
ABSTRACT

HUH, JOONMOO. Improving the Effectiveness of Searching for Isomorphic Chains in Superword

Level Parallelism. (Under the direction of James Tuck.)

Most high-performance microprocessors come equipped with general-purpose Single Instruc-

tion Multiple Data (SIMD) execution engines to enhance performance. Compilers use auto-vectorization

techniques to identify vector parallelism and generate SIMD code so that applications can enjoy

the performance benefits provided by SIMD units. Superword Level Parallelism (SLP), one such

vectorization technique, forms vector operations by merging isomorphic instructions into a vec-

tor operation and linking many such operations into long isomorphic chains. However, effective

grouping of isomorphic instructions remains a key challenge for SLP algorithms.

In this work, we describe a new hierarchical approach for SLP. We decouple the selection of

isomorphic chains and arrange them in a hierarchy of choices at the local and global levels. First,

we form small local chains from a set of preferred patterns and rank them. Next, we form long

global chains from the local chains using a few simple heuristics. Hierarchy allows us to balance the

grouping choices of individual instructions more effectively within the context of larger local and

global chains, thereby finding better opportunities for vectorization.

We implement our algorithm in LLVM, and we compare it against prior work and the current SLP

implementation in LLVM. A set of applications that benefit from vectorization are taken from the

NAS Parallel Benchmarks and SPEC CPU 2006 suite to compare our approach and prior techniques.

We demonstrate that our new algorithm finds better isomorphic chains. Our new approach achieves

an 8.6% speedup, on average, compared to non-vectorized code and 2.5% speedup, on average,

over LLVM-SLP. In the best case, the BT application has 11% fewer total dynamic instructions and

achieves a 10.9% speedup over LLVM-SLP.

We also propose a new mathematical approach to figure out the optimal selections for SLP. First,

we assign 0-1 integer variables to each possible isomorphic seed in a basic block. Next, we design

an objective function with constraints of the variables. The objective function represents the cost of

seed selections.

We implement the 0-1 integer programming in LLVM, and we compare our optimal seed selec-

tions with the one from current SLP pass in LLVM. The small basic blocks of applications from the

NAS Parallel Benchmarks are evaluated. We find that, most of time, the 0-1 integer programming

provides the same selections with SLP pass in LLVM for the small basic blocks. This shows that the

heuristics of current SLP in LLVM works well for the small basic blocks.
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CHAPTER

1

INTRODUCTION

1.1 SIMD architecture and vectorization

Most high-performance processors in the market today come equipped with Single Instruction

Multiple Data (SIMD) units, or vector units, to enable higher performance with less power compared

to a general-purpose superscalar core. The trend is toward wider SIMD units, such as Intel’s AVX-512

with 512-bit registers, with more features in their instruction sets [Bag16; Rei13]. There are also

announcements that future products from ARM will be equipped with the Scalable Vector Extension

that supports up to 2048-bits, thereby expanding their scope to supercomputing [Cut16]. So that

many applications can benefit from the performance and power advantages of these vector units,

compilers contain auto-vectorization passes that detect opportunities and subsequently generate

vector code. Despite many studies over the years [Mal11], honing the compiler to automatically

produce efficient vector code remains a big challenge.

Loop vectorization [PW86] and Superword Level Parallelism (SLP) [LA00] are two well-known

approaches for vectorization. Both techniques are considered important for extracting as much

vector parallelism as possible from programs [ZX16b]. In this dissertation, we focus exclusively on

SLP.

SLP vectorizes code by combining isomorphic instructions in a vector instruction. Two or more
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instructions are isomorphic and can be combined if they are distinct, perform the same operation

(i.e. the same opcode), and are not dependent on each other. A key challenge of SLP is identifying

which isomorphic instructions to group together to enable the formation of long dependent chains of

vector operations. Forming dependent chains is important because it lowers the overhead associated

with vector operations, since values in a vector register can remain there with reduced need for

packing, unpacking, or shuffling of data.

1.2 Searching isomorphic instructions

Optimal selection of instructions on DAGs is known to be NP-hard [BS76], so heuristics are required.

Prior techniques for SLP can be lumped into two general categories: (i) greedily pairing loads or

stores to adjacent memory locations and then following their def-use or use-def chains to form a long

dependent chain of vector operations [LA00; KH12; ZX16a; ZX16b], or (ii) allowing any isomorphic

instructions to form a seed and then selecting the best pairs, based on a heuristic [Liu12], to form

longer isomorphic chains.

Both approaches have merits and shortcomings. The former approach (i) is most effective for

code with a few long chains that are relatively easy to identify. On the other hand, the latter approach

(ii) is more effective in the presence of irregular data parallelism that does not naturally form long

chains from loads or stores. Instead, it can pick from a variety of isomorphic seeds from which to

build longer chains of instructions. However, the selection heuristic considers only neighbors in the

graph, not whether larger chains can form, hence it makes good local trade-offs at the expense of

finding more effective long chains of instructions. Such sub-optimal choices are magnified when

there are many candidate seeds. Furthermore, neither approach considers directly how to select the

better long chains among all possible chains present in the code.

1.3 Contributions

• We investigated previous SLP researches and found the limitations.

• We proposed a novel hierarchical approach when selecting isomorphic instructions in SLP.

• We introduced a mathematical optimization to represent the searching space of the selections.

• We implemented both techniques into LLVM infrastructure.

• We demonstrated that the hierarchical algorithm is more effective than the previous works

specially for the large basic block while the mathematical approach proved the latest greedy

2



algorithm from LLVM infrastructure works well.

1.4 Outlines

The rest of this dissertation is organized as follows. Chapter 2 provides background on SLP algorithms

and how they work and explains our motivating example and the limitation of prior works. Chapter 3

introduce our hierarchical searching algorithm for big basic blocks. Chapter 4 shows a mathematical

optimization approach for seed selection of SLP. Related work on SLP is presented in Chapter 5. In

Chapter 6, we conclude.
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CHAPTER

2

BACKGROUND

2.1 Superword Level Parallelism

Larsen and Amarasinghe first proposed the idea of Superword Level Parallelism as a means of

extracting vector parallelism suitable for emerging multimedia extensions in high performance

processors [LA00]. The key insight is that any two isomorphic instructions, subject to data depen-

dence and scheduling constraints, can be grouped together to form a SIMD instruction. We will

refer to a pair of isomorphic instructions that could form a vector operation as isomorphic seeds (or

simply seeds from here on). In [LA00] and many other follow-up works, seeds are typically loads

or stores to adjacent memory references, and they are the starting point of their algorithms. Then,

isomorphic chains (or simply chains from here on), a sequence of dependent isomorphic instruc-

tions, are formed by following use-def or def-use chains away from the seed. When designing an

SLP algorithm, seeds and chains are two critical concepts. Seeds determine the possible locations

where the algorithm starts, and longer chains help ensure lower overhead by keeping data in vector

registers longer. A general trend in SLP techniques is allowing more seeds [Liu12; KH12] and the

construction of longer chains [Por15; Shi05; PJ15]with less overhead. In the remaining discussion,

we explicitly consider these two dimensions in the design of prior SLP algorithms: (1) the selection

of seeds and (2) the formation of chains.

4



Most SLP algorithms restrict seeds to a few simple cases and then greedily grow longer chains [LA00;

KH12; ZX16a; ZX16b]. The latest versions of LLVM and GCC also have an SLP pass based on a greedy

algorithm. These approaches restrict seeds to load instructions and store instructions with adjacent

memory references, and in some cases they also support reductions. When it comes to growing the

chains, they work by tracing the use-def or def-use chain from the seeds. There have been a wide

variety of proposed heuristics to minimize the overhead (packing/unpacking and shuffling cost) so

that the algorithms can produce fewer instructions. Regardless, the greedy selection process makes

these algorithms susceptible to poor choices when the chains found early in the search meet the

requirements of their heuristic but, nonetheless, are poor choices overall.

