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Abstract

Background: Explicit comparisons based on the semantic similarity of Gene Ontology terms provide a quantitative way to
measure the functional similarity between gene products and are widely applied in large-scale genomic research via
integration with other models. Previously, we presented an edge-based method, Relative Specificity Similarity (RSS), which
takes the global position of relevant terms into account. However, edge-based semantic similarity metrics are sensitive to
the intrinsic structure of GO and simply consider terms at the same level in the ontology to be equally specific nodes,
revealing the weaknesses that could be complemented using information content (IC).

Results and Conclusions: Here, we used the IC-based nodes to improve RSS and proposed a new method, Hybrid Relative
Specificity Similarity (HRSS). HRSS outperformed other methods in distinguishing true protein-protein interactions from
false. HRSS values were divided into four different levels of confidence for protein interactions. In addition, HRSS was
statistically the best at obtaining the highest average functional similarity among human-mouse orthologs. Both HRSS and
the groupwise measure, simGIC, are superior in correlation with sequence and Pfam similarities. Because different measures
are best suited for different circumstances, we compared two pairwise strategies, the maximum and the best-match
average, in the evaluation. The former was more effective at inferring physical protein-protein interactions, and the latter at
estimating the functional conservation of orthologs and analyzing the CESSM datasets. In conclusion, HRSS can be applied
to different biological problems by quantifying the functional similarity between gene products. The algorithm HRSS was
implemented in the C programming language, which is freely available from http://cmb.bnu.edu.cn/hrss.
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Introduction

With the advent of high-throughput technologies such as DNA

and RNA sequencing and microarray, automatic genome

annotation of large sets of genes has been increasingly used. An

accessible and systematic scheme is required to handle the large

amount of annotations to genes and their products, and to make

comparisons of these gene products computationally interpretable

on a standard platform. The Gene Ontology (GO) [1] system is

one such scheme that is widely becoming the de facto standard for

facilitating information searches across databases and for aiding

the annotation of molecular features in different model organisms.

GO has been successfully used in protein classification [2,3],

prediction and validation of protein-protein interactions [4,5],

gene expression studies [6] and homology analysis [7].

GO consists of three structured ontologies which allow the

description of molecular function (MF), biological process (BP),

and cellular component (CC). Each ontology is structured as a

directed acyclic graph (DAG), which differs from hierarchies in

that a ‘child’, a more specialized term, can have many ‘parents’ or

‘ancestors’, a less specialized or more general term. Child terms

are instances or components of parent terms. Therefore, GO

follows a true path rule where annotation to a given term implies

annotation to all of its ancestors by inheritance. The valuable

functional knowledge encoded in GO should be useful for

developing new predictive systems to compare gene products at

the functional level, which may be integrated with other models in

large-scale genomic research.

The functional relationships between gene products annotated

with GO terms are quantified either implicitly using methods for

the shared GO terms of gene products [5,8–10] or explicitly using

semantic similarity measures. The former method is restricted to

protein pairs with the same annotations; the semantic similarity

measure is more commonly used and returns a numerical value

quantifying the relationship between two GO terms or two sets of

terms annotating two gene products. Given two terms, GO-based

semantic similarity measures may be classified into edge- and
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node-based groups; given two gene products, the measures may be

classified into pairwise and groupwise approaches [11].

Edge-based methods determine semantic similarity based

primarily on counting the number of edges (distance) along the

paths linking the GO terms being considered. The specificity of

the most recent common ancestor (MRCA) of two GO terms,

measured by the distance between the ancestor and the root term

in the GO DAG, was used as the only parameter to quantify the

semantic similarity between the term pair [12,13]. But the MRCA

only focuses on the hierarchy above the given terms and misses the

hierarchy information below the given terms. To take the global

structure of GO DAG into account, we designed a Relative

Specificity Similarity (RSS) method that was explicitly based upon

Wu’s measure [12], and also includes the distance of the given

term pair to its closest leaf terms (the generality of the two terms)

and the distance to their MRCA [4]. However, edge-based

semantic similarity metrics also have weaknesses. They use the GO

DAG topology to compute the similarity, and as a result they are

sensitive to the intrinsic structure of the GO DAG. Furthermore,

they simply consider terms at the same level in the ontology to be

equally specific nodes and edges at the same level to correspond to

the same semantic distance between two terms, both of which are

seldom true in biological ontologies [11].

