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Abstract

Data prefetching is an effective way to acceler-
ate data access in high-end computing systems and
to bridge the increasing performance gap between
processor and memory. In recent years, the context-
based data prefetching has received intensive attention
because of its general applicability. In this study, we
provide a preliminary analysis of the impact of orders
on the effectiveness of the context-based prefetching.
Motivated by the observations from the analytical
results, we propose a new context-based prefetch-
ing method named Multi-Order Context-based (MOC)
prefetching to adopt multi-order context analysis to
increase the context-based prefetching effectiveness.
We have carried out simulation testing with the SPEC-
CPU2006 benchmarks via an enhanced CMP$im sim-
ulator. The simulation results show that the proposed
MOC prefetching method outperforms the existing
single-order prefetching and reduces the data-access
latency effectively.

Keywords: data prefetching, context-based prefetch-
ing, memory access performance, high-end computing.
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1. Introduction

The rapid advance of semiconductor process tech-
nology allows the processor speed or the aggregate
processor speed on chip with multicore/manycore ar-
chitectures grows fast and steadily. The memory speed
or the data load/store performance, on the other hand,
has been increasing at a snail’s pace [11]. The memory
speed has only increased by roughly 9% each year
over the past two decades, which is significantly lower
than the improvement speed of nearly 50% per year
for processor performance [11]. This trend is predicted
to continue in the next decade. This unbalanced per-
formance improvement leads to one of the significant
performance bottlenecks in high-end computing known
as “memory-wall” problem [18][28]. Multiple memory
hierarchies have been the primary solution to bridging
the processor-memory performance gap. However, due
to the limited cache capacity and highly associa-
tive structure, large amount of off-chip accesses and
long data-access latency still spike the performance
severely.

Data prefetching approach was thus proposed to
reduce the processor stall time when applications lack
temporal or spatial locality, and has been widely rec-
ognized as a critical companion technique of memory
hierarchy solution to overcome the memory-wall issue
[18][28][11]. As the term indicates, the essential idea
of data prefetching is to observe data referencing
patterns, then speculate future references and fetch
the predicted reference data closer to processor before
processor demands them. Numerous studies have been
conducted and a lot of strategies have been proposed
for data prefetching [1][2][5][13][14][15][19][20][27].
These studies concluded that data prefetching is a
promising solution to reducing memory access latency.
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In addition, many commercial high-performance pro-
cessors have adopted data prefetching techniques to
hide long data-access latency [9][11][16].

Among many prefetching strategies, the context-
based data prefetching has received attention in recent
years due to its general applicability and high accuracy
[10][22][23]. Although numerous studies have been
conducted in context-based prediction and prefetch-
ing [10][22][24][25][23], many issues remain open.
In this research, we provide a preliminary study on
analyzing the impact of orders, the length of the
context considered, on the prefetching effectiveness via
simulation testing. Based on the analytical results, we
identify one limitation of the existing context-based
prefetching is that they only support a single-order
context analysis and prediction. Even though such an
approach can achieve high prefetching accuracy, our
study shows that the single-order approach leads to
limited prefetching coverage. The ultimate goal of a
data prefetching strategy is to reduce access delay;
however, the performance gain of data prefetching
depends on both prefetching coverage and accuracy.
The limited prefetching coverage of existing context-
based prefetching methods, in turn, leads to limited
prefetching effectiveness. While computing capability
still increases with a much faster pace than memory
performance, more aggressive prefetching strategies
are desired, which provide wider coverage and higher
accuracy. Motivated by the observations, we propose
a new context-based prefetching method named Multi-
Order Context-based (MOC) prefetching to address the
drawback of existing context-based prefetching and to
increase the overall prefetching effectiveness.

The rest of this paper is organized as follows.
Section II introduces the basic idea of context-based
prefetching and reviews important related works. The
preliminary analysis of context-based prefetching per-
formance is also presented in Section II. Section III in-
troduces the design of the proposed MOC prefetching
strategy and the prefetching methodology. Section IV
discusses our simulation experiments and performance
results. Section V summarizes this study and discusses
the future work.

