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Abstract Taking parameter uncertainty into account is key

to make drug development decisions such as testing whether

trial endpoints meet defined criteria. Currently usedmethods

for assessing parameter uncertainty in NLMEM have limi-

tations, and there is a lack of diagnostics for when these

limitations occur. In this work, a method based on sampling

importance resampling (SIR) is proposed, which has the

advantage of being free of distributional assumptions and

does not require repeated parameter estimation. To perform

SIR, a high number of parameter vectors are simulated from

a given proposal uncertainty distribution. Their likelihood

given the true uncertainty is then approximated by the ratio

between the likelihood of the data given each vector and the

likelihood of each vector given the proposal distribution,

called the importance ratio. Non-parametric uncertainty

distributions are obtained by resampling parameter vectors

according to probabilities proportional to their importance

ratios. Two simulation examples and three real data exam-

ples were used to define how SIR should be performed with

NLMEM and to investigate the performance of the method.

The simulation examples showed that SIR was able to

recover the true parameter uncertainty. The real data exam-

ples showed that parameter 95 % confidence intervals (CI)

obtained with SIR, the covariance matrix, bootstrap and log-

likelihood profiling were generally in agreement when 95 %

CI were symmetric. For parameters showing asymmetric

95 % CI, SIR 95 % CI provided a close agreement with log-

likelihood profiling but often differed from bootstrap 95 %

CI which had been shown to be suboptimal for the chosen

examples. This work also provides guidance towards the SIR

workflow, i.e.,which proposal distribution to choose and how

many parameter vectors to sample when performing SIR,

using diagnostics developed for this purpose. SIR is a

promising approach for assessing parameter uncertainty as it

is applicable in many situations where other methods for

assessing parameter uncertainty fail, such as in the presence

of small datasets, highly nonlinear models or meta-analysis.

Keywords Sampling importance resampling � Parameter

uncertainty � Confidence intervals � Asymptotic covariance

matrix � Nonlinear mixed-effects models � Bootstrap

Introduction

Nonlinear mixed effects models (NLMEM) are increas-

ingly used to support drug development [1]. Even though

NLMEM have been mainly employed for exploratory

purposes, they have been advocated as powerful tools also

in confirmatory settings [2]. In such settings, the adequacy

of the structural and distributional assumptions inherent to

NLMEM is particularly important in order to draw correct

conclusions. One of the aspects requiring scrutiny is

parameter uncertainty. Indeed, parameter uncertainty is key

to make drug development decisions such as testing whe-

ther trial endpoints meet defined criteria, calculating the

power of a prospected trial [3], taking a go/no go decision

at an interim analysis [4], selecting doses for a Phase II trial

[5], or optimizing dosing regimen [6]. Parameter uncer-

tainty in NLMEM is usually obtained from the asymptotic

covariance matrix at the maximum likelihood parameter
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estimates assuming a multivariate normal distribution,

from a parametric or nonparametric bootstrap procedure, or

less commonly from log-likelihood profiling.

Using the covariance matrix, model parameters are

assumed to be normally distributed and their confidence

intervals (CI) are computed from the standard errors

obtained based on the inverse of the observed Fisher

information matrix [7]. However, when the settings are far

from asymptotic conditions (i.e., when the number of

observations and/or individuals is low) or when models

display substantial nonlinearity, the assumption of nor-

mality may not hold. Reparameterization, for example

using exponentiated parameters, has been advocated as an

approach to address non-normal uncertainty [8]. However,

the adequacy of the new distribution is by no means

guaranteed. Determining whether the covariance matrix is

appropriate, i.e., quantifying the distance from asymptotic

conditions or the degrees of nonlinearity, is not straight-

forward. Measures of nonlinearity have been proposed [9]

but they are controversial [10] and have not been applied to

NLMEM. In addition, numerical issues may hamper the

computation of the inverse of the FIM [11] and prevent its

use.

The bootstrap [12] enables parametric or nonparametric

parameter CI to be computed from a given number of

parameter vectors which are estimated based on boot-

strapped datasets. Nonparametric case bootstrap methods,

where no assumption about uncertainty distribution is

made, are the most commonly used in NLMEM. In non-

parametric case bootstrap, new datasets are computed by

resampling with replacement individual data from the

original dataset. The new datasets are of the same size as

the original dataset, but differ in the included individuals.

The authors refer to Thai et al. [13] for a comparison of the

performance of different bootstrap methods in NLMEM.

Usage of the bootstrap may be limited due to time as it

requires a high number of potentially computationally

intensive estimation steps, even though some efforts have

been made to reduce this [14]. A further limitation is that it

is not applicable when data from only few individuals is

available, when frequentist priors are used (a parameter for

which uncertainty is high because of uninformative data

would appear precise as all of its bootstrapped values

would stay close to its prior value) or when doing model-

based meta-analysis (different studies are typically not

exchangeable). There is also a lack of consensus about both

the handling of bootstrapped samples for which the esti-

mation was not successful, and about which method to use

to compute bootstrap CI. Just as for the covariance matrix,

it is difficult to judge in which situations the use of boot-

strap is appropriate. Recent work suggests that datasets

commonly used in NLMEM are actually too small for the

bootstrap to be properly applied [13, 15].

Log-likelihood profiling [16, 17] can also be used to

assess parameter uncertainty. Like the bootstrap, this

method makes no assumption about uncertainty distribu-

tion. Parameter CI are computed in a univariate manner by

estimating the objective function value (OFV), which

corresponds to minus two times the log-likelihood up to a

constant, at an array of fixed values of the parameter of

interest while the other parameters are estimated. Values

which lead to differences in OFV (dOFVs, calculated as the

OFV at a given array of parameter estimates minus the

OFV at the maximum likelihood estimates) equal to the

value of the Chi square distribution for one degree of

freedom and at the a confidence level are taken as the outer

bounds of the 1 - a % CI. Minimization problems and

long runtimes can be an issue, even if the number of

estimations needed is typically much lower than with the

bootstrap. The main drawback of log-likelihood profiling is

that it does not provide full uncertainty distributions. Only

the bounds of a parameter’s CI are available, and despite

some work on multivariate implementation [18], as of now

it cannot be used to generate entire sets of parameters.