Liu et al. ([Liu12]) observed that restricting the seeds leads to missed opportunities to start chains

from instructions other than adjacent loads and stores. They describe an approach that considers all

possible seeds. Each seed is ranked using a Maximal-Reuse heuristic, such that higher rank is given

to seeds that are more likely to be re-used in other vector operations. The Maximal-Reuse heuristic

captures the observation that groups with more reuse will likely have more dependent chains of

instructions, thereby yielding a higher speedup. However, some code patterns are problematic for

this heuristic, like broadcasts (one definition and many uses) or the presence of many seeds with

the same reuse count. Both behaviors are more likely in larger basic blocks with many candidate

seeds. Furthermore, while this approach explores the space of candidate seeds, it does not consider

the set of candidate chains. Hence, like the greedy algorithm, it may choose chains that appear good

based on the re-use heuristic but that are in fact worse than other chains that could be selected.

This problem is magnified when there are many candidate seeds with similar reuse counts.

In summary, prior approaches have placed considerable effort in finding long efficient chains

and in considering a wide variety of candidate seeds. However, so far, no technique we are aware of

has considered a balance between considering many candidate seeds and selecting from a variety of

candidate chains. Our proposed Hierarchical SLP algorithm resides in a previously unexplored part

of the design space for SLP algorithms that allows for many candidate seeds and multiple candidate

chains.

2.1.1 Example of SLP

The limitations of prior works are easily observed in the BT application, one of the NAS parallel

benchmarks. BT has a large basic block (850 instructions) that is a good candidate for vectorization.

Furthermore, the basic block utilizes about 30% of the application’s runtime. We hand-vectorized

this basic block for AVX-2 and obtained a compelling 20% kernel speedup that leads to a 7% overall

speedup compared to a non-vectorized version with O3-level optimization. However, no prior SLP
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(a) (b)

Figure 2.1 An example of basic block (19 instructions) and its Data Dependence Graph

technique we have implemented can attain a similar speedup. To the contrary, they sometimes

result in slow downs.

We introduce a simple basic block inspired by the BT kernel to demonstrate the shortcomings

of prior works. The basic block contains broadcast patterns and multiple possible global chains.

Figure 2.1(a) shows the basic block that consists of nineteen instructions, and its data dependence

graph is shown in Figure 2.1(b). The circle nodes present single instructions, and the number inside

of the node in the graph indicates the instruction number in Figure 2.1(a). Note that we show only

the data dependencies in the graph. Also, the rectangular nodes identify the vector instructions and

the bolder arrows show the flow of vector registers between them.

2.1.1.1 Greedy algorithm from memory references

In this section, we will show how a greedy approach works. Let’s assume that i is a constant such

that i = 1 in the previous example in Figure 2.1(a). That makes < x [n ], x [n + i ]> adjacent memory

references, so the instruction pairs {I1, I2} and {I17, I18} are the seeds. If a chain starts from {I1, I2}

and produces superword < b , c >, then we would select {I4, I5} and {I6, I7} since they would use

< b , c >. However, the newly formed superwords < e , f > and < g , h > do not have any uses. To

compatible with the rest of code, e , f , g , and h must be unpacked, thereby terminating the chain.

Figure 2.2(a) shows the final vectorized code from this choice; it saves three instructions, but there
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(a) (b) (c) (d)

Figure 2.2 Data Dependence Graph of the vectorized basic block by prior approaches

is the overhead of four unpacking instructions (shaded in gray).

On the other hand, if we start from {I17, I18}, the chain can be grown to several pairs, such as

{I14, I15}, {I11, I12}, {I8, I9}, {I5, I7} and {I4, I6}. Since we start with stores, we follow use-def informa-

tion backward and form superwords. If a required superword cannot be produced by the chain, a

pack instruction must be inserted to form it. Figure 2.2(b) shows the final vectorized code in graph

form. This choice saves six instructions with the overhead of two packing instructions (shaded).

Evidently, the choice of seed has a significant impact on the chain.

Furthermore, the number of seeds increases if there are more adjacent memory references, such

as the case where we assume that both i and j are constants equal to 1. There are two seeds from

load instructions, {I0, I1} and {I1, I2}, and two seeds from store instructions, {I16, I17} and {I17, I18}.

Now, we can find another chain that starts from and ends with memory reference seeds. The chain

that starts from {I16, I17} or {I0, I1} consists of the following pairs, {I3, I4}, {I10, I11} and {I13, I14}.

Nevertheless, it still requires an unpacking instruction because the definition of instruction I1 is also

used by instruction I6, which is not part of the chain. Similarly, the pair {I10, I11} uses superword

< 0.5, k >, which is not produced by the chain and must be packed. Also, selection of this chain

prevents other choices presented in the previous paragraph since the seeds consist of conflicting

superwords and it would be inefficient to replicate work. This choice saves four instructions, but it
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requires an unpacking instruction and a packing instruction (Figure 2.2(c)). In summary, depending

on the starting point and which chains are found first, better choices may be missed.

Despite many efforts to find the best chains by considering packing and unpacking cost, such

approaches have a significant limitation with respect to exploring relatively few seeds based on

loads or stores from adjacent memory references. Even if this limitation were lifted and the greedy

approach could pick any seed, they are not equipped to compare the global effectiveness between

the seeds.

2.1.1.2 Holistic selection of seeds

Liu et al. ([Liu12]) describe an approach that considers all possible seeds, and they rank the seeds

based on a maximal-reuse heuristic to decide which are included in a chain. This heuristic gives

higher rank to groupings whose vector output is used more.

In the previous example in Figure 2.1(a), there are three subtract instructions, I10, I11 and I12.

Any combinations of the three instructions {I10, I11}, {I10, I12} and {I11, I12} are seeds, but, to avoid

code replication, only one of these seeds will be selected based on its reuse count. Ultimately, the

heuristic will select the pairs {I4, I5}, {I6, I7}, {I8, I9}, {I11, I12} and {I14, I15} to be grouped from all

possible seeds, even though they do not have adjacent memory references, such as the case where

i 6= 1 and j 6= 1. Furthermore, this choice of seeds implies the insertion of shuffle instructions due to

the misalignment of superwords in the chain. For example, the pairs, {I8, I9}, {I11, I12} and {I14, I15}

form a simple chain, but the definition of superwords {I4, I5} and {I6, I7} should be rearranged to

be used as the superword operands of {I8, I9}, {I11, I12}. Also, it requires packing and unpacking

instructions at the memory references1. Figure 2.2(d) shows the final code in graph form.

Although the heuristic is effective at choosing seeds likely to be used in a chain, there are cases

where it falls short. We find that it selects groups poorly in the presence of broadcasts (one definition

and many uses) because they have a high reuse count and in graphs where many seeds have

equivalent maximal-reuse counts. Once a seed is dropped from consideration, its never reconsidered

as part of a chain. Furthermore, the maximal-reuse heuristic alone cannot account for alignment

overheads or irregular memory accesses. Fundamentally, these inefficiencies arise because selection

of seeds using a local heuristic is ultimately unaware of the quality of global chains they create for

better or worse.

