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Abstract

The introduction of the Microsoft Kinect Sensors has stirred significant interest in the

robotics community. While originally developed as a gaming interface, a high quality

depth sensor and affordable price have made it a popular choice for robotic perception.

Its active sensing strategy is very well suited to produce robust and high-frame rate

depth maps for human pose estimation. But the shift to the robotics domain surfaced ap-

plications under a wider set of operation condition it wasn’t originally designed for. We

see the sensor fail completely on transparent and specular surfaces which are very com-

mon to every day household objects. As these items are of great interest in home robotics

and assistive technologies, we have investigated methods to reduce and sometimes even

eliminate these effects without any modification of the hardware.

In particular, we complement the depth estimate within the Kinect by a cross-modal

stereo path that we obtain from disparity matching between the included IR and RGB

sensor of the Kinect. We investigate how the RGB channels can be combined optimally

in order to mimic the image response of the IR sensor by an early fusion scheme of

weighted channels as well as a late fusion scheme that computes stereo matches between

the different channels independently. We show a strong improvement in the reliability of

the depth estimate as well as improved performance on a object segmentation task in a

table top scenario.

1 INTRODUCTION

Future mobile robotics rely heavily on robust sensing schemes in order to bring the success

of industrial robotic applications in controlled environments to the unstructured and every-

day changing scenario in our homes. 3D Perception has been one of the key technologies

to provide a rich capture of indoor scenes that facilitates data driven segmentation, grasp

planning, and much more. While the steadily improving sensing technology has provided

us with more accurate and reliable data, we haven’t — and probably will not — see a single

sensor performing well across every conceivable condition. This calls for robust integration

of multiple sensing schemes to complement for each others’ short comings.

With the introduction of the Microsoft Kinect sensor, a highly performant yet low cost

3D sensor was made available that rivals much more costly solutions available to robotics.

And with one million units sold in the first week and ten million units to date, it is probably
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Figure 1: (top) Failure cases of Kinect 3D sensor: (red) transparency, (green) specularity,

(cyan) dark objects under flat viewing angle, (yellow) reflections of the projected dot pat-

terns, (violet) interference of dot patterns by reflections. (bottom) We evaluate on a object

segmentation task, left: result on Kinect point cloud only, right: strongly improved result on

our fused estimate proposed in this paper. (blue points: kinect; green points: cross-modal

stereo)

one of the most distributed as well. Despite being originally designed as a gaming interface,

soon after its release there was strong interest from hobbyists over enthusiasts to robotics

researchers trying to stretch the envelope of possible application scenarios beyond its original

intended use case.

In this paper we are particularly interested in the robotics scenario and resulting short-

comings when using the Kinect in those settings. In home environments object properties

differ beyond the well behaved properties of cloth and skin where the Kinect depth estimation

performs admirably well. We realize that in particular specular, transparent and reflective ob-

jects cause serious problems — and not rarely lead to a complete failure (See Fig. 1). Yet

objects like glasses, bottles, tea kettles, pans are objects of daily living and therefore they are

in the core set of objects home robotics and assisted living want to address [2].

Our main contribution is a more reliable depth estimation scheme using an off-the-shelf

Kinect sensor without modifying hardware nor requiring any additional sensors. We comple-

ment the built-in active depth sensing scheme with a passive stereo path which we establish

between the RGB and IR sensor. We investigate several fusion schemes to provide more

reliable sensor data, improving drastically in particular on transparent and specular objects.

In order to approximate IR and RGB image information and preserve similarities between

modalities, we learn a channel combination. Besides qualitative improvements we provide

empirical evidence for strong improvement on a data-driven object detection task in a table

top scenario. Code and the database will be made available at the time of publication to

further stimulate research that pushes the envelope on this interesting sensor on scenarios

relevant to real-world applications.
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2 RELATED WORK

Transparent and specular phenomena have been proven notoriously hard to capture [9], in

particular in unconstrained scenarios where prior information about lighting and geometry

of the scene can rarely be assumed. Only very recently some initial success towards practical

systems for detecting transparent objects has been reported on visual object detection tasks

[6] and multi-view lidar based object detection [12]. [6] learns object models for glasses

and [12] improves transparent object detection by integrating two sensors of the same type.

