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Abstract—Image colorization achieves more and more real-
istic results with the increasing power of recent deep learning
techniques. It becomes more difficult to identify the synthetic
colorized images by human eyes. In the literature, handcrafted-
feature-based and convolutional neural network (CNN)-based
forensic methods are proposed to distinguish between natural
images (NIs) and colorized images (CIs). Although a recent
CNN-based method achieves very good detection performance, an
important issue (i.e., the blind detection problem) still remains
and is not thoroughly studied. In this work, we focus on this
challenging scenario of blind detection, i.e., no training sample
is available from “unknown” colorization algorithm that we
may encounter during the testing phase. This blind detection
performance can be regarded as the generalization capability of
a forensic detector. In this paper, we propose to first automatically
construct negative samples through linear interpolation of paired
natural and colorized images. Then, we progressively insert these
negative samples into the original training dataset and continue
to train the network. Experimental results demonstrate that our
enhanced training can significantly improve the generalization
performance of different CNN models.

Index Terms—Image forensics, natural image, colorized image,
convolutional neural network, generalization, negative samples

I. INTRODUCTION

With the increasing popularity and sophistication of image

editing technologies, it is now relatively easy to create edited

images that are visually very plausible. For example, current

advanced colorization algorithms, more or less leveraging the

powerful capacity of deep neural networks, can automatically

colorize a grayscale image to obtain a high-quality color

image. Fig. 1 shows a group of images, the left-most one

is the original color image, and the remaining three are col-

orized images produced by three state-of-the-art colorization

algorithms (respectively with the name Ma [1], Mb [2] and

Mc [3] from left to right), which take the grayscale version of

the left-most image as input. It is indeed difficult to distinguish

which images are colorized by naked human eyes. Although

this technique brings convenience to people’s live in fields

like digital entertainment, it may also be maliciously used and

potentially lead to security issues, such as confounding object

recognition or scene understanding [4]. Therefore, distinguish-

ing between natural images (NIs) and colorized images (CIs)

has become an important research problem in image forensics.

Recently, Guo et al. [4] first considered and studied this

new forensic problem. On the basis of the statistical differ-

∗Corresponding author.

Fig. 1. From left to right: a natural image taken from ImageNet [5]; three
colorized images generated by the colorization method proposed in [1], [2],
and [3], respectively.

ence between NIs and CIs in the hue, saturation, dark, and

bright channels, two methods, namely, histogram-based and

Fisher-encoding-based, were designed to catch the forensic

difference between NIs and CIs. After having obtained the

feature vectors, they trained the support vector machine (SVM)

classifiers to identify fake colorized images. Zhuo et al. [6]

greatly improved the detection performance using a CNN-

based color image steganalyzer WISERNet (WIder SEparate-

then-Reunion Network) [7]. However, in the challenging sce-

nario of blind detection, i.e., no training sample is available

from “unknown” colorization methods that we may encounter

during the testing phase of forensic detectors, the performance

of both CNN-based [6] and handcrafted-feature-based [4]

methods in general decreases. Hereafter, we call this blind

detection performance as generalization performance. Take

Fig. 1 as an example, the second and fourth images (produced

by Ma and Mc) are misclassified as NI by a CNN model

trained on NIs and CIs generated by Mb. In the meanwhile,

although not being very rigorous, we choose to use the term

“classification accuracy/performance” to indicate the detection

performance on testing data in which CIs are generated by a

same colorization method known by the training procedure.

In order to cope with the challenging scenario of blind

detection, in this paper we introduce a simple yet effective

method. We construct negative samples via linear interpola-

tion of paired natural and colorized images available in the

training dataset, and iteratively add them into the original

training dataset for additional and enhanced CNN training.

This procedure is fully automatic, and can allow us to obtain

stable and high generalization performance of the CNN.

The rest of this paper is organized as follows. Section II

presents the technical details of the proposed method. Sec-



tion III reports the performance evaluations for our method.

Section IV draws the conclusions and proposes some future

working directions.

