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Abstract Current Linux kernels include a facility called TCP SYN cookies, con­

ceived to face SYN flooding attacks. However, the current implementa­

tion of SYN cookies does not support the negotiation of TCP options, 

although some of them are relevant for throughput performance, such 

as large windows or selective acknowledgment. In this paper we present 

an improvement of the SYN cookie protocol, using all the current mech­

anisms for generating and validating cookies while allowing connections 

negotiated with SYN cookies to set up and use any TCP options. The 

key idea is to exploit a kind of TCP connection called "simultaneous con­
nection initiation" in order to lead client hosts to send together TCP 

options and SYN cookies to a server being attacked. 

Keywords: SYN flooding attacks, SYN cookies, TCP options, simultaneous con­

nection initiation. 

1. INTRODUCTION 

Current Linux kernels include a facility called TOP SYN cookies, de­

signed and first implemented by D. J. Bernstein and Eric Schenk [1, 2]. 

This facility was conceived to face a specific attack on normal TCP liP 
networking, known as "SYN flooding attaclr'. This is a denial-of-service 

attack that floods a server host with long-lasting half-open TOP connec­

tions. Since kernels usually restrict the number of half-open connections, 

a SYN flooding attack prevents real client hosts from connecting to a 

server host being attacked. Furthermore, such attacks are easy to de­

ploy, can be launched anywhere on the Internet and are difficult to avoid 

by well-known servers. 

SYN cookies provide protection against this type of attack and their 

rationale is straightforward: prevent the denial-of-service scenario by not 

keeping state about pending connection requests, or half-open connec­

tions. The cookies allow a server host to maintain the state of half-open 
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connections outside its memory: such state is (partially) stored inside a 

cryptographic challenge, the SYN cookie, that is returned to the client 

within SYN-ACK segments as the server's TCP Initial Sequence Number 

(ISN). Since TCP requires the client to send back that ISN on the sub­

sequent ACK, the server will be able to restore a half-open connection 

from a cookie and, consequently, create a final connection descriptor. 

Although the rationale behind SYN cookies is straightforward, its im­

plementation is more complicated. First, cookies must fit in the space 

defined for the ISN field of a TCP header (32 bits). Second, the genera­

tion of cookies should respect the TCP recommendations for ISN values 

being monotonically increasing over time, possibly using some sort of 

time-based counter, to reduce the probability of delayed segments being 

accepted by new incarnations of similar connections [3]. Third, cook­

ies must be unpredictable by attackers, to prevent the forgery of valid 

cookies, which could be used to launch TCP hijacking attacks [4]. And 

fourth, cookies should contain all TCP options sent by clients on SYN 

segments and usually kept in half-open connection's descriptors (if sup­

ported by servers). 

The current implementation of the SYN Cookie Protocol (SynCP 

hereafter) in Linux systems deals differently with these issues, han­

dling completely or partially some of them, but, unfortunately, ignoring 

most of them [1]. For instance, some TCP options that are relevant 

for throughput performance, like large windows or selective acknowl­

edgment, are simply not supported when using SYN cookies. Even the 

choice of suitable server's Message Size (MSS) is limited. Therefore, a 

SYN flooding attack, by triggering the use of SYN cookies, can reduce 

the quality of service provided by a server host (besides forcing the waste 

of CPU cycles and bandwidth to deal with bogus connection requests). 

This is clearly an undesirable side effect of using SYN cookies. 

In this paper we present an improvement of the current SynCP. This 

improvement uses most of the current mechanisms for generating and 

validating cookies; however, it allows connections negotiated with SYN 

cookies to set up and use TCP options that are relevant for performance 

but currently ignored. The key idea is to explore a kind of TCP con­

nection called "simultaneous connection initiation". But this approach, 

although fully compatible with standard TCP rules [3], faces two major 

problems. First, some systems do not deal correctly with simultaneous 

connection initiations (e.g. Windows systems). Second, client-side fire­
walls may interfere with the action taken by the server. To overcome 

these problems we propose a mixed protocol, combining the current and 

the new SynCPs. Problematic clients are detected and handled differ­

ently by the server using a simple cache with their IP addresses. 
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This paper is organized as follows. Section 2 presents some related 

work regarding the countermeasures for SYN flooding attacks. Section 3 
briefly describes how SYN cookies are currently handled by Linux ker­
nels. Section 4 presents our proposal, starting with the basic protocol, 
presenting some problems it faces with problematic clients and firewalls, 
and concluding with the description of the final protocol. Section 5 

sketches some implementation details. Finally, in Section 6 we draw 

some conclusions. 

2. RELATED WORK 

The generic goal of any solution to SYN flooding attacks is to continue 

to accept connection requests even when being under attack. There are 
several ways to achieve this goal, but none of them is perfect. In this sec­

tion we will shortly describe the approach followed by several proposed 

solutions, presenting their advantages and drawbacks. The description 

will focus only on solutions that change the way server kernels deal with 
the current IPv4 TCP protocol specifications. We will not address any 

solutions requiring either (i) a modification of the TCP protocol, (ii) a 

modification of the kernel of client hosts or (iii) filtering policies applied 

to client hosts in their access to the Internet (e.g. [5]). 

One obvious solution, proposed by several vendors, is to use larger 

queues for pending connection requests. A high bound for the queue's 

length can be computed from the bandwidth of the server's network con­

nection and the timeout used by the server to discard pending requests. 

This is a sort of brute-force solution that may waste lots of kernel mem­

ory and slow down the server's response time, but it can be effective 
in public servers serving large communities of clients, since such hosts 

usually have extensive hardware resources. 