In contrast, our work uses a single off-the-shelf unit combining an active and a passive ap-

proach and we show improved results on wide range of effects like transparency, specularity

and highly absorbent surfaces as they occur on many household objects such as tea kettles,

mirrors, displays, bottles.

But also stereo algorithms are effected by more complex surface properties. E.g. [15]

provides an analysis of such effects and presents a sophisticated model for recovering multi-

layered scene structure. In practice, we see stereo correspondences still being preserved at

least on borders of objects with complex surface properties. Therefore we use a simple,

computationally efficient block matching algorithm as implemented in OpenCV [1].

As we seek to find correspondences between a RGB and IR sensor, we face a problem

of different data domains. Most recently, related problems have been successfully addressed

in a metric learning formulation for visual category recognition from different data sources

like images from the web, DSLRs and webcams [14]. While this approach is based on In-

formation Theoretic Metric Learning (ITML) [4] much simpler formulations based on large-

margin classifiers [3] have been proposed from which we drew some inspiration. However,

the latter approach is only applicable for classification while we learn a transformation that

is directly applicable to the image without any change to the stereo algorithm.

Previous work investigated fusion techniques for depth measurements originating from

time of flight cameras and stereo cameras [10, 11]. In contrast, our main focus in this paper

is to explore cross-modal stereo so that we can have an active and passive depth sensing

path in a single sensor unit. Therefore the previous investigations are orthogonal to ours.

Furthermore, our focus is on a object segmentation task with an emphasis on problematic

cases containing specular and reflective surfaces.

In our evaluation we use an object segmentation scheme based on a support plane as-

sumption which is common to many recent systems using 3D information, e.g. [7, 8, 13].

3 METHODS

As mentioned previously the Kinect depth estimate fails on specular, transparent or reflective

surfaces. Depth is calculated from an IR-pattern that is projected from by the Kinect sensor

unit (Fig. 2(b)). On reflective objects however the pattern is not visible or being reflected,

causing holes in the depthmaps or potential interferences (Fig. 2(d)). In Contrast, stereo

vision enables to detect disparities at edges of transparent or reflective objects, but has diffi-

culties finding correspondences on textureless areas, such as the wall or the desk (Fig. 2(e)).

Since the Kinect features two cameras (IR and RGB) we propose a cross-modal stereo ap-

proach that we combine with the built-in 3D estimate of the Kinect in order to compensate

for the problems of the individual sensors. In the following we describe our method that can

be run on an off-the-shelf Kinect sensor without any hardware modifications.
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(a) (b) (c)

(d) (e) (f)

Figure 2: (a) RGB image. (b) IR image with Kinect’s IR-projector pattern. 1. pattern not

visible on reflective surfaces, 2. reflected pattern on display, 3. Shadow from projector

spot differs to RGB lighting condition (c) IR image with covered IR-projector. Red texture

invisible to IR-sensor (d) Rectified depth map from Kinect. (e) Disparity map from stereo

and (f) Fused depth maps.

3.1 Stereo and alignment to Kinect depth

We first briefly describe our stereo calibration algorithm for the IR and RGB camera and the

fusion step with Kinect depth information. Then, we describe the alignment procedure that

enables the combination of stereo and Kinect depth information by simple union operator on

the two point clouds. Since we have to deal with two different data domains, we introduce

an optimization step in order to obtain improved stereo correspondences.