II. PROPOSED FRAMEWORK

A. Motivation

To the best of our knowledge, there is no existing work

that considers the generalization capability yet for CNN-based

image forensics. In fact, this is a highly challenging scenario

because no training samples of the “unknown” colorization

algorithms are available. In other words, we want the trained

network to be able to successfully detect colorized images

generated by new colorization methods that remain unknown

during the training of CNN. This is a very realistic situa-

tion which can be commonly encountered after deploying a

forensic detector in practical applications. We solve this chal-

lenging generalization problem through a simple yet effective

approach, i.e., inserting additional negative samples that are

automatically constructed from available training samples, in

order to carry out an enhanced training of CNN and thus to

obtain an appropriate decision boundary for this classification

problem. Besides considering the CNN model proposed in the

very recent work of [6], in this paper, we also construct a

different CNN model so as to validate and show that our

enhanced training can work well on different networks.

B. Architecture of Networks

In this subsection, we describe the architecture of considered

networks. The first layer (with so-called SRM, Spatial Rich

Model, kernels [8]) of WISERNet is untrainable, while all

weights of our designed network are trainable and thus we call

it as AutoNet (Automatic Network). Let Ck(M or A) denote

a Convolution-BatchNorm-ReLU(-MaxPool or -AveragePool)

layer with k filters. Fk(R) denotes a fully-connected layer

with k neurons (and with ReLU). The architecture of Au-

toNet is C32-C64M-C128M-C256M-C256M-C512M-C512M-

C512-F2. All convolutional kernel sizes in AutoNet are 3×3.

For layers 1-7, each convolutional layer (conv) is with the

zero-padding of 1, and all max-pooling layers in AutoNet have

the same kernel size of 3× 3 and a stride of 2. For conv1, we

use TanH as activation. Here we also give the architecture

of WISERNet and more details can be found in [6]. The

architecture of WISERNet is SRM-C72A-C288A-C1152A-

F800R-F400R-F200R-F2, where SRM refers to channel-wise

convolution where the convolutional kernels are fixed as the

thirty 5× 5 SRM filters borrowed from [8].

C. Negative Sample Insertion

According to our observation, there is a certain degree

of performance decrease in the challenging blind detection

scenario, not only for traditional handcrafted-feature-based

methods [4], but also for CNN-based approaches (AutoNet and

WISERNet [6]), although the latter has better performance.

In details, for a traditional or CNN-based model trained on

dataset constructed by one specific colorization algorithm, the

test performance on datasets constructed by other colorization

algorithms is sometimes limited for colorized images. The

possible reason of this performance drop is that colorized

images produced by a specific colorization algorithm tend

to be equipped with a particular internal property, but CIs

of different colorization algorithms are very likely to have

different properties.

To clearly illustrate the encountered problem with an ex-

ample, we train the AutoNet on the dataset constructed

by colorization method Mb [2], and test on the datasets

constructed by Ma [1] and Mc [3], respectively. It should

be noted that Ma and Mc are the “unknown” colorization

algorithms, and thus the corresponding samples of Ma and

Mc are not used in the training process. We use t-distributed

stochastic neighbor embedding (t-SNE) [9] to project the high-

dimensional deep features (the output of conv8 of AutoNet,

and its dimension is 512) of testing data constructed by above

three colorization methods onto the two-dimensional map, and

detailed visualization results are shown in Fig. 2. Comparing

Fig. 2(a), (b) and (c), we find that the distributions of NIs

(red squares) are relatively stable with a rather high intra-class

variation, which is somehow expected; in the meanwhile, CIs

(blue symbols) are more tightly clustered for each colorization

algorithm but their locations change a lot for different methods

[please compare the CIs in (a), (b) and (c), which correspond

to Mb, Ma and Mc, respectively]. This is reasonable because

the different colorization methods tend to have not exactly the

same internal characteristics and hence the corresponding CIs

have different locations in the feature space. When the features

of CIs produced by “unknown” colorization algorithms (here

Ma and Mc whose samples are not used for training) are

near the decision boundary of the CNN (which is trained

by using NIs and CIs produced by a “known” colorization

algorithm, here Mb), and at the same time the decision

boundary is relatively close to colorized images, there are high

probabilities to misclassify the “unknown” CIs. For instance,

many CIs in Fig. 2(b) (blue circles with red + in the figure)

are wrongly predicted as NIs.