Node-based approaches rely on comparing the properties of the

terms involved and their ancestors or descendants. The property of

a GO term can be estimated by a variety of means [14–16].

Information content (IC) is commonly used to estimate the

property of a term c, as well as to measure how specific and

informative the term is. Resnik measures (called ‘Resnik’ in this

study) the similarity between two terms as simply the IC of their

most informative common ancestor (MICA), indicating its

specificity [17]. Three additional measures by Jiang and Conrath

[18] (called ‘Jiang’), Lin [19] (called ‘Lin’) and Schlicker et al. [20]

are different variants of Resnik. Couto et al. proposed the GraSM

approach, which replaced the IC of the MICA with the average

IC of all disjunctive common ancestors (DCAs) [21], and then

exploited DiShIn to update GraSM [22]. Recently, Jain and Bader

have developed the Topological Clustering Semantic Similarity

(TCSS) method by considering the unequal depth of biological

knowledge represented in different branches of the GO DAG [23].

Yang et al. improved the semantic similarity between two terms by

considering not only their common ancestors but also their

common descendants [24].

All of these methods quantify the relationship between two gene

products by using pairwise strategies, such as the average,

maximum and beset-match average, based on measuring every

term pair. Other methods, such as simUI [25], simGIC [26] and

the more recently designed SORA [27], calculate the semantic

similarity between two gene products based on measuring two sets

of annotated terms and are named as groupwise measures.

Evaluations of similarity in sequence or gene expression are

needed to assess how well a given measure represents the similarity

between gene products. Both TCSS and Resnik with the

maximum strategy are more suitable for predicting and validating

protein-protein interactions and for correlating with gene expres-

sion [23,28,29]. SimGIC and Resnik (with the best-match average)

have the highest correlation with sequence similarity [30,31].

Besides, Resnik performs best in characterizing human regulatory

pathways using the average strategy [32]. Therefore, no measure is

clearly preferred over the others for biological problems; different

measures are best suited in different contexts [11,33].

IC-based metrics are less sensitive to the problem of variable

semantic distances compared with edge-based approaches [17].

Moreover, Node-based methods highlight the idea that the terms

on the same level of the GO DAG are not always equivalent

because their importance or specificity in GO is measured by IC.

Therefore, the edges at the same level do not always have equal

semantic distances between two terms, a reasonable conclusion in

biological ontology. In this study, we aimed to improve the RSS

edge-based method that we designed previously, by employing the

concept of information content. The new semantic similarity

algorithm, called Hybrid Relative Specificity Similarity (HRSS),

was a hybrid version between edge- and IC-based concepts. Four

independent evaluation systems were then developed to analyze

the performance of HRSS against the following methods: RSS;

four commonly used nodes-based measures, Resnik, Jiang, Lin

and TCSS with the maximum (MAX) and best-match average

(BMA) strategies; and two groupwise measures, simUI and

simGIC. The points of evaluation included (i) scoring protein-

protein interactions in yeast and human using receiver operating

characteristic (ROC) analysis, (ii) quantifying the functional

similarity between human-mouse orthologs, and (iii) correlating

the semantic similarities between UniProt proteins with the

similarities of sequences, Pfam domains and Enzyme Commission

classes (ECC) based on the platform of Collaborative Evaluation of

Semantic Similarity Measures (CESSM) [34]. Furthermore, we

carefully defined reasonable HRSS cutoff values for capturing

high-quality positive and negative protein interactions, and then

divided HRSS values into four groups with different confidence

levels in BP and CC ontologies. The performance of two pairwise

strategies, MAX and BMA, were also evaluated and compared in

different evaluation systems.