A more crafty solution is called Random Drop [6]. The principle 

is simple: a server always accepts a new connection request and uses 

the queue of pending requests as a cache, with a random substitution 

policy to get space for new requests. For each dropped request the 

server sends an RST to the source host, enabling real clients to react 

to the server action. This solution allows a flexible trade-off of defense 

effectiveness with resource requirements, but it only guarantees service 
in a probabilistic manner. Thus, an attacker may still occasionally affect 
connections requested by real clients. 
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Another policy for dropping connection requests is called Reset Cook­

ies [7, 6], using security associations 1 for improving correctness. When 

under attack, the server host checks a cache of security associations prior 

to accept and queue each new connection request. If the client is not 

listed in the cache the server replies with an illegal SYN-ACK with a 

cookie as the server's ISN. Legitimate clients will reply with an RST con­

taining that cookie, which can then be checked by the server and trigger 

the creation of a security association with the client. This solution im­

plies the storage and management of a cache of security associations 

in the server and increases significantly the latency of connections for 

clients not listed in the cache. Therefore, heavily used public servers 

should use large caches for reducing the impact of using Reset Cookies, 

but that is exactly the opposite of what defenses against SYN flooding 

attacks should do. 

3. SYN COOKIES IN CURRENT LINUX 
KERNELS 

The most recent Linux kernel (version 2.4.14), as well as many other 
previous versions, allows kernel builders to include the generation and 
analysis of SYN cookies in the kernel functionality, and allows adminis­
trators to dynamically activate their use. We will now explain how SYN 

cookies are used on a kernel were they are enabled, in order to introduce 
all the problems currently raised by their use. For simplicity, hereafter 
we will use the term cookie to refer to a SYN cookie. 

3.1. Generation and validation of SYN cookies 

Cookies are not used when the kernel operates in normal conditions, 

but only when it suspects of being under a SYN flooding attack2 . The 
suspicion is simply derived from the length of queue of pending connec­

tion requests: if it reaches a given threshold length, the kernel emits a 
SYN flood warning and starts using cookies to handle new connection 

requests. 

Cookies have a limited lifetime. When the kernel receives an ACK 

from a client (the third segment of the three-way handshake), first it 

checks the segment against the queue of connection requests, and upon 

failure it may check whether the segment carries a valid cookie. Such 

1 A security association is the IP address of a real client host that initiated a TCP connection 
to the server in the past. 
2This is not true if the kernel operates as a so called "SYN cookie firewalt'. In this case, all 
incoming SYN segments get a SYN cookie reply from the firewall kernel, and only upon the 
correct reception of the cookie within an ACK the server is contacted by the firewall. 
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checking takes place only within a short time frame, starting when the 

last cookie was sent and ending a few seconds later (currently 3 seconds), 

and cookies are accepted only if their value is among a set of acceptable 

values. 

3.2. Transparent use of SYN cookies 

Cookies were designed to tackle SYN flooding attacks without chang­

ing TCP implementations used by client hosts; only servers using them 

must be modified in order to produce and validate them, and their use 
should be as transparent as possible to clients. Therefore, the use of 

cookies must conform with all TCP mandatory rules, but may impose 

restrictions on the use of TCP optional behaviours. These restrictions, 
however, should be minimized in order to reduce the side effects of using 

cookies. 
Cookies are 32-bit values stored as ISN values in the sequence field of 

SYN-ACK segments sent by servers, and are retrieved from the sequence 
numbers acknowledged in ACK segments sent by clients. Therefore, 

cookies should respect the recommendations for the generation of ISN 

values [3, 4]. 
Cookies also carry some TCP options negotiated exclusively on SYN 

segments. Currently they only carry a 3-bit encoding of 8 predefined 

MSS values. All other options are simply ignored3, including window 

scaling, selective acknowledgment, and time stamping for Round-Trip 

Time Measurement (RTTM) or Protection Against Wrapped Sequence 

numbers (PAWS). Unfortunately, all these options were introduced to 

improve the performance of TCP connections [8, 9]. Thus, we can con­

clude that a SYN flooding attack, by triggering the use of cookies, has 

the potential side effect of reducing the performance of some server's 

TCP connections. 

3.3. SYN cookies algorithms 

The algorithm for generating cookies should try to reconcile two dif­

ferent goals. On one hand, cookies should be hard to guess by clients, in 

order to defeat attacks using ACK segments with forged, valid cookies. 

This implies that cookies should contain a large number of bits gener­

ated using servers secrets and functions not easily invertible by clients. 

On the other hand, cookies cannot be fully random and still respect the 

TCP rule of slowly growing over time. This implies that some part a 

3SYN cookies cannot also handle correctly T /TCP connection requests. However, since this 
is still an experimental protocol, we will not address it further. 
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cookie should be generated without using values produced by crypto­

graphic functions. 

However, since cookies are only 32 bit long, it is difficult, ifnot impos­

sible, to accomplish both goals simultaneously. Therefore, the algorithm 

to produce cookies cares only about security, and is completely indepen­

dent of the algorithm to produce ordinary ISN values. 

The algorithms currently used to generate and validate cookies are 

fully explained in Appendix A. In short, cookies are computed using 

constant secret values, TCP lIP addresses and ports of the client's SYN 

segment, a time counter and a 3-bit encoding of the server's MSS value 

(see Table A.I in Appendix A). The validation of a cookie involves re­

trieving and testing the last two - time counter and MSS encoding -

using the same secrets and the same fields of the client's ACK segment. 

