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Code-based cryptosystems are a promising option for Post-Quantum Cryptography, as neither classical nor

quantum algorithms provide polynomial time solvers for their underlying hard problem. Indeed, to provide

sound alternatives to lattice-based cryptosystems, U.S. National Institute of Standards and Technology (NIST)

advanced all round 3 code-based cryptosystems to round 4 of its Post-Quantum standardization initiative.

We present a complete implementation of a quantum circuit based on the Information Set Decoding (ISD)

strategy, the best known one against code-based cryptosystems, providing quantitative measures for the

security margin achieved with respect to the quantum-accelerated key recovery on AES, targeting both the

current state-of-the-art approach and the NIST estimates. Our work improves the state-of-the-art, reducing

the circuit depth by 219 to 230 for all the parameters of the NIST selected cryptosystems, mainly due to an

improved quantum Gauss–Jordan elimination circuit with respect to previous proposals. We show how our

Prange’s-based quantum ISD circuit reduces the security margin with respect to its classical counterpart.

Finally, we address the concern brought forward in the latest NIST report on the parameters choice for the

McEliece cryptosystem, showing that its parameter choice yields a computational effort slightly below the
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1 INTRODUCTION

The work of Shor [62], detailing a quantum algorithm to attack the RSA cryptosystem exponen-
tially faster than any known classic algorithm—later adapted to attack cryptosystems based on
elliptic curves [57]—created the need for cryptographic schemes capable of withstanding both
classical computing and quantum computing attacks.

The quest for cryptographically sound primitives spurred the U.S. National Institute of

Standards and Technology (NIST) [51] to run a standardization initiative program for Post-

Quantum Cryptography (PQC), which started in 2016. The E.U. European Telecommunications
Standards Institute, however, established in 2020 a working group on quantum safe cryptogra-
phy [27], with the aim of assessing and making recommendations for quantum-safe cryptographic
primitives.

Error-correcting codes, formalized by Shannon [61] and originally thought as a way of detecting
and correcting corrupted piece of information over a noisy communication channel, have seen
an increasing interest in their use as the backbone of asymmetric cryptosystems, as shown by
NIST decision that arrived in mid-2022 to advance all code-based cryptographic schemes to the
fourth stage of the competition [49]. Indeed, to have an alternative to lattice-based cryptosystems,
NIST suggests in the same report that one of the three code-based candidates, namely Classic
McEliece [12], BIKE [3], and HQC [47], will be standardized with high probability. The only other
alternative cryptosystem advanced to the fourth round, SIKE [35], an efficient polynomial-time
algorithm has just recently been found [18], making its advancement to the standardization stage
unlikely. It is therefore crucial to accurately assess the computational complexity of an attack to
code-based cryptosystems accelerated through the help of a quantum computer to precisely tune
the parameters for these cryptographic schemes.

Code-based cryptographic schemes, dating back to the proposal by Robert McEliece [46], build
their security on the hardness of the (search-)syndrome decoding problem (SDP), proven to
be NP-hard in Reference [10]. The problem can be summarized as finding a solution to an un-
derconstrained set of simultaneous linear equation, having a fixed amount of non-zero elements.
The best-known classical algorithm to solve SDP, called Information Set Decoding (ISD), still
runs in exponential time, while theorized quantum-aided attacks do not go beyond the quadratic
speed-up provided by Grover’s framework [31]. The first work theorizing a potential speed-up in
the ISD attack accelerated by a quantum computer [11] showed indeed a considerable decrease in
the amount of computation required when Grover’s framework is used. The work, however, did
not present any concrete circuit, offering only asymptotic estimates in terms of number of gates
and number of qubits. To the best of our knowledge, the first concrete implementation of a full
quantum circuit using the ISD strategy to solve the SDP problem was reported in Reference [54],
in which the authors report a computational effort smaller by a factor of 24 with respect to the
asymptotic effort estimated in Reference [11] for cryptographically relevant sizes of the problem
instance. In the same work, they also show how the parameter choices made for BIKE and Classic
McEliece results in a larger computational effort than the one required by NIST, which was set as
a comparison to the effort of breaking symmetric cryptosystems. Recently, the authors of Refer-
ence [26] reported a similar implementation of a quantum SDP solver based on the ISD strategy
and proposed a strategy trading off number of qubits with circuit depth.

Contribution. In this article, we present a quantum circuit implementing the Prange variant of
the ISD strategy to solve the SDP, extending and improving the work [54], as well as improving the
current state of the art. We provide exact measures for the gate count (size), number of required
qubit (width), and depth of our quantum circuit design. Our measures depend only on the linear
code parameters, allowing code designers to fine-tune them to match the desired security level.
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• We improve the depth × width figure with respect to the previous theoretical proposals pre-
sented in Reference [11], the estimates provided in Reference [25], and the implementations
detailed in Reference [54] and Reference [26]. The improvements are mainly due to an adap-
tation of the classical decoding one out of many strategy [60] to our quantum circuit and
to a series of optimizations to the state-of-the-art proposal for a quantum version of the

Gauss–Jordan elimination (QGJE) circuit presented in Reference [54].
• We evaluate, according to the criteria specified by NIST, the complexity of carrying out at-

tacks against all the code-based cryptosystems advanced to the fourth round of the NIST
Post-Quantum standardization initiative, namely Classic McEliece, BIKE, and HQC, extend-
ing the previous analysis presented in Reference [54], limited only to the first two of the
three candidates. To retrieve our measures, we target both a reversible gate set extended
with uncontrolled phase-rotation gates (i.e., Ry ), and the Clifford + T gate set, which is the
most promising candidate for fault-tolerant quantum computation. The latter gate set allows
a direct comparison against the best-known quantum circuits designed to bruteforce the AES
cryptographic scheme [44, 67].
• By constraining the depth of our circuits, and hence parallelizing our algorithm across multi-

ple instances, we show that the parameter choice for the Classic McEliece intended to match
the robustness of AES-192 yields an ISD strategy that can be solved with ≈24 less computa-
tional effort than the expected bar, a concern already brought forward in Reference [25] and
by NIST itself in its latest report [49].
• We show that the most convenient way to attack code-based post-quantum cryptosystems

relying on quasi-cyclic random codes (i.e., HQC and BIKE) is to employ our quantum Prange
ISD approach. Indeed, taking the symmetric cipher AES-128 as the bar for the parameters’ se-
lection, the code length required to ward off a quantum cryptanalytic attack exceeds the one
required to ward off the classic attack (considering quantum and classic attacks against AES
as the bars, respectively). This fact shows that the design of the parameters for cryptosys-
tems such as BIKE and HQC should take into account the results derived from our quantum
circuit. By contrast, for the Classic McEliece cryptosystem, the estimates on the parameters
required to match the computational effort of breaking AES-128 either classically or not yield
substantially the same figures.

2 BACKGROUND

In this section, we provide a summary of the basics of code-based cryptography and the ISD tech-
nique. We recall the framework proposed by Grover [31], and we conclude the section providing
a background on two classical algorithmic techniques, sorting networks and Hamming weight
computation via adder trees, for which we employed the quantum counterparts in our quantum
circuits.

Notation. Vectors in this work are denoted with lowercase bold letters, e.g., v. They have a
finite dimension, and their elements are in the set {0, 1}, i.e., a vector having d components is said
to belong to the finite, binary field ∈ Fd

2 . A subscript to the column vector of the form vi denotes
element at index i of vector v, 0 ≤ i ≤ d − 1, while vS denotes the projection of the elements of v

on the indexes of the set S, i.e., vS = {vi |i ∈ S}.
Finite, binary matrices are denoted as uppercase boldface letters, e.g., M ∈ Fd1×d2

2 , where d1 and
d2 denote the number of rows and columns, respectively. Similarly to the vector case, we denote
with Mi, j the element of the matrix at row i and column j, 0 ≤ i ≤ d1 − 1, and 0 ≤ j ≤ d2 − 1. The
notation MS1,S2

denotes a selection of the rows indexed by the elements in S1 and of the columns
indexed by the element in S2, i.e., MS1,S2

= {Mi, j |i ∈ S1, j ∈ S2}. In this context, we use the
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colon to represent the set of all rows, i.e., Mi, : denotes the vector obtained taking all the elements
of matrix M in row i . By extension, MS1, : is the matrix obtained selecting the rows indexed by the
elements in S1, while keeping the whole set of columns. The colon notation is extended to the
selection of one or multiple rows, denoted as M:, j or M:,S2

respectively.
Finally, we use the notation Wt (v) to denote the Hamming weight of the vector v, i.e., the

number of its elements different from 0.

2.1 Linear Error-correcting Codes

A binary linear code C is a linear subspace of the vector space Fn
2 having dimension k . A linear

code is used to encode a message, represented as a k-length binary vector m ∈ Fk
2 , into another

binary vector c ∈ Fn
2 , called codeword, belonging to C. The encoding is done through the addition

of r = n − k bits, called redundancy bits, to m. Denoting as y a corrupted codeword, we can
express it as the bitwise sum of two binary vectors ∈ Fn

2 , namely the original codeword c and an
error vector e, i.e., y = e + c, with Wt (e) = t .

The encoding process can be described through a standard matrix-vector multiplication between
a matrix G ∈ Fk×n

2 , called generator matrix, and the original message m, i.e., C = {c | c = GT m}. In
our work, we will use the alternative, though equivalent, formulation of the code through the ma-
trix H ∈ Fr×n

2 , called parity-check matrix, such that HGT = 0r×k and therefore C = {c | Hc = 0r×1}.
The decoding process, however, consists in removing the r redundancy bits from the (possibly) cor-
rupted codeword y = c + e. The codeword decoding problem (CDP) consists in retrieving the
original codeword c starting from y. Given the linearity of the code, the two challenges of retriev-
ing either c or e starting from y are equivalent. In this work, we thus consider the SDP, which asks
to retrieve the error e given only its syndrome vector s = Hy = H(c + e) = He.

2.2 Code-based Cryptosystems

The use of linear codes as a way to build trapdoor functions for cryptographically safe primitives
is justified by the result in Reference [10], showing that the decision version of both CDP and SDP
are NP-complete if the matrix H is randomly chosen among the ones in Fr×n

2 having rank r . The
first public-key cryptographic scheme based on linear codes was proposed by McEliece [46]. The
proposal uses as a private key a parity-check matrix H′ for which an efficient decoding algorithm
correcting up to weight t errors is known, together with a random non-singular matrix Ar×r and
a random permutation matrix Pn×n . If the matrix H = AH′P is indistinguishable from a random,
full-rank one, then this allows its use as a public key. To encrypt a message, the sender encodes the
message in an error vector e of weight t , computes the syndrome s = He, and sends it through an
insecure channel. An attacker willing to recover e is then forced to find a solution to the SDP for
a random-looking H, while the legitimate receiver can simply compute s′ = A−1s and efficiently
solve the SDP for the non-random H.

The McEliece cryptosystem withstood deep scrutiny over the years, and, since no efficient clas-
sical or quantum attack undermining its security has been found up to now, it was promoted to the
fourth round as a finalist in the NIST Post-Quantum Cryptography initiative [49]. New families
of codes yielding on smaller key sizes have been proposed, such as the Quasi-Cyclic Moderate-

Density Parity-Check codes (QC-MDPC) presented for the first time in Reference [48]. Their
design builds upon the theory of quasi-cyclic codes. More specifically, for the proposed codes, de-
noting the code length n as the product of two positive integers, n = n0r , the parity-check matrix
H of a quasi-cyclic code is described with n0 circulant matrices of size r×r . Each of the circulant
matrices, called a circulant block, is defined starting from a single row, generating all the other r −1
ones by cyclically shifting it by an amount in {1, . . . , r − 1}. This allows a significant reduction in

ACM Transactions on Quantum Computing, Vol. 4, No. 4, Article 25. Publication date: August 2023.



Improving the Efficiency of Quantum Circuits for Information Set Decoding 25:5

the size of the public key, as the public quasi-cyclic parity check matrix can be reconstructed from
a single row. The main drawback of QC-MDPC codes is that the cyclic structure of the parity-check
matrix can be exploited to parallelize the solution to the SDP. Indeed, by shifting r − 1 times the
given syndrome s, we can derive a set of r distinct associated syndromes, corresponding to the
same cyclic shifts in the error vector e that we want to retrieve. All of these instances are associ-
ated to the same parity-check matrix H and the same weight t and, acting on r distinct syndromes,
can be run in parallel. Finding the solution for any of the r syndromes allows us to immediately
retrieve the required error vector. Depending on the desired degree of parallelization, we can tune
the number of instances M , with 1 ≤ M ≤ r .

2.3 Information Set Decoding

The most efficient method known to solve the SDP generically relies on the fact that knowing
the k error-free positions of the corrupted codeword y allows the retrieval of the corresponding
information word m, as it uniquely identifies it.

The first work employing the Information Set as a decoding technique is due to Prange [56].
Prange’s ISD technique considers a set I ⊆ {0, . . . ,n − 1} of size k , the Information Set, or, equiv-
alently, the complement set J = {0, . . . ,n − 1} \ I of size n − k = r . After randomly guessing J ,
the proposed algorithm proceeds by assuming that the error vector e, with Wt (e) = t , has all its
t asserted bits in the positions indexed by J . As a consequence, all the bits of e in the positions
indexed by I are 0. We can express the previous desiderata as eI = 0k×1, while Wt

(
eJ

)
= t .

We can split the syndrome computation, originally obtained as s = He, as the bitwise addition
between two distinct vectors, i.e., s = H:,JeJ ⊕ H:,IeI . When the assumption made by Prange is
true, that is, eI = 0k×1, the value of the syndrome is s = H:,JeJ , which can be seen as a system

of linear equations with unknown eJ . If H:,J is invertible, then we can derive eJ = (H:,J)−1s

and, from there, reconstruct the whole error vector e. If either the submatrix H:,J is not invert-

ible or Wt
(
eJ

)
= (H:,J)−1s � t , then the algorithm proceeds to guess another random J and

restarts.
This approach is summarized in Algorithm 1. At line 2, we associate the random choice of J

to a random permutation matrix P∈Fn×n
2 , used in the next line to bring the columns of H indexed

by J to its leftmost r×r portion, leading to a new matrix Ĥ = HP = [H:,J | H:,I]. To note that,
from s = He, we also derive s = (HP)(Pᵀe), which, by renaming the two parts of the equation,

can be seen as the new system of linear equations s = Ĥê, with unknown vector ê = [eJ | eI].
The condition on the invertibility on the r×r matrix H:,J is restated as a check on the matrix

H̃ = GJE(Ĥ), in which GJE (·) denotes the Gauss–Jordan elimination (GJE) algorithm: If, after

the GJE procedure, H̃ has an identity in its rightmost r×r submatrix, then the initial matrix H:,J

was invertible. While performing the GJE algorithm, we also obtain the vector s̃ = (Ĥ:, {0, ...,r−1})
−1

s

by building the augmented matrix Lr×(n+1) = [Ĥ|s] and then performing GJE (L). If the leftmost
r×r submatrix of the result is an identity matrix and s̃ has weight t , then we can trivially retrieve e.

