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We review and expand on our work to impose constraints on the effective Kohn–Sham

(KS) potential of local and semi-local density-functional approximations. Constraining

the minimisation of the approximate total energy density-functional invariably leads to

an optimised effective potential (OEP) equation, the solution of which yields the KS

potential. We review briefly our previous work on this and demonstrate with numerous

examples that despite the well-known mathematical issues of the OEP with finite basis

sets, our OEP equations are numerically robust. We demonstrate that appropriately

constraining the ‘screening charge’ which corresponds to the Hartree, exchange and

correlation potential not only corrects its asymptotic behaviour but also allows the

exchange and correlation potential to exhibit a non-zero derivative discontinuity,

a feature of the exact KS potential that is necessary for the accurate prediction of band-

gaps in solids but very hard to capture with semi-local approximations.

I. Introduction

A challenge with common density-functional approximations is the accuracy

imbalance between the energy functionals and the corresponding Kohn–Sham

(KS) potentials, i.e. the functional derivatives of the energy density-functionals.

Although the accuracy and quality of an energy density-functional are oen

quite good, the resulting KS potential is inferior.1–3 The quest to derive ever more

accurate energy density-functionals to obtain moderate improvements of the KS

potential may not be the best strategy (it is vulnerable to diminishing returns in
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the accuracy of the KS potential). We explore different routes to improved accu-

racy for these calculations.

Previously, we explored the minimisation of potential functionals dened by

an energy difference, instead of density-functionals of the total energy, as a means

of improving the quality of the KS potential.4–7 The advantage of this approach is

that the energy difference is bound from below, even in approximations from

nite-order (second) perturbation theory; the latter can then be employed directly

to derive accurate exchange–correlation (xc) potentials without the risk of varia-

tional collapse.4,6

In this paper, we review briey and expand on our work8–10 to improve the

performance of local and semi-local density-functional approximations (DFAs), by

imposing physical constraints on the single-particle, local, effective (KS) poten-

tial, whose orbitals minimise the total energy functional. In ref. 8–10 we argued

that these constraints improve the asymptotic behaviour and overall quality of the

KS potential by removing the erroneous effects of self-interactions (SIs). As

evidence, we demonstrated that, compared with the results from the uncon-

strained minimisation, the ionisation potentials (IPs)51 of a large number of

atoms, molecules and even anions obtained from our constrained minimisation

improved signicantly, while the calculated total energies increased only

minimally.

In this work, we further show that with a judicious choice, the constraints

imposed on the KS potential of local and semi-local DFAs enable their (con-

strained) exchange and correlation potential to exhibit exotic, non-analytic

behaviour, expected only in more elaborate and computationally costly levels of

theory, or from higher rungs on Jacob’s ladder of DFAs, as envisaged by John

Perdew and co-workers.11

II. Constrained minimisation of density-
functional approximations

In the constrained minimisation method,8–10 we employ the standard total energy

expression in DFT, using a density-functional approximation for the xc energy

density-functional, EDFAxc [r],

EDFA
yen

½r� ¼ Ts½r� þ

ð

dryenðrÞrðrÞ þU ½r� þ EDFA
xc ½r�: (1)

The various quantities have their usual denitions: yen is the external potential,

and Ts[r] and U[r] are the non-interacting kinetic energy and Hartree energy

density-functionals, respectively. Following the optimised effective potential

method (OEP),12,13 we set the KS orbitals to satisfy single-particle KS equations

employing an effective potential y(r),
�

�
V

2

2
þ yenðrÞ þ yðrÞ

�

fiðrÞ ¼ 3ifiðrÞ: (2)

The total energy is then minimised by imposing constraints, detailed below, on

the effective potential y(r). The effective potential y(r) is akin to the Hartree-

exchange and correlation (Hxc) potential of KS theory y
DFA
Hxc (r). However, the
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constraints we impose correct the asymptotic form of y(r) and alleviate other

effects of SIs, so in general, y(r) s y
DFA
Hxc (r).

In the constrained method, we treat the Hxc screening density, or electron

repulsion density, rscr(r),
52 as the fundamental quantity. It is dened via Poisson’s

equation from the Laplacian of the (exact or approximate) KS potential minus the

external potential, V2[ys(r) � yen(r)]; for example, the Hxc screening density of the

exact KS potential is given by

rscrðrÞ ¼ �
1

4p
V

2yHxcðrÞ: (3)

Together with the integrated Hxc screening charge Qscr,

Qscr ¼

ð

drrscrðrÞ; (4)

the Hxc screening density plays a central role in our constrained method to

mitigate the effects of self-interactions. The concept of an effective screening

density was rst explored in ref. 14–16 in terms of a screening density for the xc

(or exchange only) potential; for the exact xc potential, the screening charge is

Qxc
scr ¼ �1.14–16 It has been used in various applications of the OEP method to x

the freedom of a constant in the OEP solution.14,17–20

The Hxc screening charge of the exact KS potential satises the intuitive sum

rule,14–16

Qscr ¼

ð

drrscrðrÞ ¼ N � 1: (5)

However, in common DFAs (such as the local density approximation, L(S)DA, and

most generalized-gradient approximations (GGAs)), this sum rule is violated and

the screening charge is in fact given by Qscr ¼ N. We argue8 that this violation of

the sum rule can be attributed to the presence of SIs, since it implies that any of

the electrons of anN-electron system are effectively repelled, via the Hxc potential,

by a net charge of N electrons. We note that the sum rule (eqn (5)), which depends

on the screening density and is violated for LDA and common GGAs, is different

from the well-known sum rule21 for the xc hole,
Ð

dr
0
rxcðr; r

0
Þ ¼ �1, which is

satised by LDA and common GGAs. The quantities r
xc
scr(r) and rxc(r,r

0) are not

directly related.