3.4. Risk analysis 

Cookies were devised to solve a problem, and not to create new ones. 
Thus, they should not allow attackers to launch other kinds of attacks 

using them. This means that attackers should not be able to produce 

valid cookies, since that would allow them to create fictitious TCP con­

nections on a victim server. 

The reality is that valid cookies are relatively hard to forge4 . On 
a given instant, a valid cookie for a given pair of TCP addresses can 
only take 32 values out of 232 possible ones. The value of 32 comes out 

of multiplying the 4 acceptable values for the time counter with the 8 
possible values of the MSS encoding (see Appendix A for more details). 
Any increment in the range of either one of these values would naturally 
improve the probability of guessing valid cookies. 

4. OUR PROPOSAL 

As previously mentioned, the generation of cookies is not a trivial 

task because one has to trade-off several different requirements. In this 

section we will show how the current SynCP can be improved in order to 

better deal with one of those requirements, namely the support of TCP 

options, without reducing its current functionality or its security against 

guessing attacks. Furthermore, we want to keep the basic approach of 

the current SynCP of not storing any state on servers, namely TCP 

options, for ongoing connection handshakes requested during a SYN 
flooding attack. 

4 Assuming that no better strategy exists for producing valid cookies besides random guessing. 
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The rationale for the new approach is the following: as TCP options 

cannot be fully embedded in cookies, for both practical and security 
reasons, then one has to force the client host to send again the TCP 
options together with the segment that carries the cookie. This means 
that the client must send another segment containing both the cookie 
and the SYN bit set, as only such segments may contain the TCP op­

tions that we are concerned with. This requirement can be met using 
the "simultaneous connection initiation" described in the seminal TCP 

documentation [3]. 

4.1. Basic approach 

Figure 1 shows the diagram presented in [3] (and corrected in [10]) 
describing the steps followed in one simultaneous connection initiation. 
The new SynCP will explore this particular way of negotiation; in par­
ticular it will conduct the client socket through the same state transition 
of socket A of Figure 1. 

ooc"'" A a·ament .ocket B 
atate atat. 

... (SEQ __ )(CTL_SYN) . .. CLOSED 

8 SYN-RCYD +- (SEQ-V)(CTL-SYN) +- SYN-SENT 
4 ... (SEQ._)(CTL_SYN) ... SYN-RCYD 
B ... (SEQ __ )(ACK_V + l)(CTL_SYN ,ACK) . .. 
6 ESTABL. +- t +- SYN-RCYD 
7 ... ... ESTABL . 

Figure 1. Steps followed by TOP sockets in a simultaneous connection initiation. 

The new SynCP works as follows (see Figure 2-II). When the server 
receives a SYN, it computes a normal SYN-ACK reply, gets a cookie for 

the server's ISN, and sends it as a pure SYN (with the ACK bit disabled). 
A genuine client socket for the requested connection is in SYN-SENT 
state, wiIl move to SYN-RCVD and reply to the server's SYN with a 
SYN-ACK, repeating its ISN number and all the TCP options sent by 

the server. When the server receives a SYN-ACK for a socket in LISTEN 

state it checks if the acknowledged sequence number is a valid cookie. If 

it is valid, the server creates a new connection with the client, and sends 

back a SYN-ACK; otherwise, it sends back an RST. 
This new way of using cookies is more complex (and thus slower) 

than the original one, but has the advantage of allowing both client 

and server to negotiate and agree on TCP options that are relevant for 

performance. Thus, the performance penalty imposed by this 4-way 

handshake can be blurred by the performance gain in the subsequent 
data transfer. A similar 4-way handshake was adopted by the Stream 
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client "rver - .esment .ocket .t.t. atatie 

.... (SEQ_.)(OTL_SYN)(t.nt.tl". TOP option.) 
.. ,""' ... '" .... 

3 ESTABL, ... ... 
4 .... .... ESTABL, 

(I) 

c lent •• rver 
.ock.t aelment aocket 
at.at. at.t.. 

I LIs"'EN 
2 .... (SEQ_.)(CTLaSYN)(t.nt.tl". TOP option.) .... 
3 SYN-RCVD ... (SEQ_cookl.)(CTL_SYN)(II ... loptlolUl) ... 
4 .... (SEQ •• )(ACK_cookl.+I)(CTL",SYN,ACK)(IIna\ optlolUl) .... ESTABL, 
a ESTABL, ... (SEQ-"'cookl.)(ACK_. + itlcTL_SYN,ACIC,illn.1 ... 

(II) 

Figure 8. Steps followed by TCP sockets using (I) the current SynCP implementa­
tion and (II) the basic approach of the new SynCP. 

Control Transmission Protocol (SCTP [11]) to tackle the same security 

problem. 
The TCP options are initially presented in the SYN of the client (step 

2), and the final set of agreed options is returned in the server's SYN 

reply containing the cookie (step 3). The client's SYN-ACK (step 4) will 

simply reproduce the options presented by the server, as they already 

result from an agreement process; the same happens in step 5. 

4.2. Simplification of the basic approach 

This basic approach can be further simplified: the final SYN-ACK 

sent by the server may be a simple ACK. Since client sockets are in a 

SYN-RCVD state, all they need to move to ESTABLISHED is an ACK. 
Consequently, we changed the protocol, replacing the SYN-ACK of step 

5 by a simple ACK (see Figure 3). 

c "ud •• rver .ock., .esment .oclcet 
• tate .tat • 

I .. ''' ..... N 
2 .... (SEQ_.)(CTL_SYN) ('.n ••• lv. TOP optlona) .... 
3 SYN-RCVD ... (SEQ_cookl.) (CTL_SYN) (fln.1 option.) ... 
4 .... (SEQ •• )(ACK_cookl.+I)(CTL_SYN,ACK)(lIn.loptlolUl) .... ESTABL, 
a ESTABL, ... iSEQ_cookl.+i)(ACK ... + I;(OTL_AOK) ... 