Prange’s algorithm is a Las Vegas algorithm, i.e., a randomized algorithm outputting the correct
result—the value of e—using a probabilistic amount of computational time. Its runtime can be
computed starting from the probability of success, Prsucc−PR , of a single iteration of the outer loop.
Since for each loop iteration the matrix P, corresponding to a specific choice of J , is independent
of all other iterations, the probability of success of a single loop iteration is independent of the
others.

The first factor of this probability is obtained by dividing the number of permuted error vectors
matching Prange’s requirements, i.e., all the vectors of length r and weight t ,

(r
t

)
, divided by the

total number of error vectors, i.e., all the vectors of length n and weight t ,
(n
t

)
.
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ALGORITHM 1: Prange algorithm

Input :H: r×n parity-check matrix

s: r×1 syndrome

t : weight of e

Output :e: n×1 column vector s.t.

He = s, Wt (e) = t

Data :P: n×n permutation matrix

Ĥ: H after permutation

H̃: Ĥ after GJE

s̃: s after GJE

1 repeat

// random choice of J
2 P← RandomPermutation (n)

// error vector is ê = Pᵀe

3 Ĥ← HP

4 [H̃ | s̃] ← GJE
(
[Ĥ|s]

)
5 [Wr×r | Vr×k ] ← H̃

6 until Wt (s̃) � t or W � Ir

7 ê← [s̃ | 0ᵀ
1×k
]

8 return e = Pê

ALGORITHM 2: Gauss-Jordan elimination

Input :L: r×n + 1 matrix, n > r
Output :L in reduced-row echelon form, or

failure

1 for x ← 0 to r − 1 do

2 i ← x
// Part 1.

// Put 1 in pivot position if it

contains a 0
3 while i < r and Li,x = 0 do
4 i ← i + 1
5 if Li,x = 0 then

6 return ⊥
7 if x � i then

8 swapRow
(
Lx, :, Li, :

)
// Part 2.

// Put 0 in all elements above and

below pivot

9 for i ← 0 to r − 1 do

10 if i � x and Li,x = 1 then

11 Li, : ← Li, : ⊕ Lx, :

12 return L

Pseudo-code for the classical implementation of Prange’s algorithm, calling in its loop body the GJE function

acting on the augmented matrix L = [Ĥ | s].

To note that this part of the probability can also be expressed as the division between
(n−t
r−t

)
and(n

r

)
since, among all the

(n
r

)
choices of distinct J , we need the one placing all the n − t zeros in

exactly r − t positions of the r -length vector eJ . The second and last contribution to the proba-
bility of success of a single iteration is given by the probability that the leftmost r×r submatrix is
invertible, which corresponds to finding an identity matrix after the GJE procedure. We recall that
the probability that a random r×r binary matrix is non-singular is

∏r
i=1(1 − 2−i ), a value quickly

converging to ≈0.288 for increasing values of r .
The cost Citer of a single iteration of Prange’s algorithm is dominated by the GJE algorithm,

detailed in Algorithm 2, applied to the augmented matrix L = [Ĥ | s]. The procedure iterates on
the r rows of L and, for each such a row, denoted by x , makes two different kinds of operations. The
first one (Part 1 in the algorithm) corresponds to finding the first row Li, :, x ≤ i < r , such that Li,x

is not null (lines 2–4). If no such row exists, then the random choice of J selected a singular r×r
submatrix of H, and the procedure aborts. Indeed, for all ISD algorithms, since we want to check
on the invertibility of the submatrix HJ , it is not sufficient to only have the matrix in row-reduced
echelon form—we specifically need the leftmost r×r submatrix of L matrix to be an identity matrix.
When, instead, such a row Li, : is found, the algorithm swaps it with Lx, :, ensuring that Lx,x = 1
(line 8). The second operation (Part 2 in the algorithm) sets to 0 all the elements above and below the
pivot by adding the row Lx, : to all the other rows Li, :, i � x , whenever Li,x = 1. The computational

complexity of Algorithm 2, as reported in Reference [54], is CG J E = O( 3nr 2

4 +
nr
4 −

n
2 +

3r 2

4 −
r
2 ) bit

operations. The remaining factor in the cost of Prange’s algorithm, denoted as CHW CC , is the cost
of computing the Hamming weight of s̃ and check that it has weight equal to t , which is in O(r ).
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Fig. 1. (a) Implementation of Grover’s oracle circuitUO through theUf . Starting from state |ψ0〉, we obtain, at

the end of the circuit, a state |ψ1〉 that has the same basis states of |ψ0〉 but a different sign on the amplitude

of the searched basis state |x∗〉. (b) Two equivalent circuits to perform the sign flip on the amplitude of

the basis state |1q〉 stored on q qubits. While the first one requires a multi-controlled X gate and a Z gate

using one additional ancilla qubit, the other requires only a multi-controlled Z without ancillae. The multi-

controlled Z is represented in the rightmost quantum circuit without an explicit Z box as it alters the phase

of the entire basis component if all controlling qubits are set to one.

Overall, the cost of Prange’s algorithm is therefore

Citer

Prsucc−PR
≈

(n
t

)
0.288

(r
t

) (
CG J E +CHW CC

)
≡

(n
r

)
0.288

(n−t
r−t

) (
CG J E +CHW CC

)
. (1)

2.4 Grover’s Algorithm

Grover’s algorithm [31] solves the following search problem: Given a function f : {0, 1}n → {0, 1}
to which a black-box access is provided, find the unique argument x∗ such that f (x∗) = 1. In the
query-model, which is used to evaluate Grover’s algorithm and to show its speedup, we are given a
black-box access to a quantum circuitUf implementing f . The goal is to use as few applications as
possible ofUf to find x∗. In the classical computing paradigm, we have to query the function f —or,

equivalently, the classical circuit implementing it—2n times in the worst case and 2n−1 times on
average. In contrast, the quantum algorithm proposed by Grover, after encoding all the bitstrings
composing the domain of f as quantum basis states, performs only ≈ 2n/2 queries to retrieve x∗,
achieving therefore a quadratic speedup. Grover’s algorithm can be expressed using three main
stages: (1) input preparation, (2) oracle, and (3) diffusion. By repeating (2) and (3) ≈ 2n/2 times, the
probability of observing the basis state |x∗〉 encoding the wanted state x∗ upon measurement get
close to 1.

Input preparation stage. In the input preparation stage, a uniform superposition of all 2n basis
states belonging to the domain {0, 1}n of f is prepared. Such a superposition is obtained through
a layer of H gates applied to n input qubits, initially in state |0〉. After the application, we obtain

|ψ0〉 = H ⊗n |0n〉 = 1
√

2n

2n−1∑
x=0

|x〉 .

If the domain of the function f is not composed by all the Boolean strings of length n, but it is
instead D ⊂ {0, 1}n , then the input preparation stage is implemented with a dedicated quantum
circuitUD preparing a uniform superposition of only the basis states labeled as bitstrings belonging
to D, i.e.,

|χ0〉 = UD |0n〉 = 1√
|D |

∑
x ∈D

|x〉 . (2)

Oracle stage. In Grover’s original framework, the oracle is considered as a black-box circuit
implementing f and additionally changing the sign of the amplitude associated to the basis state
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|x∗〉 encoding the input bitstring x∗ we are looking for. The goal of this circuit, denoted as UO , is
to obtain a new state

|ψ1〉 = UO |ψ0〉 =
1
√

2n

��
− |x∗〉 +
∑

x ∈{0,1}n,x�x ∗

|x〉��� ,
which, for our proposed circuit, becomes

|χ1〉 = UO |χ0〉 =
1√
|D |

(
− |x∗〉 +

∑
x ∈D,x�x ∗

|x〉
)
. (3)

It is easy to see, from the previous equations, that the oracle operator can be expressed as UO =

I − 2 |x∗〉 〈x∗ |, a notation used to highlight that the unitary matrix denoting the quantum circuit
UO only changes the amplitude associated to |x∗〉, leaving all other basis states untouched. This
operator, indeed, can be seen as the operator performing an inversion around the set of basis states
orthogonal to |x∗〉.

The main ingredient of the oracle circuit is the quantum circuit Uf implementing the Boolean
function f . TheUf circuit, after computing f (x), stores the results on an additional qubit, initialized
to |0〉, as | f (x)〉. For non-trivial functions, Uf also involves additional m qubits to carry on the
computation in a reversible way. As shown in Figure 1(a), the flip in the sign of the amplitude of
the wanted state performed by the oracle can be computed applying a Z gate on the qubit storing
the result of the computation.

Usually, for the circuit implementingUf , there is a multi-controlled X gate right to the end that,
if the state of some set of q qubits is equal to |1q〉, 1 ≤ q ≤ m +n, sets the output qubit to |1〉. This
part of the circuit, which we denote as Cq(X), is shown on the left side of Figure 1(b). However,
since the goal of the overall UO circuit is to perform a phase flip on the amplitude of |x∗〉, we can
avoid the use of the additional ancilla qubit storing the result, directly using a multi-controlled Z
gate, denoted as Cq(Z), involving only the q qubits, as shown on the right side of Figure 1(b). This
alternative approach can be seen as using a different function f ′ : D → {0, 1}q , that is such that

f : D
f ′

−→ {0, 1}q
д
−→ {0, 1}, in which д computes the logic and of the bits composing the output

of f ′. In other words, f ′ produces an all 1’s bitstring of length q if the same conditions of f are
satisfied. The circuit Uf ′ implementing f ′ will need therefore one less qubit.

As a final remark, we notice that we can express the whole oracle circuit as UO = Uf ′Ux ∗U
†
f ′

, in

whichUx ∗ corresponds to applying the Cq(Z) gate involving the q qubits storing the results, while

the quantum circuit implementing U †
f ′

has the same gates of Uf ′ but applied in reverse order and

with complex conjugated parameters with respect to the Uf ′ .

Diffusion stage. The diffusion stage of Grover’s algorithm is expressed as the operator Uψ0
=

H⊗nU0H⊗n applied to the first n qubits. Operator U0, expressed as I − 2 |0n〉 〈0n |, is analogous to
theUx ∗ of the oracle stage, performing an inversion around the state |0n〉. As before, to implement
it we have to use a multi-controlled Z gate, this time acting on all the n qubits storing the input of
our circuit and therefore defined as Cn(Z). Generalizing the formulation of this stage to adapt it
to our algorithm, we defined the diffusion stage as Uχ0 = UD

†U0UD , in which UD is the quantum
circuit we used to prepare our input.

Since the standard Cn(Z) gate flips the sign of the amplitude if and only if all the input qubits
are in state |1〉, while we want instead a rotation if and only if all of them are in state |0〉, we need
to apply a wall of X gates on all the n qubits before and after the Cn(Z) gate. We denote this circuit
as U1 = X⊗nU0X⊗n .
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Number of iterations. Grover observed that, at each iteration, the amplitude of the sought

state |x∗〉 increases by ≈ 1/
√

2n—which becomes ≈1/
√
|D | in the case of our modified algorithm—

while at the same time the amplitudes of all other states decrease. After applying the oracle and

diffusion stage ≈O(
√

2n), we have a probability close to 1 to observe the wanted state |x∗〉 upon
measurement. In Reference [16] it is shown how executing half of the said number of repetitions
provides a success probability close to 50%. Moreover, they also show how the optimal number of

iterations is indeed close to 0.58278 ·
√

2n , obtaining a success probability close to 0.84458. Finally,
they also show how if, instead of having a single state |x∗〉 for which our function f evaluates to 1,

we have M of them, the number of repetitions decreases by
√
M .

2.5 Sorting Networks

A key component of our oracle implementation is a restructuring of the classical circuit used to
sort an n-length bitstring into its reversible variant. Different alternatives of such circuits, known
as sorting networks, are extensively analyzed in Reference [43, Chap. 5.3.4]. All of them have as
their building block a comparator element, depicted in Figure 2(a), that upon receiving two bits on
its two input wires a and b outputs the maximum between them on the top wire and the minimum
on the bottom one. The comparator can analogously be thought as a device that, taking as input
two wires a and b, swaps them only if a < b, while it does nothing in all other cases. The idea
underlying a sorting network is to use a fixed sequence of such comparators, organized in layers
as shown in Figure 2(b), to obtain at the end of the circuit a bitstring with all the 1’s on top and
all 0’s on the bottom. The values on the wires at the end of the circuit, read from bottom to top,
represent the sorted version of the input bitstring.

All comparators in a layer act on different pairs of wires. A comparator object can produce an
output value only when both of the values on its input wires are ready. If we assume that the
computation of each comparator takes a fixed amount of time, which is realistic given that all the
comparators have the same identical structure, then the running time of the overall sorting net-
work is given by the largest number of comparators acting on any wire, a quantity known as depth.
Since inside each layer all the comparators can be run in parallel, the total depth of the network
is given by the number of layers, and it is not directly influenced from the total number of com-
parators. Distinct amounts and configurations of comparator layers can be employed to achieve
the sorting of the n values present on the input wires. The two main factors to consider when
evaluating the efficiency of a sorting network are the number of comparators used and the degree
of parallelization that they can reach. Indeed, there exist several sorting networks specialized for
fixed n, minimizing either the amount of comparators or the depth. Since our primary objective
is to embed the sorting network in a quantum circuit in the most general way, we focused on
generalizable proposals minimizing the overall depth.

For bitstrings having n ≈ 210, as it happens in our scenario, [1] reports a design having an
asymptotically optimal depth, i.e., O(log(n)). However, Knuth reports [43, Chap. 5.3.4] that this
network design is not of practical interest, since the constants hidden by the asymptotic nota-
tion are significant. We employ therefore the sorting network topology detailed in Reference [19,
Chap. 27.5], where a careful analysis of the network gives a total number of comparators equal
to (n − 1) log2 (n)(log2 (n) − 1) and a total depth of 1

2 log2 (n)(log2 (n) + 1). Figure 2(b) shows an
example of such a network applied to an n = 4-length input bitstring.

2.6 Hamming Weight Computation

In our quantum SDP solver, we need to compute the Hamming weight of a binary string. This
computation can be efficiently carried out by a binary tree composed of integer adders with a
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Fig. 2. (a) Comparator element employed in a sorting network. (b) A 4-wires sorting network, used to sort a

4-bits string. (c) A binary adder tree computing the Hamming weight of a 4-bits string.

suitable operand width. The underlying concept behind the classical circuit known as binary adder
tree is to use a cascade of adders, organized in layers composed of adders of increasing sizes, to
perform the sum of two input bitstrings. We exploit the binary adder tree design to compute the
Hamming weight of an r -length bitstring, with r being a power of two.

The number of layers of an adder tree circuit is log2 (r ). The first layer is composed by r/2 adders
adding together two distinct single bits of the original bitstring. All the following layers compute
a sum based on the output of the previous layers, adding their results in pairs and hence involving
addends whose bitsize increases by 1 with respect to the previous layer. In other words, at layer i ,
each adder of the ith layer takes as input two distinct length-i bitstrings and produces in output
an i + 1 bitstring, 1 < i ≤ log2 r . An example of such a circuit is shown in Figure 2(c).