All currently available methods for assessing parameter

uncertainty thus present non negligible drawbacks in

NLMEM settings. Sampling importance resampling (SIR),

an alternative method making no distributional assump-

tions on uncertainty and devoid of repeated estimation

steps, could address some of these shortcomings.

The SIR algorithm has been proposed by Rubin [19] to

obtain posterior parameter uncertainty distributions. SIR

was developed in the Bayesian setting as a noniterative and

universally applicable method for obtaining draws from an

unknown distribution based on draws from an approxi-

mation of this distribution. The draws are resampled based

on their importance ratios, which measure the agreement

between the approximated distribution and the data at

hand, and are expected to be proportional to the resampling

probabilities given the unknown distribution. Starting from

any proposal distribution, SIR will thus resample a set of

samples representative of the unknown distribution. In the

past, SIR has been used to calculate marginal densities

[20], to impute missing data [21] and in Bayesian mod-

elling [22, 23]. It has been applied in the healthcare domain

to project trends in HIV/AIDS epidemics [24], to estimate

cost-effectiveness [25] and to perform optimal experi-

mental design in systems pharmacology [26]. However, to

the authors’ knowledge the application of SIR to estimate

parameter uncertainty distributions in NLMEM has not

previously been described in the literature.

The aim of this work was to develop a workflow for

performing SIR in the context of NLMEM, and to apply

this workflow to compare parameter uncertainty obtained

with SIR to parameter uncertainty obtained with commonly

used methods.
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Methods

SIR algorithm and implementation in NLMEM

The objective of SIR is to provide, for a given model and a

given set of data, a set of m parameter vectors which are

representative of the true and unknown parameter uncer-

tainty distribution. SIR is performed in the following three

steps:

(1) Step 1 (sampling): M (M[m) parameter vectors are

randomly sampled from a proposal distribution.

(2) Step 2 (importance weighting): For each of the

M sampled parameter vectors, an importance ratio is

computed. This importance ratio corresponds to the

probability of being sampled in the true parameter

uncertainty distribution. It is computed as the

likelihood of the data given the parameter vector,

weighted by the likelihood of the parameter vector in

the proposal distribution (Eq. 1).

IR ¼
exp �1

2
dOFV

� �

relPDF
; ð1Þ

where IR is the importance ratio, dOFV is the difference

between the objective function value (OFV) of the

parameter vector and the OFV of the final parameter esti-

mates on the original data, and relPDF is the value of

the probability density function of the parameter vector

relative to the probability density of the final parameter

estimates.

(3) Step 3 (resampling): In the last step, m parameter

vectors are resampled from the pool of M simulated

vectors based on their importance ratio. These

vectors can be used to compute desired CI.

A summary of the SIR procedure is provided in Fig. 1.

Full details on the SIR rationale and implementation are

provided in Online Resource 1.

SIR workflow

In theory, SIR results should be independent on the chosen

SIR settings, which are the proposal distribution and the

number of samples M. However this is not always the case,

for example if the proposal is very far from the true dis-

tribution and the number of samples is too low. In this

work, settings which would be in general appropriate for

NLMEM were explored, and diagnostics to judge a pos-

teriori whether SIR settings should be improved were

developed.

SIR was initially proposed to be performed based on a

default workflow, where the estimated ‘‘sandwich’’ vari-

ance–covariance matrix, which is a function of the Hessian

and the cross-product gradient, was used as proposal dis-

tribution. The number of samples M was set to 5000 and

the number of resamples m was set to 1000.

Potential improvements of this workflow were then

investigated. First, different numbers of samples were

investigated (M = 2000, 4000, 6000, 8000 and 10,000).

The number of resamples m was not modified, as this

number was chosen in order to have sufficient precision on

the outer bounds of the CI of interest, which was the 95 %

CI. Note that m can be chosen freely depending on the

desired precision of the uncertainty. What is important for

SIR is thus not so much the intrinsic value of M, but rather

its relation to m, expressed as M/m ratios (M/m = 2, 4, 6, 8

and 10). One should choose m in the same manner as the

number of samples in a bootstrap, i.e., depending on the

intended use. For example, m = 1000 would be recom-

mended to compute a 95 % CI. M would then derived from

the recommended M/m ratio, 5 by default, to be 5000.

Secondly, different proposal distributions were investi-

gated. They corresponded to inflations and deflations of the

covariance matrix, for which all variances and covariances

of the uncertainty distribution were either increased or

decreased by a certain factor (0.5, 0.75 1.5 and 2). It is very

important to note that proposal distributions not based on

the covariance matrix can also be used, especially if the

covariance matrix is not estimable. This is a major

advantage of SIR which will be further detailed in the

discussion. Lastly, performing SIR using resampling with

replacement in order to increase SIR efficiency was also

investigated. Because replacement was not recommended,

results from this investigation are not discussed here, but

they are provided in Online Resource 2.

• SAMPLE M 
parameter vectors 
from proposal 
distribution 

SAMPLING     
Step 1  

• Compute 
IMPORTANCE 
RATIOS

IMPORTANCE 
WEIGTHING   

Step 2  

• RESAMPLE m
vectors, compute 
standard errors or 
confidence intervals 

RESAMPLING  
Step 3  

θ1 

θ1 

Uncertainty 
distribution for 
parameter θ1 

Proposal

SIR

Fig. 1 The three steps of the SIR procedure
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Application of SIR to simulated examples and real

data examples

SIR was used to obtain parameter uncertainty of two

simulation examples and three real data examples. For the

real data examples, 95 % CI of model parameters were

compared to the CI obtained from the covariance matrix,

bootstrap (1000 samples, no stratification) and log-likeli-

hood profiling. For the simulation examples, 95 % CI were

also computed and used to calculate the proportion of

datasets for which the computed CI included the true

simulation value, a metric known as coverage. The cov-

erage obtained with SIR was compared to the coverage

obtained with the covariance matrix. As uncertainty

depends on the estimation method, all comparisons should

be done using the same method. The first order conditional

estimation with interaction method was used in this work.

