
IMPROVING THE FUNCTIONALITY OF
SYN COOKIES

Andre Zuquete

1ST I INESC-ID Lisboa, Lisboa, Portugal

andre.zuquete@gsd.inesc-id.pt

Abstract Current Linux kernels include a facility called TCP SYN cookies, con­

ceived to face SYN flooding attacks. However, the current implementa­

tion of SYN cookies does not support the negotiation of TCP options,

although some of them are relevant for throughput performance, such

as large windows or selective acknowledgment. In this paper we present

an improvement of the SYN cookie protocol, using all the current mech­

anisms for generating and validating cookies while allowing connections

negotiated with SYN cookies to set up and use any TCP options. The

key idea is to exploit a kind of TCP connection called "simultaneous con­
nection initiation" in order to lead client hosts to send together TCP

options and SYN cookies to a server being attacked.

Keywords: SYN flooding attacks, SYN cookies, TCP options, simultaneous con­

nection initiation.

1. INTRODUCTION

Current Linux kernels include a facility called TOP SYN cookies, de­

signed and first implemented by D. J. Bernstein and Eric Schenk [1, 2].

This facility was conceived to face a specific attack on normal TCP liP
networking, known as "SYN flooding attaclr'. This is a denial-of-service

attack that floods a server host with long-lasting half-open TOP connec­

tions. Since kernels usually restrict the number of half-open connections,

a SYN flooding attack prevents real client hosts from connecting to a

server host being attacked. Furthermore, such attacks are easy to de­

ploy, can be launched anywhere on the Internet and are difficult to avoid

by well-known servers.

SYN cookies provide protection against this type of attack and their

rationale is straightforward: prevent the denial-of-service scenario by not

keeping state about pending connection requests, or half-open connec­

tions. The cookies allow a server host to maintain the state of half-open

Communications, VCE, com, funding support, including
of EPSRC, is gratefully acknowledged. More detailed technical reports on this research &re
available to Industrial Members of Mobile VCE.

©

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI:

©

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35612-9_23

IFIP International Federation for Information Processing 2002
B. Jerman-Blaži et al. (eds.), Advanced Communications and Multimedia Security

http://dx.doi.org/10.1007/978-0-387-35612-9_23

58 Advanced Communications and Multimedia Security

connections outside its memory: such state is (partially) stored inside a

cryptographic challenge, the SYN cookie, that is returned to the client

within SYN-ACK segments as the server's TCP Initial Sequence Number

(ISN). Since TCP requires the client to send back that ISN on the sub­

sequent ACK, the server will be able to restore a half-open connection

from a cookie and, consequently, create a final connection descriptor.

Although the rationale behind SYN cookies is straightforward, its im­

plementation is more complicated. First, cookies must fit in the space

defined for the ISN field of a TCP header (32 bits). Second, the genera­

tion of cookies should respect the TCP recommendations for ISN values

being monotonically increasing over time, possibly using some sort of

time-based counter, to reduce the probability of delayed segments being

accepted by new incarnations of similar connections [3]. Third, cook­

ies must be unpredictable by attackers, to prevent the forgery of valid

cookies, which could be used to launch TCP hijacking attacks [4]. And

fourth, cookies should contain all TCP options sent by clients on SYN

segments and usually kept in half-open connection's descriptors (if sup­

ported by servers).

The current implementation of the SYN Cookie Protocol (SynCP

hereafter) in Linux systems deals differently with these issues, han­

dling completely or partially some of them, but, unfortunately, ignoring

most of them [1]. For instance, some TCP options that are relevant

for throughput performance, like large windows or selective acknowl­

edgment, are simply not supported when using SYN cookies. Even the

choice of suitable server's Message Size (MSS) is limited. Therefore, a

SYN flooding attack, by triggering the use of SYN cookies, can reduce

the quality of service provided by a server host (besides forcing the waste

of CPU cycles and bandwidth to deal with bogus connection requests).

This is clearly an undesirable side effect of using SYN cookies.

In this paper we present an improvement of the current SynCP. This

improvement uses most of the current mechanisms for generating and

validating cookies; however, it allows connections negotiated with SYN

cookies to set up and use TCP options that are relevant for performance

but currently ignored. The key idea is to explore a kind of TCP con­

nection called "simultaneous connection initiation". But this approach,

although fully compatible with standard TCP rules [3], faces two major

problems. First, some systems do not deal correctly with simultaneous

connection initiations (e.g. Windows systems). Second, client-side fire­
walls may interfere with the action taken by the server. To overcome

these problems we propose a mixed protocol, combining the current and

the new SynCPs. Problematic clients are detected and handled differ­

ently by the server using a simple cache with their IP addresses.

Improving the functionality of SYN cookies 59

This paper is organized as follows. Section 2 presents some related

work regarding the countermeasures for SYN flooding attacks. Section 3
briefly describes how SYN cookies are currently handled by Linux ker­
nels. Section 4 presents our proposal, starting with the basic protocol,
presenting some problems it faces with problematic clients and firewalls,
and concluding with the description of the final protocol. Section 5

sketches some implementation details. Finally, in Section 6 we draw

some conclusions.

2. RELATED WORK

The generic goal of any solution to SYN flooding attacks is to continue

to accept connection requests even when being under attack. There are
several ways to achieve this goal, but none of them is perfect. In this sec­

tion we will shortly describe the approach followed by several proposed

solutions, presenting their advantages and drawbacks. The description

will focus only on solutions that change the way server kernels deal with
the current IPv4 TCP protocol specifications. We will not address any

solutions requiring either (i) a modification of the TCP protocol, (ii) a

modification of the kernel of client hosts or (iii) filtering policies applied

to client hosts in their access to the Internet (e.g. [5]).

One obvious solution, proposed by several vendors, is to use larger

queues for pending connection requests. A high bound for the queue's

length can be computed from the bandwidth of the server's network con­

nection and the timeout used by the server to discard pending requests.

This is a sort of brute-force solution that may waste lots of kernel mem­

ory and slow down the server's response time, but it can be effective
in public servers serving large communities of clients, since such hosts

usually have extensive hardware resources.