Stereo calibration Given the images from IR and RGB sensors, the extrinsic and intrinsic

parameters can be computed with standard stereo calibration technique. Once the calibration

parameters of IR and RGB cameras are obtained, we apply Bougeuet’s algorithm to do the

rectification toward the stereo image pairs and make them row-aligned. Then we utilize the

SAD (Sum of Absolute Difference) block matching to find corresponding pixels between IR

and RGB images. The offset between such pixels marks the disparity in image coordinates.

As a result, we obtain the disparity maps for every pair of IR and RGB images, for which

depth can be calculated as shown in Fig. 2(e).

Fusing Stereo depth with Kinect depth In order to combine the disparity map from our

stereo setting and the depth map from the Kinect, we need to align the image planes. Since

the disparity map from the stereo is rectified, we apply the same rectification to the depth

map from the Kinect as shown in Figure 2(d).
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After converting the disparity from stereo into depth measurements, we can directly com-

pare depth values obtained from stereo and the Kinect. From a set of calibration scenes we

obtain scaling and offset parameters that align the depth values.We use least squares to esti-

mate these parameters. Figure 2(f) shows an example of the aligned depth measurements.

In order to evaluate our depth estimate on an object detection task, we generate a point

cloud by means of the reprojection matrix obtained from stereo calibration. The fusion of

stereo and Kinect depth is carried out in 3D by simply taking the union of the point clouds

as displayed in Figure 1.

3.2 Cross-Modal Adaptation for IR-RGB-Stereo

Early integration As described in the previous section we search for stereo correspon-

dences in the ir-rgb-image pairs. The channels of those images correspond to different sen-

sor characteristics that are only receptive over a range of wavelengths. Due to correlations

in the sensor and material characteristics running stereo across the modalities is expected

to produce at least some correspondences. Yet, it seems more appropriate to find a better

combination of the channels that would make the two signals more similar. We do so by

employing a global optimization approach.

Given a IR image Iir and a RGB image (Irgb
r , I

rgb
g ,x

rgb
b ), we would like to obtain a weight-

ing w = (wr,wg,wb) of the channels such that the converted RGB image is more similar IR

image and has more corresponding points during the stereo matching. We evaluate the per-

formance of stereo matching by simply calculating the number of corresponding points we

can find, which we denote by: num_o f _stereo_match(Irgb
, Iir). The resulting optimization

problem reads:

max
wr ,wg,wb

num_o f _stereo_match(wr ∗ Irgb
r +wg ∗ Irgb

g +wb ∗ I
rgb
b , Iir)

subject to wr +wg +wb = 1.

(1)

We use the IR image with covered IR-projector to avoid the effect from the projected

pattern. This optimization problem is solved by grid search with uniformly sampling of the

plane wr +wg +wb = 1. Figure 3 shows the disparity map from the RGB image converted

with learnt channel weights and compared to the disparity from original RGB image in gray

level. We observe that more details are preserved after applying the learnt weighting.

Late integration We also investigate a late integration scheme where we delay the com-

bination of the different color channels and compute stereo correspondences w.r.t. the IR

image independently. We proceed as with the 3D data from the Kinect and fuse the results

in 3D space by forming the union over the point clouds.

3.3 Point cloud based object segmentation

In order to quantify the improved depth information for potential detection tasks, we imple-

mented a simple object detection system based on point clouds from Sec. 3.1. Since objects

of interest are often located on tables or fixed at walls, we first segment space into a support

surface and a background surface. We then cluster the residual point cloud, which is neither

part of the table’s nor the wall’s surface, into potential objects.
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(a) (b) (c)

(d) (e)

Figure 3: (a) RGB image converted according to the optimized color channel weights,

(wr,wg,wb) = (0.368421,0.473684,0.157895). (b) IR image with covered IR-projector. (c)

RGB image in gray scale (averaged channels with equal weight). (d) Disparity map from (a)

and (b). (e) Disparity map from (c) and (b).

Support surface extraction We apply an iterative RANSAC-algorithm to extract the sup-

port surface and the background wall from the point cloud. We assume that the scene con-

tains two surfaces: the background wall and the table, where objects of interest can be spread

out. The residual points, which are neither inliers of the background wall and nor the table

surface, are then clustered into potential objects.