1Liu et al. solve the irregular memory access problem using a source-level transformation before the SLP pass forms

groups. In this work, we restrict our focus to the grouping heuristic and do not consider other approaches to reduce

misalignment outside of this algorithm.
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CHAPTER

3

HIERARCHICAL SEARCHING FOR SLP

3.1 Introduction

In this chapter, a novel hierarchical approach for SLP is introduced. The new approach decouples

the selection of isomorphic chains into a hierarchy of choices at the local level and at the global

level. First, it forms small local chains from a set of preferred patterns. These patterns help identify

whether the local chains are cost effective on their own or only in the context of global chains. The

patterns also allow us to be optimistic in seed selection, retaining seeds even if they are only useful

in the context of a longer chain. Next, it select long global1 chains from the available local chains

using a few simple heuristics. The selection of global chains considers multiple ways of assembling

local chains into global chains to find cost effective global chains that reduce packing, unpacking,

and shuffling among the local chains. Hierarchy provides multiple advantages. First, by initially

selecting local chains, it simplifies the search for global chains by composing them primarily from

good local chains. Second, it can find better global chains with lower overheads by considering

multiple candidates.

We implement our algorithm in LLVM, and we compare it against one prior work that we re-

1We do not mean the conventional definition of global with respect to global analysis at function scope. Instead, we

use it in the sense of a global search which attempts to avoid locally optimal but globally sub-optimal choices.
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implemented and the current SLP implementation in LLVM. A set of applications that benefit from

vectorization are taken from the NAS Parallel Benchmarks and SPEC CPU 2006 suite and are used

to compare our approach with prior techniques. We find that our new algorithm can find more

effective isomorphic chains, resulting in an 8.6% average speedup compared to non-vectorized

code and 2.5%, on average, better than LLVM-SLP. In the best case, the BT application has 11% fewer

total dynamic instructions and achieves a 10.9% speedup over LLVM-SLP.

Section 3.2 and Section 3.3 present our new method to produce the vectorized instructions. We

evaluate the effectiveness of our approach in Section 3.4.

3.2 Key idea of Hierarchical approach

Our approach seeks a better trade-off between seed selection and the formation of global chains.

We state this in three goals:

Goal 1. We want to allow consideration of all possible seeds without sacrificing efficiency.

Goal 2. We wish to keep seeds under consideration as long as they may be useful for some global

chain.

Goal 3. We want to overcome the limitation of prior algorithms that pick global chains with

relatively little awareness of alternatives. Instead, we want to support comparison of multiple chains

so that we can select better ones, while still running relatively quickly.

We achieve these goals through our novel hierarchical search algorithm.

First, we propose the formation of local chains as a first step. Local chains are short and evaluate

whether the nodes immediately surrounding a seed support SLP well or poorly. We define a local

chain to be an isomorphic chain with a seed as the root and at most two levels of data-dependent

ancestors. If a local chain can be formed for a seed, it implies that the seed could be a good starting

point for a longer chain. Similar to the greedy approach, we can identify a poor seed relatively

quickly if it has no immediate ancestors that form a chain. This allows us to consider all seeds and

classify them based on their potential. As discussed in Section 3.3.2.3, we identify three kinds of

local chains based on their impacts on performance: some are always good for performance, others

may be beneficial in the context of a global chain, and those that are never beneficial because of

undesirable or unavoidable packing or unpacking overheads. We keep local chains whether the

heuristic considers them beneficial for SLP or not. In this way, we retain the possibility that a local

chain may be beneficial to multiple global chains. This allows us to delay discarding seeds or local

chains until we are in the process of forming global chains. This is an important advantage of our

approach over prior techniques.

After forming local chains, we no longer consider seeds directly, instead we work only with local

10



Table 3.1 Height and Depth of each instruction

Instructions Height Depth

Min Max Min Max

I0, I1 4 4 0 0

I2 4 5 0 0

I3, I4, I6 3 3 1 1

I5, I7 3 4 1 1

I8, I9 3 3 2 2

I10 2 2 2 2

I11, I12 2 2 2 3

I13 1 1 3 3

I14, I15 1 1 3 4

I16 0 0 4 4

I17, I18 0 0 4 5

chains. This is one of the reasons we call our approach hierarchical: we simplify the analysis to large

sub-graphs rather than working directly with seeds.

Next, after finding all possible local chains, we analyze them to find good global chains according

to heuristics. We always begin global chains with a local chain already labeled as beneficial for

performance. We repeatedly select global chains from the set of remaining local chains according to

heuristics that seek to minimize overhead and that build onto and extend the global chains already

selected. When a local chain is selected to be a part of a global chain, it is marked as selected and

can be part of any future global chain. Furthermore, because we already classified local chains as

beneficial for performance or not, we take that into account when forming global chains to keep

our analysis fast and our heuristics simple.

Our approach allows us to meet all three goals. The formation of local chains allows us to consider

all seeds and retain them until they are useful for a global chain. By tracking this information at a

coarser granularity than seeds, we can filter out some clearly non-beneficial seeds early and we can

reduce the size of the working set of our algorithm, which is important for efficiency. Finally, by

forming global chains from the beneficial local chains, we can evaluate alternatives and hopefully

find better global chains.

In the next section, we describe our algorithm in detail.
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3.3 Our algorithm

3.3.1 DDG, Terms, and Seeds

Our algorithm operates on a Data Dependency Graph (DDG). We construct a DDG, G = (N , E , M ),

where N is a set of instructions from a basic block and E is a set of ordered pairs (ni , n j ) that indicates

instruction ni uses the result of the instruction n j , in other words there is a true dependence between

the instructions. N and E are conventional components of Data Dependency Graph. We extend

the graph by introducing M to convey memory ordering. M is a set of ordered pairs (ni , n j ) that

indicate that instruction ni should be executed after instruction n j in addition to those relations

imposed by E . For example, in case that two instructions ni and n j are memory operations and

they may access the same memory location, we add the original ordered pair into M . Also, if there is

a call instruction between the two instructions, ni and n j , we conservatively insert additional edges

between ni and n j if the call aliases with them. Local chains and global chains form sub-graphs of

the DDG.

The height of an instruction is the length of the def-use chain from a given instruction to an

instruction with no uses. It measures how far an instruction is from the end of the sub-graph. The

height can be formulated as a maximum, the furthest instruction with no uses, or a minimum, the

closest instruction with no uses. Similarly, the depth of an instruction is the length of the use-def

chain to an instruction with no parent in the sub-graph. In other words, it measures how far away the

instruction is from the beginning of the sub-graph. The depth can be formulated as a maximum, the

furthest instruction with no parent, or a minimum, the nearest instruction with no parent. Table 3.1

shows height and depth for each instruction in Figure 2.1(a).

Seeds. As seeds for our algorithm, we find all instruction pairs (ni , n j )where ni and n j are the

same kind of operation and there is no dependence chain (direct or indirect) between the two

nodes as given by E and M . For the load and store instructions pairs, we exclude the pairs with

non-adjacent memory references. All such instruction pairs can be used as seeds to form isomorphic

chains. Note that we limit the isomorphic seeds to memory operations and the instructions typically

supported by SIMD units. All the seeds in Figure 2.1(a) that will be used on our algorithm are listed

below.

12



LOAD : {I0, I1}, {I1, I2}

MUL : {I3, I4}, {I3, I5}, {I3, I6}, {I3, I7}, {I4, I5}, {I4, I6}, {I4, I7}, {I5, I6}, {I5, I7}, {I6, I7}

ADD : {I8, I9}, {I8, I13}, {I8, I15}, {I9, I13}, {I9, I14}, {I13, I14}, {I13, I15}, {I14, I15}

SUB : {I10, I11}, {I10, I12}, {I11, I12}

STORE : {I16, I17}, {I17, I18}

Note that {I8, I14} and {I9, I15} are excluded from the list because there is a dependence chain

between the paired nodes. Also, {I0, I1} and {I16, I17} are used only when j = 1. Similarly {I1, I2} and

{I17, I18} are used only when i = 1. The alias analysis from LLVM is applied to figure out the adjacent

memory references, and we conservatively exclude the memory references if they are not always

adjacent according to analysis.