Figure 9. New SynCP with a final ACK instead of a SYN-ACK. 

Early experiences showed that this simplification is not only possible 

but also critical. In fact, some TCP implementations follow a simplified 

state diagram where a socket in the SYN-RCVD state only changes to 

ESTABLISHED after receiving an ACK (Figure 6 of [3]), though they 

accept the SYN-ACK as a valid segment. This is a clear violation of 

TCP rules (c.f. [10], §4.2.2.1O). 
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4.3. Initial assessment of problems 

This new way of using cookies is a sort of Pandora box, since the ex­

ploitation of simultaneous connection initiations is rare, although valid 

and imposed by the seminal paper defining the TCP standard. There­

fore, this protocol was tested and evaluated with several client operating 

systems to better assess its suitability. We tried to use both old and new 

systems, and also Unix/Linux, Windows and other proprietary systems 

(e.g. Cisco lOS). 

Table 1. Client operating systems used to test the new SynCP and the result of a 
preliminary evaluation of their support for simultaneous connection initiations. 

Support. the 
Operating 811ltem 08 or Kemellier.ion .imultaneou. 

connection initiation 
uE 3.0 _(PocketPI;') 

95, 98 SE, Millennium 
Windows NT 4 Workstation/Advanced Server No 

2000 Professional/Server 
XP Professional 

Cisco lOS C4600-I-M V 11.lm: 
C7200-DS-M V 12.0 7>-

No 

4.1.3,5.6,6.7,5.8 
A.09.05 

Linux 2.2.x, 2.4.x 
FreeBSD 3.3 Yes 
OpenBSD 2.8 
MacOS 9.2.2 
Digital UNIX OSF1 V4.0 
SOl IRIX 6.2 

Table 1 shows the exact systems that we experimented with and the 
preliminary results of using the protocols of Figures 2-11 and 3. These 
tests showed two facts concerning the simultaneous connection initiation 
forced by the server: 

1 Some operating systems apparently support it, but after a certain 
point they fail. 

2 Some client operating systems support it, but react differently to 

the segments received. 

Windows and Cisco lOS systems exemplify the first kind of systems. 

All the Windows systems tested fail the same way. After accepting the 

SYN-ACK reply, the client socket changes from SYN-SENT to SYN­

RCVD, but thereafter it stays stuck in that state (repeatedly sending 

SYN-ACK segments to the server until giving up, sending then an RSTj 

see Figure 4). We tried several possible replies to make it change state, 

including RST, but without any success. 

The two Cisco lOS systems also fail but differently from the Windows 
systems. The client socket changes to SYN-RECV after receiving the 
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SYN, but replies with a simple ACK, instead of a SYN-ACK. Thus, 
from our point of view, these systems fail in handling the simultaneous 
connection initiation because we need to get a SYN-ACK segment from 

clients. 

C.1711 > 8 ... h: 8 3711284047:3711264047(0) wiD 84240 <a •• 1480 ... ekOK> (DF) 
8 .•• h > C.1711: 8P 418921;441:418926441(0) WiD 6840 c. •• 1480 •• aekOK> (DF) 
8 ••• h > C.1711: 8 387804181;4:387804181;4(0) .ek 3711284048 WiD 1;840 < ... 1480> (DF) 
C.1711 > 8 •• ah: 8 3711284047:3711284047(0) Bek 418921;442 win 84240 <,. .. 1480 ... ckOK> (DF) 
S ••• h > C.1711: • 1:1(0) aek 1 wiD 1;840 (DF) 
8 ••• h > C.1711: P 1:28(2ti) aek 1 win ti840 (DF) 
C.1711 > 8 •• ah: 8 3711284047:3711284047(0) aek 41892ti442 win 84240 <,. •• 1480 ... ckOK> (DF) 
S ••• h > C.1711: P 1:26(2ti) aek 1 win ti840 (DF) 
0.1711 ) S ••• h: 8 3711284047:3711264047(0) aek 416925442 win 64240 (,. •• 1460 ... ekOK) (DF) 
8 •• ah > 0.1711: P 1:26(25) aek 1 win 5840 (DF) 

0.1711 > 8 ... h: R 3711264048:3711264048(0) win 0 

Figure 4. Output produced by the tcpdump tool showing the segments exchanged 
using SBh in a Windows XP system to connect to the modified server using always 
the new SynCP. The PUSH Hag in the second segment is explained in §4.6.3) and, 

for clarity, all NOPs of TCP options were removed. 

In the second kind of systems we can distinguish two different reac­

tions: 

• Some only change to ESTABLISHED after receiving a pure ACKj 

getting a SYN-ACK only make them repeat their own SYN-ACK 

{e.g. SunOS 4.1.3}. This behaviour, already referred to in §4.2, 

goes against TCP rules . 

• Some acknowledge the SYN-ACK sent by the server, if using the 

protocol of Figure 2-11 (e.g. SunOS 5.8). This is a legal behaviour. 

These different behaviours show that our new SynCP is more sensitive 

to differences in TCP implementations of client operating systems than 

the current one. Though it may predict and accommodate, as much as 

reasonable, some known problems of client systems, there is always a 

possibility of failing with some of them. 