Accordingly, in the constrained minimisation of DFAs8–10 (which we hence-

forth refer to as the CDFA method), our strategy to mitigate the effects of SIs on

the effective potential is to ensure that the KS orbitals satisfy eqn (2) with the

effective potential y(r) represented by the effective screening density

yðrÞ ¼

ð

dr
0 rscr

�

r
0�

|r � r
0|

; (6)

where rscr(r) satises two constraints:

Qscr ¼ N � 1, (7)

and

rscr(r) $ 0. (8)
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The second constraint (8) is physically intuitive, hinting at interpreting rscr(r) as

the charge density of N � 1 electrons. However, this condition is too restrictive

and is not satised by the exact KS potential.

Nonetheless, the positivity constraint (8) has a double role in the constrained

minimisation method. As explained in ref. 8–10, the CDFA minimization proce-

dure must be solved within the optimized effective potential (OEP) framework.12,13

Primarily, the positivity constraint allows the mathematical problem of con-

strained minimisation to remain well posed in the limit of complete orbital and

auxiliary basis sets;8,9 without the positivity constraint, there is nothing to prevent

the screening density from separating into a component in the energetically

important spatial region near the molecule, with charge Qa
scr ¼ N, and a separate

component with charge Qb
scr ¼ �1 pushed out to innity (within the basis set

limits). Secondly, the solution of the OEP equation in Gaussian basis set codes is

a longstanding problem in DFT, which has hindered the widespread adoption of

OEP-based methods in practical calculations. Various methods have been devel-

oped to overcome these numerical difficulties which typically manifest them-

selves as spurious oscillations in the effective potential.17,18,22 With nite orbital

and auxiliary basis sets, the positivity constraint (8) offers a simple way to reduce

drastically the variational exibility of rscr(r) and of y(r) and thereby helps to

overcome mathematical pathologies in the solution of the OEP equation.

In the previous implementation of the CDFA method, the positivity constraint

was used in combination with a singular value decomposition (SVD) of the

density–density response matrix to ensure the solution of the OEP equation was

well-behaved. Instead, here we apply the method of ref. 23 to solve the OEP

equation with the CDFA method. We review the main ideas below; see ref. 23 and

the subsequent discussion in ref. 24 and 25 for details.

The OEP equation (Fredholm integral equation of the rst kind) is obtained by

taking the functional derivative of an energy term with respect to the density (e.g.

Ts[r], Ex[r], Exc[r]) when this energy term is written as an implicit functional of the

density. Alternatively, it can be obtained by minimising the DFT total energy

expression (eqn (1)) indirectly by searching for the effective potential y(r) in eqn

(2) whose KS orbitals minimise the total energy.26,27 Either way, we obtain the

integral OEP equation,
ð

dr
0
cy

�

r; r
0�
yðrÞ ¼ byðrÞ; (9)

where cy(r,r
0) is the density–density response function given by (in a complete

orbital basis set)

cy

�

r; r
0�
¼ 2

X

occ

i

X

unocc

a

fiðrÞfaðrÞfi

�

r
0�
fa

�

r
0�

3i � 3a
: (10)

The KS orbitals from eqn (2) are assumed to have real values. The right-hand side

(RHS), by(r), depends on the energy term whose functional derivative we take, in

our case the Hxc energy U[r] + EDFAxc [r]. It is given by

byðrÞ ¼ 2
X

occ

i

X

unocc

a

*

fi

�

�

�

�

�

yH þ
dEDFA

xc

dr

�

�

�

�

�

fa

+

3i � 3a
fiðrÞfaðrÞ: (11)
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If no constraints are imposed, the solution of eqn (9) is trivially y(r) ¼

y
DFA
Hxc (r) within a constant, since cy(r,r

0) has no null eigenfunctions except the

constant function. In ref. 10 we explain how we impose the normalisation

constraint (7) on the effective screening density and demonstrate that the scheme

can be applied for any given DFA, including LDA, GGAs and hybrid functionals.

To understand the effect of nite orbital basis sets on the solution of the OEP

equation, we focus on the density–density response function; the analysis below

also applies to the RHS, by(r). We split cy into two terms, the rst of which can be

represented exactly in the orbital basis, and the second of which must be

approximated. cy is given, for l ¼ 1, by

c
l
y(r,r

0) ¼ c
0
y(r,r

0) + l�cy(r,r
0), (12)

with

c0
y

�

r; r
0�
¼ 2

X

occ

i

X

unocc

a˛OB

fiðrÞfaðrÞfi

�

r
0�
fa

�

r
0�

3i � 3a
; (13)

cy

�

r; r
0�
¼ 2

X

occ

i

X

unocc

b;OB

fiðrÞfbðrÞfi

�

r
0�

fb

�

r
0�

3i � 3b
: (14)

The sum is over occupied {fi} and unoccupied {fa,fb} KS orbitals (eqn (2)) in the

KS Slater determinant. We assume for simplicity that the orbital basis set (OB) is

composed exactly of a set of low lying KS orbitals, OB ¼ {fi}W {fa}, i.e., the set of

orbitals which are occupied in the KS state and the lowest unoccupied ones. Until

ref. 23, when working with nite orbital basis sets, the second part �cy of the

response function, which we denote the ‘complement’ of the response function,

was typically omitted.