3.3.2 Local chains

The first step in our hierarchical search is the formation of local chains. For each seed, we build an

isomorphic chain, starting at the seed and consisting of isomorphic parents in the DDG up to a

height of two. Then we analyze this chain and label it based on its expected performance benefit.

Given the height limitation and the specific set of instructions allowed for SLP, the number of

possible patterns for local chains can be enumerated. We refer to them as parent patterns. In the

next section, we describe the parent patterns associated with local chains and how we classify them.

(a) (b) (c) (d) (e) (f)

Figure 3.1 Example of patterns

3.3.2.1 Parent patterns

For a given seed, each instruction in the seed may be dependent on two other instructions (for a

3-address form IR). To simplify our discussion, we consider only one of these dependences at a time.
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Table 3.2 The cost of each pattern

Packing cost Unpacking cost

Pattern (a) 0 0

Pattern (b) 1 0

Pattern (c) 0 0

Pattern (d) 0 0-2

Pattern (e) 0 1

Pattern (f) 0 1-2

We categorize the local chains into six kinds of patterns based on the seeds’ predecessor pairs. The

six patterns cover all possible shapes of predecessor pairs considering only one operand. Examples

of the six patterns are shown in Figure 3.1. Node A and node B are the seed instructions, and node C

and node D are one of their operands, respectively. Nodes surrounded by a rectangle are one of the

known seeds in the graph.

The first pattern (a) is the case of having no predecessor from either instruction. In this case, it

requires no packing cost to group the targeting pair. The second pattern (b) is the case of having a

predecessor pair that is not a seed. Since the predecessors cannot be grouped, a packing instruction

would be required to provide the superword operand when this seed is selected as part of a global

chain.

The rest of the patterns (c), (d), (e) and (f) are cases of having predecessor pairs that are seeds. The

predecessor seed can produce the superword operand, so it does not require a packing instruction.

However, it might require unpacking instructions if the predecessors have more than two successors.

We categorize these cases into patterns (d), (e) and (f).

In the case of pattern (d), both D and C have the same number of uses and each use from D and C

may form a seed. If all pairs of uses form seeds without any remaining uses, we might avoid unpack

instructions. That indicates (d) may have no unpacking costs or up to two unpacking operations.

If only one of C or D has more than one successor while the other has only one successor, it must

require one unpacking instruction and is categorized as pattern (e). Finally, pattern (f) shows the

case that requires one or two unpacking instructions. The packing cost and unpacking cost of each

pattern are shown in Table 3.2. The packing and unpacking cost column shows the number of

instructions that are required based on their pattern.

To compute the total packing and unpacking cost for a local chain, we visit all instructions and

evaluate the cost for each operand.
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Figure 3.2 Example of local chain

3.3.2.2 Benefit and cost

Now, we can calculate the total cost for selecting a local chain. Figure 3.2 shows an example of

a local chain grown from the seed with node A and node B. The left side of predecessor pair {C,

D} is matched with the pattern (f), so it requires no packing cost and a cost of 1 or 2 unpacking

instructions to group both pairs, {A, B} and {C, D}. The right side of {E, F} is matched with the

pattern (d). In a similar way, we can perform the same analysis for both predecessor pairs. From the

pair {C, D}, the predecessor pair {I, J} has pattern (c) and the predecessor pair {K, L} has pattern (b).

One predecessor pair of {E, F} is {G, H} and the other does not exist. In this case, the predecessor

pair {G, H} is categorized as pattern (e) and the other side of predecessor pair is treated as pattern

(a). By adding up the cost of each pattern, we compute total cost of the local chain.

In the previous example, the cost will be for a packing instruction and two, three or four unpack-

ing instructions. We define this cost as the Inside cost, since it only covers the costs within the chain.

Inside costs are always incurred if we select this local chain irregardless of the greater context within

a global chain.

We define the remaining cost as Outside cost. Interestingly, Outside cost can be ignored if the

local chain is linked to other local chains because the required superword will be produced without

needing additional packing or unpacking instructions. In our example, if we select only this chain

from the entire graph, we will need additional instructions to produce the superword operands of

the pair {I, J} and {G, H}. In the worst case, there are four predecessor pairs and each pair requires a

packing instruction. In the same way, two unpacking instructions are required for the successors of

{A, B}. Depending on the global chains selected, the Outside cost may vary.

Finally, the benefit of the local chain is calculated by counting the number of seeds in the chain,

which are shown as rectangles in Figure 3.2. This is because seeds will be transformed to a vector

instruction, thereby saving one instruction each.
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3.3.2.3 Categorization

Next, our algorithm classifies the local chains into three categories: complete, beneficial, and harmful.

If a local chain has larger or equal benefit than the sum of Inside cost and Outside cost, we categorize

it as complete, because it is guaranteed to reduce the number of IR instructions. If the benefit of

a local chain is larger than or equal to Inside cost, we categorize it as a beneficial because it can

reduce the number of IR instructions but only if it is part of a global chain. Lastly, if the benefit is

smaller than the Inside cost, we categorize it as harmful.

In the previous example in Figure 2.1(a), we can find 11 local chains and only {I14, I15} is catego-

rized as complete. All others are categorized as beneficial.

3.3.3 Global chains

The second step in our hierarchical search is the formation of global chains from local chains.

Starting from complete and beneficial local chains, our algorithm searches for all other local chains

that can be grown from them using use-def chains. If a local chain can grow up to other local chains,

we refer to the set of local chains as a global chain. We also call the bottom-most seed a root seed. In

the global chain, our algorithm also keeps the maximum Height of each local chain from the root

seed. All the global chains from Figure 2.1(a) are listed in Table 3.3. We present only the root seed of

each local chain in the table for simplicity. The Category column shows the number of each kind of

local chain: complete local chain, beneficial local chain and harmful local chain.

We can deduce many properties of a global chain by the local chains it contains. The total

number of local chains in a global chain shows the potential isomorphism of the global chain and is

directly related to the reduction in instructions. Also, the number of local chains in each category

implies how much overhead the global chain may have. If a global chain contains many harmful

local chains, it will incur overhead from packing and unpacking instructions. We can also deduce

the shape of a global chain by examining the ratio of the maximum Height and the number of local

chains.

3.3.4 Global chain selection

Finally, our algorithm chooses a set of global isomorphic chains according to a few heuristics. We

have identified several useful criteria. We list each criterion in priority order. Our criteria prioritize

reducing or avoiding unnecessary packing and unpacking instructions.

• The maximum number of local chains that are already selected.

• The maximum number of complete and beneficial local chains.
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Table 3.3 Example of global chains

Global chains Category Height

{I8, I9}, {I5, I7} 0/2/0 2

{I10, I11}, {I3, I4} 0/2/0 2

{I10, I12}, {I3, I6} 0/2/0 2

{I11, I12}, {I8, I9}, {I5, I7}, {I4, I6} 0/4/0 3

{I13, I14}, {I10, I11}, {I3, I4} 0/3/0 3

{I13, I15}, {I10, I12}, {I3, I6} 0/3/0 3

{I14, I15}, {I11, I12}, {I8, I9}, 1/4/0 4

{I5, I7}, {I4, I6}

• The minimum number of harmful local chains.

• The maximum number of complete local chains.

• The same maximum height/depth and the same minimum height/depth for the root seeds.

• The larger Height.

When a global chain is selected, all of the seeds from its local chains are marked as grouped.