4.4. Overcoming problems raised by flrewalls: 
mixed approach 

Firewalls usually refuse TCP connections, initiated outside, to inside 
ports other than well-known service ports. This means that if the client 
of Figure 3 is behind a firewall, and the server is outside the defense 

perimeter of that firewall, the segment sent in step 3 will probably not 

reach the client. In that case, the client would continue to send SYN 
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segments just like in step 2, until giving up. Therefore, the new SynCP 

will probably fail if the client socket is behind a firewall. 

The solution that we devised for this problem is a best effort modifi­

cation of the protocol presented in Figure 3. The modification consists 

of mixing both SynCPs, the current and the new, and thus the server 

replies to a SYN request with both a SYN and a SYN-ACK containing 

cookies. The format of the SYN-ACK is just like in the current SynCP, 

i.e. without any TCP options other than MSS. The server will try to 

deduce, from future segments sent by the client, which of the SynCPs it 

engaged to. Basically, if it receives a SYN-ACK, the client received the 

SYN and is using the new protocol; if it only receives an ACK, the client 

probably did not receive the SYN and is using the current protocol. If 
the segments with cookies sent by the server arrive in a different order 

to the client (the SYN-ACK first and the SYN next), the client will 

react to the SYN-ACK just like in the current SynCP (c.f. Figure 2-1). 

The delayed SYN will make the client reply with a harmless ACK (from 

Figure 10 of [3]). 

Such mixing has a key issue, which is the compatibility between the 

SYN and SYN-ACK segments sent by the server. In practice this means 

that we have to decide if the cookies of these segments are the same or 

produced differently. Both solutions have advantages and drawbacks: 

equal cookies are natural to clients but may confuse the server; differ­

ent cookies may be awkward to clients but allow the server to decide 

correctly. We chose the second approach, which is described below; for 

the sake of completeness, the problems raised by other approach are 

described in Appendix B. 

4.4.1 Mixed SynCPs with two different cookies. 
This approach simplifies the task of the server when dealing with 

probable segment losses because it knows exactly, from the acknowledged 

sequence numbers, which segments the client saw. The two cookies can 

be easily computed one from the other using a simple and fast invertible 

function, like a one's complement. 

Its problem is that clients may react differently to the strange scenario 

of receiving two segments slightly incompatible between themselves. The 

main issue here is how should a client socket react when it receives a 

partially incorrect SYN-ACK, i.e. with an incorrect sequence number 

(server's ISN) and a correct acknowledged sequence number (client's 

ISN plus one). 

According to [3], an RST should only be sent by a socket in any non­

synchronized state (SYN-RCVD in this case) if "the incoming segment 

acknowledges something not yet sent (the segment carries an unaccept-
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able ACK)". Since that is not the case, the normal reaction should be 
to either (i) ignore the segment, or (ii) send an ACK with the actual 
sequence numbers known by the client. In fact, our tests show that 

clients systems do react differently, but most of them send the expected 

ACK. Two systems, unfortunately, send RST segments: OpenBSD 2.8 

and MacOS 9.2.2. This problem will be analysed further below. 

So, the mixture of SynCPs using two different cookies - cookie! and 

cookie2 (see Figure 5) - works this way: 

I If the client receives the server's SYN, then its socket, after chang­

ing to SYN-RCVD, waits only for an ACK to change to ESTAB­

LISHED. The SYN-ACK can be received in the meanwhile, but 
because its sequence number (cookie2) is different from the se­
quence number of the previously received SYN (cookie!), it is 

invalid and an ACK is sent back to the server. 

II If the client misses the server's SYN because of a firewall, then it 

falls back to the current SynCP, as it only gets the server's SYN­
ACK without any TCP options. 

The server can easily check which of these alternative scenarios is the 

real one for each negotiation using cookies. If it gets a SYN-ACK with 

a cookie!, then the client saw the SYN and engaged in the new SynCP. 

If it gets a simple ACK with a cookie, two scenarios are possible: 

• ACK acknowledges cookie!: the client saw the SYN and en­
gaged in the new SynCP. The server simply drops the segment, 

as it should get a SYN-ACK with that cookie; the client will keep 
sending SYN-ACK segments until giving up or until getting a reply 

from the server . 

• ACK acknowledges cookie2: the client did not see the SYN 

and engaged in the current SynCP. 

This mixed protocol using two cookies fails in two systems - OpenBSD 

2.8 and MacOS 9.2.2 - because these, after accepting the SYN with 

cookiel, do not reply with an ACK to the following SYN-ACK carry­

ing cookie2. Instead, they reply with an RST, which terminates the 

connection just established on the server side (see Figure 6). 
However, such RST segments have some unusual properties that can 

help the server to detect and, possibly, overcome the problem. OpenBSD 
sends an RST but keeps the connection in the same SYN-RCVD state, 
which is an illogical reaction: if the RST is meaningful, it will eventually 

terminate the connection just created, so there is no point in keeping it. 
Fortunately, the RST is unusual and can easily be spotted and ignored 
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alient; .. rver 
8ocket; •• ,ment 
.tate a'a'e 

I LISTEN 
2 -+ (SEQ_.)(CTL=SYN)(t.nt .. lI ... TOP opllon.) ... 
8 SYN·RCVD <- (SEQ_cook"1 )(CTL_SYN)(lInal option.) <-
4 -+ (SEQ •• )(ACK_cookl.1 + I)(CTL_SYN.ACK)(II .... op.lon.) ... 
a <- + I)(CTL-SYN.ACK) <-
8 ... -+ ESTABL. 
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-+ -+ 
3 lC (SEQ_cook"l) (CTL_SYN) (linal op'Ion.) <-
4 ESTABL. <- +-
a -+ -+ ESTABL. 