By denition, the complement �cy cannot be represented exactly so we must

approximate it. We use the Ünsold approximation28 together with the complete-

ness relation for the KS orbitals (in much the same manner as the well-known

Krieger–Li–Iafrate (KLI) approximation29,30 and common energy denominator

approximation (CEDA)31,32 methods), in which case �cy reduces to

cyðr; r
0

Þ ¼ �
2

D

X

occ

i

fiðrÞfiðr
0

Þ

(

dðr � r

0

Þ �
X

occ

j

fjðrÞfjðr
0

Þ �
X

unocc

a˛OB

faðrÞfaðr
0
�

)

;

(15)

where�D is the common energy denominator that replaces 3i� 3b in eqn (14), D >

0. In eqn (15), we omit the nal term with the same domain as c
0
y, because its

contribution to c
l
y vanishes for small l, which is ultimately the limit we seek.

We observe that, as long as D > 0, the value of D does not play a role in the

results, since D always appears together with l in the ratio l/D, and we investigate

the limit l / 0. We shall also consider the limit l / N, for which the value of

positive D does not matter either. It is straightforward to conrm that �cy is

negative semi-denite, like c
0
y, and that the only null eigenfunction of �cy is the

constant function.

The same procedure is applied for the RHS, by(r), of eqn (10), which yields the

following expressions for the terms b0y(r) and its complement �by(r),
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b0yðrÞ ¼ 2
X

occ

i

X

unocc

a

�

fi

�

�

�

�

yH þ
dEDFA

xc

dr

�

�

�

�

fa

	

3i � 3a
fiðrÞfaðrÞ (16)

byðrÞ ¼ �
2

D

X

occ

i¼1

(

fiðrÞ

ð

dr
0
d
�

r � r
0�



yH
�

r
0�

þ
dEDFA

xc

drðr0Þ

�

fi

�

r
0�

�
X

occ

j

�

fi

�

�

�

�

yH

þ
dEDFA

xc

dr

�

�

�

�

fj

	

fiðrÞfjðrÞ

)

: (17)

The OEP equation thus takes the following form,
ð

dr
0�

c0
y

�

r; r
0�

þ lcy

�

r; r
0�


yl
�

r
0�

¼ b0yðrÞ þ lbyðrÞ: (18)

To solve this equation in a Gaussian basis set code, the screening density is

expanded in an auxiliary basis set and its coefficients can be found by

a straightforward matrix inversion. The screening charge constraint (7), besides

mitigating SI errors, is also necessary to x the freedom of a constant in the

effective potential17 and is enforced using a Lagrange multiplier. The optimiza-

tion procedure is explained in detail in ref. 10; the only difference here is that the

matrices for the LHS and RHS of the OEP equation now contain the additional

complement terms.

Prior to ref. 23, the nite orbital basis OEP was given by the solution of eqn (18)

at l¼ 0. However, this solution leaves the effective potential y0(r) indeterminate in

the null space of c0y, which is innite-dimensional. In order to obtain a smooth

potential y0(r), one must restrict the freedom of y0(r), which has spawned a variety

of approaches in the literature. These include, for example, schemes to balance

the relative sizes of the orbital and auxiliary basis sets;18,19 regularization tech-

niques to smooth the effective potential;33,34 and removing the additional freedom

of an auxiliary basis set.35 In our method, rather than restricting the freedom of

y
0(r), we instead solve the OEP equation to nd the potential yl(r) which is dened

mathematically to be unique for nite l.

The main point of ref. 23 is the observation that the solution of eqn (18) for any

nite l > 0, even for l tending to zero, determines the effective potential fully, up

to a constant. The extension of the response function with �cy amounts to using an

effectively complete orbital basis. Numerically, we nd that the solution of eqn

(18) is smooth for almost any l > 0,53 including the limits for small and for large l,

which correspond respectively to the OEP potential in a nite orbital basis, yl/

0(r), and to its (Unsöld) approximation with a common energy denominator,

y
N(r). It turns out that for the effective xc potentials in the constrained mini-

misation method, the two solutions are close to each other.

(A) Relaxing the positivity constraint

In ref. 8–10 we solved the OEP equation for the CDFA method, using nite

orbital and auxiliary basis sets, with l ¼ 0. The indeterminacy of the effective

potential was restricted by expressing y(r) in terms of the screening density

rscr(r) in eqn (6) and then constraining the screening charge Qscr (7) as well as

the sign of rscr(r) (8).
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However, the positivity constraint, implemented with a penalty function,10 is

a computational bottleneck for the calculation. In a forthcoming paper, we

implement the positivity constraint more efficiently, by writing rscr(r) ¼ |fscr(r)|
2,

and solving for the screening amplitude fscr(r),
36 which ensures the constrained

minimization is mathematically well posed regardless of basis set size.

