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SUMMARY 

Second-order asymptotic properties of the jackknife procedure are 

discussed, and the jackknifed estimator is shown to be a vulnerable esti

mator whose variation can be severely underestimated by the jackknife 

standard error. Simple robust alternatives to the average pseudovalue 

are discussed. Particular emphasis is placed on estimation of a corre

lation coefficient. Numerical examples are given. 
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1. INTRODUCTION 

The jackknife is a method for distribution-free bias reduction and 

standard error estimation. For a wide class of problems it is known that 

the jackknife produces consistent results. An excellent review of appli

cations and asymptotic theory is given by Miller (1974). Recently there 

have been several investigations of small-sample properties of the jack

knife procedure (Hinkley, 1977a, 1977b), which show that some adjustments 

are necessary in order to obtain accurate confidence intervals using the 

jackknife. In an unpublished paper, Efron has shown that the jackknife 

gives a rough (linear) approximation to another sub-sampiing method for 

getting confidence intervals. 

In the present paper we examine two further aspects of the jackknife, 

namely the use of second-order asymptotics in assessing finite-sample pro

perties, and the use of jackknife pseudovalues in obtaining estimates less 

sensitive to extreme data points. The discussion is illustrated through

out with results for the correlation estimate. 

A brief summary of the results is as follows: jackknifed estimators 

can have very large random bias compared to the original estimators; the 

jackknife estimate of standard error can severely underestimate the stan

dard error of the jackknifed estimator; and that use of the jackknife pseudo

values in residual and trinnned-mean analyses can give considerably improved 

estimators. 

Section 2 summarizes the standard jackknife method and illustrates it 

on an artificial data set, where certain difficulties are apparent. Second

order properties of the jackknife are derived in Section 3, and numerical 
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results are given for the correlation example. The same example is used 

in Section 4, where robust analysis via pseudovalues is discussed. Sec

tion 5 gives brief conclusions. 

Throughout the paper we assume that the basic estimate is obtained 

from independent, identically distributed random variables. Moreover we 

assume that the estimate is a regular differentiable functional of the 

empirical distribution function, with at least two derivatives. 
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2. TIIE JACKKNIFE: AN EXAMPLE 

In general discussion we shall assume that Tn = t(Y
1

, ••• ,Yn) is 

an estimate of the parameter of interest e , and that the Yi are 

identically and independently distributed. The jackknife procedure may 

be briefly defined as follows. Let T . denote the estimate computed 
n, -1. 

from Y
1

, ••• ,Yi-l, Yi+
1

, ••• ,Yn for i=l, ••• ,n. Then define the pseudo

values 

(2.1) P i = n T - (n-1) T . 
n, n n,-i 

(i=l, ••• ,n) • 

An adjusted form of T is the jackknifed estimate 
n 

(2.2) * -1 T =n ~p . =P 
n n,i n 

If T has systematic bias of order 
n 

-1 
n then * T has bias of smaller 

n 

order. A distribution-free estimate of the standard error of Tn is 

(2.3) 

where 

(2. 4) 

-1 
S = Jn V n n 

-1 - 2 
V = (n-1) ~ (P .-P ) 

n n,1. n 

is the sample variance of the pseudovalues. * The standard error of T is 
n 

also estimated by Sn 

one can show that both 

Under mild regularity conditions (Miller, 1974) 

( T - 9)/S and 
n n 

* (T - a)/s 
n n 
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are asymptotically standard nonnal as n~ oo, so that approximate confi

dence intervals for 8 can be obtained using a normal approximation to 

either pivot. 

Throughout this paper we shall be concerned with the extent to which 

these asymptotic results are reliable in small samples and with the sensi

tivity of the jackknife to deviant data values. For illustration we use 

the sample correlation estimate, or rather its z-transform. Thus, if the 

Y. are data pairs, we take 
i 

where R is the sample product-moment correlation. In practice the 
n 

z-transform is preferable because it is usually more nearly normal than 

R and because inadmissible values are possible for the jackknifed corre
n 

lation. 

To illustrate the jackknife procedure and to motivate the following 

discussion we use five artificial data sets illustrated in Figure 2.1. 