Materials and Methods

Algorithm
We designed an edge-based semantic similarity method, RSS

[4], which took both specificity (the hierarchy above the given

terms) and generality (the hierarchy below the given terms) of the

terms into account. Due to the drawback of edge-based measures,

we used information content from node-based measures and

combined it with the structure of RSS. In this section, we describe

the RSS method first, and then present the new method.
The previously designed Relative Specificity Similarity

method. For a given GO, let termi and termj be two terms. We

defined dist(termi, termj) as the number of edges along the shortest

path between these two terms, such that its value equals zero if

termi and termj are the same term. The RSS of termi and termj consists

of three different components (Figure 1A), denoted a, b and c.

Component a measures how specific the most recent common

ancestor (MRCA) of the two terms is according to the structure of

the GO. Component b measures how general termi and termj are in

the GO. The generality of a term is defined as the minimum

distance between the term and the leaf terms descending from it.

Component c measures the local distance between the two terms

and their MRCA (Formula 1),

c~ dist(MRCA, termi)zdist(MRCA, termj): ð1Þ

Then, the RSS between the two terms of a given GO, termi and

termj can be quantified by combining a, b and c together,

RSS(termi,termj)~
maxDepth GO

GOzc
: a

azb
ð2Þ

where maxDepthGO is the maximum distance from the root term of

the GO to the leaf terms. From the definition, the values of RSS

Hybrid Relative Specificity Similarity
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are between 0 and 1. See Section S1 in Text S1 or the original

study [4] for more details about the algorithm.

Hybrid Relative Specificity Similarity of two proteins

annotated in a GO. IC is defined as the negative log likelihood

of a term c,

IC(c)~{logp(c) ð3Þ

where p(c) is the probability of occurrence of the term c in a

specific corpus, such as the GO annotations of the yeast genome or

the UniProt Knowledgebase, and is normally measured by the

frequency of the number of genes annotated to c and all its

descendants over the total number of genes in the corpus. The

more often the term is used for annotation, the lower its semantic

value.

We defined the IC-based distance between two terms u and v,

where u is an ancestor of v, as the difference between their IC

values,

distIC(u,v)~IC(v){IC(u)~logp(u){logp(v): ð4Þ

Then, the IC-based specificity of the most recent common

ancestor of any two terms, termi and termj (i.e. component a in RSS

method) is

aIC~distIC(root,MICA)~{logp(MICA) ð5Þ

where MICA is the most informative common ancestor of termi

and termj. Resnik directly uses aIC to score the semantic similarity

between the two terms [17].

The IC-based generality of a term is defined as the distIC
between the term and the most informative leaf nodes (MIL)

descending from it. It is likely that not all of its leaf terms have

proteins annotated in a particular corpus. Therefore, only the leaf

terms with annotations were considered. A new component b is

defined as the average of the generality values of termi and termj,

bIC~
distIC(termi,MILi)zdistIC(termj ,MILj)

2
ð6Þ

where MILi and MILj are the most informative leaf nodes of termi

and termj, respectively.

An improved RSS method adapting both node- and edge-based

concepts, called Hybrid Relative Specificity Similarity (HRSS)

(Figure 1B), is based on the framework of the RSS algorithm,

HRSS(termi,termj)~
1

1zc
: aIC

aICzbIC

ð7Þ

where the definition of component c is similar to that in the RSS

method. By replacing the MRCA in Formula 1 with the MICA,

we have

c~ dist(MICA, termi)zdist(MICA, termj): ð8Þ

Let P and Q be two gene products of interest, and TP and TQ the

sets of all the GO terms assigned to proteins P and Q, respectively.

The relationship strength between P and Q is defined through two

pairwise rules, maximum (MAX) and best-match average (BMA).