Next, conflicting seeds in unselected global chains are pruned while keeping the remainder of the

global chain intact, because we should not consider them further. Note that the selected seeds in

other global chains should not be pruned here since they are the connection points between the

global chains.

Our algorithm iteratively selects the next global chain based on the criteria until there is no

global chain remaining. In the previous example in Figure 2.1(a), our algorithm first selects the

global chain in the last row of Table 3.3 because it has the maximum number of complete and

beneficial local chains. Once it selects the global chain, some other global chains are removed due

to pruning and the rest of the global chains are a subset of the first selected global chain. Finally, we

have the effective isomorphic chain which consists of the seeds, {I14, I15}, {I11, I12}, {I8, I9}, {I5, I7}

and {I4, I6}. Figure 3.3 shows the final vectorized code in graph form. Our algorithm selects the

grouping that results in the fewest instructions in the case that i 6= 1 and j 6= 1. It is also able to

generate the best vectorized code with the fewest instructions, in Figure 2.2(b), in the case that i = 1

and j = 1.

There can be unselected local chains after the global chain selection. In this case, our algorithm

selects only the complete local chains since the selection of complete local chains alone guarantees

instruction reduction.
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Figure 3.3 Data Dependence Graph of the vectorized basic block by our hierarchical algorithm

3.3.5 Code transformation

As the final step of the process, it transforms the original LLVM IR into the vectorized LLVM IR with

packing and unpacking instructions based on the selected seeds. Then, it schedules the vectorized

LLVM IR considering all their dependences.

Fine tuning the output of the vectorizer is very important for performance. For example, we have

observed that two different orderings of the same LLVM IR will generate two different sets of assembly

instructions, one more efficient than the other. To compensate for these effects and to create a fair

comparison, we borrow the well-tuned code in LLVM-SLP for emitting vector instructions. Also, we

modify it so that it can support all of the seeds that our algorithm is able to select, like non-adjacent

memory references.

3.4 Evaluation

All of the vectorizers we evaluate are implemented in the LLVM compiler infrastructure [LA04] in

version 3.9.1. We evaluate our algorithms on a variety of applications on real hardware with SIMD

extensions.

3.4.1 Experiments setup

An Intel(R) Core(TM) i7-6700 processor which has a SIMD processing unit with the AVX2 instruc-

tion set is used to measure the application performance on five different vectorization methods;
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Figure 3.4 Performance improvements comparing the non-vectorized code

non-vectorization (No-vec), LLVM-slp-vectorization (LLVM-SLP), prior holistic algorithm (Holistic-

SLP) [Liu12], the proposed new hierarchical algorithm (Hierarchical-SLP) and, Hybrid-SLP (dis-

cussed in section 3.4.2). The algorithms are applied to the basic blocks of applications at the LLVM

IR level while machine code generation is accomplished by an unmodified LLVM backend. A set

of test applications are selected from the C version of the NAS Parallel Benchmarks OpenMP 3.0

from the center for manycore programming at Seoul National University [Seo11]. Various input sets

(CLASS=A,B,C ) are given to the NAS Parallel Benchmarks, and they execute for more than 10 billion

instructions. The other test applications are selected from SPEC2006 and evaluated using the ref

input [Hen06]. We select the applications from these suites that have meaningful benefit from SLP

algorithms. Applications from these suites are excluded if all four SLP-vectorizers fail to reduce the

number of dynamic instructions by more than 0.01%.

3.4.2 Performance improvement

Figure 3.4 shows the speedup of the four different SLP-vectorizers. The speedup we report is an

average over at least 10 runs for each workload and vectorizer combination. All performance num-

bers are compared to the non-vectorization version (No-vec). Note that we set up the prior holistic

algorithm using only the grouping phase and scheduling phase, while excluding the data layout op-

timizations [Liu12] since our study focuses on the grouping algorithm. We use O3-level optimization

without vectorization as pre-processing.

It is observed that the average performance improvements by our Hierarchical-SLP is larger

than LLVM-SLP while the Holistic-SLP slows the applications down. The Holistic-SLP often does not

find an effective choice of seeds, despite significant efforts to tune it. We learn from these results

that seed choices made without a global view of isomorphic chains can bring significant overheads.

Specifically, for milc, LU and SP, the Holistic-SLP algorithm slows down up to 36.98% compared to
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Figure 3.5 Performance improvement base on the LLVM-IR size of basicblocks

non-vectorized code. Our Hierarchical-SLP is more effective on many applications while LLVM-SLP

still leads to better performance on namd and LU applications. For BT, which has our inspirational

large basic block, the Hierarchical-SLP algorithm results in a 27.83% speedup compared to non-

vectorized code and is 8.6% better than the latest LLVM-SLP algorithm. SP also benefits and is 4.2%

better than LLVM-SLP.

As we discuss in Section 2.1.1, our algorithms are designed to vectorize the big basic blocks that

no prior technique has done well, so we investigated the performance benefit, in depth, for these

basic blocks. Figure 3.5 shows the speedup of the two algorithms, LLVM-SLP and Hierarchical-SLP,

categorized for different sizes of basic blocks at the LLVM-IR level. For example, the left-most group

of bars shows the average speedup on basic blocks that consist of more than 300 instructions. It

is observed that our Hierarchical-SLP gives larger speedups than LLVM-SLP when applying the

techniques to bigger basic blocks, such as 300~instructions and 200~300 instructions. However,

LLVM-SLP works better than our technique on small basic blocks, such as 0~50 instructions and

50~100 instructions.

Given this analysis, we consider an additional algorithm that applies the Hierarchical-SLP only to

big basic blocks (more than 200 instructions) and the LLVM-SLP only to the small basic blocks (200

instructions or less), and we call it Hybrid-SLP. The rightmost bar of each application in Figure 3.4

shows the speedup for Hybrid-SLP. It leads to 8.6% speedup compared to non-vectorized code and

2.5% better than LLVM-SLP, on average. In case of the applications that have big basic blocks such

as BT and SP, Hybrid-SLP can generate 10.9% and 6% faster binary than LLVM-SLP.
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Table 3.4 The statistics of the top biggest basic blocks from NAS Parallel Benchmarks

Affiliation Inst. Executions Dyn. portion Seeds Local Chains Global Chains

Complete Beneficial Harmful

1 binvcrhs (BT) 850 146M 37.8% 29,416 34 9,606 19,810 7,631

2 jacld (LU) 628 59M 18.5% 37,629 237 9,470 28,159 4,695

3 x_solve (BT) 626 47M 4.96% 11,481 530 10,516 965 2,492

4 y_solve (BT) 626 47M 4.96% 11,481 530 10,516 965 2,492

5 z_solve (BT) 626 47M 4.94% 11,481 530 10,516 965 2,492

6 jacu (LU) 596 59M 17.3% 35,057 3,820 171 34,886 26

7 matmul_sub (BT) 528 146M 16.5% 15,814 48 5,811 10,003 5,267

8 compute_rhs1 (SP) 349 47M 8.74% 6,044 2,568 38 6,006 1,156

9 compute_rhs2 (SP) 349 47M 8.61% 6,044 2,568 38 6,006 1,156

10 compute_rhs3 (SP) 334 47M 8.05% 6,058 2,599 33 6,025 1,172

11 buts (LU) 277 59M 9.09% 1,675 0 365 1,310 233

12 blts (LU) 250 59M 8.67% 1,644 0 346 1,298 231
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Table 3.5 The statistics of the top biggest basic blocks from SPEC2006 Benchmarks