In the ith layers, r/(2i ) adders are employed, leading to a total count of
∑log2 (r )

i=1 r/2i = r − 1
adders. The overall number of gates required is given by

log2 (r )∑
i=1

r

2i
· AdderGates (i) , (4)

where AdderGates (i) denotes the gate cost of an adder taking as inputs two i-length bitstrings.
The tree structure allows taking advantage of parallelism, reducing the overall depth of the

circuit. All the adders acting at the same level have an identical structure and, acting on different
qubits, can be run in parallel. For this reason, the overall depth of the circuit is

log2 (r )∑
i=1

AdderDepth (i) , (5)

where AdderDepth (i) denotes the depth of an adder taking as inputs two i-length bitstrings.

3 A QUANTUM CIRCUIT FOR PRANGE’S ISD

Notation. We will denote a set of qubits composing a quantum register as qreg. Since, in our
work, a quantum register is used to hold either a binary matrix M or a binary vector v, we will
use the same notation for matrices and vectors introduced at the beginning of Section 2. Thus,
vi will denote the qubit of v corresponding to the element at position i in the vector v, while
Mi, j the qubit corresponding to element Mi, j of the matrix. We extend the colon notation to the
quantum registers as well, therefore using Mi, : (M:, j ) to denote the set of qubits corresponding to all
the elements of Mi, : (M:, j ). Analogously, MS1, : (M:,S2

) is used to express the elements belonging to
MS1, : (M:,S2

).

3.1 Adapting Grover’s Framework to the ISD Technique

To employ Grover’s framework to accelerate the Prange ISD solver, we rephrase the ISD strategy as
a search procedure for a solution of the Boolean function f ′ : D → {0, 1}q , in which D ⊂ {0, 1}n is
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defined as the set of all binary vectors of lengthn having weight t ,D = {v | v ∈ {0, 1}n ,Wt (v) = t}.
The size of our domain is |D | =

(n
t

)
, since this is the number of distinct vectors of length n having

weight t . The choice of such a domain is motivated by the use of the vectors belonging to it as
a way to represent the Information Set complement J . That is, J = {j | vj = 1, v ∈ D}, which
expresses that the set of all the indexes of the asserted bits of a vector belonging to the domain
corresponds to J . The function f ′ will output the bitstring 1q if and only if (i) the given choice of
J selected a matrix H:,J that is invertible and (ii) the syndrome vector s̃ has weight equals to t .

In the following, we also detail how to adapt our quantum circuit to the case in which we have
M > 1 syndromes at our disposal, all associated to the same parity-check matrix H and error-
weight t , which is useful to accelerate the attack against the circulant codes presented in Sec-
tion 2.2. We can indeed adapt the algorithm performing GJE presented in Algorithm 1 by building
an augmented matrix L of size r × (n +M), at the cost of an increased number of qubits.

As common in the literature, we assume that all the qubits of our quantum circuit are initially
in state |0〉.

Input circuit: superposition of all permutations. The first challenge in adapting Grover’s
algorithm to the ISD problem is to have a circuitUD capable of generating a uniform superposition
of all the

(n
r

)
bitstrings of length n and weight r , thought as labels of

(n
r

)
distinct basis states. Such

a superposition, that will be stored on a quantum register called inp of size n, can be expressed as

|Dn
r 〉 =

1√(n
r

) ∑
Wt(x )=r

|x〉 , x ∈ {0, 1}n . (6)

Many proposals result in a quantum circuit capable of producing such a state, known as the
Dicke state. To the best of our knowledge, the most efficient circuit producing a Dicke state in a
deterministic way is the one reported in Reference [50]. This work improved the previous best
result provided in Reference [7] both in terms of number of gates and depth. The overall circuit
for the input preparation stage, which we denoted asUD , requires r X, 5nr − 5r 2 − 2n CNOTs and
4nr −4r 2−2n+1 Ry gates. By analyzing the circuit carefully and by using the same considerations
made for the depth evaluation in Reference [7], we can derive an upper bound on the total depth
of the circuit as the sum of the CNOTs and Ry gates, divided by � r+1

3 � − 1. The resulting depth for

the input preparation circuit is therefore ≤ 27nr−12n−27r 2+3
r−2 ∈ O(n).

Oracle operator. In this section, we present the components composing our oracle circuit, de-
noted as a whole asUO . As explained in Section 2.4, we can describe the unitary representing this

circuit as UO = Uf ′Ux ∗U
†
f ′

. The first four components compute Uf ′ and produce the state |1q〉 on

a set of q qubits, contained in a quantum register named out. Since the circuit corresponding to
Uf ′ does not contain phase rotations, but only classical reversible gates, the circuit corresponding

to U †
f ′

corresponds to the application of the gates belonging to Uf ′ in reverse order. Finally, the

circuit corresponding to Ux ∗ , which can be implemented by simply applying a Cq(Z) gate on the
set of qubits belonging to out for M = 1, has a slightly different structure when we are encoding
a number of syndromes M greater than 1.
Data encoding: H and s as quantum states. The first subcircuit of the oracle encodes the parity-
check matrix H and the syndrome s in a quantum state. Since the input matrices only contains bits,
it is straightforward to put them in one-to-one correspondence with qubits basis states |0〉 and |1〉.
We denote the qubits representing H as H and the ones representing s as s. Since those set of qubits
are in state |0〉 at the beginning of the circuit, we need to apply an X gate each time our input binary
data contains a 1. Given that H, with size r · n, and s, with size r , are both random-looking, we
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Fig. 3. (a) The quantum comparator used for the circuit of Section 3.1, swapping the two qubits a and b
only if a is in state |0〉 and b in state |1〉. (b) The quantum sorting network corresponding to the example

of Figure 2(b). Each of the qubits of inp is used to address a set of r qubits of H, corresponding to a single

column of the parity-check matrix, allowing to swap its columns together with the inp register.

expect on average to have M(rn + r )/2 bits set to 1, and therefore the same number of X gates in
their quantum encoding. Since all the gates can be applied in parallel, the depth of this stage is 1.

Column permutation: from H to Ĥ. The superposition obtained on the inp register will be com-
posed by basis states labeled as bitstrings of length n and weight r . The indexes of the qubits of
inp having state |1〉 correspond to the Information Set complement J , and we logically bind each
qubit of inp to a set of qubits of H corresponding to a column of H. This stage, corresponding to
line 3 of Algorithm 1, moves the columns of H indexed by J to the left of the matrix H, obtaining

the matrix Ĥ = [HJ | HI] on the qubits of H. This is equivalent to sorting the bitstring stored in
inp in descending order, simultaneously moving the associated qubits of H corresponding to the
columns of H. For this reason, we designed a quantum circuit to sort the bitstring stored in inp,
for which we can exploit the reversible sorting network circuit presented in Section 2.5. Figure 3(a)
depicts our proposal of a quantum circuit implementing a comparator element, denoted as quan-

tum comparator. It uses one additional qubit, denoted c , that, starting from state |0〉, will be put in
state |1〉 if the qubit denoted as a is in state |0〉. Only in this case do we swap the amplitudes of the
quantum state associated to a and b.

The gate count of a quantum column permutator, of which a circuit example is given in Fig-
ure 3(b), can be trivially derived by adding together the gate count of a single quantum comparator
together with the r additional swaps needed to swap the r elements of the column, i.e., 2 X gates
(to convert the positive to a negative control), 1 CNOT gate, and r + 1 CSWAP gates. Analogously
to the classical case, the gates belonging to distinct quantum permutators acting at the same layer
can be executed in parallel, as they compare and swaps different sets of qubits. Therefore, for
the depth computation, we can focus only on a single quantum column permutator per layer. A
significant reduction in the circuit depth is achieved rescheduling the CSWAP gates acting on H.
Indeed, the CSWAP gates inside a single quantum column permutator are sequentially locked as
they employ the same (ancilla) control qubit. By contrast, CSWAP gates from different quantum
permutators—acting on different pairs of elements of H—can be executed in parallel, as they em-
ploy different (ancillae) controls. Since each permutator requires r CSWAPs for the H register, we
can conclude that the number of CSWAPs required by a single quantum column permutator is less
than the number of overall permutators, (n− 1) log2 (n)(log2 (n) − 1). As a result, we can interleave
the swaps associated to different permutators, circumventing the dependence of the CSWAPs from
the same control qubit. This scheduling leads to a total depth of log2

2 (n) + log2 (n) + r − 1.

Quantum Gauss–Jordan elimination: from [Ĥ | s] to [H̃ | s̃]. One of the major challenges in
porting an ISD algorithm in its quantum form is the ability to find a reversible variant of the
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ALGORITHM 3: Reversible Gauss–Jordan Elimination

Input :L ∈ Fr×n+1
2 : augmented matrix, n > r

Data :B ∈ Fr (r−1)/2
2 : auxiliary vector initialized to all 0’s

C ∈ Fr (r−1)
2 : auxiliary vector initialized to all 0’s

Output :L in reduced-row echelon form

1 b ← 0, c ← 0

2 for x ← 0 to r − 1 do // x-iteration
// Part 1. Put 1 in pivot position if it contains a 0

3 if x � r − 1 then

4 for i ← x + 1 to r − 1 do // for all rows below pivot row
5 if Lx,x = 0 then // swap operation must be performed
6 Bb = Bb ⊕ 1 // ≡ Bb = 1

7 if Bb = 1 then // or equivalently, Lx,x = 0

8 swapRow(Lx, :, Li, :)

9 b ← b + 1

// Part 2. Put 0 in all elements above and below pivot

10 for i ← 0 to r − 1 do

11 if i = x then continue

12 if Li,x = 1 then // column addition operation must be performed
13 Cc = Cc ⊕ 1 // ≡ Cc = 1

14 if Cc = 1 then // or equivalently, Li,x = 1

15 Li, : ← Lx, : ⊕ Li, :

16 c ← c + 1

GJE. Indeed, as we saw in Section 2.3, the dominant cost of one iteration of Prange ISD variant is

associated to this stage. At this point, we have a matrix Ĥ ∈ Fr×n
2 and a vector s ∈ Fr

2, encoded in the
state of the quantum registers H and s, respectively. The goal is to perform a set of row operations

on the augmented matrix Lr×(n+1) = [Ĥ | s], obtaining at the end a new matrix H̃ = [H̃ |s̃]. In a

later stage, we have to check that the obtained matrix H̃ has an r×r matrix in its leftmost portion.
In the general case of M > 1 distinct syndromes, the augmented matrix L has size r ×(n+M), since
we want to represent all the possible M syndromes on the right portion of the augmented matrix.
However, all the additional syndromes, being treated as just other columns of L, have no impact
on the description of the algorithm, and hence we will continue to describe it for the basic case in
which M = 1.

The main challenges to the translation of Algorithm 2 in an appropriate reversible algorithm are
as follows: (C1) a data-dependent early-abort (line 6), (C2) the presence of a non-countable loop to
search for a pivot (line 3), and (C3) conditional operations acting on data also present in the con-
dition calculation. Algorithm 3 is semantically equivalent to Algorithm 2, but it also takes care of
removing all the previous challenges. Challenge (C1) is indeed common to all quantum algorithms.
Since we act on a quantum state composed of a superposition of distinct basis states encoding both
a failure and a success of the algorithm, we have no way to remove the basis states encoding a
failure from the superposition without compromising the whole superposition. To overcome the
problem, we need, later in our quantum circuit, an additional piece capable of detecting the failure
and hence act accordingly without performing any external observation. In our specific case, the

early abort of Algorithm 2 due to a singular submatrix in the leftmost r×r part of Ĥ is managed

through an a posteriori check on the presence of an identity submatrix in this portion of H̃, and
we therefore removed altogether the runtime check in Algorithm 3.

Challenge (C2), i.e., the presence of a non-countable loop to find the pivot (lines 3 of Algorithm 2),
has to be tackled with a countable loop. Our strategy consists into having a loop sweeping over
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all the rows i , with i starting from the one right below the pivot row x until the last row r − 1, and
swapping the ith row with the xth one only if the xth row does not contain a valid pivot. This is
shown in line 4 of Algorithm 3.

The presence of conditional operations in our circuit, which was our challenge (C3), is overcome
employing auxiliary vectors, namely B and C. To explain why they are needed, we first analyze
the conditional operations present in our classical algorithm. Classical conditional operations (i.e.,
if conditions) are generally translated in reversible operations through the help of controlled gates.
For example, each swap operations at line 8 of Algorithm 3 can be directly implemented with n
CSWAP gates, having as control one qubit belonging to B and target a pair of elements belonging
to columns Lx, : and Li, :. In that operation, the goal is to apply the CSWAP gates only if the pivot
of the row under analysis (Lx,x ) is in state |0〉. The use of an additional ancilla belonging to B is
required because it is not possible to apply the CSWAP between the qubits containing Lx,x and
Li,x , having Lx,x acting both as target and as control of the controlled gate. Therefore, if Lx,x is in
state |0〉, then we set to |1〉 the value of the corresponding ancillary qubits containing B (line 5),
using its value later to control the set of n CSWAPs. Overall, to take into account all the pivot
checks, we need a number of ancillary qubit equal to the number of times we execute part 1 of
Algorithm 3. Following the same line of reasoning, the additional vector C is required to store, in
part 2, the results of checking if the elements below and above the pivot are equal to |1〉. The sizes
of the new ancillary registers are therefore evaluated to be

|B| =
r−2∑
x=0

(
r−1∑

i=x+1

1

)
=

1

2
r (r − 1) |C| =

r−1∑
x=0

(
r−2∑
i=0

1

)
= r (r − 1),

and we will use |B| and |C| to denote as well the number of times we execute parts 1 and 2,
respectively.

Another point worth stressing is related, once again, to line 8. Indeed, the condition of line 7,
unlike the classic algorithm, does not check that the row i under analysis also contains a valid
pivot but only that the current pivot of row x is not valid. This means that if row x does not have
a valid pivot, then we will swap rows i and x even if row i does not contain an alternative valid
pivot. While for the candidate pivot of row x nothing changes, since we are exchanging qubits in
the same basis state, the rest of the row will change, since we are performing a swap on all the
elements. However, the only goal of part 1 is to set the pivot to |1〉, while part 2 will put all the
elements below and to the left of the pivot—and hence also the remaining elements of row x—to
|0〉 regardless of their previous state.

The circuit corresponding to Algorithm 3 is shown in Figure 4, which is similar to the one re-
ported in Reference [54]. In this circuit, we stored the two vectors B and C inside the two quantum

registers denoted as b and c. Remember also that the values of the matrix L, containing [Ĥ | s] at

the beginning of the computation and the matrix [H̃ | s̃] at the end, are stored on the two quantum
registers H and s.

The obtained quantum circuit requires an overall number of ancillae equals to |B|+ |C| = 3r (r −
1)/2. For what concerns the gate count, first we note that to translate each |0〉-control on the pivot
elements of part 1 into |1〉-control, we have to use a number of X equals to 2|B| = r (r −1). To check
that the qubit of the candidate pivot is |0〉 in part 1 and the elements under pivot are |1〉 in part 2,
we need to drive a CNOT targeting an ancilla (belonging to B or C, respectively). The total number
of CNOT required is therefore |B| + |C| = 3r (r − 1)/2. To swap elements of each row in part 1 and
to sum elements of each row in part 2, we need a total of |B| · (n +M) = 1

2r (r − 1)(n +M) CSWAP
and |C| × (n +M) = r (r − 1)(n +M) CCNOT, respectively.
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Fig. 4. Basic quantum circuit employed to perform the Gauss–Jordan elimination on the augmented matrix

[Ĥ | s] having r = 3 and n = 4. The quantum register containing the elements of the parity-check permuted

matrix is denoted by H, while the one containing the elements of the syndrome is denoted by s. b and c are

the registers associated to the two vectors B and C employed in Algorithm 3.