2. Context-Based Data Prefetching and
Preliminary Analysis

In this section, we briefly introduce the context-
based data prefetching and review related works. We
also present the preliminary analysis of the perfor-
mance of context-based prefetching that motivates the
proposed MOC prefetching strategy.

2.1. Context-Based Data Prefetching and Re-
lated Works

The essential idea of the context-based data
prefetching is to detect the correlation between current
context (the miss access information) and the past
history and make predictions for data prefetching.
A context-based prefetching method usually builds a
state transition diagram with the access address strides
(deltas) as states, and characterizes the correlation
among miss address streams. Depending on the length
of the context considered, the prefetching strategy
can adjust the prefetching overhead and confidence in
prefetching. The length of context is referred as the
order of a context-based prefetching strategy.

The context-based prefetching is considered by
many as a more generalized approach compared to
conventional and classic prefetching strategies includ-
ing sequential, stream, stride, Markov and distance
prefetching. Sequential prefetching strategy brings one
or more blocks that follow the current missing block
[5][6]. This prefetching mechanism takes advantage of
spatial locality and assumes the applications usually re-
quest consecutive memory blocks. Stream prefetching
can track multiple different streams and prefetch data
blocks for each stream [13][16][21]. Stride prefetch-
ing [2] detects the stride patterns in data access
streams. Once a stride pattern is found, blocks can
be prefetched according to the stride detected. Due
to its simplicity and effectiveness, stride prefetch-
ing is widely used [2][9]. Markov prefetching was
proposed in [14] to capture the correlation between
cache misses and prefetch data based on a state tran-
sition diagram. Distance prefetching [15] combines
Markov prefetching and stride prefetching and uses
miss strides, not the miss addresses themselves, to
build the state transition diagram for detecting the
correlation. More recently, the Global History Buffer
(GHB) based prefetching [20], Data Access History
Cache (DAHC) based prefetching [3], stream chaining
prefetching [8], feedback directed prefetching [27] and
algorithm-level adaptive prefetching [4] were proposed
to further explore the correlation among access history
and to provide intelligent, comprehensive and adaptive
prefetching strategies.

The generalized context-based prefetching is similar
to the context-based value predictor, but is used as a
data prefetcher on the cache level. The Finite Con-
text Method (FCM) [24] is a representative context-
based predictor that predicts the next value based
on a finite number (order) of preceding values. The
FCM is usually implemented with a two-level table
organization [25], with Value History Table (VHT) and
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Value Prediction Table (VPT). The VHT contains the
context of data accesses, and the VPT contains the
predictions associated with context. A hash function
uses the context information from VHT and processor
state to form an index that leads to a VPT entry.

A variation of the FCM prefetcher, called Differ-
ential Finite Context Method (DFCM), was proposed
in [10]. In this model, the context is formed by the
differences between values instead of values them-
selves. DFCM can find more repeating patterns than
FCM does, and in the meantime, it reduces the number
of VPT entries needed. P-DFCM [22] is a recently
proposed data prefetcher based on DFCM. There are
two major differences between P-DFCM and DFCM.
First, P-DFCM prefetches on L2 load misses only,
while DFCM prefetches on both load and store misses.
Second, P-DFCM can prefetch when the PC (Program
Counter) is known, while DFCM prefetches when both
PC and its requesting data address are known. The
distance prefetching, originally proposed for TLB [15]
and also was used in data cache [19][20], is usually
considered as the most representative context-based
prefetching where the order is one.

2.2. Preliminary Analysis of Context-Based
Prefetching Performance

In this subsection, we present the analysis of
context-based prefetching performance via simulation
testing. The goal of the performance analysis is to
investigate the impact of orders, a critical factor that
affects the context-based prefetching performance. We
analyze the impact of orders and evaluate the perfor-
mance from two aspects: the accuracy, which measures
how many percentages of prefetches are correct, and
the coverage, which measures how many patterns are
recognized and how many misses are reduced. We
adopt an architecture-independent approach by collect-
ing miss stream samples of all 29 SPEC-CPU2006
benchmarks [26] and replaying them to analyze the
performance of context-based prefetching with differ-
ent orders.