A more crafty solution is called Random Drop [6]. The principle

is simple: a server always accepts a new connection request and uses

the queue of pending requests as a cache, with a random substitution

policy to get space for new requests. For each dropped request the

server sends an RST to the source host, enabling real clients to react

to the server action. This solution allows a flexible trade-off of defense

effectiveness with resource requirements, but it only guarantees service
in a probabilistic manner. Thus, an attacker may still occasionally affect
connections requested by real clients.

60 Advanced Communications and Multimedia Security

Another policy for dropping connection requests is called Reset Cook­

ies [7, 6], using security associations 1 for improving correctness. When

under attack, the server host checks a cache of security associations prior

to accept and queue each new connection request. If the client is not

listed in the cache the server replies with an illegal SYN-ACK with a

cookie as the server's ISN. Legitimate clients will reply with an RST con­

taining that cookie, which can then be checked by the server and trigger

the creation of a security association with the client. This solution im­

plies the storage and management of a cache of security associations

in the server and increases significantly the latency of connections for

clients not listed in the cache. Therefore, heavily used public servers

should use large caches for reducing the impact of using Reset Cookies,

but that is exactly the opposite of what defenses against SYN flooding

attacks should do.

3. SYN COOKIES IN CURRENT LINUX
KERNELS

The most recent Linux kernel (version 2.4.14), as well as many other
previous versions, allows kernel builders to include the generation and
analysis of SYN cookies in the kernel functionality, and allows adminis­
trators to dynamically activate their use. We will now explain how SYN

cookies are used on a kernel were they are enabled, in order to introduce
all the problems currently raised by their use. For simplicity, hereafter
we will use the term cookie to refer to a SYN cookie.

3.1. Generation and validation of SYN cookies

Cookies are not used when the kernel operates in normal conditions,

but only when it suspects of being under a SYN flooding attack2 . The
suspicion is simply derived from the length of queue of pending connec­

tion requests: if it reaches a given threshold length, the kernel emits a
SYN flood warning and starts using cookies to handle new connection

requests.

Cookies have a limited lifetime. When the kernel receives an ACK

from a client (the third segment of the three-way handshake), first it

checks the segment against the queue of connection requests, and upon

failure it may check whether the segment carries a valid cookie. Such

1 A security association is the IP address of a real client host that initiated a TCP connection
to the server in the past.
2This is not true if the kernel operates as a so called "SYN cookie firewalt'. In this case, all
incoming SYN segments get a SYN cookie reply from the firewall kernel, and only upon the
correct reception of the cookie within an ACK the server is contacted by the firewall.

Improving the functionality of SYN cookies 61

checking takes place only within a short time frame, starting when the

last cookie was sent and ending a few seconds later (currently 3 seconds),

and cookies are accepted only if their value is among a set of acceptable

values.

3.2. Transparent use of SYN cookies

Cookies were designed to tackle SYN flooding attacks without chang­

ing TCP implementations used by client hosts; only servers using them

must be modified in order to produce and validate them, and their use
should be as transparent as possible to clients. Therefore, the use of

cookies must conform with all TCP mandatory rules, but may impose

restrictions on the use of TCP optional behaviours. These restrictions,
however, should be minimized in order to reduce the side effects of using

cookies.
Cookies are 32-bit values stored as ISN values in the sequence field of

SYN-ACK segments sent by servers, and are retrieved from the sequence
numbers acknowledged in ACK segments sent by clients. Therefore,

cookies should respect the recommendations for the generation of ISN

values [3, 4].
Cookies also carry some TCP options negotiated exclusively on SYN

segments. Currently they only carry a 3-bit encoding of 8 predefined

MSS values. All other options are simply ignored3, including window

scaling, selective acknowledgment, and time stamping for Round-Trip

Time Measurement (RTTM) or Protection Against Wrapped Sequence

numbers (PAWS). Unfortunately, all these options were introduced to

improve the performance of TCP connections [8, 9]. Thus, we can con­

clude that a SYN flooding attack, by triggering the use of cookies, has

the potential side effect of reducing the performance of some server's

TCP connections.

3.3. SYN cookies algorithms

The algorithm for generating cookies should try to reconcile two dif­

ferent goals. On one hand, cookies should be hard to guess by clients, in

order to defeat attacks using ACK segments with forged, valid cookies.

This implies that cookies should contain a large number of bits gener­

ated using servers secrets and functions not easily invertible by clients.

On the other hand, cookies cannot be fully random and still respect the

TCP rule of slowly growing over time. This implies that some part a

3SYN cookies cannot also handle correctly T /TCP connection requests. However, since this
is still an experimental protocol, we will not address it further.

62 Advanced Communications and Multimedia Security

cookie should be generated without using values produced by crypto­

graphic functions.

However, since cookies are only 32 bit long, it is difficult, ifnot impos­

sible, to accomplish both goals simultaneously. Therefore, the algorithm

to produce cookies cares only about security, and is completely indepen­

dent of the algorithm to produce ordinary ISN values.

The algorithms currently used to generate and validate cookies are

fully explained in Appendix A. In short, cookies are computed using

constant secret values, TCP lIP addresses and ports of the client's SYN

segment, a time counter and a 3-bit encoding of the server's MSS value

(see Table A.I in Appendix A). The validation of a cookie involves re­

trieving and testing the last two - time counter and MSS encoding -

using the same secrets and the same fields of the client's ACK segment.

3.4. Risk analysis

Cookies were devised to solve a problem, and not to create new ones.
Thus, they should not allow attackers to launch other kinds of attacks

using them. This means that attackers should not be able to produce

valid cookies, since that would allow them to create fictitious TCP con­

nections on a victim server.

The reality is that valid cookies are relatively hard to forge4 . On
a given instant, a valid cookie for a given pair of TCP addresses can
only take 32 values out of 232 possible ones. The value of 32 comes out

of multiplying the 4 acceptable values for the time counter with the 8
possible values of the MSS encoding (see Appendix A for more details).
Any increment in the range of either one of these values would naturally
improve the probability of guessing valid cookies.

4. OUR PROPOSAL

As previously mentioned, the generation of cookies is not a trivial

task because one has to trade-off several different requirements. In this

section we will show how the current SynCP can be improved in order to

better deal with one of those requirements, namely the support of TCP

options, without reducing its current functionality or its security against

guessing attacks. Furthermore, we want to keep the basic approach of

the current SynCP of not storing any state on servers, namely TCP

options, for ongoing connection handshakes requested during a SYN
flooding attack.

