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Abstract
Traditionally, architectural innovations designed to boost

single-threaded performance incur overhead costs which sig-
nificantly increase power consumption. In many cases the
increase in power exceeds the improvement in performance,
resulting in a net increase in energy consumption. Thus, it is
reasonable to assume that modern attempts to improve single-
threaded performance will have a negative impact on energy
efficiency. This has led to the belief that “Big Cores” are in-
herently inefficient. To the contrary, we present a study which
finds that the increased complexity of the core microarchi-
tecture in recent generations of the Intel R© Core

TM
processor

have reduced both the time and energy required to run var-
ious workloads. Moreover, taking out the impact of process
technology changes, our study still finds the architecture and
microarchitecture changes —such as the increase in SIMD
width, addition of the frontend caches, and the enhancement
to the out-of-order execution engine— account for 1.2x im-
provement in energy efficiency for these processors. This paper
provides real-world examples of how architectural innovations
can mitigate inefficiencies associated with “Big Cores” —for
example, micro-op caches obviate the costly decode of com-
plex x86 instructions— resulting in a core architecture that
is both high performance and energy efficient. It also con-
tributes to the understanding of how microarchitecture affects
performance, power and energy efficiency by modeling the
relationship between them.

1. Introduction
Power and Energy have always had a significant impact on
processor design. Yet, as the demand for energy efficient
computing increases and rate of improvement from process
technology slows, energy efficiency has become a first-class
design constraint. Prior work has shown that increasing single-
threaded performance through microarchitectural advances
tends to increase power [13, 2]. This increase is due to the
increased complexity of the core such as a larger instruction
window and more aggressive use of speculation. However, this
increase can be countered by reductions in energy due to im-
provements in process technology, architecture, and microar-
chitecture. This paper examines the improvements in each of
these areas. We use measurements from six generations of
Intel R© Core

TM
processors running a variety of vectorizable

workloads. We show that through the combination of these
techniques, both the time and the energy required to run the
workloads has been reduced.

This paper makes three contributions to the understanding
of energy efficiency.
1. Methodology: We present a methodology for empirically

measuring instruction-level energy efficiency on a modern
processor. This includes techniques for isolating architec-
tural features as well as a novel technique for studying the
relationship between performance and power.

2. Attribution: By isolating key architectural features, we
account for many of the variable costs which impact energy
efficiency. This provides valuable insight into the driving
forces behind energy efficiency on a real-world processor.

3. Evolution of Energy Efficiency: Using a longitudinal
study of the Intel R© Core

TM
processor, we track the impact

architectural innovations have had on energy efficiency.
This motivates a discussion about the future strategies for
improving energy efficiency on a Big Core.

2. Methodology

Our goal is to understand the impact architectural features
have on performance and energy efficiency of real-world pro-
cessors. Ideally, a properly controlled experiment would in-
volve designing and manufacturing processors, with different
permutations of features, across several process technology
nodes; however, this approach is infeasible. Instead, we rely
on comparisons of existing processors. To control the variables
we focus on successive generations of a single architecture
family, where each processor has a similar base architecture
with modest incremental changes in architecture features each
generation. With the proper setup, these cross-generational
comparisons provides a unique before-and-after evaluation of
newly added architectural features.

This section provides more detailed descriptions of our
experimental methodology and setup.

2.1. Processors

Table 1 lists the processors used in the study: Penryn (PNY),
Nehalem (NHM), Westmere (WSM), Sandy Bridge (SNB),
Ivy Bridge (IVB), and Haswell (HSW). In total, our data
spans six years, six generations, four major microarchitecture
revisions, and three process technology nodes.



We selected flagship processor models from the high-end
enthusiast segment rather than trying to match features exactly.
Fortunately, the clock speed, core count, and last level cache
capacity are relatively similar. The L1 data cache is a constant
32 KB across all processors. The largest discrepancy is WSM,
which, for business reasons, was designed with two extra cores.
For consistency, we disabled those cores and treated WSM as a
four-core processor. To account for the minor clock frequency
difference, performance is measured in cycles rather than time.
Finally, since all memory accesses in these experiments are
confined to the L1 cache, slight differences in the rest of
the cache hierarchy, mid-level cache (MLC), last-level cache
(LLC), memory controller, and the rest of the uncore should
not have a significant impact on results.

2.2. Architecture Features

The core features we studied include (i) the frontend caches,
which include the loop cache and the micro-op cache (ii)
the out-of-order resources, which include the execution units,
issue port, and the number of reorder buffer entries and (iii)
the SIMD execution unit and ISA extension. Details of these
features are listed in Table 2.

2.3. Kernels

We use the Livermore Loops benchmark suite [24] (see Ta-
ble 3), a collection of compute intensive kernels extracted
from scientific applications used by the Lawrence Livermore
National Laboratory, to evaluate the processors.1 The Liver-
more Loops derive from actual high-performance computing
applications, yet are small enough to instrument, study, and
control manually. We also acknowledge that the kernels
are not necessarily the optimal C code implementation of the
computation, but are instead canonical examples of typical
scientific code. Note, the original Livermore Loops bench-
mark set contains 24 kernels, however, we had to omit five
kernels because they do not fit basic loop structure used in our
experimental framework.

For our experiments, we compiled each of the loops with the
Intel R© C Compiler 13.0.0.079, extracted the assembly instruc-
tions from each loop nest, then made minor modifications to
remove any dependence of the loop body on any explicit loop
iteration variables. These modifications provide additional
control over execution by ensuring all memory accesses hit
in the L1 cache, allowing us to run the loop for an unlimited
number of iterations, and controlling the input values of all
operations. Figure 1 shows the original Livermore Loops C
code, the compiled assembly, and the modified version of the
assembly for Kernel 7. The lines in red highlight the modifi-
cations to the compiled assembly, which confine the memory
access pattern to a smaller working set by keeping register
rdi constant. Although it is not shown in the figure, we also

1Note, all floating-point calculations within these kernels are based on
double-precision, not single-precision, floating-point types.

initialize all of the registers and memory locations that are
touched by the kernel to ensure that dynamic behavior remains
constant each iteration. Figure 1 also contains a table with a
sample of the performance, power, and energy data collected
for Kernel 7.

