investigation

There are two common ways for a data quality investigation to arise: an unusual
feature in the raw instrumental data is witnessed (such as in a spectrum or
spectrogram) or an unusual feature in the output of a gravitational wave search
pipeline is found. Unusual features are typically large, visible to the eye, features
that are not coincident between detectors. Subsequent investigations aim to provide
a complete description of instrumental features and how they influence the output of
a gravitational wave search.

A convenient starting point for investigating troublesome instrumental features
is the LIGO summary pages [18, 19]. These webpages house and archive the state
and the behavior of the interferometer from the perspective of each subsystem with
a focus on assessing data quality. There are approximately ten subsystems in total,
which include, for example, the pre-stabilized laser (PSL), input mode cleaner (IMC),
and alignment sensing and control (ASC) subsystems. It is common to begin an
instrumental investigation by searching through the summary pages and checking
each subsystem page for any clues that might identify the source of a feature.

Changes or irregularities in the DARM spectrum are more easily identified
and resolved using a suite of information that includes the typical behavior of
the instrument, the results of prior Detector Characterization studies, and any
configuration changes noted by commissioners in the site logbook.

3.2. Data Quality Tools

A variety of tools are used to identify and pinpoint sources of noise. These include tools
designed to represent the output of a typical gravitational wave search to highlight
poor data quality times. Using the output of a search requires a careful understanding
of the behavior of each gravitational wave search pipeline, so that signal processing
artifacts are not confused for problems in the instrument. There are also tools which
search for auxiliary channels that are coherent with DARM or determine the statistical
significance of glitches found in both auxiliary channels and DARM.

Omicron [20], a transient search algorithm, gives a reliable account of a typical
transient gravitational wave search. It is derived from an established transient search
pipeline called the Q-pipeline or Omega [21], which is a transient search algorithm that
produces triggers based on a sine-Gaussian excess power method. For each trigger a
central time, central frequency, duration, bandwidth, Q-value and signal-to-noise ratio
(SNR) (or normalised tile energy) is provided. Omicron is sensitive to most glitches
and reports useful information about the properties of a glitch; it is run in quasi-real
time over a large number of detector channels.

As well as being useful for assessing the data quality of a transient search, Omicron
triggers can also be fed into other tools which search for interesting instrumental
correlations. For example, Hierarchical Veto (HVeto) [22] reads in a set of Omicron
triggers produced from DARM, and compares them to Omicron triggers produced from
auxiliary channels. If there are glitches in auxiliary channels that are coincident in
time with glitches in DARM to an extent that is statistically interesting, an auxiliary
channel is marked as having high significance and warrants further investigation.
However there are some auxiliary channels with known couplings to DARM. To
thoroughly assess whether a channel directly leads to DARM, loud signals are injected
in to the interferometer so that two lists of auxiliary channels can be compiled, one
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which is ‘safe’ and another ‘unsafe’. The unsafe channel list details the auxiliary
channels with a known coupling to DARM and the safe channel list those without.
It is only the safe channels which are used by tools like HVeto. Since these auxiliary
channels have negligible sensitivity to gravitational waves, and therefore should not
witness signals originating in the DARM degree of freedom, any statistical correlation
points to an auxiliary degree of freedom with some unintended noise coupling with
DARM. Examples of this procedure will be presented in Section 4.

Advanced LIGO interferometers rely on the performance of a series of
interconnected subsystems to maintain stable operation. Each subsystem has a team
responsible for its maintenance and commissioning. In an effort to better understand
the output of the instrument and its impact on astrophysical search pipelines, the
Detector Characterization group has mirrored this approach and assigned data quality
liaisons to each subsystem. These subsystem liaisons are tasked with understanding
the operation of their respective subsystems and are responsible for interfacing with
commissioners, developing summary pages that allow those interested in data quality
to have a general overview of the subsystem, and designing real-time monitoring of
their subsystem’s data quality using the Online Detector Characterization (ODC)
framework [23].