In the next part, we investigate the effects of relaxing the positivity constraint

on the convergence of the screening potential and screening density. A weak

effect, for sufficiently exible auxiliary basis sets, will justify the relaxation of the

positivity constraint and reduce the computational effort. The auxiliary basis sets

we use are uncontracted cc-pVXZ,37,38 with X ¼ D, T, Q.

In the rest of this section, we show indicative results for the CDFA method

applied to the LDA functional, henceforth denoted by CLDA, where the mini-

misation was performed under just the constraint for the screening charge, Qscr¼

N � 1 (7). In order to determine y(r) and rscr(r), we employ the extended response

function c
l
y(r,r

0), in the limit of small l. We use l/D¼ 0.01, but the results seem to

converge and do not change if we reduce l/D by an order of magnitude. The

positivity constraint enabled the constrained minimisation problem to remain

well posed in the limit of large (complete) orbital and auxiliary basis sets.

Consequently, we expect the screening charge to change gradually as we increase

the size of the auxiliary basis. This effect will be stronger for systems with fewer

electrons, since then, the difference between N � 1 and N is largest.

Calculations were performed in the Gaussian basis set code HIPPO,54 with one-

and two-electron integrals for the Cartesian Gaussian basis elements calculated

using the GAMESS code.39,40 Basis set data was obtained from the Basis Set

Exchange database.41

In Fig. 1a–c, the CLDA xc potential is shown for the Ne atom and three auxiliary

basis sets: un-contracted cc-pVXZ, with X ¼ D, T, Q. In each sub-gure, yCLDAxc (r) is

shown for xed auxiliary basis and various orbital basis sets: cc-pVXZ, with X¼ D,

T, Q, 5. For comparison, the LDA potential yLDAxc (r) is also shown with a green

dashed line.

In Fig. 2a–c, r2rscr(r) (CLDA screening density multiplied by r2) is shown for the

Ne atom and three auxiliary basis sets: un-contracted cc-pVXZ, with X¼D, T, Q. In

each sub-gure, r2rscr(r) is shown for xed auxiliary basis and various orbital basis

sets: cc-pVXZ, with X ¼ D, T, Q, 5. The overall convergence of the xc potential is

excellent. The convergence of rscr(r) for xed auxiliary basis and increasing size of

orbital basis is also very good. Before proceeding, it is worth noting that despite

Fig. 1 CLDA xc potentials yxc(r) for the Ne atom obtained using fixed auxiliary basis sets

with various orbital basis sets. The green dashed line represents LDA.
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not deploying the positivity constraint (8) that would restrict the exibility of the

screening density and the xc potential, the latter (solutions of CLDA-OEP eqn (12)

and (15) in ref. 10) turn out to be smooth functions, not showing any wild

oscillations characteristic of OEP-nite-basis pathologies for any combination of

orbital and auxiliary basis sets. This conrms our claim that on extending the

domain of the density–density response function (eqn (12) and (18)), the solution

of the nite-basis-OEP equations is well behaved.

Fig. 3a–c and 4a–c show similar results to Fig. 1a–c and 2a–c, but for the Be

atom.

We proceed to discuss Fig. 5a–c and 6a–c, which show similar results to

Fig. 1a–c, 2a–c, 3a–c and 4a–c, but for the He atom. The convergence of the xc

potential for xed auxiliary basis and increasing orbital basis size is good. Note

that for any combination of orbital and auxiliary basis, the xc potential is smooth.

The convergence of the screening density for xed auxiliary basis and increasing

size of orbital basis is slower than for the other systems. In addition, as the size of

the auxiliary basis increases, as shown in Fig. 6a–c, the screening density changes

considerably. Note specically the negative part of the screening density in

Fig. 6a–c. In Fig. 6a the negative hump is centred around 2.5a0 away from the

origin, in Fig. 6b it is centred around 3.0a0 away from the origin, and in Fig. 6c it

has moved to 3.5a0. This is the effect we discussed in Section II. The positivity

constraint enables the constrained minimisation problem to remain well posed

for large basis sets (here large auxiliary bases). With only the constraint on Qscr

enabled and without the positivity constraint, during the total energy mini-

misation, it becomes energetically preferable to converge to a screening density

Fig. 2 CLDA results for r2rscr(r) for the Ne atom. Each sub-figure shows the expansion of

rscr(r) for fixed auxiliary basis set and various orbital basis sets.

Fig. 3 CLDA xc potentials yxc(r) for the Be atom obtained using fixed auxiliary basis sets

with various orbital basis sets. The green dashed line represents LDA.
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with the screening charge locally equal to N (¼QLDA
scr ), and to shi negative charge

density away from the system. This effect is already evident for the moderately

large auxiliary bases used in our study, because the difference between N � 1 and

N is relatively large for N ¼ 2.

Negatively charged ions are another class of difficult systems where LDA fails

qualitatively. In Fig. 7a–c and 8a–c we plot the CLDA xc potential and screening

density of the chloride anion Cl�. The orbital basis sets are augmented cc-pVXZ,

with X ¼ D, T, Q, 5. It is evident that both the CLDA xc potential and the CLDA

screening density are well converged and these systems do not present a challenge

to the constrained minimisation, at least regarding convergence.