The resulting kernels have between 12 and 183 instructions
inside a single for loop, which we run for several billion itera-
tions. This enables us to make very precise measurements of
performance and power. We also use performance counters
and simulators to analyze runtime behavior.

For illustration purposes, we also added an additional kernel
to the original nineteen kernels: Kernel 20 – Peak floating-
point throughput. This kernel is designed to attain the theo-
retical peak floating-point throughput. Both a vector multiply
(mulpd) and vector add instruction (addpd) are issued each
cycle. There are no memory accesses or auxiliary instructions
in this kernel. We do not include Kernel 20 when calculating
averages in the results section.

2.4. Experimental Platform

Our results are based on empirical measurements of CPU
power, which are measured by instrumenting the 12 volt rail
that feeds the voltage regulator which in turn feeds the proces-
sor. To account for minor voltage fluctuations, both voltage
and current are measured to calculate power. A National
Instruments R© cDAQ-9174 with a 9229 module is used to sam-
ple power at a rate of 2KHz. This device is managed by a
second workstation to ensure that data acquisition does not
affect the target machine.

Each system runs a stock Ubuntu 12.04 Server installation –
no additional attempts were made to optimize the operating
system. The processors are set to run at factory prescribed fre-
quency with Intel R© Turbo Boost Technology and Hyperthread-
ing features disabled. The benchmarks were compiled using
the Intel R© Composer XE version 2013.0.079 tool chain [15].2

Preliminary experiments have shown that a rise in proces-
sor temperature can increase power by as much as five watts.
To minimize this impact, benchmarks are run continuously
for a five minute warmup period to allow the temperature to
stabilize before starting the experiment. Tests are conducted
by running the benchmark continuously for five minutes, im-
mediately following the five minute warmup period. Power
and performance values are averaged across the entire five
minute trial. Repeated runs of the same experiment show the
experimental precision of power measurements to be within

2Intels compilers may or may not optimize to the same degree for non-Intel
processors for optimizations that are not unique to Intel processors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effec-
tiveness of any optimization on microprocessors not manufactured by Intel.
Processor-dependent optimizations in this product are intended for use with
Intel processors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel processors. Please refer to the applicable product User
Reference Guides for more information regarding the specific instruction sets
covered by this notice. Notice revision #20110804.
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Model Core X9650 Core i7 975 Core i7 980X Core i7 2700K Core i7 3770K Core i7 4770K
Code Name Penryn (PNY) Nehalem

(NHM)
Westmere
(WSM)

Sandy Bridge
(SNB)

Ivy Bridge
(IVB)

Haswell
(HSW)

Release Cycle Tick Tock Tick Tock Tick Tock
Core Microar-
chitecture

Core Nehalem Nehalem Sandy Bridge Sandy Bridge Haswell

Process Node 45 nm 45 nm 32 nm 32 nm 22 nm 22 nm
Frequency 3.00 GHz 3.33 GHz 3.33 GHz 3.5 GHz 3.5 GHz 3.5 GHz
Cores 4 4 6 4 4 4
LLC 12 MB 8 MB 12 MB 8 MB 8 MB 8 MB
TDP 130 W 130 W 130 W 95 W 77 W 84 W
Release Date Q4’07 Q2’09 Q1’10 Q1’11 Q2’12 Q2’13

Table 1: The six processor models used in this study.

  

for ( k=0 ; k<n ; k++ ) {
            x[k] = u[k] + r*( z[k] + r*y[k] ) +
                   t*( u[k+3] + r*( u[k+2] + r*u[k+1] ) +
                   t*( u[k+6] + r*( u[k+5] + r*u[k+4] ) ) );
}

Kernel #7 (Equation of State)

innerloop:
vmulpd    ymm15, ymm2, [32+r15+rdi*8]
vmovupd   xmm7,  [8+r15+rdi*8]
vmovupd   xmm13,  [40+r15+rdi*8]
vmulpd    ymm3, ymm2,  [r12+rdi*8]
vmovupd   xmm6,  [24+r15+rdi*8]
vaddpd    ymm4, ymm3, [r10+rdi*8]
vmulpd    ymm5, ymm2, ymm4
vaddpd    ymm0, ymm5, [r15+rdi*8]
vinsertf128 ymm8, ymm7, [24+r15+rdi*8], 1
vinsertf128 ymm14, ymm13, [56+r15+rdi*8], 1
vmulpd    ymm9, ymm2, ymm8
vaddpd    ymm13, ymm14, ymm15
vaddpd    ymm10, ymm9, [16+r15+rdi*8]
vmulpd    ymm14, ymm2, ymm13
vmulpd    ymm12, ymm2, ymm10
vaddpd    ymm15, ymm14, [48+r15+rdi*8]
vmulpd    ymm4, ymm1, ymm15
vinsertf128 ymm11, ymm6, [40+r15+rdi*8], 1
vaddpd    ymm3, ymm11, ymm12
vaddpd    ymm5, ymm3, ymm4
vmulpd    ymm6, ymm1, ymm5
vaddpd    ymm0, ymm0, ymm6
vmovupd  [r13+rdi*8], ymm0
add    rdi, 1
cmp    rdi, r9
jb     innerloop

innerloop:
vmulpd    ymm15, ymm2, [32+r15+rdi*8]
vmovupd   xmm7,  [8+r15+rdi*8]
vmovupd   xmm13,  [40+r15+rdi*8]
vmulpd    ymm3, ymm2,  [r12+rdi*8]
vmovupd   xmm6,  [24+r15+rdi*8]
vaddpd    ymm4, ymm3, [r10+rdi*8]
vmulpd    ymm5, ymm2, ymm4
vaddpd    ymm0, ymm5, [r15+rdi*8]
vinsertf128 ymm8, ymm7, [24+r15+rdi*8], 1
vinsertf128 ymm14, ymm13, [56+r15+rdi*8], 1
vmulpd    ymm9, ymm2, ymm8
vaddpd    ymm13, ymm14, ymm15
vaddpd    ymm10, ymm9, [16+r15+rdi*8]
vmulpd    ymm14, ymm2, ymm13
vmulpd    ymm12, ymm2, ymm10
vaddpd    ymm15, ymm14, [48+r15+rdi*8]
vmulpd    ymm4, ymm1, ymm15
vinsertf128 ymm11, ymm6, [40+r15+rdi*8], 1
vaddpd    ymm3, ymm11, ymm12
vaddpd    ymm5, ymm3, ymm4
vmulpd    ymm6, ymm1, ymm5
vaddpd    ymm0, ymm0, ymm6
vmovupd  [r13+rdi*8], ymm0
add       r8, 1
cmp       r8, r9
jb innerloop