The three real data examples were moxonidine [27],

pefloxacin [28] and phenobarbital [29]. Models were

multiple dose pharmacokinetic (PK) 1-compartment mod-

els with oral or intravenous (i.v.) administration. Data

ranged from rich to sparse. The simulation models com-

prised an i.v. 1-compartment PK model with first-order

elimination and a pharmacodynamic (PD) dose–response

Emax model. Simulated datasets comprised 20, 50 or 200

individuals, each providing four observations. For each

model and dataset size, 500 simulations and re-estimations

were performed. Details on model structures, parameters

and designs are available in Online Resource 3.

SIR diagnostics

When performing SIR, the user needs to choose a proposal

distribution and a samples/resamples ratio M/m. Diagnos-

tics were developed to judge whether the chosen SIR set-

tings were appropriate, i.e., whether SIR results could be

considered final. Three graphical diagnostics were devel-

oped: (1) the dOFV distribution (first proposed in [15] in

connection with bootstrap), which is a global diagnostic

assessing the adequacy of both the proposal distribution

and M/m for all parameters simultaneously (2) the spatial

trends plot, which is a local diagnostic assessing the ade-

quacy of the proposal distribution separately for each

parameter and (3) the temporal trends plot, which is a local

diagnostic assessing the adequacy of M/m separately for

each parameter. An illustration of the diagnostics is

available in Fig. 2. The diagnostics should be used as

follows: SIR settings are considered adequate if the dOFV

distribution after SIR is at or below the Chi square distri-

bution and no trends are apparent in the temporal trends

plot. The investigations on the SIR workflow will provide

guidance towards what to do when this is not the case.

dOFV distribution plot (left panel, Fig. 2)

dOFV quantile distributions were suggested as a method to

diagnose the appropriateness of bootstrap uncertainty dis-

tributions [15] andwere applied to SIR. The principle behind

this diagnostic is that if the parameter vectors resampled by

SIR were the true uncertainty, the difference between their

OFV and the OFV obtained at the final parameter estimates

of the model should follow a Chi square distribution. The

degrees of freedom (df) of this distribution is equal to the

number of estimated parameters for an unconstrained fixed

effects model [30], but the exact df is unknown for NLMEM.

Indeed, it is expected to be equal to or below the number of

estimated parameters, notably due to the estimation of ran-

dom effects and other bounded parameters, which may not

account for full degrees of freedom [31]. Plotting the dOFV

distributions obtained from theM proposal samples and from

the m SIR resamples against a Chi square distribution with

degrees of freedom equal to the number of estimated

parameters informs about the adequacy of the proposal dis-

tribution and M/m. If the dOFV distribution obtained from

theM samples is at or close to the Chi square distribution, it

means that the proposal distribution is close to the true dis-

tribution; if it is far above or below, it means that it is quite

different from the true distribution. If the dOFV distribution

obtained from the m SIR resamples is at or below the Chi

square distribution, M/m may have been sufficient and

should be further investigated with the temporal trends plot;

if the distribution is above the Chi square distribution, M/m

was not sufficient. Themean of the dOFV distribution can be

used to quantitatively compare the distributions; it corre-

sponds to the degrees of freedom if the distribution is a Chi

square distribution.

Spatial trends plot (middle panel, Fig. 2)

This plot enables to visualize, parameter by parameter,

whether the proposal distribution differs from the true

uncertainty. The spatial trends plot shows the resampling

proportion, i.e., the number of resampled parameters divi-

ded by the number of parameters available from the

M samples (on the y-axis), in different regions, or bins, of

the parameter space (on the x-axis). The parameter space is

defined as all values comprised between the lowest sam-

pled parameter value and the highest sampled parameter

value, and is divided into ten bins which all contain an

equal number of samples. Four types of trends can be

observed in this plot:
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– Horizontal trend (i.e., no trend): If the observed

resampling proportion is within stochastic noise around

the expected proportion for all bins, it means that the

proposal distribution is close to the true uncertainty.

– Bell-shaped trend: If the observed proportion is higher

in the center and lower at the ends, it means that

parameters close to the final estimates are resampled

more often than those further away from them, and thus

that the proposal distribution is wider than the true

distribution.

– u-shaped trend: Oppositely, if the observed proportion

is lower in the center and higher at the ends, it means

that the proposal distribution is narrower than the true

distribution.

– Diagonal trend: If the proportion is higher at one end

and lower at the other, it means that the proposal

distribution has a different (a)symmetry than the true

distribution.

The spatial trends plot indicates how the proposal differs

from the true distribution, but it does not inform whether

SIR was able to compensate for these differences.

Temporal trends plot (right panel, Fig. 2)

This plot indicates, parameter by parameter, whether M/m

was high enough to compensate for the differences

between the proposal distribution and the true uncertainty.

SIR can succeed as long as there are enough ‘‘good’’

samples available in the proposal distribution. The limiting

factor for this is the bin that shows the highest proportion

of resamples in the spatial trends plot. This bin, referred to

as the top spatial bin, is the region of the parameter space

where SIR is most likely to run out of ‘‘good’’ samples if

M/m is not sufficient. Instead of binning sampled parame-

ters based on their value as for the spatial trends plot,

resampled parameters are now binned based on the order in

which they were resampled: the parameters that were

resampled first (i.e., most likely those with the highest

importance ratios) belong to the first ‘‘time bin’’, and those

that were resampled last belong to the last bin. The tem-

poral trends plot then shows, for each of the 5 time bins (on

the x-axis), the number of resamples that belongs to the top

spatial bin (on the y-axis) together with the sampling noise.