Compute Hamming weight of s̃. At this stage, the s register contains the representation of s̃.
To check if condition (ii) is true, that is, the Hamming weight of this register is t , we have to check
that the bitstring labeling the quantum basis states of s has weight equal to t . To perform such
a computation, we use a reversible variant of the classical binary adder tree design presented in
Section 2.6. Numerous papers have been published to show quantum circuits to perform integer
additions between two x qubit operands on quantum computers. The proposal in Reference [23]
exploits the Quantum Fourier Transform algorithm to perform quantum integer addition. The
main drawback of this approach is the use of controlled arbitrary rotation gates, which are difficult
to be translated into fault-tolerant gates, such as the Clifford+T gate set.

Subsequently, other approaches were proposed, porting techniques from the classical world into
reversible circuits. These techniques all rely on the use of X, CNOT, and CCNOT gates, that have
the main advantage of being less expensive to be implemented in a fault-tolerant fashion. For
example, the Cuccaro adder presented in Reference [20] has a depth of O(2x) and uses two single
ancilla qubits, while the one proposed in Reference [63] increases the depth to O(5x), while not
using any additional qubit. The first adder to go under the linear depth threshold was proposed in
Reference [24], which has the main drawback of requiring 2x additional qubits.

Since for all the proposed adders the depth of the adder circuit grows at most linearly with
the number of input qubits, and given that the widest adder employed in the Hamming weight
check circuit has a number of input qubits equal to log2 (r ), choosing an adder with respect to the
other does not have a significant impact on the depth of the global circuit, which will always stay
∈ O(log2

2 r ). However, since the number of adders required is r − 1, the use of a smaller number
of qubits for each adder is expected to have a bigger impact on the overall measures. We decided
therefore to use the adder presented in Reference [63], a reversible variant of the classical ripple
carry adder; we will refer to it as TTK adder. The TTK adder stores the sum of its input a and b
in the qubit where b is stored, with one additional qubit c for the carry-out. We need therefore
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Fig. 5. (a) Hamming weight compute and check subcircuits for the s register. The result of the addition

at each step is stored on the qubits marked with a black triangle. The final result is compared against the

Boolean complement of the natural binary representation of the constant t . (b) The oracle phase flip, involv-

ing the qubits containing the diagonal of matrix H̃ and the ones storing the Hamming weight of s.

exactly r − 1 carry-out ancillary qubits, and Figure 5(a) shows an example for the case in which
r = 4.

To determine the gate count for this subcircuit, we note that a TTK adder operating on i qubit
inputs requires 2i − 1 CCNOT gates, 5i − 5 CNOT gates, and has a circuit depth of 5i − 3. Replacing
these figures in Equations (4) and (5), we obtain the gate-count and depth reported in Table 1.
Notice how the number of gates and additional qubits required by this stage have to be multiplied
by M . However, since all the M syndromes are stored on distinct qubits belonging to s̃, all the
operations can be performed in parallel, and as such, the depth is not influenced.

At level i , the output of the sum of a single adder is stored on exactly i+1 qubits, as TTK’s design
reuses the qubits of one of the operands to store part of the result. Hence, in the final stage, the
final sum of a single syndrome will be stored on a register composed of log2 (r )+1 qubits, denoted
as hws. In the case of M > 1, the result of the M distinct adder trees will be stored on M distinct
qubits registers, denoted as hwsi , each of which has size log2 (r )+1. At this point, we should check
if hws—or one of the hwsi if M > 1—contains the binary representation of t . To this end, we XOR
into the qubits of hws the Boolean complement of the natural binary representation of t . This is
done to ensure that if a given state is such that Wt (hws) = t , then all the qubits contained in the
hws register will become |1〉. In this way, they can be used as control qubits in the multi-controlled
gate of the next stage. This operation is therefore performed via a set of X gates, as the number
being added (at most log2 (r ) + 1 if t = 0) is smaller than r and can thus be represented on the
same number of qubits. We need therefore to use log2 (r ) + 1 − log2 (t) = log2 (r/t) − 1 X gates to
perform the XOR. Thus, if the output of previous stage contains a state with the binary encoding
of t , then hws will be in the basis state |1log2 (r )+1〉. Once again, for circulant codes, the figures for
the X should be multiplied by M , while the depth stays unchanged.
Phase flip. To perform the phase flip of the oracle circuit, we need to put a set of q qubits in state
|1q〉 if both conditions (i) and (ii) are satisfied. Condition (i) can be verified by simply checking that

the r qubits of H containing the main diagonal of H̃ are in state |1〉. Indeed, given the description
of the QGJE circuit of Section 3.1, it is enough to check that all the diagonal elements are in state
|1〉 to ensure that there is an identity stored in the portion of H containing the leftmost r×r part of
L, hence ensuring that the original matrix was invertible. Condition (ii), however, checks that the
weight of the syndrome s̃ is equal to t . The previous stage of the oracle ensured indeed that if this
is the case, then the log2 (r ) + 1 qubits of hws were all in state |1〉. As explained in Section 2.4, at
this point, the flip in the sign of the amplitude associated to the basis state containing |x∗〉 in the
first n qubits can be obtained by performing a multi-controlled Z gate, Cq(Z), applied on all the
q = r + log2 (r ) + 1 qubits storing the output of the oracle function, as shown in Figure 5(b).

For circulant codes, additional care must be taken. Indeed, at this point, we should check, as

before, that the r qubits on the diagonal of H̃ are in state |1〉. Differently from before, however,
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we should also check all the distinct M syndromes obtained at the end of the QGJE procedure to
check if (at most) one of them has the correct weight t . Since the syndromes are obtained from
the shift of the single original syndrome s, we are sure that all the distinct M syndromes with the
correct weight will be associated to a distinct choice of J , corresponding to a simple (and known)
shift of the original J found for s. For this reason, instead of involving M distinct Cq(Z) gates,
each one controlled by the same r qubits of the identity, but distinct log2 (r ) + 1 qubits associated
to the Hamming weight check results of the previous stage, we can use a single Cr (X) gate for
the identity check, that has the aim of setting an additional ancilla to |1〉 if the identity check is
positive. Then, we can perform M distinct Clog2 (r )+2(Z) gates, having in common only the single
ancilla of the previous stage, while using M distinct sets of log2 (r ) + 1 qubits storing the weight
of the M syndromes. The depth, for this reason, is equal to M .
Diffusion operator. The diffusion operator employed by our circuit, as already explained in Sec-

tion 2.4, can be expressed as U †
D
U1UD , in which UD is the quantum circuit preparing the Dicke

state explained in Section 3.1 and U †
D

is the same sequence of gates applied in reverse order, with
a sign change in the angles of the Ry gates. The circuit corresponding to U1, once again, can be
implemented as a Cn(Z) gate applied on the input qubits and two walls of X gate before and after it.

Number of repetitions. As already seen in Section 2.4, the Oracle and Diffusion operators must

be repeated roughly

√
|D |

0.288·M ·(n−t
r−t )

times, with the numerator denoting the size of our domain—

i.e.,
(n
r

)
—and the denominator the number of solutions. If M = 1, then the number of solutions

is trivially .288
(n−t
r−t

)
, as we saw in Section 2.3. For circulant cryptographic schemes, having the

representation of M > 1 distinct syndromes allows us to solve M distinct instance of the syndrome
decoding problems, each of which has the same starting parity-check matrix H and the same error
weight t and, most importantly, a single solution. This strategy, known as decoding one out of many,
or DOOM for short, and presented for the first time in Reference [60], translates into M distinct

solutions for our function and a quantum speedup of
√
M . To conclude, following the observations

highlighted in Section 2.4, we fix the number of repetitions of the Oracle and Diffusion stage to

0.58278 ·
√

|D |
0.288·M ·(n−t

r−t )
.

3.2 Reducing Width and Depth of the Quantum Circuit for QGJE

The authors of Reference [54] propose some optimizations to the basic implementation of Sec-
tion 3.1. In this section, we propose a set of optimizations to the QGJE circuit that encompass
the ones of Reference [54] and carry the savings further. Since all the optimizations focus on the
leftmost r×k portion of the augmented matrix L—i.e., the portion storing the parity-check matrix
H—we will describe them disregarding the rightmost part of L, containing the M syndromes (see
also Figures 6(a), 6(b), 7(a) and 7(b)). We take Algorithm 3 and its quantum circuit implementation
shown in Figure 4 as starting points.

Optimization 1—CSWAP to CCNOT. It replaces all the CSWAPs of part 1 with CCNOTs. In-
deed, the computation of the swap control condition and the actual swaps (lines 7 and 8) can be

replaced by the bitwise sum H̃x, : = H̃x, : ⊕ H̃i, :, conditioned on the value of H̃x,x being 0. This oper-
ation, although yielding a linear combination for row x containing the pivot element as opposed to
a simple row swap, has nonetheless the effect of setting the pivot to |1〉, which is the goal of part 1
of the QGJE algorithm. The underlying assumption of this optimization is that, despite common
universal quantum gate sets include neither CSWAP nor CCNOT, they offer better translations of
the CCNOT in terms of both number of gates and depth with respect to the CSWAP.
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Fig. 6. Quantum subcircuits highlighting the first three optimizations. The red wires show the qubits corre-

sponding to the pivot element of the row that we need to set to |1〉 (part 1), while the blue wires the qubit

that we need to set to |0〉 (part 2). (a) The effect of optimization 1, which replaces all the swaps of part 1

with CCNOTs. Additionally, the green boxes highlight the gates and qubits that can be removed thanks to

optimization 2. Building up on the previous optimizations, the red boxes in (b) show the gates that can be

removed after optimization 3.

Optimization 2—Avoid clearing pivot column. It substantially improves part 2 by deleting
all the CCNOTs involving the elements in the same column of the pivot ones. In part 2, when we

find an element in position H̃i,x with value |1〉, we should add to row i under analysis the pivot row

x , to set it to |0〉. However, this addition is not required for the element H̃i,x itself, since we will
not use its value in the rest of the circuit, as, to check the identity later, we will just use the value

of the r qubits containing the diagonal of H̃. As a final result, the whole vector C is now useless,
since all the CCNOT gates can directly use as control qubit the one Hi,x . This optimization leads
therefore to a reduction of |C| = r (r − 1) CCNOTs and the same number of qubits. For simplicity,
we will still use |C| to refer to the total number of part 2.

Optimization 3—Removing 0-controlled gates. After part 2 of each outer iteration—that we
call x-iteration—all the qubits corresponding to elements of the matrix at column x (except the
one containing the pivot) will be in state |0〉. For this reason, all the CCNOTs involving them in
the following x-iterations are useless.

Optimization 4—Skipping computation of last r columns. It is only valid for the Prange
variant of ISD algorithm, in which we do not need the rightmost r×k submatrix of the row-reduced

H̃ matrix at the end of the computation but only the leftmost r×r one. For this reason, we can
completely avoid all the row additions (i.e., CCNOT gates) involving those columns. In other words,
for each of the |B| + |C| = 3

2r (r − 1) operations of parts 1 and 2, we can spare k CCNOT gates.

Optimization 5—Removing redundant X gates. In part 1 of Algorithm 3, to control if the
pivot under analysis is 0, we need to check that the corresponding qubit is in state |0〉 by using
it as control in a CNOT gate. Since quantum circuits usually work with |1〉-controlled gates and
not |0〉-controlled ones, to have a semantically equivalent circuit we need, for each of the |B| pivot
checks, an X gate applied on the control right before and right after the CNOT. In Reference [54],
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Fig. 7. Continuing Figure 6. The red wires show the qubits that we need to set to |1〉 (the pivots), while

the blue wires represent the qubits that we need to set to |0〉. The yellow boxes of (a) show the effect of

optimization 4, which allows excluding operations on the rightmost V submatrix of Ĥ. The purple boxes of

(b), instead, describe the X gate removed after optimization 5, with the arrows signaling the rearrangement

of the remaining ones used to reduce the overall depth of the circuit. The black arrows, however, show the

gate rearrangements of CCNOTs due to optimization 6, wich allows us to anticipate the first gates of part 2

and hence reduce the global depth.

the authors propose to reduce the number of X to just 2(r − 1) by applying a single X gate on
the candidate pivot only at the beginning and at the end of each part 1. With this optimization,
we improve the proposal by anticipating the first X required to transform the |0〉 control into
a |1〉 control right after the first row addition of the part 1 of the previous x-iteration. In this
way, the overall depth is not affected by the X gates, except for a constant additional factor of
1 due to the first X of the first part 1, which, however, can be easily interleaved with previous
subcircuits.

Optimization 6—Rescheduling the setting of the last pivot. It rearranges gates to reduce
the overall depth of the circuit. In part 1, in the last sequence of swaps involving the last row of
the matrix, we can postpone the CCNOT on the pivot until the last operation of the sequence of
CCNOTs applied on the rightmost r×r matrix. The fundamental observation is that, differently
from previous rows, we do not need the pivot qubit in the rest of the circuit. Furthermore, in part 2
of the same x-iteration, the other control qubit used in this CCNOT—i.e., the qubit in the same
column of the pivot, but on row r − 1—will be involved only in the last part 2 iteration of the same
x iteration, while all the other CCNOTs of part 1 involve qubits that will be used earlier.

Finally, we remark that the whole QGJE circuit is extended in a straightforward fashion to in-
clude one or more syndromes, depending on if the starting code is a circulant one. As explained
before, they can be treated just as other columns of the matrix, on which we cannot skip any
operation, so it has an overall number of CCNOTs equals to (|B| + |C|) · M , which is equal to
3
2r (r − 1)M .

The final gate count and depth for this improved version are reported in Table 1. The depth was
experimentally confirmed for increasing value of r , for which we adapted the approach used in
classical combinatorial circuits reported in Reference [15]. The idea is to represent the circuit as a
directed acyclic graph, in which each node corresponds to a gate applied to a given (set of) qubit(s).
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Table 1. Number of Quantum Gates as a Function of the Linear Code Parameters (n, k , r = n − k) and the

Wanted Hamming Weight (t ) for the Different Quantum Subcircuits Used to Solve Prange ISD

State Preparation Oracle Diffusion

Cost Dicke Data Pack Gaussian Hamming weight Amplitude

metric state preparation columns elimination compute and check flip

X r r+rn
2 2(n − 1) log2 (n)(log2 (n) − 1) 2(r − 1) M(4r − log2 (r/t) − 3) 0 n + 2r

CNOT 5nr − 5r 2 − 2n 0 (n − 1) log2 (n)(log2 (n) − 1) 1
2r (r − 1) M( 92r − 5 log2 (r ) − 11) 0 10nr − 10r 2 − 4n

CCNOT 0 0 0 1
6r (r − 1)(5r + 9M − 1) M(3r − 2 log2 (r ) − 3) 0 0

CSWAP 0 0 (n − 1) log2 (n)(log2 (n) − 1)(r + 1) − n
2 0 0 0 0

Ry 4nr − 4r 2 − 2n + 1 0 0 0 0 0 8nr − 8r 2 − 4n + 2
Cr (X) 0 0 0 0 0 1 0

Clog2 (r )+2(Z) 0 0 0 0 0 M 0
Cn(Z) 0 0 0 0 0 0 1

Depth ≤ 27nr−12n−27r 2+3
r−2 1 log2

2 (n) + log2 (n) + r − 1 3
2r

2 − 1
2r +M + 2 log2

2 r + 7 log2 (r ) − 4 M ≤ 27nr−12n−27r 2+3
r−2

Qubits n rM + rn (n − 1) log2 (n)(log2 (n) − 1) 1
2r (r − 1) M( 5r

4 − 1) 1 0

Except for the multi-controlled Z and X gates, all the gate figures of the Oracle phases should be multiplied by 2 to take

into account the uncomputation stage. Each multi-controlled gate, denoted as Cm (·), involves m control qubits and a

single target qubit. The M variable represents the number of syndromes represented in the circuit, which is r for

circulant codes and 1 for the other ones.