Livermore Loops C Code: Compiled Assembly: Modified Assembly:

Cycles 
Per 
Iteration

CPU 
Power 
(Watts)

Energy 
Per 
Iteration

PNY 23.0 60.5 116 nJ

NHM 22.5 73.2 124 nJ

WSM 22.5 50.5 85 nJ

SNB 18.3 69.0 90 nJ

IVB 18.3 34.3 45 nJ

HSW 17.3 40.1 50 nJ

Figure 1: This figure shows Kernel 7 and a sample of the data collected for this kernel. To conserve space, the assembly code
listings contains the AVX version (26 instructions) instead of the longer SSE version (51 instructions); however, the data table
contains values collected from the SSE version.

0.05 watts.
When measuring power, we run an instance of the kernel

on each core to amplify the dynamic power consumption.
Therefore, the measured power values presented in this paper
represent the total power of the processor when each of the four
cores are running an instance of the kernel. However, when
we refer to IPC we are referring to statistics of an individual
core.

2.5. Definition of Energy Efficiency

This paper is primarily focused on energy efficiency. Broadly
speaking, the objective is to minimize the total amount of
energy consumed by the processor to complete a particular
computation. We calculate energy consumption (measured

in joules) by measuring the average power of the processor
(measured in watts; note, 1 watt = 1 joule

sec ) and multiplying
by the duration of the computation (measured in seconds but
reported in clock cycles). For example, the average energy
consumed per iteration of Kernel 7 (see Figure 1) on HSW is3

(17.3 cycles)(
1sec

3.5×109 cycles
)(10.0 W ) = 50 nJ. (1)

3To get the cost of a single iteration, we must also divide processor power
by four since the benchmark is running simultaneously on each of the four
cores (see Section 2.4).
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Core Nehalem Sandy
Bridge

Haswell

L1 Band-
width
(load,
store)

16, 16
Bytes
per cycle

16, 16
Bytes
per cycle

32, 16
Bytes
per cycle

64, 32
Bytes
per cycle

Instruction
Cache

32KB L1
Icache

32KB L1
Icache

32KB L1
Icache,
1.5K uop
cache

32KB L1
Icache,
1.5K uop
cache

Reorder
Buffer

96
entries

128
entries

168
entries

192
entries

Ins/Uop
Queue

32 ins 28 uops 28 uops
(56 on
IVB)

56 uops

SIMD
Exten-
sions

SSE SSE AVX AVX2

Table 2: Architectural Features

Kernel Description
1 Hydro fragment
2 Incomplete Cholesky Conjugate Gradient
3 Inner product
4 Banded linear equations
5 Tri-diagonal elimination, below diagonal
6 General linear recurrence equations
7 Equation of state fragment
8 Integrate predictors
9 Difference predictors

10 First sum
11 First difference
12 2-D PIC (Particle In Cell)
13 1-D PIC (Particle In Cell)
14 ADI integration
15 2-D explicit hydrodynamics fragment
16 General linear recurrence equations
17 Discrete ordinates transport
18 Matrix-matrix product
19 2-D implicit hydrodynamics fragment
20 Peak floating-point throughput

Table 3: The 20 kernels evaluated in this study.

Energy efficiency is inversely proportional to energy consump-
tion. It is generally expressed as performance over power,

1
energy

=
1

duration× power
=

per f ormance
power

. (2)

If performance is constant then the change in energy efficiency
is proportional to the change in power. For example, based on
the data in Figure 1, SNB and IVB have identical performance
on Kernel 7. The ratio of average power shows that IVB is

2.0x more efficient than SNB.
In many situations, performance and energy efficiency are

treated as competing goals since it is generally possible to
improve performance at the expense of energy efficiency and
vice versa. Occasionally, an artificial metric that incorporates
both performance and energy efficiency, such as the energy
delay product [12], is used to determine whether a trade-off
between the two is beneficial. Fortunately, this paper does not
explicitly encounter this trade-off and therefore does not resort
to alternative metrics.

2.6. Register Scrambling

The analysis in this paper includes a novel technique, called
register scrambling, to artificially alter the instruction-level
dependencies of a kernel. As the name suggests, it involves
randomly assigning new SSE/AVX register numbers to each
instruction. For example, Figure 2 shows two examples of
Kernel 1 with the registers scrambled. The instruction mix re-
mains constant, but the performance and power change as the
instruction-level parallelism changes. By generating several
different “scrambles” of the kernel we are able to generate a re-
gression that relates performance to power. Figure 3 shows the
relationship between performance and power of Kernel 1 on
HSW. This regression can be used to evaluate improvements
in the core architecture by estimating how much a change in
performance will affect the energy efficiency.

3. Experimental Results
Figure 4 presents the main results of this paper. Averaging
across all of the Livermore Loop kernels, there is a 2.9x im-
provement in energy efficiency from PNY to HSW.

Furthermore, this section drills-down on the source of the
improvements in energy efficiency by progressively removing
the benefit of recent architectural features. This is completed
as a five step process:
1. SIMD Extensions: we restrict the use of relevant ISA

extensions that have been added since PNY: the AVX and
AVX2 SIMD extensions.

2. Frontend Innovations: we prevent the processor from
utilizing new frontend features. The primary innovations
since PNY are the addition of a micro-op cache and im-
provements to the loop caches.