4 Assuming that no better strategy exists for producing valid cookies besides random guessing.

Improving the functionality of SYN cookies 63

The rationale for the new approach is the following: as TCP options

cannot be fully embedded in cookies, for both practical and security
reasons, then one has to force the client host to send again the TCP
options together with the segment that carries the cookie. This means
that the client must send another segment containing both the cookie
and the SYN bit set, as only such segments may contain the TCP op­

tions that we are concerned with. This requirement can be met using
the "simultaneous connection initiation" described in the seminal TCP

documentation [3].

4.1. Basic approach

Figure 1 shows the diagram presented in [3] (and corrected in [10])
describing the steps followed in one simultaneous connection initiation.
The new SynCP will explore this particular way of negotiation; in par­
ticular it will conduct the client socket through the same state transition
of socket A of Figure 1.

ooc"'" A a·ament .ocket B
atate atat.

... (SEQ __)(CTL_SYN) . .. CLOSED

8 SYN-RCYD +- (SEQ-V)(CTL-SYN) +- SYN-SENT
4 ... (SEQ._)(CTL_SYN) ... SYN-RCYD
B ... (SEQ __)(ACK_V + l)(CTL_SYN ,ACK) . ..
6 ESTABL. +- t +- SYN-RCYD
7 ESTABL .

Figure 1. Steps followed by TOP sockets in a simultaneous connection initiation.

The new SynCP works as follows (see Figure 2-II). When the server
receives a SYN, it computes a normal SYN-ACK reply, gets a cookie for

the server's ISN, and sends it as a pure SYN (with the ACK bit disabled).
A genuine client socket for the requested connection is in SYN-SENT
state, wiIl move to SYN-RCVD and reply to the server's SYN with a
SYN-ACK, repeating its ISN number and all the TCP options sent by

the server. When the server receives a SYN-ACK for a socket in LISTEN

state it checks if the acknowledged sequence number is a valid cookie. If

it is valid, the server creates a new connection with the client, and sends

back a SYN-ACK; otherwise, it sends back an RST.
This new way of using cookies is more complex (and thus slower)

than the original one, but has the advantage of allowing both client

and server to negotiate and agree on TCP options that are relevant for

performance. Thus, the performance penalty imposed by this 4-way

handshake can be blurred by the performance gain in the subsequent
data transfer. A similar 4-way handshake was adopted by the Stream

64 Advanced Communications and Multimedia Security

client "rver - .esment .ocket .t.t. atatie

.... (SEQ_.)(OTL_SYN)(t.nt.tl". TOP option.)
.. ,""' ... '"

3 ESTABL,
4 ESTABL,

(I)

c lent •• rver
.ock.t aelment aocket
at.at. at.t..

I LIs"'EN
2 (SEQ_.)(CTLaSYN)(t.nt.tl". TOP option.)
3 SYN-RCVD ... (SEQ_cookl.)(CTL_SYN)(II ... loptlolUl) ...
4 (SEQ ••)(ACK_cookl.+I)(CTL",SYN,ACK)(IIna\ optlolUl) ESTABL,
a ESTABL, ... (SEQ-"'cookl.)(ACK_. + itlcTL_SYN,ACIC,illn.1 ...

(II)

Figure 8. Steps followed by TCP sockets using (I) the current SynCP implementa­
tion and (II) the basic approach of the new SynCP.

Control Transmission Protocol (SCTP [11]) to tackle the same security

problem.
The TCP options are initially presented in the SYN of the client (step

2), and the final set of agreed options is returned in the server's SYN

reply containing the cookie (step 3). The client's SYN-ACK (step 4) will

simply reproduce the options presented by the server, as they already

result from an agreement process; the same happens in step 5.

4.2. Simplification of the basic approach

This basic approach can be further simplified: the final SYN-ACK

sent by the server may be a simple ACK. Since client sockets are in a

SYN-RCVD state, all they need to move to ESTABLISHED is an ACK.
Consequently, we changed the protocol, replacing the SYN-ACK of step

5 by a simple ACK (see Figure 3).

c "ud •• rver .ock., .esment .oclcet
• tate .tat •

I .. ''' N
2 (SEQ_.)(CTL_SYN) ('.n ••• lv. TOP optlona)
3 SYN-RCVD ... (SEQ_cookl.) (CTL_SYN) (fln.1 option.) ...
4 (SEQ ••)(ACK_cookl.+I)(CTL_SYN,ACK)(lIn.loptlolUl) ESTABL,
a ESTABL, ... iSEQ_cookl.+i)(ACK ... + I;(OTL_AOK) ...

Figure 9. New SynCP with a final ACK instead of a SYN-ACK.

Early experiences showed that this simplification is not only possible

but also critical. In fact, some TCP implementations follow a simplified

state diagram where a socket in the SYN-RCVD state only changes to

ESTABLISHED after receiving an ACK (Figure 6 of [3]), though they

accept the SYN-ACK as a valid segment. This is a clear violation of

TCP rules (c.f. [10], §4.2.2.1O).

Improving the functionality of SYN cookies 65

4.3. Initial assessment of problems

This new way of using cookies is a sort of Pandora box, since the ex­

ploitation of simultaneous connection initiations is rare, although valid

and imposed by the seminal paper defining the TCP standard. There­

fore, this protocol was tested and evaluated with several client operating

systems to better assess its suitability. We tried to use both old and new

systems, and also Unix/Linux, Windows and other proprietary systems

(e.g. Cisco lOS).

Table 1. Client operating systems used to test the new SynCP and the result of a
preliminary evaluation of their support for simultaneous connection initiations.

Support. the
Operating 811ltem 08 or Kemellier.ion .imultaneou.

connection initiation
uE 3.0 _(PocketPI;')

95, 98 SE, Millennium
Windows NT 4 Workstation/Advanced Server No

2000 Professional/Server
XP Professional

Cisco lOS C4600-I-M V 11.lm:
C7200-DS-M V 12.0 7>-

No

4.1.3,5.6,6.7,5.8
A.09.05

Linux 2.2.x, 2.4.x
FreeBSD 3.3 Yes
OpenBSD 2.8
MacOS 9.2.2
Digital UNIX OSF1 V4.0
SOl IRIX 6.2

Table 1 shows the exact systems that we experimented with and the
preliminary results of using the protocols of Figures 2-11 and 3. These
tests showed two facts concerning the simultaneous connection initiation
forced by the server:

1 Some operating systems apparently support it, but after a certain
point they fail.

2 Some client operating systems support it, but react differently to

the segments received.