In Table 1 we show the IPs of several systems, including anions, obtained as

the negative of the HOMO eigenvalue. For comparison with our previous CLDA

method, in which we imposed the positivity constraint, we show the CLDA IPs

with (fourth column) and without positivity (h column). The results with

positivity are from ref. 8. The resulting IPs do not depend strongly on the posi-

tivity constraint, except in helium, where we see a larger difference. We still see

the familiar improvement of CLDA over the LDA results.

In concluding this section, we rst recall the reasons why our CDFAmethod was

implemented with the positivity constraint (8). This constraint is intuitive if one

considers each electron to experience a repulsive electronic density from the other

N � 1 electrons, but it also serves two computational purposes: (i) to avoid shiing

negative screening density to innity as the size of the orbital and auxiliary basis

sets increase and (ii) as a regularization technique to avoid pathological behaviour

of the OEP solution. As we have seen from the good convergence of the screening

Fig. 4 CLDA results for r2rscr(r) for the Be atom. Each sub-figure shows the expansion of

rscr(r) for fixed auxiliary basis set and various orbital basis sets.

Fig. 5 CLDA xc potentials yxc(r) for the He atom obtained using fixed auxiliary basis sets

with various orbital basis sets. The green dashed line represents LDA.

Faraday Discussions Paper

134 | Faraday Discuss., 2020, 224, 126–144 This journal is © The Royal Society of Chemistry 2020

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

6
 J

u
ly

 2
0
2
0
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/2
8
/2

0
2
2
 1

2
:1

3
:0

9
 A

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0fd00069h


densities and potentials, the latter reason is no longer necessary with the intro-

duction of the complement terms in the OEP (eqn (18)).

Regarding the rst reason (i), we note that for the moderately large auxiliary

basis sets we tested, it is safe to carry out constrained minimisations of the DFA

total energy under the constraint of the screening charge only,Qscr¼N� 1, except

for systems with few electrons; for these systems the omission of the positivity

constraint manifests itself by shiing negative screening density away from the

origin. As such, the benets of removing the positivity condition, which is

a computational bottleneck, usually outweigh the disadvantages. For the benet

of readers less familiar with OEP calculations, we outline the full simplied

procedure for solving the CDFA equations in Appendix A.

In the next section, we shall argue that the screening charge constraint endows

the xc potential of local and semi-local DFAs with exotic qualities, such a nite

derivative discontinuity Dxc. Although crucial for the accurate prediction of band

gaps, Dxc is notoriously hard to capture in approximations. Advanced approxi-

mations have been proposed which capture this discontinuous behaviour, e.g.,

ref. 42–46, however, further development is required for these methods to yield

reliable band gaps for all materials.

III. Derivative discontinuity of the CDFA xc
potential

The discontinuity of the xc potential is dened by

Fig. 6 CLDA screening densities rscr(r) for the He atom expanded in fixed auxiliary basis

sets with various orbital basis sets.

Fig. 7 CLDA xc potentials yxc(r) for the Cl� anion obtained using fixed auxiliary basis sets

with various orbital basis sets (augmented). The green dashed line represents LDA.

Convergence with increasing size of orbital basis is evident.
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Dxc ¼ lim
u/0þ

Du
xcðrÞ; with Du

xcðrÞ ¼ yNþu
xc ðrÞ � yN�u

xc ðrÞ (19)

where y
N�u
xc (r) is the xc potential of an ensemble with N � u electrons.

The ensemble KS densities with N � u electrons are given by

ryen
N�u(r) ¼ uryen

N�1(r) + (1 � u)ryen
N(r), (20)

ryen
N+u(r) ¼ (1 � u)ryen

N(r) + uryen
N+1(r), (21)

where ryen
M(r),M¼ N� 1, N, N + 1, is the ground state density of theM-electron KS

system in the external potential yen(r). We shall use the CLDA KS eqn (2), with

constraint (7).

Fig. 8 CLDA screening densities rscr(r) for the Cl� anion expanded in fixed auxiliary basis

sets with various orbital basis sets.

Table 1 The IPs of selected atoms and molecules (top), and negative ions (bottom) are

shown in columns 3–5. The IPs are obtained as the negative of the HOMOeigenvalue 3H of

the neutral system or the anion. The positivity constraint is employed for the results in

column 4 (from ref. 8) and relaxed for the results in column 5. The experimental IPs and

electron affinities are shown in the sixth column. In the second column, X–Y stands for the

basis sets cc-pVXZ and uncontracted cc-pVYZ for the expansion of orbitals and screening

charge densities. All energies are in eV

Basis LDA CLDA pos.
CLDA no
pos. Exp.