3. Backend Innovations: we estimate the impact perfor-
mance improvements due to backend innovations —such as
additional execution units and larger instruction windows—
have on power and energy efficiency.

4. 22nm Process Technology Node: we rollback the advan-
tage of the 22nm process technology to estimate power and
energy efficiency on the 32nm process technology node.

5. 32nm Process Technology Node: we rollback the advan-
tage of the 32nm process technology to estimate power and
energy efficiency on the 45nm process technology node.
Figure 4 shows the improvement in energy efficiency after

each step. For example, the HSW plot shows that the im-
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0  inloop:
1  movsd     xmm1, [88+r12+r9*8]
2  movsd     xmm1, [104+r12+r9*8]
3  movsd     xmm2, [120+r12+r9*8]
4  movsd     xmm2, [136+r12+r9*8]
5  movaps    xmm0, [80+r12+r9*8]
6  movhpd    xmm1, [96+r12+r9*8]
7  movaps    xmm2, [96+r12+r9*8]
8  movhpd    xmm3, [112+r12+r9*8]
9  movaps    xmm1, [112+r12+r9*8]
10 movhpd    xmm0, [128+r12+r9*8]
11 movaps    xmm0, [128+r12+r9*8]
12 movhpd    xmm3, [144+r12+r9*8]
13 mulpd     xmm1, xmm1
14 mulpd     xmm0, xmm0
15 mulpd     xmm1, xmm3
16 mulpd     xmm3, xmm3
17 mulpd     xmm2, xmm2
18 mulpd     xmm3, xmm2
19 mulpd     xmm1, xmm3
20 mulpd     xmm3, xmm1
21 addpd     xmm2, xmm1
22 addpd     xmm0, xmm3
23 addpd     xmm3, xmm3
24 addpd     xmm2, xmm3
25 mulpd     xmm0, [r15+r9*8]
26 mulpd     xmm0, [16+r15+r9*8]
27 mulpd     xmm3, [32+r15+r9*8]
28 mulpd     xmm1, [48+r15+r9*8]
29 addpd     xmm0, xmm3
30 addpd     xmm0, xmm1
31 addpd     xmm1, xmm0
32 addpd     xmm1, xmm2
33 movaps    [r11+r9*8], xmm3
34 movaps    [16+r11+r9*8], xmm0
35 movaps    [32+r11+r9*8], xmm1
36 movaps    [48+r11+r9*8], xmm1
37 add       r8, 1
38 cmp       r8, rbx
39 jb        inloop

0  inloop:
1  movsd     xmm2, [88+r12+r9*8]
2  movsd     xmm0, [104+r12+r9*8]
3  movsd     xmm0, [120+r12+r9*8]
4  movsd     xmm3, [136+r12+r9*8]
5  movaps    xmm0, [80+r12+r9*8]
6  movhpd    xmm3, [96+r12+r9*8]
7  movaps    xmm0, [96+r12+r9*8]
8  movhpd    xmm2, [112+r12+r9*8]
9  movaps    xmm1, [112+r12+r9*8]
10 movhpd    xmm0, [128+r12+r9*8]
11 movaps    xmm1, [128+r12+r9*8]
12 movhpd    xmm0, [144+r12+r9*8]
13 mulpd     xmm3, xmm3
14 mulpd     xmm3, xmm3
15 mulpd     xmm3, xmm2
16 mulpd     xmm0, xmm3
17 mulpd     xmm2, xmm0
18 mulpd     xmm0, xmm3
19 mulpd     xmm0, xmm1
20 mulpd     xmm1, xmm3
21 addpd     xmm1, xmm2
22 addpd     xmm1, xmm3
23 addpd     xmm3, xmm1
24 addpd     xmm2, xmm3
25 mulpd     xmm0, [r15+r9*8]
26 mulpd     xmm2, [16+r15+r9*8]
27 mulpd     xmm1, [32+r15+r9*8]
28 mulpd     xmm1, [48+r15+r9*8]
29 addpd     xmm3, xmm2
30 addpd     xmm1, xmm2
31 addpd     xmm2, xmm1
32 addpd     xmm2, xmm1
33 movaps    [r11+r9*8], xmm3
34 movaps    [16+r11+r9*8], xmm2
35 movaps    [32+r11+r9*8], xmm1
36 movaps    [48+r11+r9*8], xmm1
37 add       r8, 1
39 cmp       r8, rbx
39 jb        inloop

Cycles per Iteration:  31.51 (IPC=1.24)
Average Power:   37.32 watts
Energy per Iteration: 84.0 nJ

Cycles per Iteration:  19.65 (IPC=1.98)
Average Power:   42.02 watts
Energy per Iteration: 59.0 nJ

Figure 2: An example of two “scrambled” versions of Kernel 1. This figure also includes sample data from HSW.
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Figure 3: A regression of several scrambles of Kernel 1 on
HSW.

provement in energy efficiency drops from 2.9x to 2.1x after
removing the use of SIMD extensions (step 1). Similarly, after
also removing the impact of frontend innovations (step 2), the
improvement drops from 2.1x to 1.8x. After, removing the
benefits of the SIMD Extensions, frontend, and backend as
well as the process technology, we are left with the “base”
energy efficiency. The “base” value represents the efficiency
of HSW if it pays the overhead cost of implementing all of
its architectural features —such as the micro-op cache and
additional execution units— but does not benefit from any of
them.

It is important to note that this process is conducted in an
additive process – the changes made in previous steps are re-
tained in the following steps. This methodological decision
was made out of necessity since each processor needs to be
running identical code in order to properly compare the fron-

tends. Similarly, we need to neutralize changes in the frontend
and ISA before comparing the backends.

The details of each step are described in the following sub-
sections.
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Figure 4: Average improvement in energy efficiency across
the Livermore Loops kernels.