(II) 

Figure 5. Steps followed by TCP sockets using an improved version of the new 

SynCP, capable of handling correctly clients behind a firewall. Scenario I shows the 

negotiation steps with a client not protected by a firewallj scenario II, on the contrary, 

shows the negotiation steps with a client protected by a firewall dropping pure out-in 

SYN segments. The values of cookiet and cookie2 must be different and can be 
computed from each other using an invertible function. 
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Figure 6. Output produced by the tcpdump tool showing the segments exchanged 

using ssh in a OpenBSD 2.8 or a MacOS 9.2.2 systems to connect to the modified 

server always using the new SynCP with different cookies. The data in the RST 
segments sent by the MacOS consists of the following textual messages: "TH..8YN" 
and "No Tep/No listener". The PUSH flag in the second segment of each dump is 

explained in §4.6.3 and, for clarity sake, all NOPs of TCP options were removed. 
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by the server, enabling the mixed SynCP to be used with OpenBSD 

clients: from the dump of Figure 6-1 we see that the RST includes a 
non-null window size, although this system usually sends RST segments 

like any other, i.e. with a null window size. 

MacOS sends an RST and terminates immediately its ongoing con­

nection. This RST is also unusual, because it includes data (see Fig­

ure 6-11), but that can only help the server to identify a client that does 

not support the mixed SynCP with different cookies. 

4.5. Final protocol: cache of problematic clients 

Its now time to summarize all the problems faced by a mixed SynCP 

using different cookies in order to present a common solution for all of 

them. In short, the major problems are the following three: 

• Some systems do not support the simultaneous connection initia­
tion (e.g. Windows systems) ; 

• Some systems do not react as required to the SYN sent by the 

server (e.g. Cisco lOS); and 

• Some systems do not react well to a mixed protocol using different 
cookies (e.g. MacOS). 

To handle all these cases we need to (i) maintain in the server a 
cache with the IP of problematic clients and to (ii) use only the current 
SynCP with hosts referred in that cache. Such cache should be updated 
whenever the server suspects a problem with the client. Furthermore, 
the cache should be managed in a conservative way, i.e. always assuming 

the worst case. This is advised because client systems may belong to 
private networks, using a gateway and masquerading to access Internet 

servers. In such cases, the server always sees the IP of gateways, but the 

protocol is sensitive to particular TCP implementations of client hosts 

behind them. Therefore, we should never remove hosts from the cache 

once they get there for some reason (except for getting a free entry). 

The hints for inserting a client's IP in the cache are the following: 

• The server receives a SYN-ACK, with a cookie, to a socket in 
the ESTABLISHED state. In this case we are probably dealing 

with a Windows client: we put its IP in the cache, but we don't 

abort the connection (first, because we may be wrong; and, second, 

because that is useless, as explained in §4.3); instead, the segment 

is processed normally by the TCP. 
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• The server receives an ACK, with a cookiel, to a socket in the 

LISTEN state. In this case we may be dealing with a Cisco IDS 
client: we put its IP in the cache and we drop the packet. 

• The server receives an RST, with the "TH_SYN" message, to a socket 

in the ESTABLISHED state. In this case we are probably dealing 
with a MacOS client: we put its IP in the cache and we let the 

RST be processed normally. 

Note that in the first two cases the hint may be a false positive caused 
by: (i) a delayed reception of the server's ACK, in the first case, or 

(ii) a delayed client's SYN-ACK, in the second case. But, as previously 
explained, we should always assume the worst case; therefore we assume 

that such segments reveal a problematic client. 

This cache is different from the one used by the Reset Cookies pro­

tocol to store security associations (c.f. §2). Both store the IP of real 

systems that tried to access the server, but our cache stores only the 
IP of problematic clients, while the other stores all the IPs. Thus, we 
are likely to get a better hit-rate with a cache of equal length. Further­
more, we only delay connections initiated by problematic hosts, while 
Reset Cookies delays the connections of all hosts not in the security 
association's cache. 

The use of a cache of problematic clients is not a perfect solution, 
because the server reacts when it believes there could be a problem, 
instead of anticipating the problem. One possibility for an earlier detec­
tion of problematic clients could be to apply fingerprinting techniques, 
such as the ones used in active recognition tools (e.g. nmap [12]) or in 
passive IDS systems [13, 14], to the contents of SYN segments (either 
at TCP or IP level). This approach is not 100% accurate, may work 
better for some operating systems and may even be disturbed by finger­
print scrubbers [15]. Nevertheless, it may be explored in the future for 
some particular cases without interfering with the cache update policy 
previously described. 

4.6. Security evaluation 

4.6.1 Guessing SYN-ACK segments with valid cookies. 
The mixed SynCP is as secure as the current one. Cookies are generated 
and validated the same way; they only appear in different TCP segments 

- in ACK segments in the current implementation and in ACK and SYN­

ACK segments in the new one. The cookie of the SYN is computed from 

the one of the SYN-ACK using an simple and fast invertible function, 

like the one's complement. The fact of using two cookies instead of one 
does not reduce the resistance against guessing attacks, because at a 
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given instant the set of cookies that is valid for a given type of segment, 
ACK or SYN-ACK, remains equal to that of the current SynCP. 

4.6.2 Forged SYN segments with spoofed source addresses. 
Another relevant concern with security is the impact of SYN segments 

sent by servers when replying to forged SYN segments sent by attackers. 
Unlike the current SynCP, that uses a normal reply, a SYN-ACK, the 
new SynCP uses a typical request segment (a SYN) as a reply to a 
client. This means that an attacker can lead a server under a SYN 
flooding attack to initiate connections with other servers. However, the 
algorithms to generate and validate cookies are enough to detect and 

avoid such problem. 