Affiliation Insts. Seeds Local Chains Global Chains

Complete Beneficial Harmful

1 transform8x8_1 (h264ref) 866 15,130 94 8,421 6,709 4,212

2 transform8x8_2 (h264ref) 566 5,817 90 3,132 2,685 1,632

3 rdopt1 (h264ref) 388 17 0 17 0 0

4 check_unitarity (milc) 339 75 9 39 36 9

5 transform8x8_3 (h264ref) 320 40 0 39 9 10

6 lencod (h264ref) 307 3 0 3 0 0

7 rdopt2 (h264ref) 287 73 36 73 0 0

8 rdopt3 (h264ref) 285 73 36 73 0 0

9 transform8x8_4 (h264ref) 276 17 0 17 0 0

10 rdopt4 (h264ref) 265 19 2 3317 0 1

11 block (h264ref) 264 819 31 756 63 501

12 transform8x8_5 (h264ref) 263 18 0 16 2 0

13 m_mat_hwvec (milc) 258 678 6 504 174 0

14 m_amat_hwvec (milc) 258 678 6 504 174 0

15 transform8x8_6 (h264ref) 234 645 26 153 292 172

16 rdopt5 (h264ref) 230 16 0 4 12 1

17 io_lat4 (milc) 235 361 9 311 50 22

18 mbuffer (h264ref) 225 1 0 1 0 0
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Figure 3.6 Static reduction in instructions

3.4.3 Top biggest basic blocks

To understand how Hierarchical-SLP works in detail, we also investigate the twelve basic blocks

that have more than 200 instructions in the NAS Parallel Benchmarks and SPEC 2006 Benchmarks.

Most of them are from BT, LU, h264ref and milc applications. We also add three basic blocks from

SP by unrolling the original basic blocks. The basic blocks from NAS Parallel Benchmarks are listed

in Table 3.4 and those from SPEC2006 are listed in Table 3.5. The second column shows the number

of instructions at the LLVM IR level. The third and fourth columns show the number of dynamic

executions of the basic block and its portion of the total number of executed instructions only in

Table 3.42. The remaining columns characterizes the number of seeds, kinds of local chains, and

the number of global chains. Clearly, the number of seeds increases exponentially as the number

of instructions increases, and it is unrealistic to analyze all combinations of seeds. That is the

motivation for forming local chains. Also, the information from local chains leads to a much reduced

set of global chain choices, as shown in the last column. Thus, the hierarchical approach prevents

significant increases in compile time by reducing the size of the search space.

3.4.4 Reduction of instructions

Next, we measure the reduction in instructions. Figure 3.6 shows the static reduction in instruc-

tions for each basic block compared to non-vectorized code. In most cases, our Hierarchical-SLP

successfully reduced more instructions compared to LLVM-SLP. LLVM-SLP increases the number

2We do not provide the number of dynamic executions and its portion for the SPEC2006 benchmarks due to the

complexity to match the static information to dynamic information
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Figure 3.7 Dynamic reduction in instructions

of instructions by 4% in jacld from LU (not shown in figure). The smallest difference between

LLVM-SLP and Hierarchical-SLP occurs in matmul_sub. This particular basic block consists of many

small DDGs although it has many instructions, and there is not much room for improvement. We

expect the three basic blocks of SP, compute_rhs1, compute_rhs2 and compute_rhs3, to have large

isomorphism and a subsequent reduction in instructions since they are generated via unrolling.

However, due to some loop-carried memory dependences, some otherwise desirable groupings are

not allowed. Thus, we cannot eliminate a larger fraction of instructions.

Figure 3.7 shows the reduction in dynamic instructions for each basic block. The last three

set of bars show the total reduction per each application. Our Hierarchical-SLP is more effective

in reducing the dynamic instructions on the basic blocks we analyzed. Compared to LLVM-SLP,

Hierarchical-SLP reduces the dynamic instructions by more than 10% on the four basic blocks from

BT.

3.4.5 Composition of dynamic instructions

We observe that Hierarchical-SLP results in 10% fewer dynamic instructions in theBT application,

while resulting in a smaller percentage of execution time reduction (8.6%). Also, our Hierarchical-

SLP slows down the execution time of LU (1%) compared to LLVM-SLP even thought it saves 5%

more dynamic instructions. This can be explained by the composition of the dynamic instruction

stream. We evaluate the number of dynamic instructions using a Pintool [Luk05]. All instructions

executed are classified into four types: arithmetic instructions, data move instructions, vector data

management instructions and other instructions. The arithmetic instructions include all binary and
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Figure 3.8 Composition of dynamic instructions

logic operations. The data movement category counts all kinds of MOV instructions that manage

data, primarily load and store. The vector data management instructions cover all instructions that

manage vector data, such as INSERT, EXTRACT, SHUFFLE, PERMUTE, BROADCAST and so on. The

remaining instructions are shown as other.

Figure 3.8 shows the breakdown of the four categories for selected applications we studied.

There are three bars in each application. From left to right, it shows the breakdown of dynamic in-

structions for non-vectorized, LLVM-SLP and Hierarchical-SLP, respectively. All bars are normalized

to the total number of dynamic instructions from the non-vectorized version. Our Hierarchical-SLP

results in fewer arithmetic instructions than LLVM-SLP in all cases. However, it produces more

data movement instructions and vector data management instructions in LU and MG, resulting in

lower performance in both of these applications. In UA, the Hierarchical-SLP produces more data

movement instructions while it keeps fewer vector management instructions, and the performance

is similar to LLVM-SLP. We can see a correlation between the number of vector data management

instructions and the final performance.

3.4.6 Compile Time

The Hierarchical-SLP searches a larger set of seeds as already seen in Table 3.4. Necessarily, the com-

pilation time increases. Figure 3.9 shows the compilation time of LLVM-SLP and the Hierarchical-SLP.

We measured the entire compilation time, all passes, from beginning to end. Even though our algo-

rithm increases the compilation time significantly compared to LLVM-SLP, it may be deemed worth

it given the performance improvements obtained, such as 10.9% on BT and 6% on SP. Furthermore,

no other SLP technique we studied can achieve such a performance improvement. With more
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Figure 3.9 Compilation time

tuning, the compile time of our technique may be reduced.
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CHAPTER

4

MATHEMATICAL OPTIMIZATION FOR

SLP

4.1 Introduction

This chapter proposes a mathematical optimization to find the optimal solution for seed selection

in SLP. A 0-1 integer programming approach is applied to represent the seed selection problem.

We have tried to make the final objective function an integer linear function since integer linear

programming is one of Karp’s 21 NP-complete problems. Such problems have been shown to have an

optimal solution even for large programs with a few thousand variables [Avi02]. However, avoiding

the multiplication of two variables is difficult because of the fact that the choice of one seed impacts

the choice of other seeds.

Many heuristics for seed selection (or grouping) have been proposed in previous studies [Liu12;

KH12; Por15; Shi05; PJ15]. However, no one has tried to find the optimal solution with a mathemati-

cal optimization to the best of our knowledge. We implement our integer programming approach in

LLVM, and we compare the optimal selection that is found with the one from the current SLP imple-

mentation in LLVM. A set of small basic blocks from applications in the NAS Parallel Benchmarks are

used to compare our selection. We confirm that our optimal selection is the same as the selection
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(a) (b)

Figure 4.1 An example of basic block (14 instructions) and its Data Dependence Graph

from LLVM-SLP in 96% of the vectorized basic blocks. Also, we find that different selections in the

remaining portion of basic blocks come from lack of analysis and lack of information for the latest

vector instructions.

4.2 Seed selection of SLP

4.2.1 0-1 integer programming

We introduce a simple synthetic basic block to describe our 0-1 integer programming approach.

Figure 4.1(a) shows a basic block that consist of fourteen instructions, and its data dependence

graph is shown in Figure 4.1(b).