3.1. SIMD Extensions

The AVX extensions introduce three important features to
the ISA that are relevant to the Livermore Loops: (1) four-
wide SIMD vector instructions (double the SIMD width of
SSE instructions) (2) non-destructive instructions, and (3)
256-bit load and store instructions (double the width of SSE
instructions) [11]. In addition, the AVX2 extensions also
provide fused multiply-add (FMA) instructions which double
the peak floating-point throughput and gather instructions (e.g.,
vgatherdpd) for vectorizing non-adjacent memory accesses.
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To evaluate the impact of the AVX and AVX2 extensions,
we create multiple versions of each kernel. The SSE version —
the baseline version— is created by constraining the compiler
to only generate code that is supported by SSE4.1 machines,
then extracting the resulting loop body. The AVX and AVX2
versions are generated by allowing the compiler to take ad-
vantage of the additional AVX instructions. We gauge the
effectiveness of the extensions by comparing the performance
and energy efficiency of the resulting versions.

Results from Kernel 20 (the peak floating-point throughput
kernel) on HSW demonstrate the potential benefits of SIMD
extensions. Doubling the SIMD width with AVX instructions
doubles performance and only increases total power by 4.3%,
which results in a 1.9x improvement in energy efficiency. Sim-
ilarly, the use of the FMA instructions can double the perfor-
mance and only increase power by 5.0%, which also nearly
doubles energy efficiency. By fully exploiting both the FMA
instructions and the wide SIMD width of the AVX instructions,
HSW can achieve up to 6.3 GFlops/watt, a 7x improvement
over the 0.9 GFlops/watt on PNY.

Unlike the ideal conditions, the AVX and AVX2 extensions
have only a moderate impact on the Livermore Loops kernels.
Eleven of the nineteen kernels (1, 2, 3, 4, 7, 8, 10, 12, 13,
14, and 18) benefit from the additional SIMD instructions –
the other kernels have structural dependencies which make
vectorization difficult. Of the kernels that do benefit, energy
efficiency improves 4-56% and performance improves 7-83%.
In each of these cases the improvement in performance is
greater than the improvement in energy efficiency primarily
because utilizing SIMD instructions often requires a little
extra work to shuffle data into and out of the proper SIMD
lanes. Interestingly, in two of the kernels (Kernel 4 and Kernel
9), the use of AVX instructions had a negative impact on
both performance and energy efficiency even though the AVX
version of the kernel uses fewer instructions. Averaging across
all kernels, the AVX extensions delivers a 21% improvement
in performance and a 16% improvement in energy efficiency.
Utilizing both AVX and AVX2 instruction on HSW provide a
26% improvement in performance and a 21% improvement in
energy efficiency over the SSE version.

3.2. Frontend Features

The frontend is responsible for fetching and decoding instruc-
tions to feed the execution engines in the backend. In an
out-of-order architecture, the frontend is integrated with a
branch prediction unit so it can fetch and decode instructions
down speculative paths in order to keep the backend busy. In
addition, modern processors are equipped with loop detectors
and instruction caches to reduce the number of instructions
that must be fetched and decoded, which improves both per-
formance and energy efficiency. This section examines how
the evolution of the frontend has impacted energy efficiency.
3.2.1. Loop Caches The loop cache exploits the temporal
locality of instructions to reduce the burden on the fron-

tend [20, 4]. When used, instructions from inside a loop
nest are streamed directly from the Instruction Queue (IQ) or
Micro-op Queue (MQ), skipping earlier stages of the pipeline.
In PNY, the cache is located between the instruction pre-
decode and the instruction decoders. In subsequent gener-
ations the cache is located after the decode units, allowing
the frontend to power-down the instruction fetch and decode
units when streaming from the MQ [26].4 Ultimately, the loop
cache improves performance by eliminating potential frontend
bottlenecks and reduces power by eliminating redundant work.
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Figure 5: This figure demonstrates the results from manually
unrolling Kernel 18 on HSW. Kernel 18 has 19 instructions, not
counting the branch instruction. When unrolls=10 the loop
nest contains 190 instructions. Performance remains con-
stant until the instruction stream exceeds the capacity of the
L1 instruction cache at unrolls =300.

3.2.2. Mico-op Cache In addition to the loop cache, SNB,
IVB, and HSW also include a micro-op cache in the frontend,
between the loop cache and the L1 instruction cache. It pro-
vides many of the benefits of the loop cache but has a higher
capacity (1500 micro-ops versus the 56 micro-ops in the loop
cache). Like the loop cache, the micro-op cache can reduce
the number of instruction decodes by caching decoded instruc-
tions. However, unlike the loop cache, the micro-op cache
exists earlier in the pipeline and therefore does not bypass the
branch prediction unit. The results in Figure 5 and Figure 6
show that utilizing the loop or micro-op cache can reduce the
power by several watts but the power saving advantage of the
loop cache over the micro-op cache is relatively low.

We measure the impact of the loop cache and the micro-op
cache by comparing the original kernel with a version that has
been manually unrolled to the point that the instruction stream
exceeds the capacity of the caches. In most cases the kernel
only needed to be unrolled two to four times before the loop
nest exceeded the capacity of the loop cache; however, some
of the kernels are too large to fit in the loop cache even without
unrolling. Table 2 lists IQ capacity of the different processors.
Performance counters are used to verify the utilization of the
loop cache.

4Since the loop cache is located before the decoders in PNY, it caches
instructions in the Instruction Queue (IQ); whereas later generations cache
decoded micro-ops in the Micro-op Queue (MQ).
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Figure 6: Improvement in energy efficiency from the micro-op
and loop caches. Blue denotes the contribution of the loop
caches and orange denotes the contribution of the micro-op
caches.

Figure 6 shows the results from the loop unrolling. In the
case of PNY, only one kernel (Kernel 11) fits into the loop
cache because of the size of most kernels exceeds the limited
capacity of the cache. The additional capacity in NHM and
WSM increases the number of kernels that can utilize the
loop cache to six. We also notice that locating the loop cache
after the decode stage of the pipeline has increased the energy
savings from 5% in PNY to 15% in NHM and WSM. Similarly,
the larger MQ in SNB, IVB, and HSW further increases the
number of kernels that utilize the loop cache; however, in
this case the improvement in energy efficiency is relatively
small because the unrolled kernels only fall back to the micro-
op cache, still avoiding the fetch and decode phases of the
frontend.