The samples have a basic set of 19 bivariate normal data points in common, 

and are distinguished by the twentieth data pair (v,-v) which has 

v = 0, 0.5, 1.0, 1.5 and 2.0 respectively in samples l-5. Table 2.1 gives 

the data and pseudovalues in the form P .-T 
n,i n 

and V are given in Table 2.2. 
n 

The values of * T , T 
n n 
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Table 2.1 Five bivariate samples of size n=20 and the corresponding 

sample influence values I (Y.) = (n-l)(T - T .) , 
- 1 n n,-1 

I (Y.) = (n+l)(T .- T) for T = z-transformed correlation. + 1 n,+1 n 

I (Y.) = P . -T I 
- 1 n,1 n + 

--- ~ -- --- __............. 

x1 x2 v=O 0.5 LO 1.5 2.0 v=O 0.5 LO 1.5 

0.774 0.693 0.62 0.67 0.67 0.67 0.67 0.58 0.62 0.63 0.63 

-1.325 -0.650 -1.39 -0.60 0.02 0.27 0.39 -0.89 -0.38 0.07 0.27 

0.148 0.547 -0.83 -0.53 -0.20 -0.05 0.03 -0.71 -o.46 -o. 18 -0.04 

-1. 567 -0.915 -0.52 0.11 0.61 0.82 0.92 -0.14 0.25 0.60 0.75 

-o. 553 -0.256 -0.15 -0.12 -0.06 -0.03 -0.01 -0.14 -0.12 -0.06 -0.03 

1.017 0.973 1.17 1.17 1.16 1.16 1.17 1.05 1.05 1.04 1.04 

0.092 0.192 0.05 0.03 0.03 0.03 0.03 0.05 0.03 0.03 0.03 

-1.211 -1.142 o.88 1.01 1.06 1.06 1.06 0.81 0.92 0.95 0.96 

-1.264 -1.350 o.44 1.01 1.26 1.34 1.36 0.54 0.93 1.12 1.18 

1.013 0.960 1.15 1.15 1.15 1.15 1.15 1.03 1.03 1.03 1.03 

-o • 447 -0 • 320 0.06 0.05 0.04 0.04 0.04 0.06 0.05 0.04 0.04 

-0.917 -0.764 o.47 o.48 o.47 o.46 o.45 o.45 o.45 o.45 o.44 

-o.841 -0.778 0.34 o.42 o.44 o.44 o.43 0.33 o.4o o.42 o.42 

o.428 o.486 0.29 0.27 0.27 0.27 0.28 0.29 0.'2:7 0.26 0.27 

0.042 -0.223 -1.03 -0.q() -0.12 -0.04 -0.01 -0.93 -0.38 -0.12 -0.04 

1.017 1.032 1.22 1.20 1.20 1.21 1.22 1.09 1.07 1.07 1.08 

0.020 -0.516 -3.87 -1. 58 -o. 55 -0.22 -0.10 -2.76 -1.36 -0.52 -0.22 

o.423 o. 516 0.28 0.26 0.26 0.27 0.28 0.27 0.25 0.26 0.27 

-0. 164 0.129 -0.33 -0.27 -0.17 -0.11 -0.09 -0.31 -0.26 -0.16 -0.11 

V -v -0.04 -5.88 -13.54 -19.65 -24.46 -0.04 -3.65 -5.49 -6.11 

----2.0 

0.63 

0.37 

0.28 

0.82 

-0.01 

1.04 

0.03 

0.95 

1.19 

1.03 

0.04 

o.43 

o.41 

0.27 

-0.01 

1.08 

-0.10 

0.27 

-0.09 

-6.38 
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' ' 

Five artificial bivariate samples 

samples contain pairs represented 

trajectory of y
20 

2 

of size n=20. All 

by • • Samples di£-

ferentiated by values of Y20, represented byO . 
Nominal distribution of yl'. •. ,Y19 is bivariate nor-

' 

mal with correlation 0.95 and N(0, 1) marginals. 
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Table 2.2 Jackknife statistics for T = z-transformed correlation 

in the five samples given in Table 2.1. 

Twentieth data pair 

(0,0) ( o. 5, -0. 5) (1.0,-1.0) (l.5,-1.5) (2.0,-2.0) 

T l.76 1.45 1.05 0.73 o.48 
n 

* 1.38 0.18 T l.70 0.75 -0.28 
n 

* T ( .05) 1.84 1.63 1.42 0.96 
n 

1.23 

Section 4.2) 

V 1.32 2.37 10.01 20.48 31.35 n 

v+ 0.79 1.14 1.95 2.34 2.52 
n 

Section 3.2) 

What is quite apparent from Table 2.2 is that * T is more seriously 
n 

affected by·a deviant point y
20 

than is T 
n 

Both estimates are vul-

nerable to a very extreme value of y
20

• The standard error estimate 

Sn defined by (2.3) is in close agreement with no~l theory for v=O, 

but as v increases Sn becomes so large as to give fairly uninformative 

confidence intervals for e via the pivot * (T - e)/s • 
n n 

Similar behavior 

for the jackknifed correlation has been previously noted by Miller (1974) 

and Wainer and Thiessen (1975). 