The prefetching accuracy result of the context-based
prefetching for 10 selected representative CPU2006
benchmarks with different orders is shown in Fig.
1, and the average result of all 29 benchmarks is
shown in Fig. 2. As can be observed from the results,
for the majority of the benchmarks (23 out of total
29), the accuracy increases strictly with the increase
of the order, which means that a greater order can
achieve higher prediction accuracy. It makes sense
since the longer the repeating patterns are, the stronger
prediction confidence can be guaranteed.

Figure 1. Prefetching Accuracy with Different
Orders for 10 Selected Representative SPEC-
CPU2006 Benchmarks

Figure 2. Average Prefetching Accuracy with Dif-
ferent Orders for SPEC-CPU2006 Benchmarks

The prefetching accuracy is not the only metric we
care about because there may not be enough effective
prefetches to reduce the misses and to hide the latency.
We adopt another metric, prefetching coverage, to mea-
sure the number of patterns recognized by a prefetcher
to evaluate the percentage of misses reduced among
all misses. The prefetching coverage of the context-
based prefetching with different orders for 10 selected
representative CPU2006 benchmarks are shown in Fig.
3, and the average result of all 29 benchmarks is
shown in Fig. 4. As can be observed from the results,
the lower order model achieves considerably higher
coverage. This observation means that a low order
model can reduce more misses on the same given
sequence of misses than high order models. This is
an important observation. This observation means that,
even though a high order model can achieve high
accuracy, it may not reduce considerable amount of
misses. This shows that, even though high accuracy
is achieved, the miss reduction could be low, as a
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prefetcher could issue prefetches only when it is highly
confident.

Figure 3. Prefetching Coverage with Different
Orders for 10 Selected Representative SPEC-
CPU2006 Benchmarks

Figure 4. Average Prefetching Coverage with Dif-
ferent Orders for SPEC-CPU2006 Benchmarks

These performance trends for various orders, as
shown in Fig. 1 to Fig. 4, demonstrate the need to
support multiple orders in order to have the merits of
both high accuracy and wide coverage. In the following
section, we present the design and prefetching method-
ology of the proposed MOC prefetching that supports
multi-order analysis by taking advantage of a recently
proposed prefetching dedicated cache structure, Data-
Access History Cache (DAHC) [3].

3. Multi-Order Context-based Prefetching

In this section, we introduce the Multi-Order
Context-based prefetching design and its prefetching
methodology.

3.1. Multi-Order Context-based Prefetching
Design Rationale

We adopt the generic and prefetching-dedicated
cache structure, Data-Access History Cache [3], and
extend it with context-based prefetching logic to design
a multi-order context-based prefetcher.

The proposed multi-order context-based (MOC)
prefetching has a three-level table organization as
shown in Fig. 5. The first two levels follow the design
of the Data-Access History Cache [3], which includes
a Data Access History (DAH) table and index tables,
PC Index Table (PIT) and Address Index Table (AIT).
The DAH table stores the detailed data access history
information. It gives high priority to recent access
history, and thus filters outdated history automatically.
The index tables provide the view and the detection of
the correlations from the instruction stream and address
stream respectively.

The third level table is the Data Access Prediction
(DAP) table. Each DAP entry includes two fields. The
first one stores the predicted address corresponding to
the context indicated by the entry index. The second
field stores a confidence counter that is used to rep-
resent how strong the prediction is. DAP entries are
indexed by the hashed form of the contexts derived
from a hash function. In the current design, we select
FS-5 hash function to produce the hashed context as
it has better performance than other choices [25].
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Figure 5. Multi-Order Context-based Prefetching
Strategy

3.2. Selection of Multiple Orders

The major constraint for the selection of a specific
order comes from the hardware storage requirement for
supporting the context analysis with a specific order.
The storage requirement, in turn, can be characterized
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with the table entry consumption for storing the context
and prediction addresses in an ideal case without any
hash conflict. In order to have a better understanding
of the choice of multiple orders, we analyze the table
entry consumption for different orders in an ideal case,
as shown in Fig. 6.