3.3. Backend Features

Comparing HSW to PNY with the SSE version of the Liver-
more Loops, there has been a 1.4x improvement in per-cycle
performance which can be attributed to architectural improve-
ments to the backend. While increasing performance is benefi-
cial on its own, it also affects energy efficiency by reducing
execution time and increasing power (recall Equation 2). In
this section, we analyze the source of improvements in perfor-

mance and energy efficiency of the backend.
3.3.1. Additional Execution Units Superscalar processors
exploit instruction-level parallelism by issuing multiple in-
structions per cycle. It improves performance and also im-
proves energy efficiency by reducing the execution time. Since
PNY, several additional execution units have been added to
the core microarchitecture. The most relevant additions are
the second load unit added to SNB, which doubles the L1 load
bandwidth, and several redundant execution units added to
HSW.
3.3.2. Additional Out-of-order Scheduling Resources To
take advantage of additional execution units, the out-of-order
scheduling resources must be increased to augment the dis-
covery and scheduling of independent instructions. Among
these resources, the number of reorder buffer (ROB) entries
directly affects the number of parallel instructions in flight.
The ROB holds the operands necessary for the instructions’
operations and hold the results before they are written back
to the architectural registers. More ROB entries allow more
concurrent instructions in the pipeline. The instruction win-
dow controls the number of instructions in the execution flow
that the processor can analyze for parallel execution. A larger
instruction window allows the processors to examine more in-
structions, which increases the chances of finding independent
instructions to be executed concurrently. Table 2 shows the
increase in the size of the reorder buffer and the instruction
window from PNY to HSW.
3.3.3. Backend Experiments and Results Ideally, the proper
approach to quantifying the benefit of the backend improve-
ments is to defeature a processor to make its backend behave
like the previous generation’s backend. Unfortunately, we do
not have the type of controls in modern processors to make
this work. Instead, we approximate this approach by manually
isolating changes in the backend. For these experiments we
use the SSE version of the kernels and unroll them enough
so the instruction streams do not fit into the micro-op caches,
thereby eliminating affects from the SIMD extensions and
frontend. Furthermore, to remove the impact of the manufac-
turing process, we compare processors from the same process
node (i.e., NHM to PNY, SNB to WSM, and HSW to IVB).

Overall, backend features improved performance more than
energy efficiency. From PNY to NHM, five of the 19 kernels
improved performance, but only three improved energy effi-
ciency. From WSM to SNB, 13 of the 19 kernels improved
performance and only three improved energy efficiency. From
IVB to HSW, 12 of the 19 kernels improved performance and
only two improved energy efficiency. The reason behind these
results is that backend improvements require a substantial in-
crease in transistor count which leads to a significant increase
in capacitance and power to toggle them.

Using performance counters and architecture simulators [17,
16], we study the reduction in pipeline stalls from one gener-
ation to the next. Based on this information, we can discern
what feature is responsible for the change in performance.
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From PNY to NHM, we found that the performance bene-
fits mainly come from increased scheduling resources. From
WSM to SNB, we found that the majority of the performance
benefits come from the addition of a second load port. Many
of the kernels are L1 bandwidth limited on NHM, therefore the
additional port alleviates this performance bottleneck. From
IVB to HSW, we found that several of the kernels that bene-
fited from the additional load port in SNB now benefit from
the additional scheduling resources as the L1 bandwidth is no
longer a significant performance bottleneck.

Finally, we use Equation 2 to calculate the effect these
performance improvements have on energy efficiency. Since
these performance improvements will increase power due to
the increase in utilization, we use the Register Scrambling
technique (see Section 2.6) to map changes in performance to
changes in power. For example, Kernel 1 has an IPC of 2.37
for PNY and 2.79 for HSW. Using the regression model for
Kernel 1 on HSW (see Figure 3), we can determine that this
1.18x improvement in performance equates to a 1.05x increase
in power (from 44.0 watts to 46.4 watts). Overall, this increase
in power is countered with a more significant decrease in
runtime which translates to a net 1.11x improvement in energy
efficiency.

3.4. Process/Circuits Innovation

Process technology innovations have been the primary driver
of improvements in energy efficiency over the past several
decades. These advances enable manufacturers to produce
smaller transistors that can operate a lower supply voltages and
reduced capacitance, both of which reduce dynamic switch-
ing energy. Although, smaller transistors also have a higher
leakage ratio, which contribute to higher overall static power
dissipation.

We evaluate the impact of process technology improvements
by comparing microarchitectures across process technology
nodes: NHM with WSM and SNB with IVB. Since the core
microarchitecture is largely unchanged, the change in power
can be primarily attributed to improvements in circuits and
process technology. Figure 7 shows a scatter plot comparing
the average power of a kernel on NHM with the average power
of the same kernel on WSM. The regression model suggests
that moving from the 45nm to the 32nm process technology
node has increased static power by 7.55 watts but reduced
dynamic power by a factor of 0.57. The increase in the static
power is partially due to higher leakage and partially due to a
bigger die with two more cores in WSM – we believe the in-
crease in static power would be lower if Intel had produced an
equivalent processor with four rather than six cores. Figure 8
shows a similar trend for the progression from 32nm to 22nm
process technology nodes. In this case, both the dynamic and
static power reduced by a factor of 0.68 and by 10.48 watts
respectively. The reduction in static power has been discussed
as a benefit of the transition from planar transistors in the
32nm process node to the 3D Tri-Gate transistors which de-

buted in the 22nm process node [1]. The 40% reduction in
dynamic power in both cases is in line with ITRS Roadmap
projections [3].
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Figure 7: Improvement in energy efficiency attributed to 32nm
process technology step.
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Figure 8: Improvement in energy efficiency attributed to 22nm
process technology step.