This counting approach gave us a depth of 3/2r 2 − 1/2r + 2+M , which, since M ≤ r , results in an
asymptotic value of O(r 2). Even more interestingly, in the general case in which we also need the
right part of the matrix after QGJE and we cannot apply Optimization 4, the resulting depth only
increase by a factor of k , keeping it in the order of O(r 2).

4 QUANTITATIVE EVALUATION OF THE SOLUTION EFFICIENCY

In this section, we provide quantitative measures for all code-based cryptographic schemes that
advanced to the fourth stage in the latest NIST report [49]. We provide a direct comparison between
our proposal and all the relevant works solving the same problem, together with a comparison to
the quantum algorithms used to attack AES. We additionally provide a translation of our quantum
gates into the Clifford+T gate set and provide a definition of quantum security margin inspired
from the one used in Reference [25], following the recommendation by NIST. Finally, we make an
asymptotical analysis of our quantum circuit depth for increasing values of n.

4.1 Conversion to Canonical Gate Sets

In the previous sections, we used abstract multi-qubits quantum gates to model the logic of our
quantum circuit. However, these abstract gates do not accurately reflect the capabilities of con-
crete quantum computers, which in turn offer only 1- and 2-qubits gates. Additionally, different
implementations of quantum computers rely on different gate sets, making it harder to target a
general architecture when designing a quantum algorithm. Finally, much work is spent into opti-
mally decompose commonly used quantum gates, especially for 3-qubits gates (like the CCNOT
and CSWAP), and arbitrary, optionally controlled, rotation gates (like the Ry or Z). Willing to ob-
tain precise, concrete estimates for the quantum gate count required to compute our ISD solver,
we analyze two different translations of the multi-qubit gates we employ into simpler ones, each
one with a different focus.

Translating multi-controlled gates. We only translate multi-qubit gates acting on more than
three qubits, namely the Cm(Z) gate and Cm(X) gates, withm being the number of controls, match-
ing the current state of the art for complexity measures. Since such gates are repeated at each
iteration of Grover’s algorithm, their decomposition should not dominate the depth of the circuit,
i.e., it should be smaller than the QGJE circuit having depth O(r 2), and width smaller than the data
representation portion of the circuit, which has depth O(rn + r ). The problem of decomposing a
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Fig. 8. Decomposition of an C3(Z) gate into CCNOT gates and a single CZ. The decomposition requires two

additional qubits and has depth 3.

Cm(Z) gate is indeed equivalent to the one of decomposing a Cm(X) gate, since we can replace
an Cm(Z) with an Cm(X), taking care to add an H gate before and after on the target qubit. Dif-
ferent approaches to decomposing multi-controlled gates were explored in literature, focusing on
reducing width and depth with respect to the number of control qubits, using both approximate
and exact decompositions. The work proposed in Reference [6] shows two exact decomposition
for the multi-controlled Z requiring respectively O(m) gates and O(m) qubits or O(m2) gates and
O(m2) depth without additional qubits. Our approach stems from both Reference [53] and Refer-
ence [6, Section 7.1], with a special focus on depth. For the case in whichm is equal to a power of
2, minus 1, the decomposition requiresm−2 additional qubits and resets all of them to their initial
state. The gate count is of 2m − 4 CCNOT, plus 1 CZ. Such a decomposition, shown in Figure 8 for
an C3(Z) gate, has a depth equal to log2 (m + 1) + 1.

An interesting approach, described in Reference [58], shows a linear-depth decomposition of
Cm(X) gates using no additional qubits. The work uses a circuit in which all gates are controlled
Rx rotation gates with arbitrary angles and precision. As described in Reference [41], controlled
Rx gate can be further expanded into a single Rx and two CSWAP gates. This approach, however,
did not show any practical advantage in our circuit, producing almost identical figures, since the
main contribution to depth comes from the QGJE circuit.

Translation into a fault-tolerant gate set. The second gate basis considered in this work is
the Clifford+T one, a universal set of gates introduced in Reference [17], and considered the most
promising one for fault-tolerant quantum computation. The gates belonging to the Clifford group
are generated starting from the set {H,CNOT, S}. As a consequence, all the Pauli gates employed
in our work, namely X and Z, can be directly derived from them, as Z = S2 and X = HS2H.
Additionally, we can derive the CZ employed in the two reflections required by Grover’s algorithm
at each iteration by applying a H gate on the target qubit, followed by a CNOT having the same
control and target qubit as the CZ and a final H gate on the target qubit.

However, the CCNOT, CSWAP, Ry, and the multi-controlled Z gates employed in our circuits
cannot be generated using the Clifford gates only. The inclusion of the T gate to the Clifford basis
is indeed fundamental to reach the universality, as such inclusion allows us to approximate all
the quantum gates up to an arbitrary small approximation factor. However, T requires extensively
more resources to be implemented in a fault-tolerant fashion with respect to the Clifford gates [39],
and for this reason most of the proposed algorithms in cryptography considers the number of T
gates and the T-depth the most important measure, where the T-depth is defined as the number
of stages in the circuit involving only non-Clifford group gates. To offer a comprehensive analysis,
we use as well the additional measure, proposed in Reference [38], of the product of the number
of qubits times the T-depth of the circuit.

Table 2 summarizes the translations used in our work. In fact, we are only concerned with the
translation of the CCNOT and Ry gate, since the CSWAP gate can be immediately obtained using
1 CCNOT gate and two CNOT gates, while the multi-controlled Z gate can be decomposed into
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Table 2. Translation of the Non-Clifford Gates Employed in Our Circuit

Gate to Type & number of gates for translation Additional Equivalent

translate H CNOT S T Qubits T-depth

CCNOT [37] 2 8 1 4 1 1

CCNOT† [37] 1 2 3 0 0 0

Ry [42] 151 0 82 149 0 149

The Ry gate is translated using the approximation algorithm presented in Reference [42] using a precision of

10−15. For the CCNOT translation, we used the results of Reference [37], requiring shallower circuits with respect

to all the other proposals.

multiple CCNOT gates plus 1 CZ, as shown in the previous section. Different techniques to effi-
ciently decompose CCNOT gates have been explored in the literature, trading off number of qubits,
number of T gates, and T-depth. For example, in Reference [2] the authors present a translation
that, without any additional qubit, requires 2 H, 7 T, and 7 CNOT gates, with an overall T-depth of
3. The use of a single additional qubit, however, allows them to obtain a T-depth of 2. However, in
Reference [37] the authors, by combining two previous techniques presented in References [28, 59],
show a T-depth 1 decomposition of the CCNOT requiring only a single additional qubit, initialized
in state |0〉, and restored to its value at the end. Their circuit is further detailed in Reference [36,
Appendix C], in which they also show a circuit for the CCNOT† not relying on non-Clifford gates
but only on an additional measurement operator and a classical bit.

For our quantum circuit, the technique proposed in Reference [37] leads to better T-depth ·
Width measures with respect to the others. To not alter the depth results presented in the previous
sections, the number of additional qubits required to translate the CCNOT and CSWAP gates must
still allow the same degree of parallelization between them. For the CSWAP gates involved in
the column permutation of the oracle, we should have a number of additional qubits equal to
the maximum number of CSWAPs that we can apply in parallel. Applying the same thoughts of
Section 3.1, we obtain an additional number of qubits equal to r . On the same line of reasoning,
the number of parallel CCNOT involved in the QGJE circuit is in the order of r 2. As a consequence,
since we can reuse both set of qubits in different submodules, the total number of additional qubits
required is the maximum between the two, i.e., r 2.

The only gate among the ones employed by us for which there is no straightforward translation
is the Ry gate. An active field of research is indeed focusing on efficiently approximating single
qubit gates with arbitrary rotations using only gates belonging to the Clifford+T. In Reference [42],
they propose an exact synthesis algorithm showing how, fixing an arbitrary precision ϵ , on average
3.067 log2 (1/ϵ) − 4.322 T are required to achieve a given quality of approximation. An ϵ = 10−15,
a value sufficient for most applications [42], gives us a T-count of ≈149, a value confirmed by the
extensive usage of their tool in our metrics. Since Ry(θ ) = SHRz(−θ )HS†, we can therefore say that

the T-count is equivalent to ≈149. Note that although S† does not belong to the Clifford basis, it is
equivalent to S3. Since the gates obtained from the decomposition of the Rz gate are sequentially
applied to the same qubit, the T-depth of the translation is equivalent to the T-count.

4.2 Evaluating the Cryptanalytic Effort on NIST Post-quantum Code-based
Cryptosystems Standardization Candidates

To assess the security of the different cryptographic schemes proposed, NIST defined in its call
for proposal [52] a classification method based on security categories obtained through a compar-
ison with existing NIST standards in symmetric cryptography. To this end, NIST defined three
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Table 3. Number of Gates and Qubits Required by Our ISD Circuit Design for Three Code-based

Cryptosystems: BIKE, HQC, and McEliece

Algorithm Sec. Code parameters Grover Grover gates Total

Level n k t Iter.s X CNOT CCNOT CSWAP RY CZ Gates Depth Qubits D ·W
BIKE (key) L1 24, 646 12, 323 142 65 95 97 108 101 96 65 108 93 29 123
BIKE (key) L3 49, 318 24, 659 206 96 129 131 142 135 129 96 142 127 31 158
BIKE (key) L5 81, 946 40, 973 274 130 164 166 178 170 164 130 178 162 33 195

BIKE (message) L1 24, 646 12, 323 134 61 91 93 104 97 92 61 104 89 29 119
BIKE (message) L3 49, 318 24, 659 199 93 125 127 139 132 126 93 139 123 31 155
BIKE (message) L5 81, 946 40, 973 264 125 159 161 173 165 159 125 173 157 33 190

HQC L1 35, 338 17, 669 132 59 91 93 104 97 91 59 104 89 30 119
HQC L3 71, 702 35, 851 200 93 126 128 140 133 127 93 140 125 32 157
HQC L5 115, 274 57, 637 262 123 159 160 173 165 159 123 173 157 34 190

McEliece L1 3, 488 2, 720 64 72 94 97 101 101 97 72 102 92 22 114
McEliece L3 4, 608 3, 360 96 93 116 119 124 123 119 93 125 115 23 138
McEliece L5 6, 688 5, 024 128 131 155 159 164 163 158 131 165 154 24 178
McEliece L5 6, 960 5, 413 119 132 156 159 164 163 159 132 165 155 24 178
McEliece L5 8, 192 6, 528 128 150 174 178 183 182 178 150 184 173 24 197

All the gates are considered to have the same impact on the overall measures. We report as well the overall depth of

the circuit for our proposal, and we extend the analysis with the D ·W measure, multiplying together the depth and

the width (i.e., the number of qubits), which better captures the overall cost of our proposal. Except for the code

parameters n, k , and t , all the values are expressed in base-2 logarithm.

distinct levels for public-key encryption, namely 1, 3, and 5, corresponding to a computational ef-
fort comparable to or greater than the one required for key search on the AES block cipher with a
128-bit key (AES-128), 192-bit key (AES-192), and 256-bit key (AES-256), respectively. Table 3 con-
tains the parameter set proposed for each of the cryptographic schemes under scrutiny, with the
submitters of McEliece cryptographic scheme proposing three distinct parameters for the level 5
security.

Starting from the closed-form equations reported in Table 1, and additionally converting the
multi-controlled gates into simpler ones as explained in Section 4.1, we show in Table 3 the assess-
ment of the effort needed to attack the three code-based cryptosystems being evaluated in NIST’s
post quantum standardization call: Classic McEliece [12], BIKE [3], and HQC [47]. In the table, we
report the number of gates, divided by kind, required to build our quantum circuit to solve the SDP
problem using Prange’s ISD variant. In the same table, we also report the total number of gates
required, considering an equal cost for all of them, as implied by NIST in Reference [52]. Last, for
each cryptographic scheme, we report the depth, the number of qubits (also known as width) and
the Depth ·Width metric, as suggested in Reference [38].

4.3 Comparing Computational Efforts with Breaking Real AES

Since NIST call assess the cryptographic security of PQC proposals by relating them to the compu-
tational effort required to break AES with a quantum computer, we compare our proposal to the
current state-of-the-art implementation for the acceleration of AES through the usage of Grover’s
framework [67], which extensively relies on the metrics related to the Clifford+T gate sets. The
proposal improves on all the previous works [30, 37, 44] in terms of the CCNOT-Depth · Width
metric and additionally highlights how the figures shown in Reference [37] arise from a bug in
the Q# framework used in the implementation. We note that the work of Reference [44], although
having slightly worse figures in terms of the CCNOT-Depth · Width metric, has nonetheless the
best values in terms of all the gate counts and the CCNOT-Depth alone. Moreover, the work addi-
tionally reports the overall depth of the circuit and not only the CCNOT-depth. Later, two other
works came out in Reference [32] and Reference [66]. However, both of them only target AES-128,
and therefore we did not use their results in our comparison. In our analysis, we additionally take
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Table 4. Computational Effort Required to Break AES via Grover-based Key Search

Using the AES Implementation in References [67], [44], and [33]

(Not Peer-reviewed) Compared to the Computational Effort to Solve the

ISD Problem on BIKE, HQC, and Classic McEliece with Our ISD Implementation

Sec. Algorithm Qubits Clifford + T-measures

Level T-Count T-Depth T-Depth ·W
L1 AES [67] 9 80 76 86
L1 AES [44] 10 80 76 86
L1 AES [33] 13 80 71 84
L1 BIKE (key) 57 110 91 121
L1 BIKE (message) 57 106 87 117
L1 HQC 59 106 87 117
L1 McEliece 41 105 90 112

L3 AES [67] 10 113 108 118
L3 AES [44] 10 112 108 118
L3 AES [33] 13 112 103 116
L3 BIKE (key) 61 144 125 156
L3 BIKE (message) 61 141 121 153
L3 HQC 63 142 123 155
L3 McEliece 43 127 113 135

L5 AES [67] 10 145 140 150
L5 AES [44] 11 145 140 151
L5 AES [33] 13 144 135 148
L5 BIKE (key) 63 180 160 193
L5 BIKE (message) 63 175 155 188
L5 HQC 65 175 155 188
L5 McEliece 45 167 152 176
L5 McEliece 45 168 153 176
L5 McEliece 45 186 171 195

All the values are expressed in base-2 logarithm.

into account the work presented in Reference [33], that, while offering an extensive review of all
the previous technique, additionally improves on all of them in all the metrics. To the authors’
knowledge, this work has not been peer-reviewed yet. Table 4 reports all the relevant T measures
for each of the cryptographic schemes listed in Table 1 and a comparison of our results with respect
to the Grover-based AES key search in References [67], [44], and [33].