We would like to find a simple yet effective method to

solve the encountered problem. The idea is that we make use

of the available training samples (and only these samples) to

construct an appropriate decision boundary which can lead

to better generalization performance. A feasible and intuitive

solution is to add negative samples (with same labels as

CIs) near the initial decision boundary of the CNN, so as

to make the CNN be more “strict” about the predictions of

CIs and somehow push the classification boundary towards

NIs. As such, it is expected that the “unknown” CIs located

close to the initial decision boundary [e.g., those shown in

Fig. 2(b)] have more chance to be correctly classified with the

new classification boundary which would be closer to NIs.

More precisely, we construct negative sample through linear

interpolation between paired NI and CI which share the same

grayscale version and only differ in chrominance components.

The corresponding formulation is shown below:

INS = α · IN + (1− α) · IC , (1)



(a) (b)

(c) (d)

Fig. 2. The deep feature visualization with t-SNE [9]. The model is trained on the original dataset where CIs are generated by Mb. “C” means colorized
images and “N” means natural images. “C-X” means the colorized images produced by X colorization method, for example, “C-Ma” corresponds to CIs
generated by Ma colorization algorithm. “Y-pred” means that the predicted label of CNN is Y. We randomly select 900 natural images from validation dataset
splitting them into three equal subsets of 300 images, and then we construct corresponding colorized images using Mb, Ma, and Mc for every 300 images.
The deep feature is the output of conv8 of AutoNet, and the dimension is 512. (d) is the combination of (a) [Mb], (b) [Ma], and (c) [Mc].

where INS is the negative sample, IN is the natural im-

age, IC is the corresponding colorized image, and α ∈
{0.1, 0.2, 0.3, 0.4} is the interpolation factor. This actually

makes sense, as negative samples are in fact forensically

negative (i.e., considered as CIs), especially for our chosen

weight values among {0.1, 0.2, 0.3, 0.4} (i.e., negative samples

are closer to CIs than NIs). When α increases, the negative

samples are progressively getting closer to the natural images

and it is expected that the decision boundary is further moving

towards NIs after enhanced training.

As analyzed above, adding negative samples and conduct-

ing additional training will push the classification boundary

towards NIs. Thus, the classification accuracy on the NIs will

gradually decrease as more and more negative samples are

inserted. The classification accuracy of network on validation

dataset also slightly decreases because the “known” CIs are

almost all correctly classified and this accuracy mainly de-

pends on the classification accuracy on the NIs. However, in

the meanwhile the CIs constructed by “unknown” colorization

algorithms are expected to be classified more correctly, im-

plying a better generalization capability. Obviously, there is a

trade-off between the classification accuracy (on data similar to

the training samples) and generalization performance (mainly

on “unknown” CIs) for the network. Therefore, without being

able to directly measure the generalization during training of

network, we consider the classification accuracy on NIs (on

the so-called natural validation dataset V) as a measure to

select the final model in the process of additional training with

negative sample insertion. In our work, we design a threshold-

based model selection criterion. This threshold (θ) essentially

determines the degree of final classification accuracy that can

be accepted by user or current task. Generally speaking, larger

θ means that the selected model has less high classification

accuracy, but better generalization performance. Basically, we

set θ = β · error rate, where β is a user defined parameter

and error rate is the classification error rate (in %, measured

on natural validation dataset V) of the CNN model trained

with the original training dataset D before negative sample

insertion. This criterion simply defines the maximum tolerable

value of the relative increase of error rate on V induced by

enhanced training. In our experiments, we set β = 2. One

exception is that when error rate is very small (less than

1%), we set θ = 2%, meaning that we can slightly relax the

constraint on classification error rate to obtain relatively large

improvement of generalization performance.