The MAX strategy takes the maximum semantic similarity value

of all term pairs between TP and TQ as gene functional similarity

(Formula 9), whereas the BMA strategy finds all the best semantic

similarity values for each term in TP and TQ and then calculates

the average value as gene functional similarity (Formula 10).

HRSSGO
MAX (P, Q)~ max

tpi[TP

tqj[TQ

fHRSS(tpi,tqj)g ð9Þ

HRSSGO
BMA (P, Q)~

P
tpi[TP

HRSS(tpi,TQ)z
P

tqj[TQ

HRSS(tqj ,TP)

TPj jz TQj j
ð10Þ

where HRSS(ui,V )~max
vj[V

fHRSS(ui,vj)g:

Figure 1. A schematic illustration of our algorithms. (A) Relative Specificity Similarity (RSS) is an edge-based method, but (B) Hybrid Relative
Specificity Similarity (HRSS) integrates information content within the framework of RSS. Both of MRCA, the most recent common ancestor of termi

and termj, and the MICA, the most informative common ancestor, represent the most specific term among all common ancestors of the term pair but
are calculated in different ways. HRSS (RSS) consists of three components: aIC (a) represents the specificity of MICA (MRCA), bIC (b) indicates the
generality of termi and termj in GO, and c measures the local distance of termi and termj from their common ancestor.
doi:10.1371/journal.pone.0066745.g001

Hybrid Relative Specificity Similarity
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The GO database and gene annotations
Unless stated otherwise, Gene Ontology data (released in April

2012), and gene annotation datasets (released in April 2012) for

yeast and human downloaded from the Gene Ontology database

[1] were used. The GO contains 22,506 BP, 2980 CC and 9341

MF terms. 88,052 annotations (45,078 without IEA annotations)

of 6383 genes were present in the yeast genome, while 334,053

annotations (169,743 without IEA annotations) of 44,077 genes

were present in the human genome.

Protein-protein interaction datasets
To evaluate the performance of our new metric against other

semantic similarity methods on capturing physical protein-protein

interactions, following the approach of Jain and Bader [23], we

built both gold standard positive (interacting) and negative (non-

interacting) datasets for human and yeast genomes.

The gold standard positive dataset for human involving 2403

high quality physical/direct interactions among 1790 proteins was

obtained from a core subset of the Database of Interacting Proteins

(DIP) [35] (released on February 28, 2012). The DIP stores

experimentally determined protein-protein interactions from a

variety of sources. Six independent positive subsets for three

ontologies, both including and excluding IEA annotations, were

generated by selecting interactions with both proteins annotated

with terms (other than the root) in their respective ontologies

(Table S1). Then, six gold standard negative datasets with equal

numbers of protein pairs as those in the corresponding positive

datasets were independently generated by randomly choosing

annotated protein pairs in BP, CC and MF, including and

excluding IEA annotations, which are absent from a combined

dataset of all possible protein-protein interactions. The combined

dataset for human was from iRefWeb (dated April 13, 2012) and

contains 36,863 direct interactions among 9853 proteins. Then

yeast gold standard positive dataset involving 4218 physical/direct

interactions and 2113 proteins was retrieved from DIP. The pool

of all possible interactions in yeast from iRefWeb contains 71,287

direct interactions among 5947 proteins. Similarly, the positive

and negative datasets for the three ontologies were generated

(Table S1).

The power of a classifier was evaluated by receiver operating

characteristic (ROC) curve analysis. The ROC curve presents a

trade-off between true positive rate (TPR or sensitivity) and false

positive rate (FPR or 1-specificity), which are calculated as

TPR=TP/(TP+FN) and FPR=FP/(FP+TN). The ROC curve

for excellent classifiers would rise steeply starting from the bottom

left corner, pass close to the top left corner where both the

sensitivity and specificity are 1, and finally arrive at the top right

corner. In this case, the area under the ROC curve (AUC) is the

largest. AUC is calculated using the trapezoidal rule,

AUC~
1

2

Xn

k~1

(Xk{Xk{1)(YkzYk{1), where Xk is the FPR and

Yk is the TPR.