Windows and Cisco lOS systems exemplify the first kind of systems.

All the Windows systems tested fail the same way. After accepting the

SYN-ACK reply, the client socket changes from SYN-SENT to SYN­

RCVD, but thereafter it stays stuck in that state (repeatedly sending

SYN-ACK segments to the server until giving up, sending then an RSTj

see Figure 4). We tried several possible replies to make it change state,

including RST, but without any success.

The two Cisco lOS systems also fail but differently from the Windows
systems. The client socket changes to SYN-RECV after receiving the

66 Advanced Communications and Multimedia Security

SYN, but replies with a simple ACK, instead of a SYN-ACK. Thus,
from our point of view, these systems fail in handling the simultaneous
connection initiation because we need to get a SYN-ACK segment from

clients.

C.1711 > 8 ... h: 8 3711284047:3711264047(0) wiD 84240 <a •• 1480 ... ekOK> (DF)
8 .•• h > C.1711: 8P 418921;441:418926441(0) WiD 6840 c. •• 1480 •• aekOK> (DF)
8 ••• h > C.1711: 8 387804181;4:387804181;4(0) .ek 3711284048 WiD 1;840 < ... 1480> (DF)
C.1711 > 8 •• ah: 8 3711284047:3711284047(0) Bek 418921;442 win 84240 <,. .. 1480 ... ckOK> (DF)
S ••• h > C.1711: • 1:1(0) aek 1 wiD 1;840 (DF)
8 ••• h > C.1711: P 1:28(2ti) aek 1 win ti840 (DF)
C.1711 > 8 •• ah: 8 3711284047:3711284047(0) aek 41892ti442 win 84240 <,. •• 1480 ... ckOK> (DF)
S ••• h > C.1711: P 1:26(2ti) aek 1 win ti840 (DF)
0.1711) S ••• h: 8 3711284047:3711264047(0) aek 416925442 win 64240 (,. •• 1460 ... ekOK) (DF)
8 •• ah > 0.1711: P 1:26(25) aek 1 win 5840 (DF)

0.1711 > 8 ... h: R 3711264048:3711264048(0) win 0

Figure 4. Output produced by the tcpdump tool showing the segments exchanged
using SBh in a Windows XP system to connect to the modified server using always
the new SynCP. The PUSH Hag in the second segment is explained in §4.6.3) and,

for clarity, all NOPs of TCP options were removed.

In the second kind of systems we can distinguish two different reac­

tions:

• Some only change to ESTABLISHED after receiving a pure ACKj

getting a SYN-ACK only make them repeat their own SYN-ACK

{e.g. SunOS 4.1.3}. This behaviour, already referred to in §4.2,

goes against TCP rules .

• Some acknowledge the SYN-ACK sent by the server, if using the

protocol of Figure 2-11 (e.g. SunOS 5.8). This is a legal behaviour.

These different behaviours show that our new SynCP is more sensitive

to differences in TCP implementations of client operating systems than

the current one. Though it may predict and accommodate, as much as

reasonable, some known problems of client systems, there is always a

possibility of failing with some of them.

4.4. Overcoming problems raised by flrewalls:
mixed approach

Firewalls usually refuse TCP connections, initiated outside, to inside
ports other than well-known service ports. This means that if the client
of Figure 3 is behind a firewall, and the server is outside the defense

perimeter of that firewall, the segment sent in step 3 will probably not

reach the client. In that case, the client would continue to send SYN

Improving the functionality of SYN cookies 67

segments just like in step 2, until giving up. Therefore, the new SynCP

will probably fail if the client socket is behind a firewall.

The solution that we devised for this problem is a best effort modifi­

cation of the protocol presented in Figure 3. The modification consists

of mixing both SynCPs, the current and the new, and thus the server

replies to a SYN request with both a SYN and a SYN-ACK containing

cookies. The format of the SYN-ACK is just like in the current SynCP,

i.e. without any TCP options other than MSS. The server will try to

deduce, from future segments sent by the client, which of the SynCPs it

engaged to. Basically, if it receives a SYN-ACK, the client received the

SYN and is using the new protocol; if it only receives an ACK, the client

probably did not receive the SYN and is using the current protocol. If
the segments with cookies sent by the server arrive in a different order

to the client (the SYN-ACK first and the SYN next), the client will

react to the SYN-ACK just like in the current SynCP (c.f. Figure 2-1).

The delayed SYN will make the client reply with a harmless ACK (from

Figure 10 of [3]).

Such mixing has a key issue, which is the compatibility between the

SYN and SYN-ACK segments sent by the server. In practice this means

that we have to decide if the cookies of these segments are the same or

produced differently. Both solutions have advantages and drawbacks:

equal cookies are natural to clients but may confuse the server; differ­

ent cookies may be awkward to clients but allow the server to decide

correctly. We chose the second approach, which is described below; for

the sake of completeness, the problems raised by other approach are

described in Appendix B.

4.4.1 Mixed SynCPs with two different cookies.
This approach simplifies the task of the server when dealing with

probable segment losses because it knows exactly, from the acknowledged

sequence numbers, which segments the client saw. The two cookies can

be easily computed one from the other using a simple and fast invertible

function, like a one's complement.

Its problem is that clients may react differently to the strange scenario

of receiving two segments slightly incompatible between themselves. The

main issue here is how should a client socket react when it receives a

partially incorrect SYN-ACK, i.e. with an incorrect sequence number

(server's ISN) and a correct acknowledged sequence number (client's

ISN plus one).

According to [3], an RST should only be sent by a socket in any non­

synchronized state (SYN-RCVD in this case) if "the incoming segment

acknowledges something not yet sent (the segment carries an unaccept-

68 Advanced Communications and Multimedia Security

able ACK)". Since that is not the case, the normal reaction should be
to either (i) ignore the segment, or (ii) send an ACK with the actual
sequence numbers known by the client. In fact, our tests show that

clients systems do react differently, but most of them send the expected

ACK. Two systems, unfortunately, send RST segments: OpenBSD 2.8

and MacOS 9.2.2. This problem will be analysed further below.