Algorithm 1 illustrates the training process with negative

sample insertion. It is worth noting that we only use CIs of a

“known” colorization method but in a better way to construct

a more appropriate decision boundary. In our experiments, this

insertion is an iterative process with four iterations, i.e., the α

is increased from 0.1 to 0.4 with step of 0.1. Given a CNN

model M trained by using original dataset D, and some basic



Algorithm 1 Enhanced training of CNN model with negative

sample insertion

Input: M, lr0, S, V , D and the set of corresponding natural and
colorized image pairs P constructed from D.
Output: final model after enhanced training.
Initialization: current learning rate lr = lr0, set of negative samples
N = ∅, set of error rates on V of candidate CNN models R =

∅.

1: compute error rate of M.
2: compute θ.
3: for all α ∈ {0.1, 0.2, 0.3, 0.4} do
4: construct negative samples from P using Eq. (1) and insert

them into N .
5: update training dataset: D = D ∪N .
6: update the parameters of M for S epochs. In the second half

of training process, compute error rate on V for each model,
and insert this value at the end of R.

7: for all INS ∈ N do
8: if INS is misclassified then
9: remove corresponding pair from P .

10: end if
11: end for
12: set N = ∅.
13: update current learning rate: lr = lr · 0.1.
14: end for
15: select i-th model which satisfies max

i

{ri|ri ∈ R, ri < θ}.

settings for CNN training, such as initial learning rate lr0 and

S epochs for each insertion, we first compute error rate on

V and then the threshold θ, which is used for final model

selection. For each round of negative sample insertion, we

construct negative samples and insert them into the dataset

D. Then, we update the parameters of model M using new

training dataset, and compute the error rate on V starting from

the second half of training process (i.e., from
⌈

S

2

⌉

-th epoch

for each insertion, where
⌈

.
⌉

is the integer ceiling operator),

because from that time the model becomes relatively stable.

After each insertion, we test the negative samples produced

by previous iteration. If a negative sample is misclassified,

i.e., the predicted label is NI and not consistent with its

ground-truth label, then we stop using the corresponding pair

to construct negative sample (i.e., we remove corresponding

pair from P as described in line 9 of Algorithm 1). In fact, this

operation can slightly reduce the amount of negative samples,

and does not weaken the performance of the network. After

four iterations of insertion, we select the final CNN model. It

is worth mentioning that when α > 0.5, the negative samples

will be close to NIs, and this is likely to have more impact

on the classification of NIs. Here we take a conservative and

experimentally effective approach, i.e., stopping the negative

sample insertion process after four iterations.

The complete training process of CNN model includes two

stages: (1) using the original training dataset to train the deep

model from scratch until convergence (normal training); (2)

iteratively adding new negative samples into the original train-

ing dataset and continuing to train the model as summarized

in Algorithm 1 (enhanced training). Fig. 3 shows the error rate

curves of a complete training process of AutoNet. In the first

(a) V (b) Mb

(c) Ma (d) Mc

Fig. 3. Error rate curves of a complete training of AutoNet. The network
is trained on Mb [2], and tested on Ma [1] and Mc [3]. The error rates
(in %) on CIs produced by these three methods are shown in (b), (c), and
(d), respectively. The error rate on V is shown in (a). Black dotted line
separates the two stages of normal training (60 epochs) and enhanced training
(4×15=60 epochs). The green circle in (a) stands for the final selected model.

stage, the error rates on V and CIs produced by Mb obviously

decline in the first 20 epochs and the network reaches the

stability after about 50 epochs, as shown in Fig. 3(a) and

(b). With the negative sample insertion, the error rate on

V slightly increases, which can be found from the second

part of Fig. 3(a). However, the generalization performance of

network has a significant improvement on CIs produced by Ma

[Fig. 3(c)] and a small improvement on Mc [Fig. 3(d)]. More

numerical and visual results (including t-SNE visualization

after enhanced training) are given in Section III.

III. EXPERIMENTAL RESULTS

A. Implementation Details

All the experiments are implemented with PyTorch

0.3.1 [10]. The GPU version is GeForce® GTX 1080Ti of

NVIDIA® corporation. All images in our experiments are

resized to 256× 256 using bicubic interpolation, and for each

image, we convert its pixel values to [−1, 1] (we first rescale

the pixel values from the range [0, 255] to the range [0.0, 1.0],
and then subtract these values by 0.5 and divide by 0.5).