For long-tailed or contaminated data distributions the anomalies 

present in the above example would appear as random effects. In extreme 

cases the difficulty would be quite evident from suitable inspection of 

the data (Section 4), but in cases with weak contamination or non-normality 
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this would not often be possible. It is therefore useful to see to what 

extent we can use theoretical arguments to appraise such small-sample 

* T , T and V 
n n n 

behavior of 
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3. FURTHER PROPERTIES OF THE JACKKNIFE PROCEDURE 

3.1 Theory 

To some extent the inexactness of asymptotic properties can be under

stood and repaired by an examination of second-order properties. In the 

case of the jackknife, such an examination throws light on the observed 

finite-sample discrepancies between * var(T ), var(T) 
n n 

and their estimate 

S2 = V /n. We make use of well-known expansion results for differentiable 
n n 

statistical functions; see, e.g., von Mises (1947). 

Suppose that Tn is a regular differentiable statistical function 

of the form T = t('.F') , where '.F' is the usual empirical distribution 
n n n 

function. The corresponding parameter is e = t(F) where F is the dis-

tribution function for Y. In fact, suppose that T admits the expan
n 

sion 

(3.1) 

Here t
1

(y) and t
2
(y,z) are equivalent to first and second Volterra, 

or von Mises, derivatives of the functional t(F) and they may be defined 

by the identities 

d 
t {(1-e)F + eG} = Jt

1
(y)dG(y) , 

de 
e=O 

(3.2) 

d2 
{(1-e)F + eG} = JJ t

2
(y,z)dG(y)dG(z) , 

d7 t 
e=o 

where G is an arbitrary ·probability distribution function. The first 

derivative t
1

(y) has the statistical name "influence function", whose 

role in statistics has been discussed in excellent papers by Hampel (1974), 
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Jaeckel (unpublished) and Mallows (unpublished). Three important proper

ties of the derivatives (3.2) are 

(3.3) 

fixed a. 

The jackknife pseudovalues P . defined in (2.1) give estimates of 
n, l. 

the influence function t
1

(y) at y=Y
1

, ••• ,Yn. Devlin et al (1975), 

following Mallows (unpublished), use the mnemonic notation 

(3.4) 

for such estimates. A detailed analysis of these quantities is possible 

using all terms given in (3.1), which with (2.1) gives 

(3.5) 

where 

(3.6) 

* P . "'8 + t 1(Y.) + t
2

(Y., Y) , 
n,1. 1. 1 

= 2n f t 2(Yi,Yk)-nt2(Yi,Yi)-w t 2(Yj,Yk) 

2n(n-1) 

Before proceeding, we should note that the usual first-order properties 

* of T, T and V follow from (3.l) and (3.5) by ignoring the terms 
n n n 

involving * t
2

( , ) • Thus n var(Tn) Nn var(Tn) NVn N var(t1(Y)} 

n .... 00 • The final terms given in (3.1) and (3.5) are of order n-l 

and vanish only when T is a linear statistic. 
n 

as 

* The effect of the term t
2

(Yi,Y) in (3.5) is to induce a "small" 

correlation between the pseudovalues, which in turn affects * T , T 
n n 

and Vn in different ways. For simplicity we shall denote t
1

(Yi) and 
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t 2(Yj,Yk) by n
1 

. and n
2 

.k respectively. 
,1. ,J 

Then, with the definitions 

(3.7) cr11 = var(n1,i) , 0 12 = E(n1 ,in2,ii) , 022 = var(n2,jk) , j1k, 

routine calculation from (3.1), (3.5) and (3.6) leads to 

(3.8a) 

(3.8b) 

(3.8c) 

-1 ) 
var(Pn,i) Nall + n (o-12 + a22 

-2 ~ ) 
cov(P . ,P . ) N -n (012 + 2cr22 

n, 1. n,J 

-1 l: ) 
n var(Tn) ""O'll + n (o12 + 2cr22 

* -1 
n var(Tn) ""'cr

11 
+ \n a

22 

-1 ) 
E(Vn) "'all+ n (cr12 + 0'22 • 

Whilst theoretical calculation of a
12 

and cr
22 

is in principle 

straightforward, we have not followed this through in the correlation ex

ample. Rather we have pursued the more useful approach of estimating these 

quantities via repeated sample estimates. This has the advantage of simul

taneously showing whether or not the theoretical differences in (3.8) can 

be corrected for in actual data analysis. 