Point cloud clustering We first partition the residual pointcloud from the step above using

kmeans-clustering. We set the number of centers to K = 850. This effectively reduces the

complexity for further calculation. The kmeans-centers are then further grouped by agglom-

erative clustering. Based on grouped kmeans-centers we calculate a 3D-bounding box as in

Fig. 1. For the evaluation in the following section, we backproject 3D-coordinates of each

group member into the image coordinates using the transformation from Sec. 3.1. Upon im-

age pixels of each group a rectangular bounding box is fitted and compare to the ground truth

annotations of objects. In order to score each bounding box for precision-recall analysis we

use the number of points associated with each box, respectively group, as a score.

4 EXPERIMENTS

We evaluate the success of our approach on a new database that we have collected in order

to test the kinect sensor on more challenging scenarios. The dataset consists of 106 objects

in 19 images. All objects are annotated with 2D bounding boxes. We follow the evaluation

criterion of the Pascal challenge [5] and compute precision-recall curves based on the overlap

Citation
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Figure 4: Precision Recall and average precision for the table-dataset

criterion a0 =
area(Bp∩Bgt )
area(Bp∪Bgt )

, where Bp is the predicted bounding box and Bgt the ground truth

bounding box and where a0 must exceed 50%.

We evaluate several fusion schemes under different conditions, and settings for the cross-

modal stereo matching. Following standard stereo matching, we average RGB into a grayscale

image (stereo only: stereorgb and fused with kinect depth: f usedrgb early). We also combine

each channel individually (stereo only: stereo{r,g,b} and fused with kinect depth: f used{r,g,b}).

Given a disparity map for each channel invididually, we also combine these into a late fusion

scheme with the kinect depthmap ( f usedrgb late). For a weighted combination of the R, G

and B-channel as presented in Sec 3.2 we denote the index c.

4.1 Results

Table 4 shows average precision for different fusion schemes. We expect a strong influence

of the IR projector on the correspondence matching of the stereo vision. Therefore, we

captured stereo pairs under two conditions, first by covering the emitting IR projector and

second under normal operating condition with the IR projector switched on. Note, that since

the Kinect depth estimate does not operate without the IR projector, we captured the images

consecutively in the first setting.

The built-in Kinect depth estimate achieves 48.8% of average precision. Combining

stereo with the Kinect depth results in significant improvement of nearly 30%. Overall the

maximum average precision of 76.6% is achieved by fusing all channel-specific depth maps

(fusion_rgb_late). When turning the Kinect into normal operation mode that is with emitting

IR projector, overall performance of different combination schemes drecreases, but still im-

proves the Kinect depth about 10-20%. Interestingly, the best result (68.8%) is achieved by

fusing Kinect depth and stereo depth from the green channel, which is closely followed by

fusion with channel-specific depth estimates (fusion_rgb_late: 66.5%). As expected in this

scenario, stereo only with projected IR pattern, performs worse in all different combination

schemes than Kinect only.

Fig. 5 shows example depth maps and detections using the pointcloud segmentation

from Sec. 3.3. Fig. 5 (a) shows a comparison between the Kinect-only depthmaps and fu-

sion_all_late scheme. Based on kinect depth estimation, we observe that nearly all transpar-

ent or reflective objects are either missed or over-segmented by their opaque parts (e.g. the

bottle labels). Also interferences occur, e.g., the reflected IR-pattern from the wall results in

false depth on tablet’s display.