4. Discussion
Taking out the impact of process technology changes, micro-
architecture changes have increased per-cycle performance
1.9x and energy efficiency by 1.2x. Ignoring the overhead cost
of implementing these features, 40% of the energy efficiency
can be attributed to SIMD width, 35% to frontend features,
and 25% to backend features.

This section section makes several additional observations
about the evolution of energy efficiency in these processors.

4.1. Energy per instruction (EPI) depends highly on IPC

Efficiency is often gauged by calculating the effective energy
per instruction (EPI). EPI makes the most sense as a metric
when it remains constant, independent of IPC. However, be-
cause real machines expend energy at a certain minimum rate
even when idle, actual EPI becomes a function of IPC. Fig-
ure 9 demonstrates the effective EPI of HSW as a function of
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IPC. The effective cost of an instruction drops from 4.1 nJ at
IPC=0.5 to 0.8 nJ when IPC=4. The plot also shows that IPC
has a more dramatic impact on EPI than the actual instruction
mix.
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Figure 9: EPI as a function of IPC on HSW. Data samples come
from ten “scrambles” of each of the Livermore Loops kernels.
Data points are colored according to the kernel.

4.2. Fixed costs dominate variable costs

The relationship between IPC and EPI is the result of high
static power which is independent of core utilization. We can
approximate this overhead by modeling power as a function of
IPC (see Figure 10). Table 4 lists a linear regression relating
power to IPC on each of the processors. As the table shows,
when IPC=2, HSW consumes 11.05 nJ per cycle. Of that cost,
8.31 nJ comes from a fixed overhead cost and 2.74 nJ comes
from the variable cost of the instructions. As this data implies,
the actual operation cost of an instruction (e.g., the floating-
point arithmetic implied by a floating-point instruction) is only
a small fraction of the total power of the CPU. This is a typical
consequence of general purpose processors [25]. Looking at
the trend from PNY to HSW, the variable costs drops with each
processor generation, with substantial drops corresponding to
the changes in the process technology node. The fixed costs
drop during process technology node steps (NHM->WSM,
SNB->IVB), but increase when subsequent microarchitectures
are introduced (PNY->NHM, WSM->SNB, IVB->HSW).

Comparing HSW to PNY, a larger fraction of the total en-
ergy is spent on fixed costs. Two reasons contribute to this
trend. First, as modern processors integrate more cores to-
gether on a single chip, the size of the uncore grows [22]. In
our experiment, the uncore is not exercised, but it is not clock
gated either. Second, increasing core performance has a cost
in area and power. However, the transfer from variable costs
to fixed costs is not necessarily bad. For example, the intro-
duction of the micro-op cache increases the fixed cost of the
core by adding a cache, but it also reduces the variable cost by
reducing the number of instruction decodes and fetches.

Furthermore, comparing HSW to IVB reveals how the new
features in HSW affect both the fixed and variable costs. The
microarchitectural evolution from IVB to HSW has increased

the fixed cost by 22%. Unless HSW is able to exploit these
features to improve performance, at IPC=2.0 IVB will be 14%
more efficient than HSW. To overcome this deficit, HSW must
sustain an IPC of 2.38 to match the energy efficiency of IVB at
IPC=2.0 or rely on SIMD extensions to make each instruction
more productive.

Figure 10: Power as a function of IPC. Data samples come
from ten “scrambles” of each of the Livermore Loops kernels.

4.3. Performance improvements exceed power increases

According to the “base” value in Figure 4, the increased com-
plexity of the HSW core has increased the overhead cost by
nearly 80% when compared to PNY. To avoid a net increase
in energy consumption, improvements in performance should
be greater than 80%. In the case of the Livermore Loops, the
average performance increases 90%.

4.4. Frontend features reduce the tax of complex instruc-
tions

As mentioned earlier, as the complexity of the core increases,
more energy is devoted to the fixed costs. However, the in-
crease in fixed cost does not necessarily reduce energy effi-
ciency. For example, the frontend caches increase the fixed
cost, but ultimately improve energy efficiency by dramati-
cally reducing amount of energy spent fetching and decoding
instructions.

When compared to the Reduced Instruction Set Computing
(RISC), Complex Instruction Set Computing (CISC) is gen-
erally considered less efficient. CISC does not have uniform
instruction length, which adds significant complexity to the
instruction fetch and decode logic. Based on the results in sec-
tion 3.2 we can approximate the power of the fetch and decode
units by comparing the power when instructions are streamed
from the micro-op cache —which caches decoded micro-ops
and therefore can bypass the fetch and decode stages— with
the power when the instruction are streamed from the L1 in-
struction cache. Figure 5 shows that on HSW, the fetch and
decode overhead consumes about five watts of power which
is roughly 12.5% of the average 40 watts of power consumed
by HSW when running the Livermore Loops kernels. Our
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Power Model Energy Per Cycle Fixed Cost Per Cycle Variable Cost Per Cycle Fixed / Total
(IPC=2) (IPC=2) (IPC=2) (IPC=2)

HSW 4.79(IPC) + 29.08 11.05 nJ 8.31 nJ 2.74 nJ 75%
IVB 5.14(IPC) + 23.74 9.72 nJ 6.78 nJ 2.94 nJ 70%
SNB 7.81(IPC) + 49.63 18.64 nJ 14.81 nJ 4.46 nJ 76%
WSM 8.14(IPC) + 30.89 13.97 nJ 9.14 nJ 4.82 nJ 65%
NHM 13.79(IPC) + 41.30 20.39 nJ 12.23 nJ 8.16 nJ 60%
PNY 13.63 (IPC) + 34.54 20.60 nJ 11.51 nJ 9.09 nJ 56%

Table 4: Fixed vs Variable cost analysis of CPU power. The power model is based on a linear regression of the data shown in
Figure 10.

results also show that 16 of the 19 kernels fit into the loop
cache on HSW and all of the kernels fit in the micro-op cache,
which suggest that most of the inefficiencies associated with
the CISC decode tax can be eliminated with a well designed
frontend.