4. Data Quality Issues

During S6 there were numerous examples of sources of noise identified in the
interferometers, which could not be fixed immediately or at all during the science
run [10]. ‘Data Quality (DQ) flags’ were constructed to identify noisy times as they
would adversely affect a gravitational wave search. Analysis groups would use these
flags to make an informed decision on which data to analyse. Teams of people, both
on and off site, have been working to identify and fix sources of noise which would
impact a search for gravitational waves before the run begins. This will hopefully have
the added bonus of minimizing the number of DQ flags which will need to be used
by the analyses in the first observing run. The remainder of this section highlights
some of the work done at both LHO and LLO to mitigate noise prior to the observing
run, however focus is given to studies at LLO since this observatory has been in active
commissioning longer than LHO.

4.1. DAC Calibration Glitches

In the commissioning period leading up to the 6th Engineering Run, a population of
low frequency (10 Hz - 100 Hz) glitches appeared in the output of the instrument.
While monitoring the locked instrument, it was noticed that these glitches were
correlated with times when certain suspension control signals crossed a value of zero.

The aLIGO suspension system uses 18-bit digital-to-analog converters (DACs)
to interact with various systems within the interferometers. These 18-bit DACS are
composed of a 16-bit low-order DAC and a 2-bit high-order DAC. The 2-bit chip has
four states which are individually calibrated (during an auto-calibration routine), and
then are corrected in real-time. The calibration of the 16-bit chip is such that is
occupies exactly one state of the 2-bit chip [24].

In these 18-bit DACs glitches have been observed at both sites due to an output
discontinuity when the 2-bit DAC engages. This discontinuity is caused by a voltage
calibration error between the 16-bit and 2-bit chips in the DAC. In these DACs, the
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Figure 2: Figure 2 is a timeseries of the drive signal sent to the DAC for the last stage of
the power recycling mirror (PRM) suspensions along with the power recycling
cavity length (PRCL) error point signal, multiplied by a factor of 100 for
scaling purposes. Everytime the PRM drive signal crosses a value of zero a
discontinuity is seen in the error point signal. There are 5 such examples in
this plot.

2-bit chip is responsible for the two highest order bits, which causes the discontinuity
to occur for transitions at output values of zero and ±216 (Figure 2). These glitches
were particularly detrimental to transient search pipelines, as they increase the rate
of loud, low frequency background events, making the ability to confidently identify a
true signal difficult.

To fully understand the scope of the problem and its impact on astrophysical
searches, software was developed that systematically searched through suspension
drive signals for any instances when they crossed either zero or ±216. Any time
this happened, the time and offending suspension drive signal channel were recorded
and fed in to Hveto, which was able to discover which channels had crossings that were
statistically correlated with glitches in DARM. This served two purposes: it provided
the capability to pinpoint which suspensions required immediate intervention to clean
up the output of the instrument, and it quantitatively demonstrated the effect of the
DAC calibration glitches on data quality for a transient search.

Two strategies were employed to try to mitigate this type of glitch. First, an
offset was applied to the signals so they would never cross values of zero or ±216.
However, this did not fix the root problem and presented an easy opportunity for the
glitches to resurface should the signals begin to drift. Offsetting the output signals
to avoid these values also limit the dynamic range of the control signals being sent to
the optics, which had the potential to increase the influence of noise associated with
the DACs. The solution, instead, was found to be an auto-calibration routine. In
this routine an internal voltage reference is used to calibrate the two chips such that
when the 2-bit DAC engages a smooth transition occurs (rather than a step function).
Re-calibration of the 18-bit DACs caused the discontinuity to nearly vanish [25]. It
was observed, however, that over the course of a few weeks after the calibration was
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performed, the calibration would degrade and the discontinuity would return. Regular
calibration of the 18-bit DACs in the aLIGO suspension system is required and has
been implemented to minimize these glitches. More stable solutions are under study.
The software mentioned previously is currently employed to continuously monitor the
status of the DAC calibration and determine its correlation to glitches in DARM.

4.2. Radio Frequency Beat Notes

Throughout aLIGO commissioning, radio frequency beat notes in auxiliary channels
have been observed and, as the noise in the instruments improved, signals caused
by radio frequency beat notes became prevalent in DARM. Across a wide range of
frequencies, signals were observed in DARM spectrograms with a characteristic ‘W’
or ‘V’ shape as shown in Figure 3. Initial investigations pointed towards a channel
that monitors the detuning of the laser frequency based on the input mode cleaner
length as being a good predictor of this feature. Every time this channel had particular
values these beat notes would be observed in DARM, as can be seen in Figure 4. This
figure shows a rate histogram of DARM triggers (as seen by Omicron) over ∼six hour
period binned by the corresponding channel value (blue bars). When the channel had
values of ∼ 196-201, 204-209 and 245-250 kHz (according to Figure 4), beat notes
were observed in DARM. In the absence of beat notes, the distribution of the triggers
appears Gaussian (red bars).