Human-mouse orthologs and randomizing simulation
Orthologous protein pairs between human and mouse were

retrieved through BioMart from Ensembl (release 69) at http://

www.ensembl.org/biomart/martview [36]. The annotation was

not based on the reciprocal best BLAST hits but was instead based

on phylogenetics. We chose only the orthologous protein pairs

annotated as ‘ortholog-one2one’, both of which are present in

UniProt GO annotations (released in October 2012). 5726, 5539

and 4966 human-mouse orthologs were retrieved for BP, CC and

MF, respectively, after IEA annotations were excluded. The three

ortholog datasets including IEA annotations were also used in this

study. As a result, the functional similarity values between these

orthologs on the three ontologies could be calculated using

different semantic similarity measures.

To make the functional similarity comparable between different

semantic similarity measures and ontologies, a Z-score analysis

was applied to these one-to-one orthologs for each measure on

each ontology. Since the distribution of the orthologous protein

pair is unknown, we estimated the significance by randomizing the

simulation process. First, an average similarity value for the

observed orthologous pairs (ASVobserved) was calculated. Next, an

orthologous pair dataset with the same size as the observed dataset

was generated by randomly choosing a mouse ortholog for each

human protein without replacement, and an ASVrandom value was

calculated on this randomized dataset. This process was repeated

1000 times (on average 1.6 protein pairs in a randomized dataset

are true), and a mean and standard deviation (stdev.) of the 1000

ASVrandom were calculated. Finally, a Z-score value, defined as

(ASVobserved{mean(ASVrandom))=stdev(ASVrandom), was calcu-

lated. As a result, the larger the Z-score for a semantic similarity

measure on an ontology is, the less probable it is that the

functional similarity measured by this method is due to chance.

CESSM evaluation
CESSM is an online tool for evaluating GO-based semantic

similarity measures using Pearson’s correlation with sequence,

Pfam domain and ECC similarities [34]. 13,430 protein pairs

among 1039 well known proteins from multiple species and

UniProt GO annotations (released on January 15, 2010) were

downloaded from CESSM online. According to the notice on the

CESSM website, the GO database released in January 2011 was

downloaded from the GO website for the evaluation. We

calculated different semantic similarity scores between the protein

pairs, and then we obtained Pearson’s correlations between these

semantic similarity scores and sequence/Pfam/ECC similarities by

running the CESSM online tool.

Results

Scoring physical protein-protein interactions
GO-based semantic similarity has been recognized as one of the

strongest indicators for scoring and predicting protein-protein

interactions, based on the following two observations: two proteins

acting in the same biological process are more likely to interact

than proteins involved in different processes [9]; and to interact

physically, proteins should exist in close proximity, at least

transiently, which suggests that colocalization may serves as a

useful predictor for protein interactions [37]. In the previous work,

RSS method was successfully applied to the prediction of genome-

scale protein-protein interactions in yeast by combining the

maximum RSS values of all term pairs associated with any two

proteins for the BP and CC ontologies [4,38]. Jain and Bader

introduced a novel method, TCSS, and found that TCSS and

Resnik showed the best performance in the ROC analysis and that

TCSS performed better than Resnik in finding true positive

interactions using the F1-measure improvement test [23].

To evaluate the performance of our improved method on

capturing interacting protein pairs, the positive and negative

protein-protein interaction datasets in the human and yeast

genomes were generated (see Materials and Methods). HRSS

were compared with our edge-based method RSS, four node-

based methods TCSS, Resnik, Jiang and Lin using MAX and

BMA strategies (TCSS only uses MAX), and two groupwise

measures simUI and simGIC (see Section S2 in Text S1 for the

Hybrid Relative Specificity Similarity
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implementation and definition of these methods). These methods

were also compared in the following evaluation systems. The AUC

values for BP and CC ontologies are much higher than those for

MF under all conditions (Table 1 for human, Table S2 for yeast).