Two trends can be observed for this diagnostic:

– Horizontal trend (i.e., no trend): If the number of

resampled parameters in the top spatial bin is within

sampling noise for all time bins, M/m was sufficient to

compensate for potential differences between the

proposal distribution and the true uncertainty.

– Downward diagonal trend: If on the other hand the

number of resampled parameters decreases over time, it

indicates a depletion of samples in the top bin and that

there were not enough good samples in the SIR

procedure to fully correct the proposal uncertainty:

M/m was not sufficient.

Software

NONMEM 7.2 and 7.3 [32] aided by PsN 3.5.9 and above

were used for data simulation, model fitting and SIR
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Fig. 2 Diagnostic plots for the moxonidine real data example

showing that SIR settings were appropriate. The SIR dOFV distri-

bution is below the Chi square distribution in the dOFV distribution

plot (left panel). Diagonal upward and bell-shaped trends in the

spatial trends plot (middle panel) indicate that the proposal distribu-

tion is different from the true uncertainty. Horizontal trends in the

temporal trends plot (right panel) show that the M/m ratio was high

enough for SIR to compensate the inadequacy of the proposal

distribution. See text in the ‘‘Methods’’ section and additional legends

in Online Resource 4 for further details. (CL clearance, V volume, KA

absorption rate, TLAG lag-time, IIV inter-individual variability, IOV

inter-occasion variability, RUV residual unexplained variability)
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computation. RStudio 0.98 using R 3.1.2 [33] was used for

SIR computation and graphical output.

Results

SIR was implemented as a modelling supporting tool in the

PsN software and is thoroughly documented in the PsN

user guide. It is fully automated and enables the user to

easily perform SIR with any NONMEM-based model,

providing numerical summary results such as relative

standard errors (RSE) and CI as well as extensive graphical

diagnostics.

Real data examples: SIR diagnostics

and comparative parameter CI 95 %

SIR settings with the default workflow proved appropriate

based on the developed diagnostics for the three real data

examples. In all examples, the uncertainty given by the

covariance matrix appeared different from the true distri-

bution, as evidenced by dOFV distributions above the Chi

square distribution and non-horizontal trends in the spatial

trends plots. A M/m ratio of 5 was sufficient to compensate

the inadequacy in all examples: the dOFV distributions of

the SIR resamples were below the Chi square distribution

and the temporal trends plots displayed no trends.

For the moxonidine example (Fig. 2), the dOFV distri-

bution of the proposal was well above the Chi square

distribution (df 26.4 vs. 11), indicating that the asymptotic

covariance matrix was relatively far from the true uncer-

tainty. This was confirmed by the spatial trends plot, which

showed bell-shaped trends for lag-time (TLAG), absorp-

tion rate (KA), residual unexplained variability (RUV) as

well as diagonal trends for inter-individual variability on

volume (IIV V) and inter-occasion variabilities (IOVs),

evidencing an overestimation of parameter uncertainty and

a misspecification of the symmetry, respectively. The

dOFV distribution of the resamples, i.e., after SIR, was

much improved over that of the proposal and was below

the Chi square distribution (df 9.7). To check whether these

results could be considered final, the temporal trends plot

was inspected: it showed limited downward trends, mostly

within sampling noise. To make sure that M/m had been

sufficient to fully correct the proposal, SIR was performed

with an additional 5000 samples from the covariance

matrix (M/m = 10): the df of the resamples dOFV distri-

bution did not change (df 9.6 vs. 9.7 previously), nor did

parameter CI. SIR results with M = 5000 were thus con-

sidered final. For pefloxacin (Fig. A3 panel a, Online

Resource 4), the dOFV distribution of the proposal was

also above the Chi square distribution (df 14.2 vs. 10). The

spatial trends plot showed an overprediction of the

uncertainty for some parameters (RUV and covariate effect

on clearance CL) and some discrepancy in symmetry (IIV

V and IOV V). The dOFV distribution after resampling

was below the Chi square distribution (df 8) and no trends

were apparent in the temporal trends plot, suggesting that

the chosen M/m of 5 was sufficient. For phenobarbital

(Fig. A3 panel b, Online Resource 4), the dOFV distribu-

tion of the proposal was only slightly above the Chi square

distribution (df 9 vs. 7), showing good adequacy overall.

Diagonal upward trends indicating asymmetry in the true

variance uncertainties were present in the spatial trends

plot. As the dOFV resamples distribution was 0.6 df lower

than the Chi square and the temporal trends plot showed no

trend, SIR results were considered final.

Once SIR settings were proven appropriate, SIR

parameter 95 % CI (using M = 5000 for all models) could

be compared to those obtained from the covariance matrix,

bootstrap and log-likelihood profiling. For moxonidine

(Fig. 3), all methods provided similar 95 % CI for CL and

V. IIV estimates of CL and V were similar across methods

except for log-likelihood profiling, for which upper bounds

were increased. KA and TLAG 95 % CI were similar for

SIR and log-likelihood profiling, narrower than those

obtained with the covariance matrix and displaying asym-

metry. Asymmetry in the uncertainty of absorption

parameters was even more marked when using bootstrap.

Regarding IOVs, SIR, log-likelihood profiling and boot-

strap led to high asymmetry especially for IOV KA.

Uncertainty in RUV was symmetric but narrower with SIR

and log-likelihood profiling than with the covariance

matrix or bootstrap. Similar observations were made with

the pefloxacin and phenobarbital examples (Fig. A4 panel

a, b, Online Resource 5). In terms of runtime the covari-

ance matrix was the fastest method, followed by log-like-

lihood profiling, SIR and finally bootstrap (namely 14 s,

15 min, 1 and 2 h respectively for the moxonidine exam-

ple; relative differences were similar for the other

examples).

Simulation study: comparative coverage

Coverage with SIR was similar to coverage with the

covariance matrix when using the latter as proposal dis-

tribution. SIR results could however be improved when

inflating the proposal distribution (Fig. 4).