So, the mixture of SynCPs using two different cookies - cookie! and

cookie2 (see Figure 5) - works this way:

I If the client receives the server's SYN, then its socket, after chang­

ing to SYN-RCVD, waits only for an ACK to change to ESTAB­

LISHED. The SYN-ACK can be received in the meanwhile, but
because its sequence number (cookie2) is different from the se­
quence number of the previously received SYN (cookie!), it is

invalid and an ACK is sent back to the server.

II If the client misses the server's SYN because of a firewall, then it

falls back to the current SynCP, as it only gets the server's SYN­
ACK without any TCP options.

The server can easily check which of these alternative scenarios is the

real one for each negotiation using cookies. If it gets a SYN-ACK with

a cookie!, then the client saw the SYN and engaged in the new SynCP.

If it gets a simple ACK with a cookie, two scenarios are possible:

• ACK acknowledges cookie!: the client saw the SYN and en­
gaged in the new SynCP. The server simply drops the segment,

as it should get a SYN-ACK with that cookie; the client will keep
sending SYN-ACK segments until giving up or until getting a reply

from the server .

• ACK acknowledges cookie2: the client did not see the SYN

and engaged in the current SynCP.

This mixed protocol using two cookies fails in two systems - OpenBSD

2.8 and MacOS 9.2.2 - because these, after accepting the SYN with

cookiel, do not reply with an ACK to the following SYN-ACK carry­

ing cookie2. Instead, they reply with an RST, which terminates the

connection just established on the server side (see Figure 6).
However, such RST segments have some unusual properties that can

help the server to detect and, possibly, overcome the problem. OpenBSD
sends an RST but keeps the connection in the same SYN-RCVD state,
which is an illogical reaction: if the RST is meaningful, it will eventually

terminate the connection just created, so there is no point in keeping it.
Fortunately, the RST is unusual and can easily be spotted and ignored

Improving the functionality of SYN cookies 69

alient; .. rver
8ocket; •• ,ment
.tate a'a'e

I LISTEN
2 -+ (SEQ_.)(CTL=SYN)(t.nt .. lI ... TOP opllon.) ...
8 SYN·RCVD <- (SEQ_cook"1)(CTL_SYN)(lInal option.) <-
4 -+ (SEQ ••)(ACK_cookl.1 + I)(CTL_SYN.ACK)(II op.lon.) ...
a <- + I)(CTL-SYN.ACK) <-
8 ... -+ ESTABL.
1 ESTABL. <- <-

cllenl; a.rver
.acket .ssmenl; 80cket.
.tate .tat.

; (SEQ_.)(CTL_SyN)(•• n I"" TOP oPtiono)
LISTEN

-+ -+
3 lC (SEQ_cook"l) (CTL_SYN) (linal op'Ion.) <-
4 ESTABL. <- +-
a -+ -+ ESTABL.

(II)

Figure 5. Steps followed by TCP sockets using an improved version of the new

SynCP, capable of handling correctly clients behind a firewall. Scenario I shows the

negotiation steps with a client not protected by a firewallj scenario II, on the contrary,

shows the negotiation steps with a client protected by a firewall dropping pure out-in

SYN segments. The values of cookiet and cookie2 must be different and can be
computed from each other using an invertible function.

I - OpenBSD 2.8

C.I" :. ••• I 110444817111104441171(0) lila SA14 <II •• 1480 UOX •• .cal. G.1IiMst.., 122&0812 0>

.... " ,. C.ttll I. 18211I4tOa,1I21I84tOI(O) wla ''''2 c.. 148O.8U_.1IIM8t.., ,1&1110 122&0812,1I8Cal8 0> (OF)

'.IU ,. C.IIU I 2112.18U12112(0) act 1804448171 8'. lito cu. 1410> (Dr)

C.IU ,. 1 .•• Ir.: I l10444ll7':l1Ot44l171(O) act H28IMI04 81a 17111 <au 14tO.ueJdll ... ca18 a,tiMa'..., 122&0182 llllno>

•.•• , > C. IU: • 1: acO) 1 .t •• ltO <" tup IIIHI7 122&0112) (Dr)

•••• , > C.IUr , 1:21(21) uk 1 .ta &140 <"t ... hap IIHI.I 12210112> (Dr)

C.I" > •.•• In • II04441177UI0444I177(0) .la 17171

C.IU > S ••• ': • ItacO) ao 21 .t. tTl&2 <U •• ..., t22l01l. 1111111>

I ••• • C.IU, • 112 21' •• 2.11412.(0) wlo 0 (Dr)

C.IU > I ... lal , 1:2.(22) uk 21 .la 17178 Cttu.,-. 12210HI 1.611 •• >
S .•• ' > C.IUr • 3121 .. 4121:1121 .. 121(0) .t. 0 (Dr)

II - MacOS 9.2.2

C .• 2I1t) •.• 0: • 1011,8128&:3011133285(0) .ta 3271. c ... ItH ... eale 0> (DP)

S .•• III) C.121141 IP 21 U821012 .. 3.1.210(0) ... 11.0 c. •• ltlo.neale 0> (Dr)

•.•• 111 > c.a.", I 11111.101I11111&410U(0) ac:Ir: SOIIU8211 .la 1840 Cu. 1410) (Dr)

C.I2IM > S .•• II: I .0111.1211:10111 .. 211(0) ac:l 2848t182U ... 12".1 CII" ItlO."Cal. 0> (Dr)

C .• 2.1.) 1 ... 111 • 1011111211:3011113212(1) .1a a (Dr)

i4l.tO.7.2.1II111) C.aINI . 'sacO) act 1 .la .lto CDr)

C.'Jllt > S ... lu • 101113121.,1011IU304(II) wiG 0 CDr)

Figure 6. Output produced by the tcpdump tool showing the segments exchanged

using ssh in a OpenBSD 2.8 or a MacOS 9.2.2 systems to connect to the modified

server always using the new SynCP with different cookies. The data in the RST
segments sent by the MacOS consists of the following textual messages: "TH..8YN"
and "No Tep/No listener". The PUSH flag in the second segment of each dump is

explained in §4.6.3 and, for clarity sake, all NOPs of TCP options were removed.