Voltage controlled oscillators (VCOs) are used in control loops throughout the
LIGO interferometers. For example, a voltage controlled oscillator in the pre-stabilized
laser frequency stabilization servo (FSS) generates a radio frequency signal which
drives an acousto-optic modulator (AOM). The AOM generates frequency sidebands
on the laser which are used as a frequency reference in the FSS loop. This loop is used
to correct frequency fluctuations in the laser by locking the frequency of the laser to
the length of the input mode cleaner [26]. Beat notes between voltage controlled
oscillators are visible in the stored detector output when the absolute frequency
difference between two voltage controlled oscillators drops below 16 kHz.

Despite efforts to keep radio frequency radiation and pick up to a minimum,
beat notes can still contaminate the low noise DARM channel. It was found that
these features occurred every time the frequency stabilization servo voltage controlled
oscillator at LLO or LHO swept through 79.2 MHz, the same frequency as a fixed
frequency fiber acousto-optic modulator. During some locks, these radio frequency
beat notes were extremely problematic and were responsible for ∼90% of all glitches
seen in DARM at LLO (Figure 5). When testing the binary black hole search on
Livingston aLIGO data containing these radio frequency beat note glitches, they
proved to greatly limit the search performance.

To remove these sources of glitches from DARM, the output frequencies of
the problematic voltage controlled oscillators were moved away from each other in
frequency. Once this had been accomplished, a dramatic decrease in the number of
glitches associated to these sources was observed. At LLO, the overall glitch rate
improved by a factor of two and glitches with an SNR > 8 improved in rate by a
factor of 50, as shown in Figure 6. However there are numerous voltage controlled
oscillators with output frequencies in the same vicinity, meaning radio frequency beat
notes could and have presented themselves again as commissioning continues. Due to
the work presented, there are now more deterministic methods for finding and tracking
these types of glitches.
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(a) Example from LHO

(b) Example from LLO

Figure 3: Radio Frequency beat notes seen in the DARM channel at both Hanford
and Livingston are shown in Figures 3a and 3b respectively. Both plots are
normalised spectrograms, illustrating examples of the characteristic ‘W’ and
‘V’ shapes, produced when two oscillators sweep past one another in frequency
space.
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Figure 4: A rate histogram plot of the Omicron DARM triggers over ∼six hour period.
Plotted on the x-axis is the value of a particular channel at every time when
a trigger was produced. This channel was found to be a good witness of the
beat notes. At values of ∼ 196-201, 204-209 and 245-250 kHz beat notes
were observed in DARM (blue bars). Without beat notes the distribution of
triggers appears Gaussian (red bars).

4.3. Pre-Stablized Laser Periscope

The pre-stabilized laser subsystem consists of a Nd:YAG laser and control systems
which stabilize the laser in beam direction, frequency, and intensity [13]. The system
lives outside of the vacuum system (which houses the majority of the aLIGO hardware)
in a clean, dust-free environment. The optical components of the pre-stabilized laser
are located on an optical bench, which is, physically, much lower than the height the
beam needs to be to enter the vacuum systems viewport. A periscope is used to elevate
the beam so that it can enter the vacuum enclosure.

Input pointing noise can couple to DARM through several mechanisms. As shown
in Figure 1, the laser beam propagates inside the input mode cleaner (IMC) before
entering the main interferometer. Any jitter at the input of the IMC cavity is filtered,
since the cavity is stable. However, jitter is also converted into intensity noise in
transmission through a quadratic coupling, which can have a linear component if the
IMC cavity is slightly misaligned. Intensity noise then couples to DARM since the
Advanced LIGO detectors are using a DC readout scheme [2] in which the primary
laser is sensed on a DC photodiode and used as a reference to identify gravitational
wave sidebands. Clearly, one solution is to tune the IMC angular controls to improve
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Figure 5: Noise events in the DARM data recorded by Omicron over ∼nine hour time
period. The blue points represent all DARM triggers for this period and the
red ‘x’ overlay indicates those identified by HVeto as being coincident with
an auxiliary channel which was witnessing the radio frequency beat notes.
Approximately 90% of the DARM triggers are vetoed by Hveto.