To have a fair comparison, we elaborated all the AES figures reported in the works under anal-
ysis. First, while, due to unicity distance constraints, the number of ciphertexts needed to uni-
vocally find the key with high probability is equal to 2, 2, and 3 for AES-128, -192, and -256, re-
spectively [37]; nonetheless the work presented in Reference [21] shows that the computational
complexity of AES is equivalent to one call to a single AES circuit. For this reason, we used a
number of AES instances equal to 1 for all proposals. Furthermore, when using the AES circuit
in Grover’s framework, we need an uncomputation stage to restore all the qubits to their original
values, effectively doubling the gate count of the oracle. Additionally, the oracle instance requires
a multi-controlled X gate, with the number of controls equal to the block size of AES, that is, 128.
Finally, while all the works on AES omit the diffusion stage from their analysis, we also take into
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account the multi-controlled Z required by this stage, with the number of controls being equal to
k for an AES-k variant, with k = {128, 192, 256}. For the multi-controlled gates, we used the same
decomposition shown in 4.1. To conclude, we set the number of Grover’s iterations for all AES

proposals to the optimal value of 0.58278
√

2k , as discussed in Section 2.4.
To rephrase the CCNOT measures used by all the AES proposals in terms of the T measures

used in our work, for both Reference [67] and Reference [44] we used the T-depth 4 conversion
of Reference [2], since it results in better T-Depth · Width values. However, the proposal of Ref-
erence [33], due to the higher number of qubits and lower number of CCNOT gates with respect
to the other proposals, shows better results when the T-depth 1 translation using one ancillary
qubit [37] is used.

In the following, exploiting the figures obtained in Section 4.1, we detail how we retrieved the
T measures for all the different subcircuits employed in our proposal. For the Dicke state, the only
gates involving a T gate in their decomposition are the Ry ones, each of which requires ≈149 T
gates. The same assumptions made in Reference [7] for the circuit depth, namely the possibility
of parallelizing Ry gates involved in different subparts, can be used to derive a straightforward T-
depth of O(n). The T-count of the subcircuit to permute the columns of matrix H can be obtained
by simply multiplying the number of CCNOT and CSWAP by 7. The T-depth can be obtained using
a way of reasoning equal to the normal depth. Since indeed CSWAPs and CCNOTs belonging to
different comparators can be interleaved, we can also parallelize the T gates involved in their
decomposition, leading to a T-depth equal to log2 (n)(log2 (n) + 1) + O(1). For the Q GJE circuit,
the only gates involved in the relevant measures of this stage are the CCNOTs. The T-count is
simply obtained by multiplying the overall CCNOT-count by 7. The T-depth, instead, can be taken
as equal to the original depth since, once again, the assumptions originally made in the evaluation
of the depth still holds. The only non-Clifford gate of the Hamming weight compute and check
stage is the CCNOT gate, so the T-count is simply obtained by multiplying the figures by 7. The T-
depth can be roughly approximated to the original depth, since the circuit provides a high degree
of parallelization between layers. Finally, with respect to the multi-controlled gates, Reference [59]
shows a decomposition requiring 8m T gates and a T-depth of 2 log2 (m)+1, using the same amount
of additional qubits of our previous decomposition.

We observe from our results that all the cryptographic schemes analyzed require considerably
more effort to be broken than the corresponding symmetric ciphers employed as a gauge of their
security level. These results indicate that, with respect to an attack conducted with our implemen-
tation of Prange’s ISD, the choices made by the proposers of Classic McEliece, BIKE, and HQC
are strongly conservative in terms of security. We highlight that the difference between the D ·
W measure of our proposal and the ones of the AES implementations is significantly lower for
the McEliece cryptographic scheme at level 3 with respect to all the others. These findings are
consistent with the ones reported in Reference [25].

4.4 Constraining the Depth of the Quantum Circuit

Motivated by the difficulty of running extremely long serial computations, in its original call for
proposal [52] NIST suggests also taking into account quantum-accelerated attacks in which the
quantum circuits are restricted to a maximum depth, called MAXDEPTH, with plausible values equal
to {240, 264, 296}. Under depth constraints, it estimates the quantum gates needed to recover the
key on AES to be equal to QAES/MAXDEPTH, with QAES equal to 2170 for AES-128, 2233 for AES-192,
and 2298 for AES-256. To obtain such values, NIST likely adapted the figures for the quantum attack
to AES proposed in Reference [30], the only one available at the time of the call for proposals, to
a depth-constrained parallel version of Grover’s algorithm.
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Considering a partition of the whole search space into S disjoint sets, a parallel version of
Grover’s algorithm assigns each set to a distinct quantum circuit, hence allowing the execution
of all the circuits in parallel. Denoting as N the number of Grover iterations required by a sequen-

tial Grover’s algorithm, this value is reduced to N /
√
S in its parallel version. At the same time, both

the depth Dit and number of gatesGit required by a single Grover iteration remain approximately
equal. Therefore, by parallelizing Grover search across S quantum instances, we reduce the total

depth of a single quantum circuit from the original N ·Dit down to N ·Dit/
√
S . Analogously, the

total number of quantum gates required by a single circuit is equal to N ·Git/
√
S .

Nonetheless, the overall computational effort required by the parallel version of the algorithm
is computed by considering a sequential execution of all the quantum circuits, i.e., by multiplying
by S the results obtained for a single instance, obtaining therefore the following expressions for
the overall depth and number of gates, respectively:

Dp =
√
S ·N ·Dit , (7)

Gp =
√
S ·N ·Git . (8)

Once we constrain the depth of a single quantum circuit to the depth values required by NIST,

we derive MAXDEPTH = N ·Dit/
√
S , and henceDp = S ·MAXDEPTH. By using the values of

√
S obtained

from the previous equation, we can restate Equation (8) as

Gp =
N 2·Git ·Dit

MAXDEPTH
, (9)

which can be employed to derive the plausible definition of QAES used by NIST as

QAES = N 2·Git ·Dit . (10)

Additionally, we can derive the number of instances as

S = (N ·Dit /MAXDEPTH)2.

Finally, note that the previous equation immediately produces an alternative formulation of the
overall depth as

Dp =
N 2·D2

it

MAXDEPTH
. (11)

Using this parallel approach, the QAES values obtained by replacing the results of Reference [30]
in Equation (10) are almost identical to the ones estimated by NIST in Reference [52], as we show in
Table 5, and not much different to the ones obtained using the results in Reference [44]. However, if
we consider the implementation of the quantum circuit for AES in Reference [67], then the results
show a reduction of roughly 210. However, Reference [67] only reports the figures related to the T
gate, avoiding the discussion on the overall depth, making the comparison with the other works
only partial. Finally, the gap with the NIST estimates increases to roughly 225 if we consider the
proposal presented in Reference [33], which, however, has not been peer-reviewed yet.

Relying on the same kind of parallelization technique and the QAES values specified in the orig-
inal NIST requirements [52], in Reference [25] the authors derive a parameter called quantum
security margin, denoting the ratio between the overall depth Dp of the parallelized version of
Grover’s framework adapted to Prange algorithm, and the number of gates QAES/MAXDEPTH esti-
mated by NIST to recover the key of AES at the same level. By using Equation (11), we can observe
that this ratio will be given by

N 2D2
it

MAXDEPTH

/ QAES

MAXDEPTH
=

N 2D2
it

QAES
,
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Table 5. QAES Values for the Parallelized Version of the

Quantum Implementation of AES for All Three

Computational Tasks

Quantum AES QAES

implementation AES-128 AES-192 AES-256

[52] 170 233 298
[30] 169 232 298
[44] 167 233 298
[67]♦ 159 223 288
[33] 154 219 283

♦Values computed considering only the T-count and T-depth.

The value proposed by NIST in Reference [52] are almost identical

to the ones obtained substituting the results in Reference [30] in

Equation (10). We show as well the QAES values obtained using the

results in Reference [44], the most up-to-date peer-reviewed

implementation of a quantum circuit for AES showing also

metrics related to the overall depth and number of gates. However,

Reference [67] do not report values related to the overall depth,

hence the computation of the QAES value is based only on the

number of T gates and the T-depth. Finally, we report the QAES
values obtained using the results in Reference [33], which, to the

authors’ knowledge, has not been peer reviewered yet.

whose value is independent of the MAXDEPTH parameter. Table 6 shows a comparison between Ref-
erence [25], which estimates the depth of a single Grover iteration to r 2.5, and our exact depth
measures obtained using the depth values taken from Table 3 and the T-depth values taken from
Table 4. The security margin is obtained therefore by subtracting from the log2 of the number of
quantum gates required by AES, the log2 of the depth of the code-based cryptographic scheme at
the same level. We note that the number of iterations in our work is almost the same as in Ref-
erence [25]. As explained in Section 2.3, we indeed take into account also the probability that a
random r×r matrix is non-singular and as well we set the success probability of Grover to .84458,

producing a negligible increase of .58278/
√
.288 ≈ 1.09 in the number of iterations. With our pro-

posed implementation, the security margin is reduced for all the cryptographic schemes, with the
considerable decrease for BIKE and HQC due to the

√
r reduction in the number of Grover itera-

tions achievable for circulant codes. Most importantly, the already low security margin reported
in Reference [25] for the parameters choice of the level 3 version of Classic McEliece, also taken
into account by NIST in Reference [49], is further reduced in our circuit implementation by 7 bits,
failing to pass the required security with respect to its AES counterpart. Moreover, considering
the T-depth values, the security margin is further reduced by 4 bits.

Since NIST, in the original submission requirements [52], defines estimates for AES in terms
of the number of quantum gates, in the last four columns of Table 6 we also report additional
measures expressing the ratio between the overall number of gates Gp of the parallelized version
of Grover’s framework adapted to Prange algorithm and the ratio QAES/MAXDEPTH. In this case, it
is not possible to ignore the MAXDEPTH values as we did before, and for this reason we report in
Table 6 figures related to each suggested value of MAXDEPTH. Note that, to have up-to-date figures,
we use the values of QAES obtained in Reference [44], and reported in Table 5, since it is the
most up-to-date work showing measures related to the overall depth and number of gates. The
observations on the security of McEliece parameters proposed for level 3 is confirmed, with the
number of security bits falling behind the other candidates for the same level, though still above
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Table 6. Results of the Parallelization of Our Proposed Algorithm, Required to Comply with the Upper

Bounds on the Values of the MAXDEPTH Suggested by NIST for a Single Quantum Circuit

Algorithm Sec. Depth margin Circuit Overall Overall Gates

Level [25] Table 3♦ Table 4� Instances Depth Gates margin

BIKE (key) L1 41 17 13 {107, 59, 0} {147, 123, 93} {161, 137, 108} {34, 34, 37}
BIKE (key) L3 47 21 17 {174, 126, 62} {214, 190, 158} {229, 205, 173} {36, 36, 36}
BIKE (key) L5 53 26 22 {244, 196, 132} {284, 260, 228} {300, 276, 244} {42, 42, 42}
BIKE (message) L1 32 9 5 {99, 51, 0} {139, 115, 89} {153, 129, 104} {26, 26, 33}
BIKE (message) L3 40 14 10 {167, 119, 55} {207, 183, 151} {222, 198, 166} {29, 29, 29}
BIKE (message) L5 43 16 12 {234, 186, 122} {274, 250, 218} {290, 266, 234} {32, 32, 32}
HQC L1 33 8 4 {98, 50, 0} {138, 114, 89} {153, 129, 104} {26, 26, 33}
HQC L3 43 16 12 {169, 121, 57} {209, 185, 153} {225, 201, 169} {32, 32, 32}
HQC L5 44 15 11 {233, 185, 121} {273, 249, 217} {290, 266, 234} {32, 32, 32}
McEliece L1 21 15 11 {105, 57, 0} {145, 121, 92} {154, 130, 102} {27, 27, 31}
McEliece L3 3 −4 −8 {149, 101, 37} {189, 165, 133} {200, 176, 144} {7, 7, 7}
McEliece L5 18 11 7 {229, 181, 117} {269, 245, 213} {279, 255, 223} {21, 21, 21}
McEliece L5 18 11 7 {229, 181, 117} {269, 245, 213} {280, 256, 224} {22, 22, 22}
McEliece L5 56 48 44 {266, 218, 154} {306, 282, 250} {317, 293, 261} {59, 59, 59}
♦Depth margin obtained by using the gate set {X, CNOT, CCNOT, CSWAP, RY, CZ}.
�T-depth margin obtained by using the Clifford+T gate set.

To have a comparison against Reference [25, Table 5], in which the authors estimate a depth of r 2.5 for each Grover’s

iterations, we report the base-2 logarithmic difference between the depth measures and the estimates given by

NIST [52, Section 4.A] on the number of quantum gates required to break AES for the same level, a quantity referred

to as depth margin. The results are independent of the MAXDEPTH values.

Additionally, in the last four columns, we compare the number of quantum gates required by our circuit with respect

to the ones required to break AES for the same level, using, however, the results of Reference [44]. Since in this case

the results depend on the value chosen as the maximum depth of a single quantum circuit, we use a shorthand

notation in which the set of three exponents correspond to setting this depth to the three values of {240, 264, 296 },
suggested by NIST as reference for MAXDEPTH. All the values are expressed in base-2 logarithm.

the requirements. Additionally, we can see that each of the cryptographic scheme under analysis
does not require any parallelization for level 1 security and MAXDEPTH = 296, since the depth of
a single quantum circuit is already below the 296 depth indicated by NIST to be the approximate
number of gates that quantum computers could perform in a millennium.

As an additional point, we give here a clue on the different strategies that can be adopted to
constrain the depth of a single circuit to a fixed value. A naive way to implement the partition
strategy hinted in this section would consist in setting up x < r qubits of the n representing J
to |1〉, while generating a Dicke state |Dn−x

r−x 〉 for the remaining portion. With respect to a serial
computation, the domain of our oracle function will be reduced by a factor of

(n
r

)
/
(n−x
r−x

)
, which

allows tuning the correct x giving the required MAXDEPTH.
Another strategy to reduce the depth of a single quantum circuit is to use a hybrid classical-

quantum algorithm. In Reference [55], the authors use a hybrid version of Lee–Brickell algorithm,
in which the classical part performs the column permutation and the Gauss–Jordan elimination,

obtaining the matrix H̃ = [W | V]. If W = Ir , then the quantum circuit will check if p columns of
the matrix V, added to the syndrome, results in a vector of weight t − p. While in Reference [55]
the authors tune p to reduce the overall gate count, the parameter may be easily adapted to obey
the requirements on MAXDEPTH.

4.5 Consequences from a Code-based Cryptosystem Design Perspective

Designing post-quantum code-based cryptosystem targeting a specific security level is a major
challenge, requiring to choose the right set of parameter n, k , and t so that it provides just the
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required security level, as designing larger-than-needed parameters would penalize the efficiency
of the cryptosystem without need. For this reason, designers of cryptographic schemes have to
perform a computational complexity analysis of their proposals, later deciding which is the best
choice of parameters for a specific security level.