70 Advanced Communications and Multimedia Security

by the server, enabling the mixed SynCP to be used with OpenBSD

clients: from the dump of Figure 6-1 we see that the RST includes a
non-null window size, although this system usually sends RST segments

like any other, i.e. with a null window size.

MacOS sends an RST and terminates immediately its ongoing con­

nection. This RST is also unusual, because it includes data (see Fig­

ure 6-11), but that can only help the server to identify a client that does

not support the mixed SynCP with different cookies.

4.5. Final protocol: cache of problematic clients

Its now time to summarize all the problems faced by a mixed SynCP

using different cookies in order to present a common solution for all of

them. In short, the major problems are the following three:

• Some systems do not support the simultaneous connection initia­
tion (e.g. Windows systems) ;

• Some systems do not react as required to the SYN sent by the

server (e.g. Cisco lOS); and

• Some systems do not react well to a mixed protocol using different
cookies (e.g. MacOS).

To handle all these cases we need to (i) maintain in the server a
cache with the IP of problematic clients and to (ii) use only the current
SynCP with hosts referred in that cache. Such cache should be updated
whenever the server suspects a problem with the client. Furthermore,
the cache should be managed in a conservative way, i.e. always assuming

the worst case. This is advised because client systems may belong to
private networks, using a gateway and masquerading to access Internet

servers. In such cases, the server always sees the IP of gateways, but the

protocol is sensitive to particular TCP implementations of client hosts

behind them. Therefore, we should never remove hosts from the cache

once they get there for some reason (except for getting a free entry).

The hints for inserting a client's IP in the cache are the following:

• The server receives a SYN-ACK, with a cookie, to a socket in
the ESTABLISHED state. In this case we are probably dealing

with a Windows client: we put its IP in the cache, but we don't

abort the connection (first, because we may be wrong; and, second,

because that is useless, as explained in §4.3); instead, the segment

is processed normally by the TCP.

Improving the functionality 0/ SYN cookies 71

• The server receives an ACK, with a cookiel, to a socket in the

LISTEN state. In this case we may be dealing with a Cisco IDS
client: we put its IP in the cache and we drop the packet.

• The server receives an RST, with the "TH_SYN" message, to a socket

in the ESTABLISHED state. In this case we are probably dealing
with a MacOS client: we put its IP in the cache and we let the

RST be processed normally.

Note that in the first two cases the hint may be a false positive caused
by: (i) a delayed reception of the server's ACK, in the first case, or

(ii) a delayed client's SYN-ACK, in the second case. But, as previously
explained, we should always assume the worst case; therefore we assume

that such segments reveal a problematic client.

This cache is different from the one used by the Reset Cookies pro­

tocol to store security associations (c.f. §2). Both store the IP of real

systems that tried to access the server, but our cache stores only the
IP of problematic clients, while the other stores all the IPs. Thus, we
are likely to get a better hit-rate with a cache of equal length. Further­
more, we only delay connections initiated by problematic hosts, while
Reset Cookies delays the connections of all hosts not in the security
association's cache.

The use of a cache of problematic clients is not a perfect solution,
because the server reacts when it believes there could be a problem,
instead of anticipating the problem. One possibility for an earlier detec­
tion of problematic clients could be to apply fingerprinting techniques,
such as the ones used in active recognition tools (e.g. nmap [12]) or in
passive IDS systems [13, 14], to the contents of SYN segments (either
at TCP or IP level). This approach is not 100% accurate, may work
better for some operating systems and may even be disturbed by finger­
print scrubbers [15]. Nevertheless, it may be explored in the future for
some particular cases without interfering with the cache update policy
previously described.

4.6. Security evaluation

4.6.1 Guessing SYN-ACK segments with valid cookies.
The mixed SynCP is as secure as the current one. Cookies are generated
and validated the same way; they only appear in different TCP segments

- in ACK segments in the current implementation and in ACK and SYN­

ACK segments in the new one. The cookie of the SYN is computed from

the one of the SYN-ACK using an simple and fast invertible function,

like the one's complement. The fact of using two cookies instead of one
does not reduce the resistance against guessing attacks, because at a

72 Advanced Communications and Multimedia Security

given instant the set of cookies that is valid for a given type of segment,
ACK or SYN-ACK, remains equal to that of the current SynCP.

4.6.2 Forged SYN segments with spoofed source addresses.
Another relevant concern with security is the impact of SYN segments

sent by servers when replying to forged SYN segments sent by attackers.
Unlike the current SynCP, that uses a normal reply, a SYN-ACK, the
new SynCP uses a typical request segment (a SYN) as a reply to a
client. This means that an attacker can lead a server under a SYN
flooding attack to initiate connections with other servers. However, the
algorithms to generate and validate cookies are enough to detect and

avoid such problem.

Imagine the following scenario, illustrated in Figure 7: an attacker

sends a forged SYN to a server A, which is using the new SynCP, and

the forged segment says that the sender is an existing server B. The
result of such attack is that A and B will exchange some segments and

abort the connection, because the SYN-ACK from B has a cookie that
was generated with x as ISN, and not with the ISN y provided by B in
step 4. Furthermore, server B will also abort the connection by replying
with an RST to any SYN-ACK segments sent by A to a socket in the
LISTEN state (as in the current SynCP)j such RST is produced by the

normal operation of the TCP.

.. rver A lerver B
locket lelmen' locket

• 'at. .t..ii •

LI5TEN
(SEQ- _)(OTL_SYN) (apparently from B)

LlliTEN

+-
3 SYN-ROVD
4 +- (SBQ= I)(OTL_SYN.AOK) +-
& OLOSE

Figure 7. Segments exchanged resulting from a forged SYN referring an existing

server B as the sender. The SYN-ACK segments with cookies that are also sent by A

are not shown for the sake of simplicity, but they also abort the connection, because

B replies with an RST to a SYN-ACK sent to a socket in LISTEN state (as in the

current SynCP).

Note that the issue here is to avoid the creation of a useless TCP

connection between A and B (between two sockets in LISTEN state)
from a spoofed SYN segment sent by a attacker. Without using host
authentication we cannot protect B from getting replies from A caused
by spoofed segments. Neither can B prove that those segments were in
fact sent by A.