(a) Before (b) After

Figure 6: The rate of Omicron triggers before (Figure 6a) and after (Figure 6b) the
problematic voltage controlled oscillator was moved at Livingston. The plots
illustrate an hour of data and the triggers are separated in to SNR bins where
the rate is calculated over a five minute period.

its alignment. However, the residual misalignment was large enough to still introduce
a non negligible amount of intensity noise at the input of the main interferometer.
For example, two distinct features in the DARM spectrum at ∼135 Hz and ∼250 Hz
were due to the resonance of a mirror mount securing a piezo-actuated mirror, used
to control the beam pointing in to the input mode cleaner. This mirror mount was
located at the top of the pre-stabilized laser periscope and was causing excess beam
jitter. To relieve this issue, the piezo-actuated mirror was moved from the top of the
pre-stabilized laser periscope to the pre-stabilized laser optical table and was replaced
with a fixed mirror. This immediately improved the input pointing noise from the
PSL to the vacuum enclosure, reducing the effect at 135 Hz and removing the 250 Hz
resonance, as seen in Figure 7.
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Figure 7: Spectrum of DARM before and after the piezo-actuated mirror was relocated
from the top of the pre-stabilized laser periscope to the optical bench. When
the mirror was located at the top of the periscope, excess beam jitter can be
seen at 135 and 250 Hz. After the move, the former feature is reduced and
the latter feature is completely removed.

4.4. End Test Mass Ring Heaters

The laser power circulating in the aLIGO arms can be as large as 750 kW, which
will cause deformations in the test masses via thermal expansion, changing the spatial
modes of the optical field [3]. Thermal compensation techniques are used to maintain
the radius of curvature of the input and end test masses, which, if left uncompensated,
would increase by a few tens of meters [3]. A ring heater is one of the elements of the
thermal compensation system used in aLIGO. It comprises a nickel-chromium heater
wire wound around two semi-circular glass rods and radiates onto the test mass to
compensate for thermo-elastic deformations of the test masses [3].

Because ring heaters actuate on the major optics of the interferometer, noise
associated with them can couple significantly into DARM. This was the case for a
feature found during commissioning activities at Livingston, at 74 (end X station) and
76 Hz (end Y station) in the DARM spectrum. This noise feature was found to be
coherent with a magnetometer at the same end station. Upon further investigations,
it was discovered the ring heater drivers were the source of the added noise.
Subsequently, they were both replaced with drivers modified to have filtered power
supplies. The improvement in the gravitational wave spectrum for the replacement
at the Y end can be seen in Figure 8. Similar features in DARM due to the ring
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Figure 8: Spectrum of DARM before and after the ring heater at the end X station was
replaced. Notice the removal of the 76 Hz spike in the spectrum once the ring
heater driver is replaced. The 60/120 Hz features are due to the mains power.

heaters were also seen at Hanford. This discovery and increased understanding of the
potential systematic impacts of the thermal compensation system has prompted the
setup of monitors which will catch such future problems.

4.5. LLO Pre-Mode Cleaner

The pre-mode cleaner (PMC) is a four mirror resonator in a bow tie configuration
responsible for removing higher-order modes from the beam, reducing beam jitter,
and providing low-pass filtering for radio frequency intensity fluctuations [3]. Three
mirrors are fixed, while the fourth is attached to a piezoelectric transducer (PZT) to
control the length of the pre-mode cleaner. In terms of the interferometer layout the
pre-mode cleaner is located just before the input mode cleaner (see Figure 1)

During locking activities in early December 2014, noise between 1 − 2 kHz (see
Figure 9) in DARM was found to be correlated with the pre-mode cleaner system.
Not only was there found to be a linear coherence between DARM and the pre-mode
cleaner in this frequency range, Hveto also found the glitches in the high voltage drive
that controls the PZT, which is fixed to one of the four pre-mode cleaner mirrors, to
be coincident with glitches seen between 1 − 2 kHz in DARM. Figure 10 shows the
statistical correlation seen by HVeto. The decision was made to completely replace
the pre-mode cleaner. Before the swap, however, it was discovered that cables left
over from previous measurements were connected to electronics used to interact with
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Figure 9: The DARM spectrum before and after the pre-mode cleaner was swapped.
The elevated noise between 1-2 kHz is reduced with the change.