Imagine the following scenario, illustrated in Figure 7: an attacker 

sends a forged SYN to a server A, which is using the new SynCP, and 

the forged segment says that the sender is an existing server B. The 
result of such attack is that A and B will exchange some segments and 

abort the connection, because the SYN-ACK from B has a cookie that 
was generated with x as ISN, and not with the ISN y provided by B in 
step 4. Furthermore, server B will also abort the connection by replying 
with an RST to any SYN-ACK segments sent by A to a socket in the 
LISTEN state (as in the current SynCP)j such RST is produced by the 

normal operation of the TCP. 

.. rver A lerver B 
locket lelmen' locket 

• 'at. .t..ii • 

LI5TEN 
(SEQ- _)(OTL_SYN) (apparently from B) 

LlliTEN 

+-
3 ... ... SYN-ROVD 
4 +- (SBQ= I)(OTL_SYN.AOK) +-
& ... .... OLOSE 

Figure 7. Segments exchanged resulting from a forged SYN referring an existing 

server B as the sender. The SYN-ACK segments with cookies that are also sent by A 

are not shown for the sake of simplicity, but they also abort the connection, because 

B replies with an RST to a SYN-ACK sent to a socket in LISTEN state (as in the 

current SynCP). 

Note that the issue here is to avoid the creation of a useless TCP 

connection between A and B (between two sockets in LISTEN state) 
from a spoofed SYN segment sent by a attacker. Without using host 
authentication we cannot protect B from getting replies from A caused 
by spoofed segments. Neither can B prove that those segments were in 
fact sent by A. 

4.6.3 Identification of SYN segments with cookies. The 
diagram of Figure 7 is not valid if both hosts A and B are servers acting 
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similarly, i.e. responding to SYN segments with other SYN segments 

carrying a cookie. In such a scenario, both hosts enter into an endless 

ping-pong of SYN segments, since they do not (intentionally) keep any 

record about past replies containing cookies. 

This problem can be solved only if SYN segments containing cookies 

could be clearly distinguished from other SYN segments with ordinary 

ISN numbers. Two possible solutions for this problem are: 

• to use one of the flags in the base TOP header not used in SYN 

segments (URG, PUSH, etc.); or 

• to use a new TOP option. 

The first solution is a sort of a hack that may work in most cases since 

TOP implementations are not sensitive to the state of such header bits 

in SYN segments. The second solution is more standard, all TOP im­

plementations should be immune to it (see [10]) but it implies the reser­
vation of a new option value. 

Note that the clear identification of SYN segments is only needed for 

servers using the new SynOP, and not by any other hosts. Further­

more, such identification helps modified server hosts to further reduce 

the problem presented in Figure 7. In fact, as the host of server B can 

see that the segment from A is a SYN segment with a cookie, it may 

simply drop the segment and thus prevent all the following exchange of 
segments. 

5. IMPLEMENTATION 

The new SynOP, described in §4.4, Figure 5-1, was implemented on 

a Linux kernel (2.4.2-2). The implementation involved a minor mod­
ification of the TOP modules: three files (tcp_ipv4.c, tcpjnput.c and 
syncookies.c) and about 300 new lines of code. 

The implementation uses the following strategy for choosing SynOPs: 

if the client does not require any TOP options, or if the client belongs to 

our cache of problematic clients, the current SynOP is used; otherwise, 

we use the new mixed SynOP, described in Figure 5. To simplify the 

protocol tests, the kernel was also modified to behave as if under a SYN 

flooding attack. 

The SYN segments used by the new SynOP are identified with the 

PUSH TOP header flag, as explained in §4.6.3. This flag was used in 

all the tests of the new protocol without any noticeable problems, but 

it should be replaced in the future by a proper, standard TOP option. 
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6. CONCLUSIONS 

In this document we presented a new strategy for using SYN cookies 
by a server under a SYN flooding attack. This new strategy overcomes 

a limitation of the current SynCP - it does not allow clients to negotiate 

any TCP options within SYN segments (it only allows clients to get the 

server's MSS). The solution that we propose relies on the fact that TCP 

allows a scenario called "simultaneous connection initiation", that we 

use to force client hosts to repeat their SYN requests. This way, the 

server can get together, in a single SYN-ACK, a cookie and all the TCP 

options initially requested by the client and already agreed to by the 

server. 

This simple approach, fully compatible with standard TCP rules, faces 
two major problems. First, some systems do not deal correctly with 

the simultaneous connection initiation (e.g. Windows systems). Second, 

client-side firewalls may transparently interfere with the connection ini­

tiation started by the server, thus preventing the client from connecting 

to the server. To overcome these problems we did two complementary 

actions: (i) changed the protocol, in order to simultaneously use the cur­

rent and the new SynCPs, creating a mixed SynCP, and (ii) added to 

the server TCP implementation a cache for storing the IP of problematic 

client hosts. This cache is updated whenever the server gets a hint, from 

the TCP segments received, that the client may not deal properly with 

the new mixed SynCP. 

Concerning the security of the new protocol, we did not change the 

algorithms for generating and validating cookies, so they are as secure 

as they were before. We also showed that, due to the current algorithm 
to validate cookies, spoofed connection requests cannot drive a server to 

establish a connection with another victim server. Finally, we justified 

why SYN segments sent by the server must be properly identified to de­

tect equal reactions of two hosts trying to connect with each other, both 

being under a SYN flooding attack. For simplicity we used the PUSH 
flag of the TCP header for such identification, without any noticeable 

problems, but a more correct implementation should use a proper, stan­

dard TCP option. 