4.2.1.1 Variable assignment

First, we assign a 0-1 integer variable, xi l , to each instruction contained in any possible seed. The

variable indicates whether a instruction is in a seed or not. The instruction i is participating in seed

l if it is set as one while a zero value means that the instruction is not in seed l .

If xi l = 1, seed i is participating in seed l .
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If xi l = 0, seed i is not participating in seed l .

All the seeds that will be found in Figure 4.1(a) are listed below. Also, all the seeds are labeled

with alphabetic characters.

LOAD : {S0,S1}−A

MUL : {S2,S3}−B , {S2,S4}−C , {S2,S5}−D , {S3,S4}−E , {S3,S5}− F , {S4,S5}−G

ADD : {S6,S7}−H , {S6,S11}− I , {S7,S10}− J , {S10,S11}−K

SUB : {S8,S9}− L

STORE : {S12,S13}−M

Note that {S6,S10} and {S7,S11} are excluded from the list because there is a dependence chain

between the pairs. We assign a 0-1 integer variable, xi l to an instruction of each seed where i

represents instruction number and l indicate seed. There are twenty-six variables to represent the

example.

4.2.1.2 Constraint

Second, we set up constraints for the variables to avoid selecting conflicting seeds because allowing

the conflicting seeds exponentially increases the number of choices. If we represent the constraints

using the assigned variables, the summation of all the variables that represent an instruction should

be less than or equal to one.

For all i ,
∑n

k=0 xi k ≤ 1

For example, if a seed that consist of S2 and S3 is selected in Figure 4.1(a), we do not consider

any seed that contains S2 or S3. All the constraints from the example are listed below.

x2B + x2C + x2D ≤ 1

x3B + x3E + x3F ≤ 1

x4C + x4E + x4G ≤ 1

x6H + x6I ≤ 1

x7H + x7J ≤ 1

x10J + x10K ≤ 1
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Figure 4.2 Example of cost function

x11I + x11K ≤ 1

4.2.1.3 Cost Function

Third, the cost of each possible seed is expressed with the variables assigned to the operands of

the seed. Figure 4.2 shows a possible seed, l , with an operand of each instruction in the seed. The

packing cost, C o s tP , is necessary except for the case that the operand participates with the seed

that consists of instruction a and b . Thus, the packing cost of each pair of operand is shown below.

C o s tP (xi l x j l ) = 2− xa (a ,b )− xb (a ,b )

If there is no possible seed (a , b ), the packing cost becomes two, naturally. In the special case

that the seed consists of load instructions, the packing cost becomes zero if the load instructions

accesses adjacent memory address.

The unpacking cost, C o s tU , is required when the operands participate in any seed other than

the seed that consists of instruction a and b . The unpacking cost of each pair of operands is shown

below.

C o s tU (xi l x j l ) = (
∑n

k=0 xa k − xa b ) + (
∑n

k=0 xb k − xa b )

In case that the seed consists of store instructions, it requires two unpacking instructions as the

unpacking cost unless the store instructions access adjacent memory address.

Note that there might be more than two operands per instructions. In such a case, the cost has

to be accumulated for all operand sets.
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4.2.1.4 Objective Function

Finally, it is possible to formulate a function that represents the total cost (including reduction) fo

the variables when choosing each seed. The reduction will be always a -1 since two instructions

in the seed will be replaced with a vector instruction, and there are two kinds of cost, packing cost

and unpacking cost. The total cost of a seed is only applied when the seed is selected, so it can be

formulated by multiplying the variables assigned to the instructions of seeds like below.

C o s tT (xi l x j l ) = {−1+C o s tP (xi l x j l ) +C o s tU (xi l x j l )}xi l x j l

Accordingly, the objective function is the accumulation of the total costs from all the possible

seeds.

C o s tT (b a s i c b l o c k ) =
∑n

k=0 C o s tT (xi k x j k )

There are thirteen terms in the objective function for the example since the basic block has

thirteen possible seeds. We assume that the pairs of loads and stores access adjacent memory

addresses. The final objective function for the example basic block is shown below.

C o s tT (e x a mp l e ) = (1)x0A x1A + (−1+2− x0A − x1A)x2B x3B + (−1+2+ x0A)x2C x4C + (−1+2−

x0A−x1A)x2D x5D + (−1+2−x0A−x1A)x3E x4E + (−1+2+x1A)x3F x5F + (−1+2−x0A−x1A)x4G x5G +

(−1+2− x2C − x4C + x2B + x2D )x6H x7H + (−1+2+ x2B + x2C + x2D )x6I x11I + (−1+2+ x4C + x4E +

x4F )x7J x10J + (−1+2− x3F − x5F +2− x6H − x7H + x3B + x3E + x5D + x5G )x8L x9L + (−1+2− x8L −

x9L )x10K x11K + (−1+2− x10K − x11K + x10J + x11I )x12M x13M

4.2.1.5 Variable Reduction

It is obvious that the number of variables has a critical role in scaling up to larger problem sizes.

To minimize the number of variables, we can use a variable, X l , instead of the two dedicated vari-

ables, xi l and j l . The new variables represent each possible seed, and all xi l , x j l and xi l x j l can be

replaced with X l . The seed l is selected to be grouped if it is set as one while the zero value shows

that the seed is not selected to be grouped

If X l = 1, seed l is selected to be grouped.

If X l = 0, seed l is selected to be grouped.
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Figure 4.3 Histogram of objective function

The objective function and constraints with the new variables are shown below.

C o s tT (e x a mp l e ) = (1)XA + (−1+2−2XA)XB + (−1+2+XA)XC + (−1+2−2XA)XD + (−1+

2−2XA)XE + (−1+2+XA)XF + (−1+2−2XA)XG + (−1+2−2XC +XB +XD )XH + (−1+2+XB +

XC +XD )X I + (−1+2+XC +XE +XF )X J + (−1+2−2XF +2−2XH +XB +XE +XD +XG )XL + (−1+

2−2XL )XK + (−1+2−2XK +X J +X I )XM

XB +XC +XD ≤ 1

XB +XE +XF ≤ 1

XC +XE +XG ≤ 1

XH +X I ≤ 1

XH +X J ≤ 1

X J +XK ≤ 1

X I +XK ≤ 1

4.2.2 Search Thoroughly

There are thirteen variables that are assigned to each seed, so there are 213 possible combinations

of variables to set. We calculate the final result of the objective function with all the combinations of

variables. Figure 4.3 shows the histogram of the results from the objective function. There is only

one combination that gives the smallest result, namely -4, from the objective function when the

variables, x2C , x4C , x3F , x5F , x6H , x7H , x10K , x11K , x8L , x9L , x12M and x13M are set to 1 while other

variables are 0.
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Figure 4.4 Projections of execution time

4.2.3 Hamming weight

Instead of calculating an objective function with all combinations of variables, it is possible to avoid

some combinations of variables that do not satisfy its constraints. Hamming weight is an efficient

implementation to count the number of non-zero bits in a string. We integrate information of set

variable into a vector and do a bitwise-and operation with the vectors of constraint information.

If the number of non-zero bits in a result vector of the and-operation is larger than one, such

combinations of variables do not meet the constraints. Finally, the objective function with these

combinations of variables do not need to be calculated.

4.2.4 Scalability

Even though Hamming weight mitigates the burden of sweeping all possibilities, combinations of

variables within the constraints still increase exponentially when adding more variables. We tried to

project the scalability of the methodology by adding variables one by one with repeated constraints.

Figure 4.4 shows the execution time for the objective function with various numbers of variables.

The solid line is drawn with measured performance data while the dotted line shows the projection

from the results of a small number of variables. It takes more than one hour if there are more than

forty variables, and it needs one and a half years if the objective function has fifty-three variables.