In both simulation examples, coverage with the covari-

ance matrix improved with increasing sample size. 95 %

CI often underestimated the true parameter uncertainty.

Most parameters displayed suboptimal coverage at low

sample size; coverage was worse for IIV parameters,

around 0.85 instead of 0.95. Coverage was however satis-

factory at high sample size, except for IIVs in the PD

example which had a coverage of 0.90. SIR results without
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inflation were similar to or slightly improved over the

covariance matrix, but from the diagnostic plots it was

apparent that SIR settings were not fully appropriate. In

most cases, the dOFV distribution of the proposal was

below the Chi square distribution and diagonal trends were

apparent in the temporal trends plots. Based on the inves-

tigations on the SIR workflow presented in the next para-

graph, SIR was performed again using inflations of the

covariance matrix as proposal distributions. Inflation fac-

tors were chosen as the lowest value (starting from 1 and

increasing by steps of 0.5) for which diagnostic plots

looked appropriate. The inflation factor was 3 for datasets

with 20 individuals, 2 for datasets with 50 individuals, and

1.5 for datasets with 200 individuals. SIR coverage was

greatly improved: only IIV CL and IIV ED50 in datasets

with 20 individuals were still statistically suboptimal using

the optimized SIR workflow.

Impact of M/m and proposal distribution on SIR

results

Changes in SIR settings, i.e., the M/m ratio and the pro-

posal distribution, were investigated to better understand

their impact on SIR results so as to give guidance on how

to choose SIR settings. The investigations, based on the

real data examples, showed that the M/m ratio necessary

for SIR results to be considered final was different in the

three investigated examples, and was lower the closer the

proposal distribution was to the Chi square distribution.

The proposal distribution was found to have a profound

impact on SIR results: distributions slightly wider than the

true distribution performed best, while distributions nar-

rower than the true distribution performed badly. The

diagnostic plots were able to distinguish between appro-

priate and inappropriate settings in all cases.

M/m ratio

The optimal M/m ratio was found to be 6 for moxonidine, 4

for pefloxacin and 2 for phenobarbital, as evidenced by the

visual stabilization of the dOFV distributions at M/m = 6,

M/m = 4 and M/m = 2 respectively (Fig. 5). The df was

very stable for ratios above the optimal ratio, with varia-

tions around 0.1–0.2 df.

The correspondence between the visual stabilization of

the dOFV distributions and the numerical stabilization of

RSE and CI bounds, which are the real metrics of interest

for parameter uncertainty, was investigated. It was found

that visually stable dOFV distributions corresponded to

relatively stable RSE and CI bounds, and vice versa. In the

case of moxonidine for example, parameter RSE using an

M/m ratio of 10 instead of 8 changed on average by less

than 1.9 % of their value (range [0.1–5.2 %], see Online

Resource 6). How fast RSE and CI stabilized over

increasing M/m differed greatly between parameters. The

RSE and CI bounds appeared quite stable from the lowest

M/m ratio for CL, V and IIV V, whereas for KA, TLAG,

IIV CL and IOV CL stabilization did not occur until M/
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m = 4. Stabilization was slowest for IIV KA and IOV KA,

occurring around M/m = 6.

Proposal distribution

The impact of the proposal distribution was investigated to

see whether SIR would lead to better results when using

modifications of the covariance matrix as proposal distri-

butions. In this work only modifications of the covariance

matrix were investigated, but it is important to stress that

any distribution can be used as proposal distribution for

SIR and that the covariance matrix is thus not required for

SIR to be performed. Figure 6 displays the estimated df of

the SIR dOFV distributions as a function of M/m for dif-

ferent proposal distributions. As expected, the proposal

distributions affected how fast SIR stabilized: higher M/m

ratios were necessary to reach stable dOFV distributions

when starting from inflations of the covariance matrix.

Stabilization of the df was not reached for any of the

models at an M/m ratio of 10 when starting from a twofold

inflation of the covariance matrix, and was also not reached

at M/m = 10 for the 1.5-fold inflation of the moxonidine

covariance matrix. For deflations of the covariance matrix

on the other hand, stabilization seemed faster, even if slow

degrees of freedom increases were visible, in particular for

phenobarbital. However, the diagnostics plots when using

deflated proposal distributions showed trends indicating too

lowM/m ratios in the temporal trends plots. A stable df was

thus not a good indicator of SIR performance when the

proposal distribution was too narrow (i.e., below the Chi

square distribution). Given that the degrees of freedom was

still much lower for the deflations than for the inflations at
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Fig. 4 Coverage with SIR is as

good as or better than coverage

with the covariance matrix. The

squares represent the observed

95 % coverage for the

parameters of the two

simulation examples with SIR

(red) and with the proposal

distribution (blue). The

horizontal error bars represent

the 95 % CI around the

observed coverage (500

simulated datasets per example

and dataset size). SIR was

performed both with the default

workflow (‘‘no inflation’’

panels: covariance matrix as

proposal distribution and M/

m = 5) and with an optimized

workflow (‘‘inflation’’ panels:

covariance matrix inflated by 3,

2 and 1.5 for the datasets with

20, 50 and 200 individuals

respectively as proposal

distributions and M/m = 5)
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M/m = 10, it appeared that too narrow proposal distribu-

tions would need much higher ratios to converge than too

wide proposal distributions. Lastly, the degrees of freedom

obtained with SIR starting from the deflations and infla-

tions of the covariance matrix did not converge at the

highest tested M/m ratio of 10. Differences in df at this

point spanned 5 df for moxonidine, 4 df for pefloxacin and

2 df for phenobarbital.

Discussion

SIR was successfully implemented in the NLMEM

framework and is available as a user-friendly modelling

support tool in the PsN software. SIR was able to

characterize parameter uncertainty more accurately than

conventional methods such as the covariance matrix, the

bootstrap or log-likelihood profiling. A workflow based on

specifically designed diagnostics was proposed to guide the

user on how to perform SIR.