He T–Q 15.46 23.14 21.57 24.6
Be T–T 5.59 8.62 8.11 9.32
Ne T–T 13.16 18.94 18.94 21.6
H2O T–T 6.96 11.24 11.34 12.8
NH3 T–T 6.00 9.81 9.77 10.8
CH4 D–D 9.28 12.52 10.51 14.4
C2H2 D–D 7.02 10.63 10.31 11.5
C2H4 D–D 6.67 9.57 9.35 10.7
CO D–D 8.75 12.73 12.11 14.1
NaCl D–D 5.13 7.87 7.82 8.93
F� Ta–T 3H > 0 2.23 2.16 3.34
Cl� Ta–T 3H > 0 2.61 2.59 3.61
OH� Ta–T 3H > 0 0.99 0.93 1.83
CN� Ta–T 0.13 2.87 2.86 3.77

a For the negative ions, the orbital basis was aug-cc-pVTZ.
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We seek the derivative discontinuity Dxc of the CLDA xc potential from eqn (19)

for reference. In order to obtain D
u
xc(r) and then Dxc, one must rst nd the

ensemble KS xc potentials with densities ryen
N�u(r) and subtract them. Work is in

progress in our group to obtain directly these ensemble KS xc potentials. Here, we

use the method of ref. 47 and 48 to obtain the ensemble KS xc potential by

constructing the ensemble density ryen
N�u from separate KS calculations for N,

and N � 1 particles and then inverting ryen
N�u(r) to obtain y

N�u
xc (r).

Let us follow this construction in detail. The two KS ground state densities that

build the ensemble density ryen
N+u(r) can be written:

ryen
NðrÞ ¼

X

N

i¼1

�

�fi

�

rN



ðrÞ
�

�

2
(22)

ryen
Nþ1ðrÞ ¼

X

Nþ1

i¼1

|fi

�

rNþ1



ðrÞ|
2

(23)

The notation makes explicit that {fi[r
M](r)} are the KS orbitals of the M-electron

system with density rM.

In terms of the ensemble KS orbitals {fi[r
N+u](r)}, the ensemble density is given

by

ryen
NþuðrÞ ¼

X

N

i¼1

�

�fi

�

rNþu



ðrÞ
�

�

2
þ u|fNþ1

�

rNþu



ðrÞ
�

�

2
: (24)

In addition, from eqn (20)–(23), it is also equal to

ryen
NþuðrÞ ¼

X

N

i¼1

h

ð1� uÞ
�

�fi

�

rN



ðrÞ
�

�

2
þ u

�

�fi

�

rNþ1



ðrÞ
�

�

2
i

þ u
�

�fNþ1

�

rNþ1



ðrÞ
�

�

2
: (25)

In general, the ensemble KS orbitals, {fi[r
N+u](r)} in eqn (24), will be linear

combinations of the two sets of KS orbitals in eqn (25). However, in the asymp-

totic region the picture is very simple. For any u > 0, the density |fN+1[r
N+1](r)|2 of

the (N + 1)-th orbital will be the dominant term as every other term in the

ensemble density in eqn (25) will have died out. Hence the tail of the (N + 1)-th

ensemble KS orbital of eqn (24), fN+1[r
N+u](r), will be equal, within a phase, to the

tail of fN+1[r
N+1](r). However, fN+1[r

N+1](r) is a KS orbital of the N + 1 electron

system and in the asymptotic region it feels the net Coulomb repulsion of

a screening charge of N electrons. Consequently, in the asymptotic region,

fN+1[r
N+u](r) must feel the Coulomb repulsion of an equal amount of screening

charge. Since the ensemble KS orbitals lie in a common KS potential, the

screening charge of the ensemble screening density will beQN+u
scr ¼N, for any nite

u > 0.

We conclude that when the number of electrons increases past an integer

value, the value of the screening charge QN+u
scr increases stepwise,

QM+u
scr ¼ M, with M ¼ N, N � 1, . and 0 < u # 1. (26)

In the limit u / 0+, we have:

QN
scr ¼ N � 1, QN+

scr ¼ N, (27)
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where QNþ
scr ¼ lim

u/0þ
QNþu
scr .

This stepwise increase in screening charge obviously causes a discontinuous

jump in the constrained xc potential yN+uxc (r). In the limit u/ 0+, the jump in the

xc potential is y
N+
xc (r) � y

N
xc(r), where yNþxc ðrÞ ¼ lim

u/0þ
yNþu
scr ðrÞ. From eqn (19), the

jump in the xc potential due to the stepwise increase in the screening charge gives

the derivative discontinuity in the CDFA method,

D
CDFA
xc (r) ¼ y

N+
xc (r) � y

N
xc(r). (28)

We note that eqn (28) does not require an ensemble calculation, but only the

evaluation of the N-electron CDFA xc potential for two values of the screening

charge and hence could be employed in practical calculations at a moderate

computational cost.

In the last part of the paper, we shall compare Dxc from the constrained

minimisation method (eqn (28)) with the result for Dxc from eqn (19). We shall

calculate the differences

D
u
xc(r)x y

N+u
xc (r) � y

N
xc(r) (29)

in CLDA for various values of u and investigate the limit of small u.

Before we continue, we note that in the simple model we have constructed to

predict the derivative discontinuity, using the inversion of the ensemble density

(eqn (19)) and the CDFA method (eqn (28)), we have restricted the freedom of the

Hxc potentials by the ansatz in eqn (6); the restriction is that y
N+u
xc (N) ¼ 0.