The new SynCP was implemented in a Linux kernel and tested with 

a large set of client operating systems. From the tests, we concluded 
that some systems do not tolerate it (Windows, Cisco lOS and MacOS), 
that some systems react strangely but in a way that can be detected and 
masqueraded by the server (OpenBSD), and that all the other systems 

behave as expected. The problems raised by the first kind of systems 

are solved with the cache of problematic systems. 
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In conclusion, we believe this new mixed SynCP, using both the cur­

rent one and a new one faking a simultaneous connection initiation, is 
a valid and powerful improvement of the current SynCP. The resulting 

protocol supports the negotiation of any TCP options, is flexible enough 

to deal with firewalls and can be downgraded, on an as-needed basis, to 

the current one in order to attend to special problematic clients. In fu­

ture implementations the late discovery of such clients may be partially 
anticipated by applying fingerprinting techniques to SYN segments. 
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Appendix A: SYN cookies algorithms 

Linux kernels use the folowing algorithms to generate and validate cookies: 

H1 = hash32-61 (SaddrISportIDaddrIDpoTtIK1) 

H2 = hash32-61 (SaddrISportIDaddrIDporticounterIK2) 

Generation: 

cookie = H1 + ISNclient + (counter x 224) + (H2 + data) mod 224 

Validation: 

countercookie = (cookie - H1 - ISNclient) + 224 

acounter = countercurrent - countercoo1cie 

data = (cookie - H1 - ISNclient) mod 224 - H2 mod 224 

hashn (z) 

Sadd.,Sport 

Daddr' Dport 
K1,K2 

ISNclient 
counter 

data 

n bit range, starting from lsOO, produced from z using the 

compression function of a digest algorithm (MD5 or SHA-l) 

source TCP lIP address 

destination TCP lIP address 

secret keys 

ISN provided by the client in the SYN segment 

minute counter 
24-bit value 

Cookies are generated and validated using two constant secret values, K1 and K2, 
which are long enough to completely fill the input buffer of the hash function used 

(64 bytes for both MD5 and SHA-l, so K1 has 52 bytes and K2 has 48 bytes). The 

data value is a server-defined value currently used for storing a 3-bit encoding of 8 
predefined MSS values, presented in Table A.I. 

The secrets K1 and K2 are produced using the kernel random number generator, 

the same used to generate the random part of ordinary IPv4 ISN values. These values 

are produced the first time SYN cookies are used after a system reboot and remain 

constant in kernel memory. The difficulty of guessing K1 and K2 from cookies is out 

of the scope of this document. 

The kernel checks for suitable cookies only within a short time frame, starting when 
the last one was sent and ending a few seconds later. During that time gap cookies 
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Thble A.l. MSS predefined values encoded in the data value of SYN cookies. 

SYN Cookie data 

MSS value 

may be checked, and are accepted only after some integrity control validations. There 
are two integrity controls of cookie contents, and if any of them fails the cookie is 
rejected. The first integrity control test checks if it is valid (acceptable) in terms of a 

temporal criteria: if Acounter is lower than a given threshold (currently a hard-coded 

value of 4 minutes), it is acceptable. The second integrity control test checks if the 

data value is a valid one, i.e. a value between 0 and 7. 

Appendix B: Problems raised by mixing SynCPs with 
two equal cookies 

The main advantage of using equal cookies in both SYN and SYN-ACK segments 

used in a mixed SynCP is that clients always see segments that do not look strange. 
The instant chosen to send the server's SYN-ACK reply is irrelevant for the correction 
of the protocol from the client's point of view. 

However, the premature sending of the server's SYN-ACK reply may be problem­
atic for the server since it is not keeping state about ongoing connections. There are 

two particular scenarios that could lead to problems: 

• The client socket receives the SYN and the SYN-ACK segments, sends replies 

whenever it decides to and moves to ESTABLISHED. If all the client's replies 
get lost, the client stays with a TCP connection that will be destroyed as soon 

as it sends some data or probes the server. 

• The client socket receives the SYN and the SYN-ACK segments, sends replies 
whenever it decides to and moves to ESTABLISHED. If the server misses the 
SYN-ACK reply, but it sees one ACK reply, it will conclude that the client 
did not receive the SYN and, therefore, it uses the current SynCP. The result 

is that the server will establish a connection with the client, but will assume 

that the client will not use any TCP options, which is not true. This scenario 
can occur with client sockets that acknowledge SYN-ACK segments in the 

SYN-RCVD state, like SunOS 5.8. 

The first scenario is annoying but not dramatic, being similar to a temporary 

server failure. The second scenario is more critical, since it can lead to future problems 

during the client-server interaction. However, it may be detected and avoided in some 

cases, namely when both client and server could agree on using TCP timestamps. In 

this case, the server could activate the time stamping in its SYN, but not in the SYN­

ACK, and latter detect only from ACK segments if the client saw its SYN (if they 

carry a timestamp). This way ACK segments with both a cookie and a timestamp 
could not be used to create a connection. 

Concerning the use of the TCP timestamp mechanism, the document describing 

it [9] says nothing about a segment not carrying a timestamp when the receiver is 
expecting it; it only says that timestamps may be sent only when the sender got one 

in the initial SYN of the connection. Therefore, we assume that it is legal to receive 
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a SYN with a timestamp and a SYN-ACK without timestamp. Furthermore, such 

lack of timestamp in the SYN-ACK should not also affect the PAWS mechanism, also 

described in [9], because apparently it is only used for "open connections". 
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