This result indicated that BP and CC are better platforms than

MF for predicting protein-protein interactions, supporting the two

observations in the previous paragraph. Consequently, the ROC

curve of MF was not shown in Figures S1 and S2. Consistent with

the conclusion in [23], the similarity methods using the MAX

strategy generally achieved higher AUC values than those using

the BMA strategy, except for Jiang and Lin which produced the

opposite result. HRSS (MAX) performed the best in CC ontology,

and the same as TCSS or Resnik in BP ontology under all

conditions. GO annotations, both including and excluding IEA

annotations, were considered, and similar results were obtained

under the two conditions. Overall, the best measure for scoring

interacting protein pairs is HRSS using the maximum strategy for

BP and CC ontologies.

Choosing reasonable thresholds for positive and
negative protein-protein interactions
Both high-quality positive and negative datasets of protein-

protein interactions are required for comparative statistical

analyses including learning and validation processes [39]. How-

ever, determining reasonable HRSS cutoff values for high-quality

positive and negative protein-protein interactions was a challenge.

In addition to FPR and TPR, another three measures, PPV, NPV

and the Youden index [40], were considered. The ROC curve for

yeast in BP ontology including IEA annotation was taken as an

example to follow for the selection of thresholds.

The Youden index, Y= Specificity+Sensitivity-1, provides a

criterion for choosing the cutoff to maximize the sum of specificity

and sensitivity in an ROC curve. The maximum (0.72) of the

Youden index was achieved when the HRSS cutoff value was close

to 0.2. We also tested the F1-measure, F= 2(PPV6TPR)/

(PPV+TPR) where PPV= TP/(TP+FP), and achieved a similar

threshold (Figure 2A). Moreover, through the distributions of

protein-protein interactions from gold standard positive and

negative datasets falling in various HRSS values (Figure S3), we

found that the most (93% for yeast in BP ontology) of negative

interactions fall into an HRSS lower than 0.2, whereas 78% of

positive interactions have an HRSS higher than 0.2. As a result,

the protein pairs with an HRSS higher than 0.2 are likely to

interact with each other and those lower than 0.2 likely do not.

However, using a single Youden index is not generally recom-

mended because there is not a single best cutoff derived from

ROC curves [41]. Therefore, different measures should be

considered to yield both high-quality positive and negative

datasets.

The ROC curve for excellent classifiers would rise steeply

starting from the bottom left corner and pass close to the top left

corner where both the sensitivity and specificity are 1. The ‘steeply

rising line’ (within the blue box in Figure 2B) sharply increases

sensitivity (TPR, the fraction of true positives in positives) but still

maintains a low false positive rate (FPR, the fraction of false

positives in negatives) at the same time. PPV, the proportion of

predicted positives that are true, provides a way for measuring the

accuracy of an algorithm. We aimed for the predicted positive

interactions to have a high accuracy and low false positive rate

(close to the end of the ‘steeply rising line’). A reasonable threshold

for high-confidence interactions was 0.7 because it corresponded

to an accuracy (PPV) of 0.996, a false positive rate of only 0.001

and coverage on observed positives (TPR) of 0.32 (Table S3).

Additionally, we aimed for the predicted negative interactions to

have a high prediction accuracy (NPV, NPV= TN/(TN+FN), the

proportion of predicted negatives that are true) and reasonable

coverage on observed negatives (specificity, 1-FPR). The cutoff for

this prediction of high-quality negatives was 0.1, corresponding to

a prediction accuracy of 0.859 and specificity of 0.69 (Table S3).