Consequently, the derivative discontinuities we obtain with eqn (19) and (28)

cannot be perfect constant functions but have to vanish at r / N. We aim to

investigate whether the resulting approximate derivative discontinuity, Dxc(r), as

a function of r remains at and almost equal to a constant over the region of the

atom or the molecule. Finally, we want to obtain the converged value of the

constant in the limit of an innite basis set.

In order to proceed and construct the ensemble density ryen
N+u(r), we need the

densities from two KS calculations for N and N + 1 particles, allowing us to then

nd the corresponding ensemble xc potential against which D
CDFA
xc can be

compared. We use our CLDA method to obtain the densities ryen
N(r) and ryen

N+1(r),

in order to control the screening densities of the constituent xc potentials. One of

Fig. 9 Ensemble xc potentials and screening densities for various values of u for the Ne

atom. The orbital and auxiliary basis sets are uncontracted cc-pVTZ.
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the integers N or N + 1 is an odd number, corresponding to an open shell system.

The LDA exchange energy for open shells contains an error (“ghost-exchange

error”49) in modelling exchange with half the electrons spin-up and half spin-

down. In a forthcoming publication,49 we propose a way to correct this error,

still within LDA (not local spin density approximation). Hence, in the KS calcu-

lation for an odd number of electrons (either for N or for N + 1), we employ our

method to correct for the ghost-exchange error, in order to improve the accuracy

of the resulting CLDA xc potential and density. Details will be published in ref. 49.

Once we construct the ensemble density, we invert it to obtain the ensemble KS

potential, yN+uxc (r). For the inversion, we apply the method in ref. 5 and 50. The

inversion method50 requires the a priori selection of a value for the screening

charge of the xc potential. According to eqn (26), for yN+uxc (r) we set QN+u
scr ¼ N.

In Fig. 9a and b, the ensemble xc potentials yN+uxc (r) and screening densities are

shown for various values of u, obtained by inverting the ensemble densities (eqn

(25)). The screening charge for the ensemble densities is set as QN+u
scr ¼ N. The xc

potentials and screening densities are very close, as expected, which is an indi-

cation of the quality of convergence and the inversion method.

In Fig. 10a, the ensemble xc potential, yN+uxc (r), for u ¼ 0.1 (with QN+u
scr ¼ N) is

shown together with y
N
xc(r) and y

N+
xc (r), which have screening charges QN

scr ¼ N � 1

and QN+
scr ¼ N. In Fig. 10b, the u-dependent derivative discontinuity (eqn (29)),

D
u
xc(r) ¼ y

N+u
xc (r) � y

N
xc(r), is shown for various values of u. In the limit of small u,

D
u
xc(r) yields the derivative discontinuity using ensembles, Du/0

xc (r) ¼ Dxc(r).

The inversion method has some numerical instabilities which are exaggerated

when the difference of two potentials is taken. This explains why Dxc(r) is not at

for small r. The distance r aer which Dxc(r) tends to zero depends on the basis

set. However, we do not propose this method as a means of computing the

derivative discontinuity in practice, but rather to compare with the results of the

CDFA method.

The blue line in Fig. 10b shows the CLDA prediction for the derivative

discontinuity, D
CLDA
xc (r), without an ensemble calculation. D

CLDA
xc (r) remains

almost constant up to a distance of about 2.5a0, beyond which it tends to zero.

The differencesDu
xc(r) for decreasing u approach the line forDCLDA

xc , both in height

and in the spatial extent over whichD
CLDA
xc andD

u
xc stay almost constant. The value

of the constant can be obtained by inspection of Fig. 10b and is approximately

0.35 hartrees, or about 9.5 eV. We can obtain the constant more accurately from

Fig. 10 xc potentials and differences in xc potentials for the Ne atom. The orbital and

auxiliary basis sets are uncontracted cc-pVTZ.
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the shi of the occupied single-particle energy levels between the two xc poten-

tials yNxc(r) and y
N+
xc (r). For the uncontracted cc-pVTZ basis used for the results in

Fig. 10b, we nd D
CLDA
xc ¼ 9.48 eV (see Table 2).

We conclude this section by investigating the inuence of basis set size on (a)

the height ofDCDFA
xc (r) in the region where it is almost at and (b) the spatial extent

of the region over which D
CDFA
xc (r) remains at.

We calculated the xc derivative discontinuity D
CDFA
xc (r) with our model (eqn

(28)), using as orbital and auxiliary basis sets the uncontracted cc-pVXZ sets, with

X ¼ D, T, Q, 5. The last row of Table 2 shows the value of the derivative discon-

tinuity, DCDFA
xc , for each basis set.