SIR workflow

Based on the performed investigations, the following

decision tree (Fig. 7) is recommended when performing

SIR:

(1) Choose the best guess of the uncertainty distribution.

The covariance matrix can be used if available, but it

is not necessary: a limited number of bootstrap

Estimated df

11 (REF)
27.1 (PROPOSAL)

9.5 (SIR M/m=10)

12.2 (SIR M/m=2)
10.1 (SIR M/m=4)
9.6 (SIR M/m=6)
9.4 (SIR M/m=8)

Estimated df

10 (REF)
14.1 (PROPOSAL)

8.2 (SIR M/m=10)

8.8 (SIR M/m=2)
8.2 (SIR M/m=4)
8.2 (SIR M/m=6)
8.3 (SIR M/m=8)

Estimated df

7 (REF)
9 (PROPOSAL)

6.4 (SIR M/m=10)

6.2 (SIR M/m=2)
6.1 (SIR M/m=4)
6.3 (SIR M/m=6)
6.2 (SIR M/m=8)
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Fig. 5 SIR dOFV distributions converge with increasing number of

initial samples. Comparative dOFV distributions and estimated df for

the covariance matrix as proposal distribution (blue dotted line), SIR

with increasing number of initial samples (colored full lines) and the

reference Chi square (grey full line) for the three real data examples
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Fig. 6 Degrees of freedom of the SIR dOFV distributions do not
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factors (colored full lines) as a function of the number of samples

M for the three real data examples. The horizontal dashed lines

correspond to the number of estimated parameters for each model
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samples, or any other guess of the uncertainty

distribution can be used as proposal distribution.

(2) Perform SIR. The recommended samples/resample

ratio M/m is 5 (for proposal distributions expected to

be close to the true uncertainty, such as the

covariance matrix), but may be increased to 10 for

example (for other, less well informed proposal

distributions).

(3) Check the diagnostics. If the proposal dOFV distri-

bution is below the Chi square distribution (u-shaped

trends will be present in the spatial trends plot),

restart SIR with a wider proposal distribution (for

example using an inflation factor of 1.5). If the

proposal dOFV distribution is above the Chi square

distribution and trends are apparent in the temporal

trends plot, increase M (double for example). If the

proposal dOFV distribution is above the Chi square,

no trends are apparent in the temporal trends plot and

the SIR dOFV distribution is below the Chi square

distribution, SIR results can be considered final.

Real data examples: comparison of SIR with other

methods for parameter uncertainty

Interpretation of differences in parameter 95 % CI between

methods is not straightforward with real data examples as

the true uncertainty remains unknown. Although some case

studies are available [34], thorough comparisons of the

performance of available methods to assess parameter

uncertainty such as in Donaldson et al. [35] for nonlinear

fixed effects models are lacking in NLMEM. In the

investigated real data examples, starting from symmetric

covariance matrix-based uncertainty, SIR was able to pick

up expected asymmetry for given parameters such as

variances and nonlinear processes (Figs. 3, A4, Online

Resource 5). Results were often closest to those obtained

with log-likelihood profiling, which could be expected as

both rely on evaluation of the log-likelihood on the original

dataset. However, contrarily to SIR, uncertainty using log-

likelihood profiling is univariate and cannot be used for

simulation. In addition, log-likelihood profiling requires

reparameterization of the models featuring correlations

between variances, since single matrices elements cannot

be fixed in NONMEM. Bootstrap results also displayed the

presence of asymmetry in the uncertainty distribution of

selected parameters, but bootstrap CI were in general

slightly wider than with SIR. However, bootstrap beha-

viour had been shown to be suboptimal for the considered

real data examples [15]. In addition, in the pefloxacin

example half of the bootstrap samples were unsuccessfully

minimized, further evidencing the complications of this

method to assess parameter uncertainty as the way to

handle failed runs is not standardized and leads to different

results. Contrarily, with SIR the likelihood of the data need

only be evaluated, not estimated, which avoids issues

related to convergence problems. Furthermore, as SIR

evaluates likelihoods over the entire parameter space

defined by the proposal distribution, it might help detecting

if the final estimates were in a local minimum. A warning

is printed if the SIR procedure detects one or more

parameter vector(s) leading to lower OFV than the final

estimates, which can help the user detect local minima.

Both the performance of the default SIR workflow and the

observed differences in 95 % CI between uncertainty

methods in these real data settings are dependent on the

chosen real data examples, which were all PK models

with 1-compartment first order elimination. While further

research is ongoing to identify potential limitations of

SIR, there is little reason to believe that the results

obtained here are not generalizable to other, more com-

plex models.

Regarding runtime, SIR is expected to provide signifi-

cant runtime gains over bootstrap, but quantification of this

gain is not easily generalizable from the investigated

examples. Runtime gains depend on two aspects: the ade-

quacy of the proposal density, which determines the nec-

essary M/m ratio and thus the number of evaluations to

perform, and the difference in runtime between an esti-

mation and an evaluation, which is known to be very

variable depending on the model and data. The more the

proposal distribution is adequate and the more an evalua-

tion is fast compared to an estimation, the greater SIR

runtime gains will be.

3.Check graphical diagnostics 

Proposal dOFV  
≤  χ2

Proposal dOFV > χ2  

 temporal trends 

Proposal > χ2

SIR ≤ χ2 

no temporal trends 

2.Perform SIR 

Recommended samples/resamples ratio: M/m=5000/1000* 

1.Identify proposal 

Covariance matrix, educated guess, limited bootstrap, other 

4a.SIR with 
inflated proposal 
(e.g. inflation=1.5) 

4b. SIR with 
more samples 

(e.g. 2*M) 

4c. SIR results
are final 

*for informed proposal distributions such as covariance matrix or limited bootstrap. Could be increased to 
10000/1000 if starting from educated guess for example.