Figure 6. Table Entry Consumption for Different
Orders in An Ideal Case

This analysis shows that the higher order we choose,
the more table entries we need. Since we use hash
table (with FS-5 hash function) in the context anal-
ysis, a higher order context analysis can cause more
aliasing if the storage budget remains fixed. With the
consideration of storage consumption analysis result
and the performance of different orders shown in Fig.
1 to Fig. 4, we adopt order-0, order-1 and order-2, not
other higher orders, in our current MOC prefetching
design. Another important reason for us to choose
these three orders in the MOC prefetcher is that we
can support order-0 and order-1 prefetching directly
by taking advantage of the DAH table without in-
volving additional DAP tables. The order-0 context
prefetching means that the prefetcher works with zero
number of context (without context). This prefetching
method is essentially a sequential prefetching, which is
optimal for programs that access consecutive memory
blocks. The order-1 context prefetching means that
the prefetcher makes the prediction based on one-level
access stride, which is essentially the existing distance
prefetcher [15][19]. In theory, multiple DAP tables are
needed so that different order contexts can be detected
by the prefetcher, which requires higher hardware
investment. Fortunately, a great advantage of MOC
prefetching is that it can carry out low-order context
prefetching including order-0 and order-1 prefetching
without additional DAP tables. This is because that the
DAH table maintains the full information of the recent
data accesses. We can obtain the order-0 analysis (past
accesses) and order-1 analysis (strides among accesses)

directly from the DAH table.

3.3. Multi-Order Context-based Prefetching
Mechanism

The mechanism of multiple order context-based
prefetching is described as follows. Upon a cache miss,
the order-0 prefetching issues n blocks of data requests,
depending on the prefetching degree, following the
miss address. The order-1 prefetching is similar to
the distance prefetching based on DAHC. The order-2
prefetching uses the sequence of strides between miss
addresses as the context as shown in Fig. 5. When a
new data access is captured in DAH, the prefetcher
searches the PIT to find the last miss address from
the same PC. It then follows the PC chain to retrieve
the miss sequence from the same PC. The recent two
strides are fed into the hash function unit and the output
is a hashed form of context. The hashed context in
our current design consists of 9 bits. It is used as
an index for looking up DAP tables. If an entry can
be found in DAP tables with a predicted stride in its
prediction field, prefetch requests are generated and
issued. The confidence counter associated with each
DAP entry reflects the confidence of the prediction
following a certain context. The confidence counter (2
bits) has four values (0, 1, 2 and 3) indicating lowest,
low, high and highest confidences. The counter value
increases upon a correct prediction and decreases upon
a false prediction. The equivalent state diagram and
state transition for the confidence counter is shown in
Fig. 7. When the confidence counter indicates a high
or highest confidence, i.e. value 2 or 3, a prefetch
is generated and the prefetch address is calculated as
current miss address plus predicted stride.
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Figure 7. State Diagram for Confidence Counter

4. Simulation and Performance Results

We have carried out the simulation of the proposed
multi-order context based prefetching to evaluate its
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Figure 8. L2 Cache Miss Rate Reduction of the Distance Prefetching and MOC Prefetching

performance by using Pin trace collection tool [17]
and CMP$im simulator[12]. In this section, we present
the simulation results and compare its performance
with the existing single order-1 distance prefetching
[19][15].

4.1. Simulation Configuration

Pin [17] is a dynamic instrumentation tool that can
collect program traces, and CMP$im [12] is a trace-
driven simulator that characterizes the memory sys-
tem performance for both single-threaded and multi-
threaded workloads. The first Data Prefetching Compe-
tition (DPC-1) committee [7] released a prefetcher kit
that provides partial interface to make it feasible to in-
tegrate CMP$im simulator with an add-on prefetching
module. We utilize this prefetcher kit to simulate MOC
prefetching strategy and evaluate its performance.

We have conducted the simulation testing with all
29 SPEC-CPU2006 benchmarks [25]. The benchmarks
were compiled using GCC 4.1.2 with -O2 optimiza-
tion. We collect traces for all benchmarks by fast
forwarding 40 billion instructions and then running 100
million instructions, which is widely used in evaluating
an architectural enhancement. We use the ref input
size for all benchmarks. The simulator was configured
as an out-of-order issue processor with a 15-stage, 4-
wide pipeline (maximum of two loads and maximum
of one store can be issued every cycle).The detailed
simulation settings are listed in Table 1. The MOC
prefetching is configured as follows. The DAH table,
the index table and the DAP table have 1024, 512 and
512 entries respectively. The single order-1 distance
prefetcher we simulate for performance comparison
uses a 1024-entry distance prediction table [19][15].