Figure 10: Nine hours of noise events recorded by Omicron. The blue points show all
of the triggers in DARM while the red ‘x’ overlay designates those which are
identified by HVeto as being coincident with glitches in the the pre-mode
cleaner drive. The coincident triggers are mainly above 1 kHz in DARM.
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the PMC. These additional cables were demonstrated to cause the increased noise in
the DARM channel. Due to the sensitive nature of the LIGO instruments, subtle
details like improperly terminated cables can have a serious impact on data quality,
and people both on and off site are constantly monitoring to catch these kinds of
problems. Although this additional noise in DARM was not found to be due solely
to pre-mode cleaner degradation, the pre-mode cleaner was still replaced to improve
other areas of operation.

5. Comparing the Initial and Advanced LIGO Performance of the LIGO

Livingston Detector

The non-Gaussian, non-stationary nature of the noise in the detectors has a great
impact on the ability to perform a search for gravitational waves. The glitches and
features described in Section 4 would have a detrimental impact on the transient
analyses had they not been removed. Loud glitches (in terms of SNR) can mask or
potentially disrupt a transient gravitational wave signal in the data, whereas many
quieter glitches can raise the background of a search and limit the ability to distinguish
signal from noise.

Section 5.1 looks at the aLIGO Livingston detector before and after the DQ issues
discussed in Section 4 were resolved. Section 5.2 compares Livingston’s S6 detector
output to the early aLIGO data after the removal of the example DQ issues. For
both cases, six hours of detector data were chosen to best represents the detectors
at the time of operation. The S6 data were taken from September 16th 2010, which
is considered to be a typical, good, and stable stretch of data. All subsequent plots
showing data from this time are labelled ‘S6’. Data from December 16th 2014, which
were taken during an engineering run, contained all the DQ issues previously described
and are labelled as ‘ER6’ in the subsequent plots in this section. Data from a lock
stretch on March 11th 2015 were selected to represent the early aLIGO data (and is
labelled ‘Post ER6’ in the following plots). In terms of data quality and inspiral range,
the March 11th aLIGO data represents some of the best from that period. However,
it should be noted that this latter stretch of data represents active commissioning
time, where the detector is not left completely alone and is therefore not as stable as
the S6 or ER6 data. Since the writing of this paper it is worth noting that another
engineering run has taken place.

5.1. A Comparison of aLIGO Data, Before and After DQ Example Issues were

Resolved

For two weeks in December 2014, the LIGO Livingston detector took part in an
engineering run (ER6). During this time, the detector was locked as often as possible,
with minimal interruption for commissioning activities, to assess the stability and
quality of the data.

Figure 11 compares the data quality between ER6 and the Post ER6 data from the
viewpoint of Omicron triggers. Figure 11a is a trigger rate histogram, which compares
the rate of Omicron triggers produced over the two data, binned by amplitude spectral
density in strain/

√
Hz. From this figure two things are evident. First, the sensitivity

of the detector has improved, resulting in strain/
√
Hz bins that extend to lower values.

Second, the rate of glitches at all amplitudes is in general lower. Figure 11b shows
the Omicron trigger spectrum for both ER6 and Post ER6. This figure gives a sense
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of which frequencies are contributing the most to a certain strain/
√
Hz bin from the

previous figure. At ∼500 Hz (and harmonics) are the test mass suspensions violin
modes [3], which seem to be the worst offenders in terms of amplitude. Damping
these violin modes further would presumably decrease the rate of higher amplitude
glitches seen in the data. Between the two times analysed, there has been significant
improvement. Figure 11c shows the trigger rate for the ER6 data, binned (colored)
by SNR over five minute segments. Figure 11d displays the same information for the
Post ER6 data. Despite the stability of the Post ER6 data varying more than the
ER6 data (there are disturbances which are causing the glitch rate to increase in the
March 2015 lock at ∼1.5 and ∼5.5 hours), the rate of triggers for the data seems
to decrease. The rate of low SNR glitches (SNR of 5) has halved between the two
times, and, ignoring the increased glitch rate at the two highlighted times, the rate
of glitches with an SNR ≥ 8 and 10 has decreased by around an order of magnitude.
For comparison Figure 11e shows the expected trigger rate for Gaussian noise with a
sensitivity equivalent to that at design (circa 2018). This figure represents the best
the data could be.