Based on the three cutoffs (0.2 for the Youden index, and 0.7

and 0.1 for the other indexes) chosen above, the HRSS (MAX)

values for the BP ontology in yeast, using all GO annotations, were

divided into four groups with high confidence (H, 0.7#HRSS#1),

medium-high confidence (MH, 0.2#HRSS,0.7), medium-low

confidence (ML, 0.1#HRSS,0.2) and low confidence (L,

0#HRSS,0.1) (Table 2). The HRSS values of CC ontology in

yeast could also be split to four groups: high confidence (H,

0.5#HRSS#1), medium-high confidence (MH, 0.2#HRSS,0.5),

medium-low confidence (ML, 0.1#HRSS,0.2) and low confi-

dence (L, 0#HRSS,0.1) (Table 2, Table S3). Similar HRSS

thresholds were chosen for human (Table 2, Table S4).

Assessing functional similarity between human-mouse
orthologs
In general, the notion that one-to-one orthologs are functionally

similar holds well, although there are notable cases of major

differences in the functions of orthologs at greater evolutionary

distances, particularly across the primary kingdom divides [42].

Mouse is commonly used as a model organism for studying human

biology and disease [43]. Therefore, we investigated the perfor-

mance of different semantic similarity methods on the degree of

functional conservation in human-mouse one-to-one orthologs (see

Materials and Methods). Resnik showed the highest functional

similarity of the ‘true’ orthologos in all datasets because it alone

does not produce normalized scores. HRSS with BMA showed a

fairly low functional similarity (histograms in Figure 3, Table S5),

whereas HRSS with MAX produced a functional similarity similar

to that of simGIC, simUI and TCSS (histograms in Figure S4,

Table S5).

Table 1. Area under the ROC curves (AUCs) for the human
PPI dataset.

Including IEA Excluding IEA

BP CC MF BP CC MF

HRSS MAX 0.91 0.84 0.78 0.90 0.85 0.78

BMA 0.90 0.83 0.77 0.89 0.83 0.76

TCSS MAX 0.90 0.83 0.77 0.90 0.84 0.77

Resnik MAX 0.91 0.83 0.78 0.90 0.84 0.77

BMA 0.89 0.82 0.78 0.88 0.81 0.75

RSS MAX 0.90 0.80 0.76 0.89 0.80 0.80

BMA 0.87 0.75 0.75 0.87 0.74 0.77

simGIC 0.88 0.76 0.73 0.87 0.75 0.73

simUI 0.86 0.73 0.69 0.85 0.72 0.70

Lin MAX 0.80 0.67 0.71 0.83 0.69 0.75

BMA 0.86 0.73 0.77 0.86 0.71 0.77

Jiang MAX 0.80 0.67 0.70 0.82 0.70 0.75

BMA 0.84 0.71 0.77 0.83 0.69 0.76

The tests were carried out separately for BP and CC ontologies. The maximum
(MAX) and best-match average (BMA) strategies were used for datasets
including or excluding the IEA (Inferred from Electronic Annotation) evidence
code. For each group, the top scores are in bold.
doi:10.1371/journal.pone.0066745.t001

Hybrid Relative Specificity Similarity
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To make the functional similarities comparable between

different semantic similarity measures and ontologies, a Z-score

analysis was applied to these one-to-one orthologs for each

measure in each ontology (see Materials and Methods). When

BMA was used, HRSS showed the best performance consistently

(lines in Figure 3, Table S6), followed by the groupwise method,

simGIC. The ASV of HRSS (BMA) for observed orthologs was at

least 861 (BP), 592 (MF) or 423 (CC) standard deviations higher

than the mean values for randomized orthologs. When MAX was

used, simGIC was best for all three ontologies considering all GO

annotations (lines in Figure S4A, Table S7), whereas HRSS

(MAX) was best for MF and CC ontologies after the IEA

annotations have been removed (lines in Figure S4B, Table S7).

BMA and MAX were also compared in evaluating the

functional similarity between orthologs. As listed in Table 3,

BMA performed better than MAX for all pairwise methods. For

example, HRSS (BMA) achieved Z-score that was more than 136

(including IEA) or 47 (excluding IEA) higher than HRSS (MAX)

obtained. Consequently, according to the better performance of

the BMA approach, HRSS was statistically most suitable for

evaluating the functional similarity between human-mouse

orthologs.