Fig. 7 Decision tree for how to perform SIR in practice. v2 is the Chi
square distribution
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Comparative coverage

In the simulation examples, the coverage with SIR starting

from the covariance matrix was similar to the coverage

with the covariance matrix itself (Fig. 4). However, SIR

outperformed the covariance matrix when starting from an

inflated proposal distribution.

The default workflow did not lead to better results

with SIR than with the covariance matrix in the sim-

ulation examples despite showing improvement in the

real data examples. This was linked to the fact that the

covariance matrix generally underestimated the true

uncertainty in the simulated datasets, whereas it usu-

ally overestimated uncertainty in the real data exam-

ples. As evidenced from the investigation of the

different proposal distributions, SIR is much more

efficient when starting from overestimated proposal

distributions than when starting from underestimated

proposal distributions, which explained why SIR effi-

ciency was reduced for simulations as compared to

real data. The fact that the uncertainty based on the

covariance matrix was suboptimal for some parame-

ters, especially at low samples sizes, was not surpris-

ing. Such behaviour had been previously observed, for

example with simulations with a two-compartment PK

model of a dataset comprising 26 individuals and

rather rich sampling where the 95 % CI did not

include the true simulation value for 7 out of the 12

model parameters [36].

Suboptimal coverage could be corrected for all dataset

sizes when inflations of the covariance matrix were used as

proposal distributions for SIR. As expected, the optimal

inflation factor needed decreased with dataset size, as the

adequacy of the covariance matrix increased. Inflation

factors could be easily determined based on the developed

diagnostics. The same inflation factors could be used for

both simulation examples, thus covariances matrices

seemed to perform similarly for similar numbers of

parameters (5 for the PK example and 6 for the PD

example) in the investigated cases.

It is worth noting that the final SIR dOFV distribu-

tion overlaid the Chi square distribution in the simu-

lation examples. This could indicate that the

stabilization of SIR dOFV distributions below the Chi

square distribution observed in the real data examples

may be due to model misspecification. However, the

proportion of parameters corresponding to random

effects was lower in the simulation examples than in

the real data examples (50–60 vs. 63–80 %). This could

also explain in part why the degrees of freedom of the

SIR dOFV distribution was higher in the simulations

than in the real data examples, as the parameter space

was less restricted.

Performance of SIR diagnostics

The three developed diagnostics (dOFV distribution, spa-

tial trends plot and temporal trends plot, exemplified in

Fig. 2) proved highly relevant to judge whether SIR results

could be considered final, both on a global (all parameters)

and on a local (parameter by parameter) level. They were

able to determine whether SIR settings were appropriate,

i.e., whether M/m was sufficient to correct for the potential

inadequacy of the proposal distribution. SIR results were

correctly identified to be final when two conditions were

fulfilled: the SIR dOFV distribution had to be at or below

the Chi square distribution, with no trends apparent in the

temporal trends plot. The first condition alone was not

sufficient, as shown with deflations of the covariance

matrix for which dOFV distributions were below the Chi

square distribution but trends remained in the temporal

trends plot, leading to too narrow CI. The df was a good

surrogate for the stabilization of the dOFV distribution. It

proved robust towards sampling noise, varying very little

when performing the sampling or the resampling steps

using different seeds (data not shown). More importantly,

stabilization of the dOFV distribution was shown to cor-

relate well with the actual quantities of interest, i.e., the

stabilization of the parameter uncertainty distribution as

summarized by RSE and CI. Marked differences in M/m

ratios needed for stabilization were observed between

parameters, in accordance to the expected appropriateness

of the covariance matrix for the different parameters.

In addition to judging whether SIR settings were

appropriate, the developed diagnostics informed in a

qualitative manner about the adequacy of the proposal

distribution: the smaller the distance between the dOFV

distribution of the proposal and the Chi square distribution,

the greater the adequacy of the proposal distribution.

Spatial trends plots showed that symmetric proposal dis-

tributions often appeared inadequate for variances, pin-

pointing which parameters are typically not well described

by the covariance matrix. This could in theory be used to

refine the proposal distribution parameter by parameter.

This was not attempted here both because performing

changes at the univariate level when working with poten-

tially correlated multivariate distributions is difficult, and

because the correspondence between differences in the

proportion of resamples and needed changes in the pro-

posal distribution was not straightforward.

The evaluation of final SIR results would be much easier

if the true df was known, in which case SIR results could

be considered final as soon as the dOFV distribution would

converge to the corresponding Chi square distribution.

However, factors such as the presence of random effects,

implicit or explicit parameter boundaries (e.g., variances in

the positive domain or physiological boundaries) or model
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misspecification leave the true degrees of freedom in

NLMEM models uncertain. From the experience in this

work, it appears that the true degrees of freedom could

potentially be derived from the convergence of the SIR

dOFV distributions. The degrees of freedom stabilized

around 0.8–0.9 times the total number of estimated

parameters in the considered examples. To investigate

whether this decrease could be linked to constraints in the

parameter space, the proportion of parameter vectors sim-

ulated from the unbounded original covariance matrix that

did not fulfil the constraints was computed. The rejection

rate was below 10 % for the three real data examples.

Whether a metric, such as the rejection rate, could be used

as a correction factor to the expected degrees of freedom of

the SIR resamples dOFV distribution remains to be

explored. Another alternative to estimate the expected

degrees of freedom could be to compute an empirical

dOFV distribution obtained using stochastic simulations

and re-estimations of the model. However, this is both

computationally intensive and disregards the potential

influence of model misspecification, which is why it was

not considered here.

Impact of M/m and proposal distribution on SIR

results

SIR provided satisfactory results when starting from the

covariance matrix with a M/m ratio of 5 in the real data

examples. However, it was important to understand howM/

m is impacted by the adequacy of the proposal distribution

and how SIR would perform when starting from less ade-

quate proposal distributions.