Stochastic gradient descent (SGD) with a minibatch of 20 is

used to train AutoNet. Each minibatch contains 10 natural

images and 10 colorized images. We randomly shuffle the

order of training dataset after each epoch. For SGD optimizer,

the momentum is 0.9 and the weight decay is 1e-4. The base

learning rate is initialized to 1e-4. For the normal training

(only using original training dataset) of AutoNet, we divide

the learning rate by 10 every 20 epochs, and the training

procedure stops after 60 epochs. For the normal training of

WISERNet, we follow the setting described in [6]. As shown

in line 13 of Algorithm 1, for the enhanced training of AutoNet

and WISERNet, we adopt the same strategy about learning



rate: the learning rate is divided by 10 every 15 epochs (it

is enough to guarantee the convergence after new negative

sample insertion), and the training procedure stops after 60

epochs, i.e., 4 iterations of negative sample insertion.

Following [4] and [6], we also employ the half total error

rate (HTER) to evaluate the performance of the proposed

method. The HTER is defined as the average of misclassi-

fication rates (in %) of NIs and CIs. In this work, all reported

results are the average of 7 runs.

B. Effect of Negative Sample Insertion

Before evaluating the proposed method, we provide the

details of datasets used in our experiments. Following [4]

and [6], three state-of-the-art colorization algorithms, Ma [1],

Mb [2], and Mc [3] are adopted for producing CIs. NIs come

from ImageNet dataset [5]. We use 10,000 natural images

from ImageNet validation dataset to construct training dataset

and validation dataset, and the ratio is 4:1. The exact indexes

of these images are shared by the authors of [1]. Then,

we remove the 899 grayscale images and 1 CMYK (cyan,

magenta, yellow, and black) image from the remaining 40,000

images of ImageNet validation dataset (the total number of

images in this dataset is 50,000), and obtain 39,100 natural

images to construct testing dataset. Note that, the magnitude

of testing dataset is far larger than the settings reported in [4]

and [6]. We employ the three colorization methods mentioned

above to produce the corresponding colorized images.

In this paper, we propose negative sample insertion to im-

prove the generalization performance of CNN-based detectors.

As described in Section II-C, this enhanced training uses

natural validation dataset V to select the final model, and we

randomly select 20,000 NIs from ImageNet test dataset [5] to

construct V . Table I reports the performance of AutoNet and

WISERNet before (i.e., the rows of “AutoNet” and “WISER-

Net”) and after (i.e., the rows of “AutoNet-i” and “WISERNet-

i”) negative sample insertion. We do not present the results

of handcrafted-feature-based methods proposed in [4] because

as shown in [6] and also verified by our experiments, CNN-

based method has significantly better performance in terms

of both accuracy and generalization. The difference between

the results of the row of “WISERNet” and those reported

in [6] is probably due to the differences in the generation of

experimental data and the number of testing images (we use

much more testing data). It is worth mentioning that here we

focus on the generalization improvement after applying our

proposed enhanced training for the two networks (i.e., Au-

toNet and WISERNet), rather than the performance difference

between them. We leave the architecture comparison and the

design of CNN of better generalization as a future work. From

Table I, we can see that the effect of negative sample insertion,

i.e., improving the generalization of network, is consistently

stable for these two networks (except for one case, trained on

Mc and tested on Mb for WISERNet, but with a very low

final error rate of 1.08%). The negative sample insertion leads

to slight decrease of the classification accuracy, however, the

generalization performance of network usually has apparent

TABLE I
THE PERFORMANCE (HTER, IN %, LOWER IS BETTER) OF THE TWO

CNN-BASED METHODS (AUTONET AND WISERNET [6]) ON IMAGENET

VALIDATION DATASET [5]. FOR THE SAKE OF CLARITY, THE

GENERALIZATION PERFORMANCE RESULTS ARE PRESENTED IN ITALICS.