4.6.3 Identification of SYN segments with cookies. The
diagram of Figure 7 is not valid if both hosts A and B are servers acting

Improving the functionality of SYN cookies 73

similarly, i.e. responding to SYN segments with other SYN segments

carrying a cookie. In such a scenario, both hosts enter into an endless

ping-pong of SYN segments, since they do not (intentionally) keep any

record about past replies containing cookies.

This problem can be solved only if SYN segments containing cookies

could be clearly distinguished from other SYN segments with ordinary

ISN numbers. Two possible solutions for this problem are:

• to use one of the flags in the base TOP header not used in SYN

segments (URG, PUSH, etc.); or

• to use a new TOP option.

The first solution is a sort of a hack that may work in most cases since

TOP implementations are not sensitive to the state of such header bits

in SYN segments. The second solution is more standard, all TOP im­

plementations should be immune to it (see [10]) but it implies the reser­
vation of a new option value.

Note that the clear identification of SYN segments is only needed for

servers using the new SynOP, and not by any other hosts. Further­

more, such identification helps modified server hosts to further reduce

the problem presented in Figure 7. In fact, as the host of server B can

see that the segment from A is a SYN segment with a cookie, it may

simply drop the segment and thus prevent all the following exchange of
segments.

5. IMPLEMENTATION

The new SynOP, described in §4.4, Figure 5-1, was implemented on

a Linux kernel (2.4.2-2). The implementation involved a minor mod­
ification of the TOP modules: three files (tcp_ipv4.c, tcpjnput.c and
syncookies.c) and about 300 new lines of code.

The implementation uses the following strategy for choosing SynOPs:

if the client does not require any TOP options, or if the client belongs to

our cache of problematic clients, the current SynOP is used; otherwise,

we use the new mixed SynOP, described in Figure 5. To simplify the

protocol tests, the kernel was also modified to behave as if under a SYN

flooding attack.

The SYN segments used by the new SynOP are identified with the

PUSH TOP header flag, as explained in §4.6.3. This flag was used in

all the tests of the new protocol without any noticeable problems, but

it should be replaced in the future by a proper, standard TOP option.

74 Advanced Communications and Multimedia Security

6. CONCLUSIONS

In this document we presented a new strategy for using SYN cookies
by a server under a SYN flooding attack. This new strategy overcomes

a limitation of the current SynCP - it does not allow clients to negotiate

any TCP options within SYN segments (it only allows clients to get the

server's MSS). The solution that we propose relies on the fact that TCP

allows a scenario called "simultaneous connection initiation", that we

use to force client hosts to repeat their SYN requests. This way, the

server can get together, in a single SYN-ACK, a cookie and all the TCP

options initially requested by the client and already agreed to by the

server.

This simple approach, fully compatible with standard TCP rules, faces
two major problems. First, some systems do not deal correctly with

the simultaneous connection initiation (e.g. Windows systems). Second,

client-side firewalls may transparently interfere with the connection ini­

tiation started by the server, thus preventing the client from connecting

to the server. To overcome these problems we did two complementary

actions: (i) changed the protocol, in order to simultaneously use the cur­

rent and the new SynCPs, creating a mixed SynCP, and (ii) added to

the server TCP implementation a cache for storing the IP of problematic

client hosts. This cache is updated whenever the server gets a hint, from

the TCP segments received, that the client may not deal properly with

the new mixed SynCP.

Concerning the security of the new protocol, we did not change the

algorithms for generating and validating cookies, so they are as secure

as they were before. We also showed that, due to the current algorithm
to validate cookies, spoofed connection requests cannot drive a server to

establish a connection with another victim server. Finally, we justified

why SYN segments sent by the server must be properly identified to de­

tect equal reactions of two hosts trying to connect with each other, both

being under a SYN flooding attack. For simplicity we used the PUSH
flag of the TCP header for such identification, without any noticeable

problems, but a more correct implementation should use a proper, stan­

dard TCP option.

The new SynCP was implemented in a Linux kernel and tested with

a large set of client operating systems. From the tests, we concluded
that some systems do not tolerate it (Windows, Cisco lOS and MacOS),
that some systems react strangely but in a way that can be detected and
masqueraded by the server (OpenBSD), and that all the other systems

behave as expected. The problems raised by the first kind of systems

are solved with the cache of problematic systems.

Improving the functionality of SYN cookies 75

In conclusion, we believe this new mixed SynCP, using both the cur­

rent one and a new one faking a simultaneous connection initiation, is
a valid and powerful improvement of the current SynCP. The resulting

protocol supports the negotiation of any TCP options, is flexible enough

to deal with firewalls and can be downgraded, on an as-needed basis, to

the current one in order to attend to special problematic clients. In fu­

ture implementations the late discovery of such clients may be partially
anticipated by applying fingerprinting techniques to SYN segments.

Acknowledgments

I would like to thank Paulo Ferreira for reviewing draft versions of
this paper and David Matos for reviewing the final version.

Appendix A: SYN cookies algorithms

Linux kernels use the folowing algorithms to generate and validate cookies:

H1 = hash32-61 (SaddrISportIDaddrIDpoTtIK1)

H2 = hash32-61 (SaddrISportIDaddrIDporticounterIK2)

Generation:

cookie = H1 + ISNclient + (counter x 224) + (H2 + data) mod 224

Validation:

countercookie = (cookie - H1 - ISNclient) + 224

acounter = countercurrent - countercoo1cie

data = (cookie - H1 - ISNclient) mod 224 - H2 mod 224

hashn (z)

Sadd.,Sport

Daddr' Dport
K1,K2

ISNclient
counter

data

n bit range, starting from lsOO, produced from z using the

compression function of a digest algorithm (MD5 or SHA-l)

source TCP lIP address

destination TCP lIP address

secret keys

ISN provided by the client in the SYN segment

minute counter
24-bit value

Cookies are generated and validated using two constant secret values, K1 and K2,
which are long enough to completely fill the input buffer of the hash function used

(64 bytes for both MD5 and SHA-l, so K1 has 52 bytes and K2 has 48 bytes). The

data value is a server-defined value currently used for storing a 3-bit encoding of 8
predefined MSS values, presented in Table A.I.

The secrets K1 and K2 are produced using the kernel random number generator,

the same used to generate the random part of ordinary IPv4 ISN values. These values

are produced the first time SYN cookies are used after a system reboot and remain

constant in kernel memory. The difficulty of guessing K1 and K2 from cookies is out

of the scope of this document.