The choice of parameters is usually based only on two parameters, namely the n and the ratio
k/n, known as rate of the code, and denoted by R. By analyzing the parameters of the code-based
cryptosystems advanced to the final stages of NIST competition, reported in Table 3, we note that,
while the rate for HQC and BIKE is fixed to 1

2 , a value mandated by the nature of the chosen code

family, it assumes different values for McEliece. In our analysis, we assumed a ratio of 3
4 , obtained

by approximating the average ratio of this family of cryptosystems.
When studying the asymptotic performance of random codes, the value of the maximum error

weight t that can be corrected determined from n by using the Gilbert–Varshamov (GV) bound.
This approximation, found independently by the two authors in References [29] and [65], repre-
sents the largest value of t for which the SDP has a unique solution with overwhelming probability.
Denoting as H (x) the binary entropy function H (x) = −x log2 (x) − (1 − x) log2 (1 − x), the value
of t is obtained as t = �H−1(1 − R)n2 �. While the error weight used in the McEliece cryptosystem

is quite close to the GV bound, BIKE and HQC use a different value of t = O(
√
n). In both cases,

the error weight t is sublinear with respect to the code length n, and all the advantages of tech-
niques improving on the basic Prange’s strategy have been shown to asymptotically vanish [64].
For this reason, all the designers of code-based cryptosystems base their choice of parameters on
the Prange’s basic strategy, with a further heuristic polynomial factor to keep into account for
polynomial speed-ups obtainable when applying more advanced ISD algorithms.

Figure 9 shows the results of our analysis under the previous assumptions using a Prange attack,
both in its classical form and its quantum one. To obtain the figures for the Prange’s classical
attack, we relied on the tool obtainable at Reference [9], made freely available by the authors of
Reference [25]. For the quantum analysis, instead, we imposed a value for the maximum depth
allowed for a quantum circuit (introduced in Section 4.4) of 296.

Both figures show, for increasing values of n, two distinct plots related to a Prange attack: The
depth obtained using our quantum implementation (solid red line); the classical number of gates
required estimated using Reference [9] (solid blue line). In both plots, we also represent the number
of classical gates assumed by NIST to be needed to break AES-128 (dotted horizontal blue line),
together with the depth of the best quantum circuit in terms of overall depth [44] (dotted horizontal
red line), as explained in Section 4.3.

Figure 9(a) shows the results obtained for codes with R = 3
4 and t matching the one correctable

at the GV-bound, i.e., an approximation of the values used by McEliece. We note how the code
lengths required to target the AES-128 security level are almost identical between the classical
and quantum version of the Prange’s attack. Figure 9(b), however, shows the results obtained for
codes with R = 1

2 and t =
√
n relying on quasi-cyclic random codes, i.e., BIKE and HQC. Unlike

what happens in the previous case, we note instead that if we choose AES-128 as a bar, then our
quantum Prange’s attack mandates a greater code length n with respect to its classical counterpart,
suggesting that designers of this family of cryptosystems should take into account also the results
derived from our proposal when calibrating their parameters.

To conclude, in Figure 9, we report the classical computational cost of the most advanced ISD
algorithm, i.e., BJMM [8], for all the code-based cryptosystems targeting AES-128, pointing out
also their requirements in terms of memory. This attack, indeed, trades off the execution time and
memory usage, and implies a memory usage of 238, 239, and 297 for BIKE, HQC, and McEliece
respectively [25]. At the best of our knowledge, quantum circuit designs related to advanced ver-
sions of the ISD algorithm (such as BJMM) have still not been investigated, as quantum memory
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Fig. 9. Computational cost of a classical implementation of the Prange’s ISD strategy, in terms of λ =
log2 (no. of gates) (solid blue line) as a function of the code length n, and the classical computational cost

of bruteforcing AES-128 (horizontal dotted blue line). The blue point highlights the minimum code length

required to match the classical AES-128 security. Quantum computational cost of our quantum implementa-

tion of the Prange’s ISD strategy, in terms of λ = log2 (depth) (solid red line) as a function of the code length

n, and the depth of the quantum circuit implementing AES-128 (horizontal dotted red line). The red point

highlights the minimum code length required to match the quantum AES-128 security. Panel (a) refers to

QC-MDPC codes with rate 1/2 and no. of errors t =
√
n, e.g., the ones employed in HQC and BIKE cryp-

tosystems; panel (b) refers to algebraic codes with rate 3/4 with no. of error equal to the GV-bound, e.g., the

Classic McEliece cryptosystem. From the perspective of a post-quantum code-based cryptosystem designer,

panel (a) shows that the code length of QC-MDPC-based ciphers is bounded by the quantum Prange’s ISD;

panel (b) shows that the code length of the McEliece cryptosystem is equally bounded by both classical and

quantum attacks. The plots additionally show the security level for the BIKE, HQC (in (a)) and McEliece (in

(b)) proposals when performing a BJMM attack, additionally highlighting their memory requirements.

models does not still have a physical counterpart. Furthermore, the NIST requirements for the
cryptanalytical resistance of post-quantum candidates do not consider quantum memories.

5 COMPARISON TO THE STATE OF THE ART

In this section, we offer a comparison of our proposal for QGJE with respect to the state-of-the-
art proposals. We also extensively compare our full quantum circuit proposal with respect to the
literature, highlighting the differences and similarities in their respect. We conclude this section
with a comparison toward other ISD variant, discussing how, although providing improvements
in the classical paradigm of computation, do not offer any advantage in the quantum one.

5.1 Alternate Quantum Gauss–Jordan Elimination Approaches

The first work showing a quantum version of the Gauss–Jordan elimination algorithm is Refer-
ence [22]. In their proposal, the authors sketch an algorithm adapting Grover’s algorithm to find,
for each candidate pivot (part 1 of our algorithm), one non-zero entry in the matrix rows following
the pivot one. However, for an r × r matrix, the algorithm requires a number of gates ∈ O(2r/2),
that is, exponential in the size of the square matrix.

To the best of our knowledge, the first work proposing a polynomial version of a QGJE is Refer-
ence [54], in which the authors report, for the typical r × n parity-check matrix, a depth ∈ O(nr 2)
and a number of additional qubits ∈ O(r 2), plus the additional one r × r needed to represent the
matrix.
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However, in Reference [34] the authors propose a different implementation of the QGJE, target-
ing the ISD parity-check matrix. They report an additional number of qubits in the order of O(k2),
but they do not provide exact complexity measures for the number of gates and depth of the cir-
cuit. Furthermore, they employ a large number of multi-controlled gates, in which the number
of control qubits is sequentially increasing each time the algorithm selects a new pivot. No gate
decomposition in the Clifford+T or other implementable gate set is provided.

The authors report the measures of the QGJE for a small example of an 8 × 8 matrix. Using a
generic, multi-qubit gate set, they show a width of 88 and a depth of 1,404. For the same matrix,
we report a width of 92 qubits—mainly due to the translation of our multi-controlled gates in one-
and two-qubit gates—and a ≈ 14× lower width of 92.

5.2 Comparison to Previous Circuit Design

Bernstein [11] provided the first high-level description of an attack to the classical McEliece cryp-
tographic scheme, showing an asymptotic speedup with respect to the classical case. The work
adapts Grover’s framework to find the random choice of the Information Set complement J sat-
isfying the conditions of Prange’s variant of ISD and shows how the complexity of an attack to

McEliece cryptosystem drops from c(1+o(1))n/log (n) to c(1/2+o(1))n/log (n), where c = 1/(1 − R)1−R , with
R being the code rate k/n. The proposal, though, does not provide a quantum circuit and reports
only asymptotic complexity values, stating that the oracle would need a number of gates in the
order of O(n3). Our proposal, as we can see from Table 1, cuts the number of gates down to O(r 3),
a value obtained from the gate-demanding Gauss–Jordan elimination circuit. With respect to the
number of qubits, Reference [11] gives an estimate of nO(1), i.e., polynomial in n. Since the theoreti-
cal algorithm proposed represents the whole generator matrix of size k×n and given that ancillary
qubits are most likely needed, it is safe to assume a number of qubits in the order of n2, which is
indeed close to the results obtained by our quantum algorithm based on the parity-check matrix.
Finally, we note that the asymptotic analysis in Reference [11] does not consider in the gate counts
the cost of the input preparation and, consequently, of the diffusion subcircuits. However, to have
a number of basis states with non-zero amplitude in the input superposition exactly equal to

(n
r

)
,

which yet is used in Reference [11], it is not possible to use the depth 1 layer of Hadamard gates as
per Grover original proposal and hence to neglect the cost in the overall measures. A more complex
input preparation subcircuit is needed, such as the one presented in Section 3.1, that produces a
non-negligible number of gates, that are in the order of O(nr ). Despite the fact that Reference [11]
aims at providing a conservative estimate of the cost, our realization has a number of gates smaller
by a factor of ≈24, as shown in Table 7.

To the best of our knowledge, the first practical implementation of a full quantum circuit based
on the theoretical work proposed by Bernstein was presented in Reference [54]. The authors report
indeed a number of gates and qubits quite similar to the one reported in Reference [11] but also
used additional metrics based on depth that better capture the computational power required by
quantum circuits.

This proposal significantly improves the previous work [54] in terms of gate count and, more
importantly, total depth. The optimizations made to the QGJE circuit shown in Section 3.2 enabled
indeed a depth reduction by a factor of O(n) and a width reduction of O(r 2). The adaptation of the
DOOM strategy for quasi-cyclic codes to our quantum circuit made also possible a depth reduction
of
√
r at the expense of number of qubits increase ofO(r 2). However, since we already use r ·n qubits

to represent the parity-check matrix, and O(r 2) ancillary qubits (cf. Table 1), this width increase
does not have a relevant effect on the overall width. Indeed, as Table 7 confirms, we report a more
pronounced reduction for BIKE than for McEliece with respect to Reference [54]. We also report
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Table 7. Comparison of Our Figures against Different Works: The Asymptotical Estimates

of References [11] and [25], the Results of the Previous Proposal of Reference [54],

and a More Recent Work [26]

Algorithm Sec. Qubits Number of gates Depth D ·W
Level Table 3 [54] [26] [11] Table 3 [54] [11] Table 3 [54] [26] [25] Table 3 [54] [26]

BIKE (key) L1 29 29 28 29 108 114 115 93 114 113 105 123 143 141
BIKE (key) L3 31 31 30 31 142 149 150 127 149 148 140 158 180 178
BIKE (key) L5 33 32 32 33 178 186 186 162 186 184 176 195 218 215

BIKE (message) L1 29 29 28 29 104 110 111 89 110 109 101 119 139 137
BIKE (message) L3 31 31 30 31 139 146 147 123 146 144 136 155 177 175
BIKE (message) L5 33 32 32 33 173 181 181 157 181 179 171 190 213 210

HQC L1 30 30 29 30 104 111 112 89 111 110 101 119 141 139
HQC L3 32 32 31 32 140 148 149 125 148 146 138 157 180 177
HQC L5 34 33 33 34 173 181 182 157 181 179 171 190 214 212

McEliece L1 22 22 21 24 102 104 107 92 104 111 95 114 126 133
McEliece L3 23 23 22 24 125 127 129 115 127 134 118 138 150 156
McEliece L5 24 24 23 25 165 167 169 154 167 174 158 178 191 198
McEliece L5 24 24 23 26 165 167 170 155 167 175 158 178 191 198
McEliece L5 24 24 24 26 184 186 189 173 186 194 177 197 210 218

We report that our proposal outperforms all the other ones in all the relevant metrics, except for a negligible overhead

in terms of number of qubits with respect to Reference [26]. The D ·W metrics multiplies depth and width (i.e., number

of qubits), giving a more reasonable measure of the computational effort required by our implementation. All the values

are expressed in base-2 logarithm.

that, with respect to Reference [54], this work also extends the measures two other cryptosystems,
namely HQC and the BIKE attack, to recover the private key of the cryptosystem.

Additionally, in the wake of Reference [25], we devoted Section 4.4 to the parallelization of our
quantum circuit across distinct instances, reporting a comparison to our work in Table 6. While
Reference [11] focuses on an estimation of the number of gates and the number of qubits, in Ref-
erence [25] the authors give instead an asymptotic value for the depth of a single Grover iteration,
estimated to be in O(r 2.5). This is slightly above our value of O(r 2) based on a practical quantum
circuit implementation. We include their estimates in Table 7.

In Reference [26] the authors propose a circuit implementation similar to the one presented in
Reference [54]. Since it is quite close to our proposal, we provide a more detailed comparison in
the next section.

5.3 Quantitative Comparison with the State-of-the-art Circuits

In Reference [26], the authors propose an implementation of a quantum circuit for Prange ISD
using the same structure of Reference [54]. From the analysis of the work and the inspection of
the provided source code, we report better figures in our proposal for all the relevant metrics, as
reported in Table 8. The circuit to generate the superposition of

(n
r

)
, i.e., the Dicke state, is similar

to Reference [7], which we used in our proposal. However, while Reference [7] obtains a depth
of O(n), with no other qubits being used except for the original n containing the superposition,
the authors of Reference [26] report a depth of O(nr log (log (r ))) and a number of qubits equal to
n + 2�log (r + 1)�. The quantum circuit used to move all the columns of the Information Set com-
plement J at the beginning of H, in Reference [26] has a depth of O(rn2). The proposal indeed
relies on the direct application of CSWAPs controlled by the qubits storing the Dicke state and
has to unroll in the quantum circuit all the possible controlled swaps of elements of the columns
in advance. For this reason, they do not need additional qubits. Our proposal, however, stemming
from the classical sorting network algorithm introduced in Section 2.5, has a depth in the order of
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Table 8. Comparison of Our Figures against the Work Proposed in Reference [26]

Cost Dicke Pack Gaussian Hamming weight

Source metric state columns elimination compute and check

Table 1 Depth O(n) O(log2
2 (n)) O(r 2) O(log2

2 (r ))
[26] Depth O(nr log (r ) log (log (r ))) rn2 O(n3 log (n)) Not Reported

Table 1 Qubits n (n − 1) log2 (n)(log2 (n) − 1) 1
2r (r − 1) M( 5r

4 − 1)
[26] Qubits n + 2�log (k + 1)� 0 n − 2 Not Reported

While the detailed depth cost of our different subcircuits is detailed in Table 1, here we only provide their asymptotic

version for the sake of clarity. We note that Reference [26] does not report the figures for the Hamming weight check

and computation figures, but, analyzing the provided source code, we deduced that both width and depth are at least

in the order of O(n).