Table 1. Simulation Configuration

Parameter Value
Window Size 128-entry
Issue Width 4
L1 Cache 32KB, 8-way
L2 Cache 512KB/1MB/2MB, 16-way

Block Size 64B
L2 Cache Latency 20 cycles
Memory Latency 200 cycles

L2 Cache Bandwidth 1 cycle/access
Memory Bandwidth 10 cycles/access

4.2. Performance Analysis

Fig. 8 shows the percentage of L2 cache misses
reduced by the MOC prefetching and the distance
prefetching, respectively. On average, MOC reduces
L2 cache misses by over 65%, which is more than
two times of what the distance prefetching can achieve.
Cache misses are reduced significantly for most bench-
marks including five benchmarks whose misses are
reduced over 90%. 458.sjeng is the only benchmark on
which MOC prefetching has had negative performance.

Fig. 9 reports the IPC (Instructions per Cycle)
speedup results. The bars shown in each group in-
clude the base case (without prefetching), distance
prefetching and MOC prefetching, from left to right.
The simulation result shows that the MOC prefetching
significantly reduces the average data access latency
and improves IPC considerably. The IPC performance
improvement is peaked at 285%, and the overall aver-
age IPC improvement of all 29 benchmarks is nearly
28%. The MOC prefetching outperforms the distance
prefetching considerably, which achieves an average
9.1% IPC speedup.

It can be observed that the MOC prefetching perfor-
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Figure 9. IPC Speedup of the Distance Prefetching and MOC Prefetching

mance is related with the miss rate of the benchmarks
and it achieves better performance when dealing with
benchmarks with high miss rate. There are a few
exceptions including 403.gcc (with miss rate 75%) and
429.mcf (with miss rate 97%). The detailed analysis
shows that the reason for the 403.gcc benchmark is that
it has only 0.2M accesses over 100M instructions. Ap-
plications with infrequent data access, such as 403.gcc,
can hardly be improved by prefetchers even their miss
rate is high. 429.mcf is another extreme case. It has a
considerably large amount of L2 cache accesses (5.1M)
and misses (5M) during 100M instructions compared
with other benchmarks. Highly frequent data accesses
compound with high miss rate reduces the efficiency of
prefetchers too. In addition to 429.mcf, another three
benchmarks, 445.gobmk, 458.sjeng and 473.astar, also
experience a slight performance slow down. Since their
performance differences are no more than 8%, we
consider them acceptable.

5. Conclusion and Future Work

As memory access performance lags far behind
computational performance, data access delay has a
severe impact on overall system performance. The
recent advance in multicore and manycore proces-
sor architectures has put more pressure than ever on
reducing data access delay for high-end computing.
Data prefetching mechanisms, especially the general
context-based prefetching approach, have received in-
tensive attention and have been proven effective in
masking the processor-memory performance gap. This
study targets to further improve the effectiveness of
context-based prefetching by exploiting multi-order

context analysis.
The contribution of this research is three-fold. First,

we have conducted an analytical study on comparing
different orders of context-based prefetching models.
Second, we propose a new multi-order context-based
(MOC) data prefetching that incorporates multi-order
context analysis to achieve better overall prefetching
effectiveness. Third, we have conducted simulation
testing to validate the MOC prefetching design and to
evaluate the performance improvement.The simulation
with SPEC-CPU2006 benchmarks demonstrates the
advantage of multiple-order analysis in the context-
based prefetching. They show that the proposed MOC
prefetching outperforms the existing single order-
1 context-based prefetcher, distance prefetcher. The
MOC prefetching achieves considerable latency reduc-
tion and is promising in hiding data access latency for
high-end computing systems.

In the near future, we plan to investigate the se-
lection of multiple orders more intelligently and dy-
namically. In addition, we will continue exploring the
combination of multi-order context analysis and global
context analysis - the correlation from all instructions
- to further improve context-based data prefetching.
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