4.5. SIMD extensions increase the productivity of each in-
struction with minimal impact on power

It is a well known that SIMD computing is energy efficient.
Our results show that under the ideal conditions vector instruc-
tion can increase performance with only a nominal increase
in dynamic energy consumption. However, as SIMD width
increases, its applicability diminishes (see Section 3.1). Even
when there is sufficient data parallelism, the additional work
necessary to shuffle data into the proper SIMD lanes can limit
the advantage of wide SIMD instructions. For example, al-
gorithms with indirect accesses or random accesses require
separate scalar operations to load and pack data into these
SIMD lanes, which could take away most of the performance
and energy efficiency benefit offered by SIMD. Auxiliary
instructions —such as the gather instruction, which loads non-
continuous data into SIMD registers— are crucial to attaining
the full potential of vectorization. Just like the frontend caches
which provide the benefit of reducing complex instructions
overhead, the gather instructions help make wider SIMD use-
ful for a broader pool of applications.

4.6. High performance computing vs energy efficient com-
puting

Modern semiconductor manufacturing technology enables pro-
cessors to operate over a wide range of frequency and supply
voltages. The processor can operate at a high voltage to sup-
port a high clock frequency or a low voltage to reduce power.
In our experiments the voltage and frequency used are near the
top end of the supply voltage range, which sacrifices energy
efficiency for high single-threaded performance. In this regard,
our results may not capture the most energy efficiency way
of using the processors; it is possible for these processors to
be more efficient operating at a lower frequency and voltage.
We therefore caution readers to consider the supply voltage of
the processor before comparing the energy efficiency across
different classes of processors.

5. Related Work

Traditionally, research has focused on the power consumption
of individual functional units, yet there has been a growing
demand for processor-level analysis of energy efficiency.

At the application level, there have been several studies
comparing the energy efficiency of different processors. This
has included long-term historical trends [19, 13] as well as
comparisons of competing platforms [9, 8, 7]. The demand for
energy efficient computing has even motivated the Green500
list, which has become an industry benchmark for comparing
the energy efficiency of supercomputers [10]. Of course, the
vast differences between these systems (performance levels,
ISA, process and manufacturing technology, code quality, etc)
makes it difficult to draw any definitive conclusions about the
true impact of the underlying microarchitecture.

Bottom-up models and cycle-accurate simulators have been
used to evaluate architectural design decisions that affect
power [6, 14, 27, 18]. Unfortunately, it is often difficult to val-
idate the relative contribution of the individual components in
the underlying model when only the total power of the physical
processor can be observed. Furthermore, as the complexity of
modern processors swells, it is becoming increasingly difficult
to construct a bottom-up model that can accurately capture all
relavent processor features.

Alternatively, several groups have studied power consump-
tion by developing instruction-based power models [23, 5, 21].
This approach focuses on correlating hardware performance
counters with observed power measurements. A regression
analysis is used to assign energy costs to each architectural
event. This can then be used to predict power consumption of
an arbitrary application based solely on performance counter
values. The primary weakness of this approach is its inability
to directly account for the full context within which an instruc-
tion is executed. For example, as our paper shows, the energy
consumed by an instruction that is streamed from a loop cache
can be significantly different from one that instead exercises
the instruction fetch and decode units, yet the performance
counter events only give a limited view of the internal state of
the processor core.
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6. Future Work and Conclusion

Due to the complexity of modern processors, we had to limit
the scope of this project to deliver meaningful insights. We
identify several limitations that can be addressed further in
future work:
• Beyond the core: Our study focuses on the core architec-

ture and thereby tries to minimize the impact of the memory
hierarchy, uncore, and system-level components. We ac-
knowledge that these components are an important factor
in the overall efficiency of a modern application. Studying
the core in isolation provides a foundation for tackling the
broader problem.

• Representative workloads: The Livermore Loops bench-
mark suite provides a number of floating-point heavy com-
putations with a variety of instruction-level dependencies.
It is well suited for the experiments in our study, but it is not
necessarily representative of modern or future workloads.
In particular, we want to draw attention to two important
characteristics that are absent in our benchmarks: first, the
single-loop structure of our benchmarks eliminates any per-
formance advantage of a sophisticated branch predictor
because nearly all branches are taken; second, by design
all memory accesses hit the L1 cache, neglecting the un-
core and higher levels of the memory hierarchy and thereby
eliminate dynamic variation in instruction latency. Studying
more representative workloads is a natural next step.

• Scaling voltage and frequency: Core voltage and clock
frequency can have a tremendous impact on energy effi-
ciency. In our experiments, the processors were configured
to run at the default voltage and frequency without dynamic
scaling. With a specific application in mind, it would be in-
teresting to study how voltage and frequency scaling impact
energy efficiency on a fixed architecture.

• Comparing competing processors: The quantitative re-
sults of this study are specific to the Intel R© Core

TM
pro-

cessor, yet the conclusions can be applied in general. For
a more general purpose study, this approach can also be
extended to compare among different processor families in-
volving more dramatic microarchitectural differences, such
as a comparison with the Intel R© Atom

TM
or Xeon Phi

TM
or

even comparing processors with different ISAs.
• Optimizing software for energy efficiency: Beyond the

quantitative numbers presented in this study, this work also
demonstrates how carefully controlled experiments can be
used to isolate individual architectural features for the pur-
poses of empirically measuring energy consumption. In
many cases, key architectural features, such as the loop
cache, are transparent from a performance perspective and
are thus overlooked. We believe this methodology provides
the level of precision necessary for exploring the impact soft-
ware implementation decisions have on energy efficiency.
For example, an evaluation of compiler heuristics can lead
to compile time optimizations tailored specifically for re-

ducing energy consumption.
Following the hackneyed business adage, “if you can’t mea-

sure it, you can’t manage it”, we firmly believe that long-term
improvements in energy efficiency within the field of high
performance computing depend on rigorous evaluations of
progress. In this spirit, our paper provides an in-depth assess-
ment of energy efficiency on recent generations of the Intel R©

Core
TM

processor. Our results indicate that advances in man-
ufacturing and circuits have been the dominate contributor
to the improvements in energy efficiency, but architectural
innovations have had a positive impact on energy efficiency as
well.
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