Method
Ma Mb Mc

Ma Mb Mc Ma Mb Mc Ma Mb Mc

AutoNet 0.56 10.57 10.62 31.65 0.19 6.16 13.93 1.91 0.72

AutoNet-i 1.02 6.94 5.12 5.13 0.94 1.92 3.33 1.75 1.14

AutoNet-mixup 0.89 12.45 15.35 20.68 0.34 10.04 8.42 2.25 0.76

WISERNet 0.29 2.21 10.74 33.30 0.16 7.88 5.80 0.59 0.36

WISERNet-i 0.98 1.22 2.29 4.74 0.94 2.04 2.46 1.08 0.98

improvement. For example, the initial generalization error of

WISERNet trained on Mb and tested on Ma is 33.30%, and

then reduces to 4.74% after enhanced training using negative

samples, with a slight increase of classification error from

0.16% to 0.94%. This is also consistent with previous analysis

(Section II-C) that there is a compromise between the accuracy

and the generalization performance, and our negative sample

insertion method can achieve a satisfying trade-off.

Very lately, we became aware of a recently proposed

“mixup” learning principle [11] which regularizes the neural

network and encourages the trained model to behave linearly

in-between training examples. Although the linear interpola-

tion is also used, there is an essential difference: “mixup”

results in the linearly-transitioned decision boundary, while

our method pushes the decision boundary towards NI. Based

on the respective standing point, for the linear interpolation

itself, [11] uses the interpolation factor in the range of [0, 1]
to combine pair of raw inputs and their labels, whereas our

method uses that of {0.1, 0.2, 0.3, 0.4} (forensically negative)

and sets the label of new generated image as CI (the so-

called negative sample). In addition, “mixup” is a form of

data augmentation that implicitly affects the generalization

of network, whereas our enhanced training explicitly controls

the decision boundary and then improves the generalization

of CNN-based detectors. In order to compare the “mixup”

and our method, we train the model with “mixup” where

the learning rate schedule is exactly the same as the normal

training of AutoNet and the results are shown in Table I

(the row of “AutoNet-mixup”). We set the “mixup” hyper-

parameter α = 0.4 as recommended in [11]. Obviously, the

generalization of our enhanced training based on negative sam-

ple insertion is significantly better than that of “mixup”, only

with a slight decrease of the classification performance (please

compare the rows of “AutoNet-i” and “AutoNet-mixup”).

At last, we visualize deep features of AutoNet-i using t-

SNE [9], and the results are shown in Fig. 4. Here, deep

features are the output of conv8 of AutoNet-i, and its dimen-

sion is 512. The corresponding visualizations of the model

before negative sample insertion are shown in Fig. 2. The

testing data is also the same in Fig. 4 and Fig. 2. By

comparing the border of correctly classified CIs, i.e., blue

symbols with a blue + inside, in Fig. 2(d) and Fig. 4(d),

we can find that the latter has fewer misclassified CIs, and



(a) (b)

(c) (d)

Fig. 4. The deep feature visualization of AutoNet-i with t-SNE [9]. The model is obtained through enhanced training of the previously trained model (used in
Fig. 2). The meaning of symbols is same as that of Fig. 2. It is worth noting that in t-SNE the transformation used for dimension reduction and the obtained
visualization depend on the input data. Therefore, transformation and visualization in this figure are different from those of Fig. 2.

the classification boundary is pushed towards NIs. The CIs

generated by “unknown” colorization algorithms, especially

Ma [1], are in consequence less misclassified, and this can

be clearly observed by comparing Fig. 2(b) with Fig. 4(b).

This confirms that our negative sample insertion scheme can

push the decision boundary towards NIs to some extent and

accordingly improve the generalization performance.

IV. CONCLUDING REMARKS

In this paper, we considered the challenging blind detection

scenario and proposed an effective method based on negative

sample insertion to improve the generalization capability of

CNN-based models. The generalization performance is notice-

ably and consistently improved, with a very slight decrease

of the classification accuracy. Our source code is available at

https://github.com/weizequan/NIvsCI.

In the future, we are interested in employing the proposed

enhanced training to improve the generalization performance

of other kinds of forensic methods whenever applicable. We

would like to explore other approaches to understanding and

enhancing the generalization capability of neural networks.
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