M/m

A ratio of 5 was sufficient when starting SIR from the

covariance matrices of the three relatively simple PK

models investigated, and could have been further reduced

to two and four for two of the models. A quantitative link

between M/m and the adequacy of the proposal distribution

as measured by the df or the difference in df from the Chi

square distribution, could help choosing an appropriate M/

m to perform SIR. Differences in df between proposal

distributions and Chi square distributions were around 2, 4

and 15 df under the initial SIR settings, corresponding to

degrees of freedom 1.3, 1.4 and 2.4-fold higher than the

Chi square degrees of freedom. It thus appeared that

optimal M/m were around twice the ratio between the df of

the proposal distribution and the df of the Chi square dis-

tribution in the investigated examples. However, this

should not be regarded as an established quantitative

relationship between degrees of freedom ratios and optimal

M/m as only a very limited number of cases were

investigated. The developed diagnostics thus enabled to

assess whether M/m was sufficient a posteriori, but no

quantitative relationships between the degrees of freedom

of the proposal distributions and M/m could be established

to inform the SIR procedure a priori.

Proposal distribution

The covariance matrix proved to be a good proposal dis-

tribution in the investigated real data examples. Starting

from too narrow proposal distributions (deflations) proved

problematic for SIR, as the limited number of samples in

the tails of the distribution makes the expansion of

parameter uncertainty very slow. Conversely, the reduction

of parameter uncertainty was much easier, as evidenced by

greater degrees of freedom drops between the different M/

m for wider proposal distributions (Fig. 6). Too narrow

proposal distributions could however be identified by the

developed diagnostics, as they displayed dOFV distribu-

tions below the reference Chi square distribution and

u-shaped trends were present in the spatial trends plots.

After performing SIR with the best guess of parameter

uncertainty, a change in proposal distribution should be

considered instead of a change in M/m for increasing SIR

efficiency in cases for which the proposal dOFV distribu-

tion is below the Chi square distribution and the spatial

trends plot show u-shaped trends (inflate proposal distri-

bution), or if the proposal distribution is way above the Chi

square (deflate proposal distribution).

Even if the investigated proposal distributions were all

derived from the covariance matrix, one major advantage

of SIR is that it can be used even if the covariance matrix is

not available. Any multivariate parametric distribution can

indeed be used as proposal distribution. For example, one

could think of using as proposal distribution the asymptotic

covariance matrix obtained at an earlier stage of model

development, with the uncertainty of all parameters already

present at the earlier stage set to the values of the previous

covariance matrix and the uncertainty of the new param-

eters set to an arbitrary number. Alternatively, an empirical

covariance matrix obtained from a limited number of

bootstrap samples (the minimum number of samples being

the number of estimated parameters so that the matrix is of

full rank), a generalized inverse/Cholesky matrix based on

the R matrix [11] or even an educated guess (for example,

30 % RSE on all parameters and no correlations) could

also be used. How to use such proposal distributions is

detailed in the PsN user guide.

Modifications of the covariance matrix were used to

mimic various types of proposal distributions in this work.

SIR results starting from inflations greater than or equal to

1 had not converged at the highest tested M/m ratio of 10,

which indicated that higher ratios would be needed to
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achieve final SIR results if the proposal distribution is

heavily misspecified (Fig. 6). To reach final results effi-

ciently, modifications of the proposal distribution looked

like a better alternative than increasing M/m: changes in

degrees of freedom were constant and high between pro-

posal distributions (increases of 10, 12 and 28 df per

inflation unit of 1 for pefloxacin, phenobarbital and mox-

onidine respectively) whereas changes in degrees of free-

dom between M/m ratios were low and decreased

drastically with increasing M/m and decreasing inflation

factor (highest changes of 7, 3 and 2 df for twofold inflated

proposal distributions).

Another dimension of the proposal distribution, which

deserves attention but was not investigated in this work,

is the correlation between parameter uncertainty distri-

butions. Just as it is difficult for SIR to compensate for

too narrow proposal distributions, reducing the absolute

value of correlations is much more difficult than

increasing it, as the number of vectors leading to low

correlations will be low when simulated under high

correlations. Correlations were low in all investigated

real data examples and were kept unchanged under

inflations/deflations of the proposal distribution. How-

ever, high correlations are often observed, for example

between maximum effect (Emax) and concentration

leading to half the maximum effect (EC50) in Emax

models. Such correlations may heavily restrict both the

size and the shape of the investigated parameter space.

Causes and consequences of potentially misspecified

correlations are unclear and few examples investigating

this have been published in NLMEM [37]. Reducing

correlations between highly correlated parameter

uncertainties (while increasing the number of initial

samples) should nevertheless be considered when per-

forming SIR to guard against too confining constraints.

More generally, the covariance matrix is known to be a

bad approximation of the true uncertainty in the presence

of high curvature (i.e., non-normal uncertainty, which

happens for example when sample sizes are low, or when

parameters are very nonlinear) or collinearity between

parameters, especially if the correlation is nonlinear

(such as for parameters of the sigmoid Emax model)

[38]. It is thus highly advised to use parameterizations

that minimize such issues, as proposed in Reeve et al.

[8].

At this point it is relevant to mention that the ultimate

diagnostic to test whether SIR results are final would be to

perform SIR using the final SIR results as proposal distri-

bution and see no difference between this proposal distri-

bution and the new SIR results. This thought, i.e. running

iterative SIRs until convergence is reached, is currently

under investigation and is readily available in PsN 4.6.0

(released May 2016).

Conclusion

The SIR method was applied to parameter uncertainty

estimation in NLMEM and diagnostics to assess the

appropriateness of SIR settings were developed. SIR is fast,

does not require parameter estimation or distributional

assumptions, and is thus expected to perform better than

previously available methods for parameter uncertainty

assessment in many cases, including small datasets, highly

nonlinear models or meta-analysis. An implementation of

the SIR method is readily available in the PsN software

package. Further improvements to the SIR workflow,

including iterative SIR procedures and more flexible pro-

posal distributions, are under development.
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