5.2. A Comparison of S6 and Early aLIGO Data

During initial LIGO’s sixth science run (S6), some of the best quality observing
run data was collected. Although a detection was not made, many astrophysically
interesting statements were made from the searches conducted (for example [27], [28],
[29]). Many people, both on and off site, have been working to improve the output of
the detectors, not only to increase the volume over which to search for gravitational
waves, but also to provide data which are as stationary and Gaussian as possible.

Figure 12 shows a comparison of LIGO Livingston’s detector data from S6 and
from a lock stretch in March 2015 (Post ER6). Figure 12a compares the Omicron
trigger rates binned by strain/

√
Hz. It is clear to see that the triggers produced using

Post ER6 data have a lower floor in strain/
√
Hz than in S6 (< 10−22) and the rate

of glitches is generally lower across the entire amplitude range. The higher amplitude
glitches (∼ 10−19) in the aLIGO data seem to be caused by the band of glitches
around 500 and 1000 Hz, depicted in figure 12b. These are the fundamental and
first harmonic of the test mass violin modes (as previously mentioned). For S6, these
modes were closer to 340 and 680 Hz [1]. It is worth noting that the violin modes in
aLIGO have a much higher Q than in Initial LIGO, hence they are more easily excited
to super-thermal levels [3]. Figure 12b compares the triggers seen in both S6 and Post
ER6 in terms of their frequency and amplitude. This plot highlights some of the most
problematic regions to a transient search, in the frequency spectrum. Figures 12c and
12d show the rate of triggers, separated into four SNR bins over five minute intervals
for the S6 and Post ER6 data respectively. Overall, the rate of triggers was less in
the aLIGO March data compared to S6; the real difference can be seen in the rate of
higher SNR triggers. Despite the variability of the aLIGO data (instrumental features
at ∼1.5 and 5.5 hours in Figure 12d cause the glitch rate to increase), the glitch rate
in certain SNR bins (SNR 8 - 20) is half to an order of magnitude lower in the March
2015 data than it was in 2010 (i.e. S6).
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Figure 11: A comparison of ER6 and Post ER6 data. Figure 11a shows a trigger
rate histogram, binned by strain/

√
Hz. Figure 11b is the trigger spectrum

between the two times, which gives a sense of the most ‘glitchy’ frequencies.
Figures 11c and 11d are the trigger rate plots for both the ER6 and Post ER6
time period respectively. In these plots the Omicron triggers are separated
in to four SNR bins and the data is combined over a five minute interval to
calculate the rate. The first four plots show the improvement in the data
quality, as witnessed by Omicron, between ER6 and the Post ER6 time period
chosen. For comparison, Figure 11e shows the trigger rate for Gaussian noise
at design sensitivity.
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Figure 12: Comparison plots of six hours of data taken in S6 and the time period chosen
to represent early aLIGO data. Unlike Figure 11 these plots are in the
frequency range 40-4096 Hz, as during S6 40 Hz was the lowest frequency we
searched for gravitational waves. Figure 12a shows a trigger rate histogram,
in terms of strain and Figure 12b is the trigger spectrum between S6 and
Post ER6. Figures 12c and 12d are the trigger rate plots for both the S6 and
Post ER6 time period respectively. The Omicron triggers are separated in
to four SNR bins and the data is combined over a five minute for these last
two plots.

6. Concluding remarks

The Advanced LIGO detectors have been completely assembled and are currently
being optimized to begin operation later this year, in what will be the most sensitive
search for gravitational waves to date. In addition to maximizing the inspiral range,
and therefore the volume over which an astrophysical search is conducted, it is just
as important to ensure the data are as Gaussian and stationary as possible. In the
last science run of initial LIGO (S6), many issues were identified as detrimental to
a search for gravitational waves and harmful to the stability of the interferometers.
Improvements were made in that some sources of noise were fixed at the instrument,
but DQ flags were often used to identify known correlations between noise in an
auxiliary channel and the gravitational wave channel [10]. For aLIGO, the hope is to
identify and resolve harmful sources of noise as much as possible before an analysis is
performed.