4.3 Evaluation

4.3.1 Comparison of Seed Selection
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Table 4.1 The statistics of the seed selections of all basic blocks from NAS Parallel Benchmarks

BT CG DC EP FT IS LU MG SP UA Total Percentage

Number of Basic block 85 7 93 1 25 3 92 80 132 269 787 100.00%

ø Less than 32 variables 47 7 93 1 25 2 51 77 89 231 623 79.16%

⊢ Vectorized by LLVM 14 1 3 1 13 0 22 7 25 41 127 16.14%

| ⊢ Find the same seeds 13 0 3 0 11 0 17 4 13 39 100 12.71%

| ø Find the different seeds 1 1 0 1 2 0 5 3 12 2 27 3.43%

| ⊢ Lack of alias analysis 0 1 0 1 0 0 4 3 1 2 12 1.52%

| ⊢No support sufflevector inst. 0 0 0 0 0 0 0 0 9 0 9 1.14%

| ⊢No support addsub inst. 0 0 0 0 2 0 0 0 0 0 2 0.25%

| ⊢ Conservative function call 1 0 0 0 0 0 0 1 0 1 3 0.38%

| øOther reasons 0 0 0 0 0 0 0 0 0 0 1 0.13%

øNot-vectorized by LLVM 33 6 90 0 12 2 29 70 64 190 496 63.02%

ø Find potentially better seeds 0 0 11 0 0 0 2 0 0 37 50 6.35%
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Figure 4.5 Dynamic instruction reduction

The proposed 0-1 integer programming is implemented in the LLVM compiler infrastructure,

and we compared the seed selection from our proposed technique with the one from LLVM-slp-

vectorization pass. Table 4.1 shows the number of basic blocks from NAS Parallel Benchmarks

and categorized them for comparison. The first row shows the total number of basic blocks from

each application. 79.16% of them can be represented by the proposed objective function with

less than 32 variables, and they are shown in the second row. The LLVM-slp-vectorization pass

vectorizes 16.14% of basic blocks which are shown in the third row, and the optimal selection from

the proposed objective function gives the same selection with the LLVM-slp-vectorization pass in

most cases. For those cases that have different selections of the proposed objective function, we find

that the different selections are produced due to the reasons that are not related to the fundamental

design of the objective function. Most of different selections are made because of the lack of alias

analysis (1.52%) and conservative function calls (0.38%). Also, we did not integrate the latest vector

instructions into our design, such as the shufflevector instruction or addsub instruction.

4.3.2 Coverage

As discussed in Section 4.2.4, the proposed mathematical optimization cannot be applied to larger

basic blocks, especially those requiring more than 32 variables to represent all possible seeds.

The coverage of the proposed methodology is measured experimentally. All basic blocks of each

application are examined to count the minimum number of variables to create the objective function.

The three configurations are evaluated; Vectorizing all basic blocks, Vectorizing the basic block that

requires less than 32 variables and Vectorizing the basic block that requires less than 20 variables.

Figure 4.5 shows the reduction of dynamic instructions for each configuration and Figure 4.6 shows

the speed-up of each configuration compared to the non-vectorized binary.
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Figure 4.6 Performance improvement
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CHAPTER

5

RELATED WORKX

Loop vectorization [PW86] and Superword Level Parallelism (SLP) [LA00] are two well-known ap-

proaches for vectorization. Both techniques are considered important [ZX16b]. Many prior works

have improved upon loop vectorization techniques, and recent studies have evaluated vectorizers

in current compilers [Mal11]. Our new algorithm is based exclusively on SLP within a basic block, so

we primarily focus on work related to SLP.

Several recent works have studied various aspects of the SLP grouping algorithm. Kim and Han

proposed a heuristic to optimize the insertion of packing and unpacking operations to minimize

the data reorganization overhead [KH12]. Porpodas et al. proposed an algorithm that can vectorize

partially isomorphic code by adding padding [Por15]. Porpodas and Jones improved the prior greedy

algorithm by throttling search when it will be ineffective [PJ15]. Recently, Zhou and Xue [ZX16b]

consider a larger scope of potential isomorphic chains by considering ones from both inter-iteration

and inner-iteration. They compare the cost (overhead) of each chain and choose the better one

after considering data reorganization overhead. However, all of these approaches are mainly based

on the greedy grouping algorithm that starts from loads or stores on adjacent memory locations.

Liu et al. [Liu12]proposed a heuristic algorithm to group statements in such a way as to maximize

the reuse of superwords. We discussed the limitations and implemented their grouping algorithm.

Also, we compared their work with ours in our evaluation. Barik et al. proposed an auto-vectorization
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technique on a low-level IR closer to the machine-level using dynamic programming [Bar10]. They

also use the global information from the DAG to select the instructions to be grouped. However,

they ignore the fact that there can be multiple choices for instruction grouping. Thus, unlike our

system, they cannot explore all the possible seeds.

There are several works improving SLP vectorization other than grouping algorithms. Shin et

al. addressed control flow divergence and minimized the overhead of scalar operations using a

predicated ISA [Shi05]. Schaub et al. studied the influence of increasing SIMD width with respect

to control-flow divergence and memory-access divergence [Sch15]. Zhou and Xue presented an

effective compiler technique that maximizes SIMD utilization while minimizing the overheads

caused by memory accesses, such as packing/unpacking or masking operations [ZX16a].

The impact of non-contiguous or misaligned memory references has been studied since it often

leads to additional overhead [Bag16; Fir07; Wu05]. Data reorganization to reduce these overheads is

an important supporting strategy for vectorization. Nuzman et al. demonstrated an automatic com-

pilation scheme that supported interleaved data with constant strides that are powers of 2 [Nuz06].

Later, Anderson et al. generalized prior work for any constant interleaving factor [And15]. Ren et

al. presented a code generation algorithm to optimize all forms of data permutations from non-

contiguous and misaligned memory references [Ren06]. These are orthogonal techniques that might

have synergy with our algorithm, but we did not consider them in this paper.

Prior works that increase the size of basic blocks, such as superblocking, hyperblocking [LH96]

or if-conversion [All83], could have synergy with our technique by bringing more isomorphic in-

structions under consideration by our hierarchical algorithm.
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CHAPTER

6

CONCLUSION

Effective grouping of isomorphic instructions is a key challenge for SLP algorithms, especially

for large basic blocks with many seeds and many possible global chains. We have described and

evaluated a new hierarchical approach for selecting isomorphic chains. The key advantage of our

hierarchical algorithm is that we can quickly consider more alternatives, thereby increasing the odds

of quickly finding a good one. We implement our algorithm in LLVM, and we compare it against

one prior work that we re-implemented and the current SLP implementation in LLVM. A set of

applications that benefit from vectorization are taken from the NAS Parallel Benchmarks and SPEC

CPU 2006 suite and are used to compare our approach with prior techniques. We find that our

new algorithm can find more effective isomorphic chains, resulting in an 8.6% average speedup

compared to non-vectorized code and 2.5% average speedup over LLVM-SLP. In the best case, the BT

application has 11% fewer total dynamic instructions and achieves a 10.9% speedup over LLVM-SLP.

We have also proposed and evaluated a new mathematical approach to determine the optimal

isomorphic-instruction groupings for SLP. An objective function with 0-1 integer variables is de-

signed to represent each possible isomorphic seed in a basic block. The proposed mathematical

optimization enables us to find optimal selection of isomorphic seeds. We confirm that our optimal

selection is the same as the selection from LLVM-SLP in 96% of the vectorized basic blocks. Also, we

find that the remaining selections that differ may come from lack of detail in our model.
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