Fairly routine calculation from (2.1) shows that the following esti-

mates are consistent: 

,.. 

(3.9a) D • = P .- T 
l,1. n,1. n 

,.. 

(3.9b) n
2 

.. = n ((n+l)T .- 2n T + (n-1) T .} 
,1.1. n,+1. n n,-1. 

,. 

(3.9c) n2 "k = n (n T - (n-l)(T .+ T k) + (n-2) T . k} 
,J n n,-J n,- n,-J-

for j;&k • The notation is self-explanatory. Note that 
,.. 

D2,ii is ex-

pressible in terms of two estimates of n
1 

. , namely I (Y.) and 
,1. - l. 
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(3.10) I (Y.) = (n+l)(T .-T) ; 
+ 1. n,+1. n 

the latter has been suggested as an alternative to I by Mallows. 

Estimates for a
12 

and are formed from the derivative estimates 

by computing the corresponding sample moments. We have abbreviated the 

estimate of and worked with 

a
12 

= sample covariance of n
1 

. and n
2 

.. 
,1. ,1.1. 

,., 
a

22 
= sample variance of D2 .. 1 ,1.,1.-

taking n
2

, 10 = n2,ln. 

Note that the usual estimate Vn of cr
11 

could be replaced by the 

sample variance of I (Y.) • 
+ 1. 

Denoting this variance estimate by 

it is straightforward to show that 

(3.11) 

Comparison with (3.8c) suggests that Vn is generally preferable to 

3.2 The Correlation Example 

We return to the example of Section 2, taking T = z-transformed 
n 

correlation. Table 2.1 gives both I and I for each of the five 
+ 

v+. 
n 

samples. It should be apparent that the two estimates of n
1 

agree well 

unless a data point is moderately deviant from the centre of the data. 

This indicates that for contaminated or long-tailed data distributions the 
,.. 

values of n
2
,ii will be large. The estimates for cr

12 
and cr

22 
in 

the first sample (v=O) are -5.8 and 3.4 respectively, which from (3.8) 

would indicate little difference between var( T ) 
n 

and * var(T) 
n 

for 
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bivariate normal data. Even in this case v+ will tend to underestimate 
n 

both variances if (3.11) is accurate. As the pair y
20 

becomes more ex-

treme, so do the estimates of cr
12 

and cr
22

• Values of the estimates 

V and v+ are given in Table 2.2, from which we might guess that the 
n n 

latter estimate is generally poor because it is too small. 

To better assess the general conclusions that can be drawn from the 

second-order theory, we have obtained a few Monte Carlo results for the 

correlation case. Table 3.1 presents results for one case, where n=20, 

p = 0.8 (e =1.10) and m data pairs are consistently multiplied by 3 

(m=0,1,2) • The obvious conclusions to be drawn from this and similar 

* tables are: (i) the variance of T can be appreciably larger than that 
n 

of T ; ( ii) V 
n n 

gives a good estimate of var(T) , whereas 
n 

can 

give a severe underestimate of the variance; (iii) the differences are 

predictable in that cr
12 

is appreciably negative, the more so as data 

becomes more contaminated. 
---------------------~----------------

Table 3.1 Simulation results for jackknife statistics. Twenty bivariate 

statistic 

T 
n 

* T 
n 

V 
n 

v+ 
n 

A 

cr12 

A 

- · a22 

normal pairs with p = 0.8 and m = 0 21 22 pairs multiplied by 3. 