Fig. 5 (b) shows a comparison of fused depth maps with operating IR projector (middle)
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(a) (b)

Figure 5: Example images from dataset. (a) Top: RGB image, Middle: Kinect only, Bottom

fusion_all_late, (b) Top: RGB images, Middle: fusion_all_late with covered IR projector,

Bottom: fusion_all_late

and with covered IR projector (bottom). It can be seen that the object segmentation merges

individual objects into one object only with operating IR projector. Besides the interfering

IR pattern on the object’s edges, lighting conditions differ. While the IR projector behaves

similar to a spotlight and causes hard shadows around objects in a scene, the RGB images

are effected by environmental illumination only. As a results shadows differ between IR and

RGB images (see Fig. 2(a) and 2(b), box 3). This leads to increased smearing effects and

which leads to point cloud connections between nearby objects. Here a more sophisticated

segmentation approach or statistical outlier removal techniques can remedy this effect. The

left-most depth maps show a rather pathologic case, where the Kinect is directed to a mirror.

The emitted IR pattern is reflected back to the camera causing a glare. Only when switching

off the IR-pattern depth is revealed by stereo vision.

4.2 Discussion

We can see that stereo vision across modalities is feasible and improves object detection

based on the Kinect’s depth estimation up to 30% without any modification of the hard-

ware. Overall, stereo matching between the ir channel and each color channel individually

combined with 3D from the Kinect performs best in all considered settings. Using depth

maps based on the green channel performs surprisingly well. Since the red and infrared are

close in wavelength, the infrared camera has a similar sensitivity. We intuitively expected a

good correspondence matching for this channel. In fact however, red textures on white back-

ground do not contrast, and red becomes invisible. This effect can be seen on the bottle label

in Fig. 2(a) and 2(c). Green texture however is preserved and represented by low intensities

in the IR channel. Then, stronger gradients facilitate the correspondence matching.

Learning a weighted RGB-channel-combination scheme to obtain an “IR-like” image,

turns out to be highly sensitive to environmental change. Colors of objects or varying en-

vironmental IR exposure influences the choice of weights significantly. Fig. 6(c) shows a

series of captures during varying daylight conditions and corresponding optimized weights.

Although we could find more correspondences using a weighted scheme Fig. 6(b) compared
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Figure 6: (a) Disparity from grayscale RGB and IR, (b) Disparity from weighted RGB and

IR, and (c) Learned weights for obtaining IR like image from RGB under different lighting

conditions (Date of capture 31. March, sunset 7:56pm).

to grayscale RGB only Fig. 6(a), overall segmentation results did not reflect the improve-

ment. Since, we estimated the parameters on a training set, they did not generalize well to

our detection dataset. Dynamic weight adaption based on image statistics, such as illumina-

tion and white balance, might lead to improvement, which is subject to further investigation.

Practical issues Kinect does not allow simultaneous grabbing of the RGB and IR stream.

The OpenNI framework, as well as libfreenect offer functionality of switching the streams

programmatically (and asynchronously). The speed depends on the buffer writing speed.

When switching too fast the buffer is not entirely written. We did initial stress tests to tune

the framerate. We observe that libfreenect shows faster performance and yields about 1.5-

2fps for taking an IR and RGB pair, which leaves space for estimating stereo disparity maps

and provides reasonable update rates for many robotics applications. The OpenNI framework

achieves far less than 1fps.

5 CONCLUSIONS

We presented a simple and effective cross-modal stereo vision approach for combination

with Kinect depth estimates, which can be applied without any further hardware require-

ments. We provide empirical evidence for drastic improvement to the Kinect 3D sensing

capabilities.

We presented a cross-modal adaptation scheme that allows for improved correspondence

matching between RGB and IR cameras and show general feasibility of their combination.

The value of our improved 3D sensing scheme is validated by a generic, data-driven object

detection task. Our combination method produces depthmaps that include sufficient evidence

for reflective and transparent objects, and preserves at the same time textureless objects, such

as tables or a walls.

We expect this work to have a high impact in the robotics community due to the wide

spread use of Kinect sensors and the ubiquitous problem of capturing transparent objects for

detection, recognition and manipulation. In the future we plan to investigate further cross-

modal adaption schemes and also to include more sophisticated fusion schemes.
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