The kernel checks for suitable cookies only within a short time frame, starting when
the last one was sent and ending a few seconds later. During that time gap cookies

76 Advanced Communications and Multimedia Security

Thble A.l. MSS predefined values encoded in the data value of SYN cookies.

SYN Cookie data

MSS value

may be checked, and are accepted only after some integrity control validations. There
are two integrity controls of cookie contents, and if any of them fails the cookie is
rejected. The first integrity control test checks if it is valid (acceptable) in terms of a

temporal criteria: if Acounter is lower than a given threshold (currently a hard-coded

value of 4 minutes), it is acceptable. The second integrity control test checks if the

data value is a valid one, i.e. a value between 0 and 7.

Appendix B: Problems raised by mixing SynCPs with
two equal cookies

The main advantage of using equal cookies in both SYN and SYN-ACK segments

used in a mixed SynCP is that clients always see segments that do not look strange.
The instant chosen to send the server's SYN-ACK reply is irrelevant for the correction
of the protocol from the client's point of view.

However, the premature sending of the server's SYN-ACK reply may be problem­
atic for the server since it is not keeping state about ongoing connections. There are

two particular scenarios that could lead to problems:

• The client socket receives the SYN and the SYN-ACK segments, sends replies

whenever it decides to and moves to ESTABLISHED. If all the client's replies
get lost, the client stays with a TCP connection that will be destroyed as soon

as it sends some data or probes the server.

• The client socket receives the SYN and the SYN-ACK segments, sends replies
whenever it decides to and moves to ESTABLISHED. If the server misses the
SYN-ACK reply, but it sees one ACK reply, it will conclude that the client
did not receive the SYN and, therefore, it uses the current SynCP. The result

is that the server will establish a connection with the client, but will assume

that the client will not use any TCP options, which is not true. This scenario
can occur with client sockets that acknowledge SYN-ACK segments in the

SYN-RCVD state, like SunOS 5.8.

The first scenario is annoying but not dramatic, being similar to a temporary

server failure. The second scenario is more critical, since it can lead to future problems

during the client-server interaction. However, it may be detected and avoided in some

cases, namely when both client and server could agree on using TCP timestamps. In

this case, the server could activate the time stamping in its SYN, but not in the SYN­

ACK, and latter detect only from ACK segments if the client saw its SYN (if they

carry a timestamp). This way ACK segments with both a cookie and a timestamp
could not be used to create a connection.

Concerning the use of the TCP timestamp mechanism, the document describing

it [9] says nothing about a segment not carrying a timestamp when the receiver is
expecting it; it only says that timestamps may be sent only when the sender got one

in the initial SYN of the connection. Therefore, we assume that it is legal to receive

Improving the functionality of SYN cookies 77

a SYN with a timestamp and a SYN-ACK without timestamp. Furthermore, such

lack of timestamp in the SYN-ACK should not also affect the PAWS mechanism, also

described in [9], because apparently it is only used for "open connections".

References

[1] D. J. Bernstein. SYN cookies. http://cr.yp.to/syncookies.html.

[2] Syn cookies mailing list syncookies-archi ve41koobera . math . uic. edu.

http://cr.yp.to/syncookies/archive.

[3] J. Postel. Transmission Control Protocol. RFC 793, September 1981. available
via DDN Network Center.

[4] S. Bellovin. Defending Against Sequence Number Attacks. RFC 1948, May 1996.

available via DDN Network Center.

[5] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of Service

Attacks which employ IP Source Address Spoofing. RFC 2267, January 1998.

available via DDN Network Center.

[6] Livio Ricciulli, Patrick Lincoln, and Pankaj Kakkar. TCP SYN Flooding Defense.

In Comm. Net. and Dist. Systems Modeling and Simulation Conf. (CNDS' 99),

1999 Western MultiConf. (WMC' 99)" San Francisco, CAL, USA, January 1999.

[7] Eric Schenk. Another new thought on TCP SYN attacks, 1996.
http://www.wcug.vvu.edu/lists/netdev/199609/msg00116.html.

[8] V. Jacobson and R. Braden. TCP Extensions for Long-Delay Paths. RFC 1072,
October 1988. available via DDN Network Center.

[9] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance.

RFC 1323, May 1992. available via DDN Network Center.

[10] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC

1122, October 1989. available via DDN Network Center.

[11] Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,

L. Zhang, and V. Paxson. Stream Control Transmission Protocol. RFC 2960,

October 2000. available via DDN Network Center.

[12] Fyodor. Remote OS detection via TCP lIP Stack FingerPrinting, October 1998.

http://www.insecure.org/nmap/nmap-fingerprinting-article.html.

[13] Burak DaylOglu and Attila OZgit. Use of Passive Network Mapping to Enhance

Signature Quality of Misuse Network Intrusion Detection Systems. In 16th Int.

Symp. on Computer and Information Sciences, November 2001.

[14] Honeynet Project. Know Your Enemy: Passive Fingerprinting. White Paper,

January 2002. http://project .honeynet. org.

[15] Matthew Smart, G. Robert Malan, and Farnam Jahanian. Defeating TCP lIP

Stack Fingerprinting. In Pmc. of the 9th USENIX Security Symp., 2000.

	IMPROVING THE FUNCTIONALITY OF SYN COOKIES

	1. INTRODUCTION
	2. RELATED WORK
	3. SYN COOKIES IN CURRENT LINUX KERNELS

	3.1. Generation and validation of SYN cookies
	3.2. Transparent use of SYN cookies
	3.3. SYN cookies algorithms
	3.4. Risk analysis

	4. OUR PROPOSAL
	4.1. Basic approach
	4.2. Simplification of the basic approach
	4.3. Initial assessment of problems
	4.4. Overcoming problems raised by flrewalls:mixed approach

	4.4.1 Mixed SynCPs with two different cookies.

	4.5. Final protocol: cache of problematic clients
	4.6. Security evaluation
	4.6.1 Guessing SYN-ACK segments with valid cookies.
	4.6.2 Forged SYN segments with spoofed source addresses.
	4.6.3 Identification of SYN segments with cookies.

	5. IMPLEMENTATION
	6. CONCLUSIONS
	Acknowledgments
	Appendix A: SYN cookies algorithms
	Appendix B: Problems raised by mixing SynCPs with two equal cookies

	References