T = z-transformed correlation. Results are from 1000 trials. 

m=0 m = 1 m = 2 

mean variance mean variance mean variance 

1.124 0.0589 1.144 0.109 1.142 0.138 

1.098 0.058 1.11 0.157 1.098 0.198 

1.242 0.36 2.295 6.00 2.91 8.51 

0.73 0.06 o.88 0.17 0.98 0.24 

-6.00 24.9 -19.0 986 -26.5 1385 

7.3 108 11.0 261 -66.4 452§3 
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The fine differences represented in (3.8) seem to be moderately 

*) ) -2 good approximations. Thus the difference var(Tn - var(Tn rv n cr
12 

holds up fairly well in Table 3.1. Also the approximation E(V) -
n 

var(Tn) N \n cr
22 

appears to be reasonably good. The approximations do 

not work as well for n=l0, although they still give the right quali

* tative comparisons between var(T) , var(T) and s2
• 

n n n 

From a practical standpoint, we are interested in the ability to 

correct V and so obtain a more accurate standard error for T or 
n n 

* Tn It is apparent from Table 3.1 that the estimates of cr
12 

and 

cr
22 

can be quite imprecise, suggesting that such corrections cannot 

be made accurately. We have obtained a few Monte Carlo results which 

are somewhat more optimistic. We compared the basic standardized form 

of T* , i.e., (T* - e)/s , with the corrected form 
n n n 

* ) I 2 -2 ,.. ,.. ) ( 8) (Tn - e J(sn - \n (cr
22 

+ 2 cr
12

} suggested by 3 •• Table 3.2 

summarizes results of variance and coverage of nominal 90% confidence 

intervals derived from each form. 

Table 3.2 

m=l 

m=4 

m=6 

* Comparison of basic and adjusted standardized forms of T 
n 

in the correlation case. Sample size n=20, bivariate normal 

data with m pairs multiplied by 3, p = o.8. 1000 trials. 

variance of standardized form coverage of nominal 90% 
confidence intervals 

- ,........_,_ -- -- ~ 

basic form adjusted form basic form adjusted 

1.39 1.08 15% 1~ 

1.73 1.34 1~ 13~ 

1.55 1.19 16% 12% 

---.... 
form 



-15-

4. IMPROVING TIIE ESTIMATES USING PSEUDOVALUE ANALYSIS 

4.1 General Theory 

One aspect of the jackknife that was readily apparent from Table 

2.2 is the sensitivity of * T to outlying data pairs. 
n 

This phenomenon 

* is probably common if the large variance of T in Section 3 is a re-
n 

liable indication. For a particular sample, as in the last two or three 

poor value * is well diagnosed by the samples of Table 2.1, the of T 
n 

extreme pseudovalue. Both Mallows and Devlin et al (1975) have alluded 

to the analogy between the influence estimates and residuals. From the 

results in Section 3 and the example of Section 2 we conclude that I 

is superior to I+ as an estimate of t
1 

, and hence as a "residual". 

The analogy with linear-model residuals is not exact because of the non

zero second derivatives; indeed, this explains the difference between 

I and I 
+ 

As we have suggested, inspection of the pseudovalues, or I values, 

is a useful part of a jackknife analysis. If one or two extreme values 

are evident, then reanalysis with the corresponding data points omitted 

would be indicated. In certain cases, a probability plot of the pseudo-

values will provide a useful way of determining whether or not * T is a 
n 

good estimate; for details see Devlin et al (1975). Here we consider 

another use of the pseudovalues that seems to be suitable when no extreme 

data points suggest themselves for deletion. 

Our idea may be explained loosely as follows. The pseudovalue p . 
n, l. 

is like an observation on e with "error" t
1 

(Y
1

) , and the jackknifed 

estimate * T is the arithmetic average of these observations. 
n 

Now in 
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certain situations t
1

(Y) has a syunnetric distribution; see the corre

lation example in Section 4.2. Then there are consistent alternatives 

to Pn which are much less sensitive to deviation of the data distri

bution from that under which T is the preferred estimate. Actually 
n 

a more accurate representation for 

above idea still bears fruit. 

p . 
n, 1. 

is given by (3.l), but the 

We have considered typical classes of robust alternatives to the 

average in conjunction with the "observations" P . • One such class 
n,1. 

for which the theory is straightforward is the Huber M-estimates (Huber, 

1972). Suppose that * T (c) 
n 

is defined to be the unique solution to 

( 4.1) 
-1 

n E c(P . - t) = 0 , 
n,i 

where c( ) is an odd monotone function. Then a straightforward calcu-

lation shows that symmetry of t 1(Y) implies consistency of * T ( c) , so 
n 

that Taylor expansion methods can be applied to (4.1) to show that 

* n-l ~ (c(Dl .)-t;(Y.,Y)c'(D
1 

.)} 
(4.2) Tn(c) - 8 ~ -1·; 1. ,1. 