There have been many improvements to the aLIGO detectors during their
commissioning phase; many issues have been identified and resolved at the source
and this work continues. Section 5.1 highlights the improved quality of the detector
data during this commissioning period, with the rate of glitches decreasing over the
period studied. These same data were also compared with those from the last science
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run. The rate of glitches is less now than that seen in the last science run (Section
5.2). This work focused on data from the LIGO-Livingston detector and similar work
is underway at LIGO-Hanford which will be presented in a future publication.

Over the coming months more effort will be made to further improve the output
of the detectors to provide the best possible quality data to search for gravitational
waves. Early efforts have already proven to be vital.
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Shoemaker for useful discussions throughout the writing of this paper. LKN was
supported by the College of Arts and Sciences at Syracuse University, TJM and
RPF were supported by NSF award PHY-1205835 and DMM by NSF award PHY-
1104371. JRS was supported by NSF CAREER 1255650. ARW was supported by
the UK Science and Technology Facilities Council through grants ST/K501931/1 and
ST/L000962/1. Some calculations were performed on the ORCA cluster supported
by NSF award PHY-1429873. LIGO was constructed by the California Institute
of Technology and Massachusetts Institute of Technology with funding from the
National Science Foundation, and operates under cooperative agreement PHY-
0757058. Advanced LIGO was built under award PHY-0823459. This paper has
the LIGO Document Number LIGO-P1500131.

8. References

[1] B. P. Abbott et al. LIGO: The Laser Interferometer Gravitational-Wave Observatory. Rep.
Prog. Phys, 72:076901, 2009.

[2] T. T. Fricke et al. DC Readout Experiment in Enhanced LIGO. Class. Quantum Grav.,
79:065005, 2012.

[3] J. Aasi et al. Advanced LIGO. Class. Quantum Grav., 32:074001, 2015.
[4] J. Aasi et al. Prospects for Localization of Gravitational Wave Transients by the Advanced

LIGO and Advanced Virgo Observatories. arXiv:1304.0670, 2013.
[5] J. Abadie et al. Predictions for the Rates of Compact Binary Coalescences Observable by

Ground-Based Gravitational-Wave Detectors. Class. Quantum Grav., 27:173001, 2010.
[6] S. Klimenko et al. A Coherent Method for Detection of Gravitational Wave Bursts. Class.

Quantum Grav., 25:114029, 2008.
[7] P. J. Sutton et al. X-Pipeline: An Analysis Package for Autonomous Gravitational-Wave Burst

Searches. New J. Phys., 12:053034, 2010.
[8] I. W. Harry and S. Fairhurst. A Targeted Coherent Search for Gravitational Waves from

Compact Binary Coalescences. Phys. Rev D, 83:084002, 2011.
[9] S. Babak et al. Searching for Gravitational Waves from Binary Coalescence. Phys. Rev D,

87:024033, 2013.
[10] J. Aasi et al. Characterization of the LIGO Detectors During their Sixth Science Run. Class.

Quantum Grav., 32:115012, 2015.
[11] J. R. Smith. The Path to the Enhanced and Advanced LIGO Gravitational-Wave Detectors.

Class. Quantum. Grav., 26:114013, 2009.
[12] N. Smith-Lefebvre et al. Optimal Alignment Sensing of a Readout Mode Cleaner Cavity. Optics

Letters, 36:22:4365–4367, 2011.
[13] P. Kwee et al. Stablized High-Power Laser System for the Gravitational Wave Detector

Advanced LIGO. Optics Express, 20(10):10617–10634, 2012.
[14] B. J. Meers. Recycling in Laser-Interferometric Gravitational-Wave Detectors. Phys. Rev. D.,

38:2317, 1988.
[15] G. M. Harry et al. Thermal Noise from Optical Coatings in Gravitational Wave Detectors.

Applied Optics, 45:7:1569–1574, 2006.
[16] G. M. Harry et al. Titania-Doped Tantala/Silica Coatings for Gravitational-Wave Detection.

Class. Quantum. Grav., 24:405, 2007.



Improving the Data Quality of Advanced LIGO Based on Early Engineering Run Results20
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