O(log2 (n)), additionally requiring O(n log2
2 (n)) qubits that, since we already require n · r to store

H, do not constitute a significant overhead. The Gauss–Jordan elimination circuit, which is the
most expensive circuit of our proposal, has both depth and width in the order of O(r 2). In Refer-
ence [26] the equivalent circuit has instead depthO(n3 log (n)), while additionally usingn−2 qubits.
Since r ≤ n/2, considering only the figure of merit equal to the depth × width of the circuit, both
approaches are comparable. In the Grover’s iteration in Reference [26], there is already another
subcircuit with depth of O(rn2), and hence the global depth of the iteration is not significantly
increased. However, introducing this variant of the QGJE in our Grover’s iteration would produce
a significant increase of the depth from O(r 2) to O(n3). The reduction on the number of qubits, al-
though significant, does not make the tradeoff convenient in our design. Finally, in Reference [26],
the authors do not report the depth and width of the Hamming Weight computation and check
procedure. From the analysis of the associated source code, their proposal uses an accumulator,
adding one by one the qubits containing the syndrome and storing the result in a separate accu-
mulator register. For this reason, the depth is at least linear in r , since the accumulation is strictly
sequential, while our implementation has a depth of O(log2 (r )).

In Reference [26], the authors additionally propose a way to reduce the required number
of qubits of the circuit by applying, before performing the quantum computation, a classical
Gauss–Jordan elimination procedure to the parity-check matrix H to obtain its systematic form
H′ = [Ir | Ar×k ]. The main reported advantage is that, by using this approach, we can avoid the
representation of the elements of the identity submatrix, effectively sparing r 2 qubits, and hence
materialize in the quantum circuit only the r×k right submatrix A. In the classical case the pre-
processing of the matrix allows reducing the number of operations needed in the Gauss–Jordan
elimination stage. In the quantum case, however, this approach does not produce any improvement.
The authors of Reference [26] report indeed an additional cost of O(n2) additional row swaps, each
one involving O(n) qubits. Even if they do not report the depth of such a circuit, it is plausible that
this optimization will have a depth in the order of O(n2), since swaps of elements belonging to
different rows can be interleaved. Since their most demanding subcircuits have already depth in
the order of O(n3), this algorithm will not affect much the depth figures, while providing a reduc-
tion of r 2 in terms of used qubits. However, since they report an overall number of qubits in the
order of n2, this improvement will bring only negligible results. Considering an adaptation of this
improvement to our proposal, since our Gauss–Jordan elimination algorithm is already in O(r 2),
and it is the deepest subcircuit of our total quantum circuit, applying this idea would only increase
by one order of magnitude the depth at each iteration.

5.4 Comparing to Other ISD Variants

More advanced classical algorithms for ISD are known, such as the Lee–Brickell variant [45]. For
this reason, Bernstein [11] suggested that quantum ISD solvers could indeed provide a speed-up
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with respect to the classic Prange variant. However, practical implementations do not seem to of-
fer a tangible advantage through a direct translation, since they rely either on an increase in the
number of quantum states—and consequently an increase in the number of Grover’s iteration—or
into a deeper and wider circuit. Even hybrid approaches that tried to offload some of the compu-
tation onto a classical processor (see, for example, Reference [45] or Reference [26]), showed no
practical advantage. We refer the reader to Appendix A for a detailed cost analysis of different
implementation strategies for the quantum version of a Lee–Brickell attack.

Concerning improved ISD variants, a potentially promising line of research stemmed from Ref-
erence [40], where the authors showed how, by generalizing Grover’s search framework into a
quantum walk framework, a theoretical improvement on the quantum version of the ISD problem
is possible. However, to now, no quantum circuit design was proposed to concretize this approach.

6 CONCLUSION

In this work, we present a full quantum circuit implementing an attack against code-based cryp-
tosystems based on Prange variant of the ISD problem accelerated through Grover’s framework.
We translate our high-level gates in the Clifford+T gate set, the major candidate for noiseless quan-
tum computation and widely employed in cryptographic proposals, comparing our results against
the state-of-the-art implementation of a quantum attack against symmetric cryptography. Based
on our results, we can state that the large majority of the parameter choices made by the NIST
finalist cryptographic scheme s provide conservative margins with respect to the desired target
security.

We also compared our measures with the estimates in terms of number of quantum gates given
by NIST for attacking AES circuits, as well as to the estimates provided in a more recent proposal. In
this case, the upper limit on the maximum depth required to run a single quantum circuit required
a parallelization of our algorithm. We found that when the overall depth of our quantum attack is
compared to the estimates provided by NIST, the McEliece cryptographic scheme at level 3 falls
slightly below the requirements, while it is tightly above the requirements if we consider instead
the overall number of gates of our attack. Further studies are needed to understand the effect of the
parallelization on the quantitative measures for all the cryptographic schemes and provide more
concrete figures.

In implementing our proposals, we developed reversible circuits to sort bitstrings—adapted in
our circuit to perform matrix column permutations—to compute the Hamming weight of a given
bitstring, and, most notably, a circuit performing Gauss–Jordan elimination on a matrix, which
can be of independent interest. Such an implementation, for example, may also be of interest in
devising new quantum circuits to attack code-equivalence-based public-key digital signature prim-
itives, such as LESS [14]. We note as well that the ISD strategy can be used to find solutions to the
Permuted Kernel Problem [13]. In general, all the components we presented can be used in any
quantum accelerated attack to code-based cryptosystems based on ISD, since all of them reuse the
same general structures.

All the subcomponents composing our quantum circuit have been fully validated and tested
using the Atos Quantum Learning Machine [4] simulator. The source code related to all the com-
ponents of our circuit is available at https://github.com/paper-codes/2023-TQuantum.1

Finally, we report that our algorithm solves a general combinatorial problem, and it can be
seen as a binary constraint satisfaction problem. We note as well that it may easily be adapted to
compute the spark of a matrix, which can be of independent interest.

1https://doi.org/10.5281/zenodo.8039516.
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APPENDIX

A ANALYSIS OF THE QUANTUM VERSION OF LEE–BRICKELL

In the following, we analyze the improvement proposed by Lee and Brickell [45], highlighting
why a set of strategies for the transposition of the approach onto our quantum ISD solver does not
provide speedups.

Lee and Brickell analyzed the costs of allowing a fixed number of asserted bits in the k bits
indexed by I. In other words, while in Prange we had Wt (eI) = 0 and Wt

(
eJ

)
= t , in Lee and

Brickell’s variant we assume Wt (eI) = p and Wt
(
eJ

)
= t − p. For this reason, the number of

admissible vectors increases from
(r
t

)
to

( r
t−p

) (k
p

)
, leading to a probability of success of a single

iteration given by Prsucc−LB =
( r
t−p

) (k
p

)
/
(n
t

)
. As we did for Prange, we can alternatively rephrase

the probability of success as
( n−t
r−(t−p)

) ( t
t−p

)
/
(n
r

)
, since we want to put, in the error vector indexed

by J , all the n − t zeros in r − (t − p) positions and all t ones in the remaining t − p positions.
The increase in the probability of success of a single iteration leads to a reduction in the expected

number of iterations, at the price of an increased cost of a single iteration of the algorithm, Citer−LB .

Indeed, after performing the GJE procedure (line 4 of Algorithm 1), we obtain the matrix H̃ =

[W | V] and the corresponding vector s̃ that we should use to retrieve the unknown error vector

ê such that s̃ = H̃ê. The previous equation can be expanded as s̃ = [W | V][eJ | eI] and can be
seen as the bitwise addition of two distinct vectors, namely s̃ = WeJ ⊕ VeI . If, as per Prange’s
hypothesis, we have W = Ir , signalling that HJ is invertible, then we can rewrite the previous
equation as eJ = s̃ ⊕ VeI . Lee–Brickell’s algorithm assumes that Wt

(
eJ

)
= t −p and Wt (eI) =

p, and hence the multiplication VeJ can be seen as the sum of the p columns of V indexed by the
position of the p asserted bits of eI . Given this, in Lee–Brickell algorithm we insert, after line 5

of Algorithm 1, an additional iteration over all the
(k
p

)
possible picks of p columns of the matrix V,

reporting a success if, for one of these picks, adding together the p columns of V to s̃ gives a vector
of weight t − p. The cost of a single iteration for classical Lee–Brickell’s algorithm is

Citer−LB

Prsucc−LB
≈

(n
t

)
0.288

( r
t−p

) (k
p

) (
CG J E +

(
k

p

)
(CSU M +CHW CC )

)
, (12)

in which CSU M is the cost of adding p vectors of length r to the syndrome at each iteration, having
a classical cost ∈ O(rp), while CHW CC is the cost of computing, each time, the Hamming weight of
the resulting vector. By comparing the probabilities of success of Lee–Brickell and Prange variants,
we obtain

Prsucc−LB

Prsucc−PR
=

( r
t−p

) (k
p

)(n
t

) (n
t

)(r
t

) = (
k

p

) ( r
t−p

)(r
t

) = (
k

p

)
t !

(t − p)!
(r − t)!

(r − (t − p))! , (13)

which exponentially increases for increasing p � t . Consequently, the expected number of it-
erations, obtained as the inverse of the probability of success, shows an exponential decrease,

which is balanced by the
(k
p

)
number of distinct sums of columns required, at each iteration, to

sum p columns of V to the syndrome. For this reason, while the admissible values for p are in
{1, . . . , t − 1}, the tradeoff between the number of iterations and the computational cost of a sin-
gle iteration shows its optimal value for the classic Lee–Brickell solver at p = 2, as shown in
Reference [5].

When switching from Prange’s ISD variant to Lee–Brickell’s in a quantum setting, the number
of required Grover iterations decrease of a quantity proportional to the square root of the inverse
of Equation (13), as a consequence of the incremented number of admissible solutions. This comes

at the cost of adapting the circuit to perform the inner
(k
p

)
column additions, for which different
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strategies can be explored. Before analyzing them, we note that in Lee–Brickell’s approach we
need the entire result of the QGJE on the H matrix, and hence Optimization 4 cannot be applied.
Adaptation strategy 1. The idea of Strategy 1 is to implement a reversible circuit capable of gen-

erating all the
(k
p

)
possible choices of the columns of V and check the result of their addition to s̃.

If the sum is, as required, equal to t −p, then we set an additional ancilla to |1〉 to signal a success.
This strategy requires a reversible circuit capable of enumerating, on an auxiliary register comb

of length k , all the
(k
p

)
choices of vectors of length k and Hamming weight p, one at a time. After

that, we can use the qubits of comb to conditionally sum the columns of V to the quantum register
storing s̃ through CCNOT gates. Any possible algorithm will have at least depth O(k) to generate

each item of the enumeration and has to be performed
(k
p

)
times. Even with p = 1, i.e., the smallest

possible p value, we obtain a circuit depth of O(k2). Given that the deepest circuit in our plain
Prange’s algorithm has a depth in O(r 2) and that k ≥ r , the depth of the overall circuit will be
substantially increased, nullifying the benefits of a decreased number of iterations.
Adaptation strategy 2. Given the complexity of the previous quantum circuit and the fact that

p is fixed, one can think of obtaining the combinations of columns sums needed for each
(k
p

)
at

circuit generation time, i.e., classically, and hence translate the obtained sequence of sums into
the corresponding CNOT quantum gates. In other words, Strategy 2 will not use an additional
quantum register to drive the sum of columns of V in the quantum circuit, but, while classically
generating the quantum circuit, will decide which gates to apply based on classical results. This is

the approach sketched in Reference [26], where the authors report an additional cost of O(
(k
p

)
p)

for this circuit and no additional qubits. Indeed, each of the
(k
p

)
combination has to add together p

columns. However, each column addition involves r elements sum, done through CNOT gates, and
since p � r , there is not much room for parallelization between elements belonging to different

columns, giving therefore a depth that is more realistically equal to O(
(k
p

)
r ). Additionally, Refer-

ence [26] does not consider the cost of computing and checking the Hamming weight for each pick
ofp columns. Using our approach for this subcircuit would require O(r ) qubits and O(log2

2 r ) depth.
Finally, each sum of p columns must be uncomputed before proceeding to the next combination.

We argue therefore that the overall depth will be in the order of O(
(k
p

)
(2 · r · log2

2 r )). Once again,

even the smallest value for p, that is, p = 1, will give us a depth equal to O(kr ), making it again at
least as deep as the QGJE circuit, and hence bringing no concrete benefit.

An important drawback of Strategies 1 and 2 is that, at each Grover iteration, the inner circuit
performing the column addition of all the p columns of V is uncomputed, meaning that, upon

measurement, we will not have any way to tell which of the possible
(k
p

)
pick of columns of V

generated the right result. In other words, upon measurement, we will measure multiple choices
of J that generated an invertible matrix HJ and for which some pick of p columns of the matrix V

gave the correct result. After the execution of the whole quantum circuit, we have to introduce an
additional classical step, performing a permutation and a GJE step on H based on the value of J
found through the quantum circuit, followed by an exhaustive search on the obtained rightmost
submatrix V to detect which of its columns produces the correct result.
Adaptation strategy 3. The idea behind Strategy 3 is to generate, alongside the original Dicke
state generating a superposition of all the

(n
r

)
possible choices of J , another one generating a

superposition of all the
(k
p

)
pick of columns of V. By using this approach, we still need the CCNOTs

for the sum, but we need a single Hamming weight compute and check circuit at each Grover
iteration. The additional subcircuit will have therefore a depth in the order of O(k), since k · r
CCNOT gates must be computed among all the qubits representing the elements of the matrix and,
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Table 9. Comparison of the Different Strategies to Translate the Lee–Brickell ISD Variant into

a Quantum Circuit with Respect to the Prange ISD Variant Shown in This Work

ISD Qubits Grover Grover iteration Classical

variant iterations depth iterations

Prange rn + r 2 + n

√
(nt )
(rt)

O(r 2) —

L-B Strategy 1 rn + r 2 + n + k

√
(nt )
( r

t−p)(kp)
O(r 2) +

(k
p

)
O(k) —

L-B Strategy 2 rn + r 2 + n

√
(nt )
( r

t−p)(kp)
O(r 2) +

(k
p

)
O(r ) —

L-B Strategy 3 rn + r 2 + n + k

√
(nt )(kp)
( r

t−p)(kp)
O(r 2) + O(k) —

L-B Strategy 4 [55] O(kr )
√(k

p

)
O(k) (nt )

( r
t−p)(kp)

The number of classical iterations is required only in the hybrid approach of Strategy 4. The product of

values on each row equals the D ·W cost of the corresponding strategy.

since r ≤ k , the CCNOT gates can be interleaved. This strategy has the main drawback that the

number of input states increases by
(k
p

)
, leading therefore to an additional

√(k
p

)
Grover iterations

with respect to the other strategies, leaving therefore only a small reduction in the number of
iterations with respect to Prange. Once again, no substantial improvement can be obtained with
this approach.
Adaptation strategy 4. A final strategy, Strategy 4, explored in Reference [55], is to accelerate
only one part of Lee–Brickell algorithm using a quantum circuit. In Reference [55], for example, the
authors try to accelerate only the inner loop of the algorithm, by applying Grover’s framework to
find which pick of p columns of V among all the possible ones gives the correct solution. However,
while they show that the quantum circuit alone has a reasonable depth and width, it has to be
executed a number of times equal to the number of iterations required by the classical Lee–Brickell
algorithm, and hence does not bring many benefits.

Table 9 summarizes the costs of the previous strategies to parallelize the Lee–Brickell approach,
additionally comparing them to the plain Prange approach. In conclusion, translating the Lee–
Brickell approach onto a quantum implementation does not appear to provide a significant im-
provement to the efficiency of the solver, as it is the case for the classical ISD solver counterpart.
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