n c' (Dl,j) 

Two things may be deduced from this relationship. Firstly, * T (c) has 
n 

an asymptotic normal distribution by virtue of a Central Limit Theorem 

for the exchangeable random variables in the numerator summand; details 

are given in an as yet unpublished technical report by the author. Second-

ly, the influence function of * T (c) 
n 

c(t1(y))-Eft
2

(y,Z)c'(z)} 

E( c 
1 

( Z)} 

is 

which is unbounded in general. It is conjectured, but not proved, that 



-17-

other classes of robust estimates based on the pseudovalues have the 

same properties. In practice trinnned means of the pseudovalues are the 

easiest to use, and we consider these in the correlation case below. 

From a purist's point of view estimates with unbounded influence are, 

by definition, not robust. However we take the view that estimates should 

only be insensitive to the type of departures from ideal conditions that 

cannot be detected by residual analysis. In any event, our purpose here 

is solely to show how to use the jackknife procedure to greater advantage. 

It should be pointed out that the influence function itself may be 

used to derive estimates with bounded influence. One such instance is 

mentioned in Hinkley (1977b), and further research on this topic is being 

carried out by the author and H. Wang. 

4.2 The Correlation Example 

We return again to the example of the correlation estimate. For the 

five artificial samples in Table 2.1 the inspection of I values clearly 

indicates that is an outlier when v exceeds 1.0; note that the I+ 

values do not give such a clear indication. For all samples we have com

puted 5% trimmed means of the pseudovalues (i.e., averages of all but 

the largest and smallest p . ). 
n,i 

The results are given in Table 2.2. 

These estimates seem to r~present substantial improvement over 

T in cases other than the ideal (v=o) • 
n 

* T and 
n 

The trinnned mean pseudovalue has been evaluated further in Monte Carlo 

trials, some of which we describe here. First we should point out that 

the theory outlined in Section 4.1 applies here so long as the bivariate 

distribution has a density that depends only on the Normal exponent; other-
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wise trimmed means and M-estimates will not be consistent. 

Table 4.1 gives Monte Carlo results for the 5i trimmed mean pseudo-

value, T and 
n 

* T in sample size n=20 with 
n 

p = 0.6. The results 

are very similar for other values of p. The first sampling situation 

is bivariate normal, and the second is bivariate normal with 1016 of data 

pairs multiplied by 3. Both bias and variance of the estimates are given. 

Note that the trimmed mean sacrifices little in the ideal Normal case, 

but gives substantial improvement in the contaminated case. Other non

Normal distributions give similar qualitative results, but for very long

tailed distributions all three estimates are poor. In such cases extreme 

values of I occur. More detailed numerical results are given in the 

author's unpublished technical report. 

-~---- ----------------~ -~ ---- --- --

Table 4.1 * Monte carlo bias and variance for T, T and the 5% trimmed 
n n 

bivariate 
normal 

bivariate 
normal 

with 10<]6 
multiplied 

by 3 

mean pseudovalue in samples of size n=20 with p = 0.6. 

Results are based on 1000 trials. 

{ 
bias 

variance 

{ 
bias 

variance 

T 
n 

0.009 

0.056 

0.025 

0.114 

* T 
n 

-0.009 

0.055 

-0.001 

0.147 

trimmed mean 
pseudovalue 

-0.006 

0.057 

-0.001 

0.084 
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5. CONCLUSIONS 

The jackknife method is a useful tool for reducing systematic bias 

and for calculating a distribution-free estimate of standard error. How-

ever, it appears that * T may have a substantial random bias. 
n 

Thus, the 

estimate Tn is to be preferred unless it is known that the random bias 

is small. For moderate sample sizes it may be possible to get a better 

* estimate of var(T) via estimates of the second derivatives as in 
n 

Section 3. 

When feasible, analysis of the influence estimates I is useful; 

An extreme an initial diagnostic might be the magnitude of * T - T 
n n 

value of I is probably grounds for removal of the corresponding data 

point and recalculation of the estimate T or 
n 

* T 
n 

The alternative 

influence estimate I+ seems to be quite inferior both for residual ana

lysis and for estimating standard errors. Routine deletion of smallest 

and largest pseudovalues before averaging produces a very definite improve-

* ment over T in the case of the correlation, and may do so in other cases. 
n 

However, if a truly robust estimate is required, more complex methods, such 

as those devised by Devlin et al (1975) for the correlation, are needed. 
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