Each column in Table 2 shows the eigenvalues of the occupied orbitals in the

Ne atom, with the two constrained xc potentials y
N
xc(r) and y

N+
xc (r), for a specic

choice of orbital and auxiliary basis sets. Each column also shows the shi of each

eigenvalue Di ¼ 3
N+
i � 3

N
i . The average value of these shis gives D

CLDA
xc in the

specic basis. Using the uncontracted cc-pVDZ orbital and auxiliary basis, the

shis of the orbital eigenvalues are almost the same within 0.03 eV. In the

Table 2 The bound eigenvalues 3Ni , 3
N+
i , and the difference Di ¼ 3

N+
i � 3

N
i for the CLDA xc

potentials y
N
xc and y

N+
xc , for the orbitals i ¼ 1s, 2s, 2p, for the Ne atom. The orbital and

auxiliary basis sets are uncontracted cc-pVXZ, X¼ D, T, Q, 5. The average difference Di per

basis set gives DCLDA
xc . All energies are in eV

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z

3
N
1s �830.10 �829.96 �830.60 �829.63
3
N+
1s �817.86 �820.48 �822.86 �823.02
D1s 12.24 9.48 7.74 6.61
3
N
2s �40.68 �41.14 �41.91 �40.97
3
N+
2s �28.45 �31.66 �34.17 �34.35
D2s 12.23 9.48 7.74 6.62
3
N
2p �18.07 �18.65 �19.44 �18.52
3
N+
2p �5.86 �9.17 �11.71 �11.9
D2p 12.21 9.48 7.73 6.62
D
CLDA
xc 12.22 9.48 7.73 6.62

Fig. 11 Ne atom. Left: the xc derivative discontinuity (height of the plateau in

DCLDA
xc (r)) decreases while the extent of the plateau increases with increasing basis set size.

Right: DCLDA
xc behaves linearly with respect to the inverse of the basis set size (nbas is the

number of basis set elements). The extrapolation line intersects the vertical axis (infinite

basis set limit) at DCLDA
xc ¼ 5.6 eV.
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uncontracted cc-pVTZ orbital and auxiliary basis, the differences between the

shis in each energy level are smaller than 0.01 eV. In the two larger basis sets, the

differences between the almost constant shis of each energy level are within

0.01 eV. These results are consistent with an almost perfectly constant DCLDA
xc over

the whole spatial region where the electronic density of the Ne atom is

appreciable.

For the uncontracted cc-pVTZ basis, we performed another check to conrm

that the difference between the two xc potentials y
N+
xc (r) and y

N
xc(r) is almost

constant over a large region of space. We evaluated the overlaps of the occupied

orbitals in the two potentials, hfN+
i rf

N
i i, i¼ 1s, 2s, 2p (triply degenerate). We found

that the numerical values of all overlaps were indeed very close to one, with the

overlap in the worst case differing from one by �10�7.

In Fig. 11a we show the derivative discontinuity DCLDA
xc (r) as a function of r (eqn

(28)) for uncontracted cc-pVXZ (X ¼ D, T, Q, 5) orbital and auxiliary basis sets.

These functions have a plateau at the origin where the atom lies. The extent of the

plateau increases with basis set size, and the height decreases and seems to

converge. To establish that the discontinuity DCLDA
xc (height of the plateau) indeed

converges and does not vanish in the limit of innite basis set, we plot

D
CLDA
xc against the inverse of the number of basis set elements, nbas. The behaviour

is tted well by a straight line with equation D
CLDA
xc (nbas) ¼ 5.6 + 160 � (nbas)

�1.

The extrapolation gives a non-zero derivative discontinuity of 5.6 eV for the

innite basis limit.

IV. Conclusions

A common theme of popular local and semi-local density-functional approxi-

mations is the accuracy imbalance between energy density-functionals, which can

be quite accurate, and the corresponding effective KS potentials, with inferior

accuracy.1–3 We have approached this problem from several directions.4–6 In this

paper, we review and expand our work on imposing physical constraints during

the energy minimisation in order to yield a more accurate corresponding xc

potential.8–10 Specically, we investigate the relaxation of a constraint that is

computationally expensive and nd that its omission leads to well behaved

results, except for very small systems with only a few electrons. The constraints we

impose raise the total energy minimally8,10 but have a dramatic impact on the

quality of the effective KS potential, giving it the correct asymptotic behaviour and

enabling it to exhibit important non-analytic behaviour (derivative discontinuity)

shared by the exact KS potential but elusive for the lower rungs of Jacob’s ladder of

DFAs where semi-local DFAs reside.

Appendix A

Below we summarize the full computational procedure for the constrained DFA

method described in Section II(A).

(1) Make an initial guess for the KS orbitals and the screening density, which is

expanded in the auxiliary basis set,

rscrðrÞ ¼
X

k

rskqkðrÞ: (A1)
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(2) Construct the matrices

Akl ¼ h~qk|c
0|~qli + lh~qk|�c|~qli, (A2)

bk ¼
�

~qk |b
0
�

þ lh~qk |bi; where ~qkðrÞ ¼

ð

dr
0 qk

�

r
0�

|r � r
0|
: (A3)

The vector bk contains information about the functional being used (such as

LDA), as seen in eqn (16).

(3) Solve the OEP matrix equation,
X

l

Aklr
s
l ¼ bk; (A4)

to obtain the updated coefficients rsl , under the constraint that Qscr ¼ N � 1,

X

k

rskXk ¼ Qscr; Xk ¼

ð

drqkðrÞ: (A5)

This is equivalent to solving the equations

rsk ¼
X

l

ðAÞkl
�1ðbl þ aXlÞ; (A6)

a ¼

Qscr �
P

kl

XkAklbl

P

k

Xk
2

: (A7)

(4) With the new Hxc potential constructed via the screening density from the

previous step, diagonalize the KS Fock matrix to update the KS orbitals.

(5) Repeat steps 2–4 until the energy and density matrices are converged.
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