Estimating correlation with sequence, Pfam and Enzyme
Commission Class similarities
The evaluation of 13,430 protein pairs using UniProt GO

annotations in all three ontologies was performed based on the

CESSM platform (see Materials and Methods). The BMA was

applied to the pairwise methods (Figure 4 and Figure S5). Both

HRSS and simGIC outperformed the others in sequence similarity

whether IEA annotations were included or not (with a correlation

of approximately 0.8 in BP). HRSS, simGIC and simUI

performed better in Pfam similarity than the others (with a

correlation of approximately 0.6 in MF). The three aforemen-

tioned methods and Resnik showed a similar correlation for ECC

(0.6 in MF, and 0.4 in BP and CC). We also tested the MAX

strategy. HRSS (MAX) showed a poor correlation when IEA

annotations were considered (Figure S6A-C), but was comparable

to the others when IEA annotations were discarded (Figure S6D-

F). Similar to the evaluation of human-mouse orthologs, the two

pairwise rules, BMA and MAX, were compared with each other.

As shown in Figure 5 and Figure S7, the methods using BMA

generally obtained higher correlations. For example, using HRSS

with the MF ontology (including IEA), the correlation with

sequence similarity increased from 0.09 with MAX to 0.66 with

BMA, and the correlation with Pfam similarity increased by 0.46

when BMA was used.

In summary, BMA was more suitable than MAX for the

CESSM platform. Accordingly, HRSS (BMA) and simGIC were

best for correlating with sequence similarity and Pfam similarity,

whereas each of the seven methods gave similar results with the

ECC dataset.

Discussion

We tested the performance of GO-based semantic similarity

measures on the correlation with gene expression using microarray

data from yeast and human. Both Pearson’s and Spearman’s

correlation coefficients between semantic similarity and gene co-

expression were calculated, but poor correlations were obtained

(Figure S8, see Section 3 in Text S1 for detail). To ascertain the

underlying data trends, the expression similarity values had been

transformed by several means. Sevilla et al. averaged the

expression similarity values over uniform semantic similarity

Figure 2. An illustration of choosing the HRSS (MAX) thresh-
olds for positive and negative protein-protein interactions. The
ROC curve for yeast in BP ontology including IEA annotations was taken
as an example. (A) The distribution of the F1-measure and Youden
index with different HRSS values from 0 to 1. The Youden index was
used to choose an HRSS cutoff (the peak indicated by the blue line) that
was able to roughly differentiate between positive and negative protein
interactions. Both the F1-measure and Youden index reach their
maximum values when HRSS is approximately 0.2 in this example. (B)
The ROC curve provides one way to choose the HRSS cutoff for
selecting high-quality positive interactions. The ‘steeply rising line’
(within the blue box) sharply increases sensitivity (TPR) but maintains a
low false positive rate (FPR) at the same time. The point near the end of
the ‘steeply rising line’ has a low false positive rate of predicted protein
interactions.
doi:10.1371/journal.pone.0066745.g002

Table 2. Four groups of HRSS values with different
confidences for positive and negative protein-protein
interactions in BP and CC ontologies.

Species GO L ML MH H

Yeast BP [0, 0.1) [0.1, 0.2) [0.2, 0.7) [0.7, 1]

CC [0, 0.1) [0.1, 0.2) [0.2, 0.5) [0.5, 1]

Human BP [0, 0.1) [0.1, 0.2) [0.2, 0.6) [0.6, 1]

CC [0, 0.1) [0.1, 0.2) [0.2, 0.5) [0.5, 1]

An ROC analysis showed that the HRSS method using the maximum strategy on
GO annotations including IEA code performed best among all methods on
distinguishing true protein interactions from false interactions. Since no one
‘best’ threshold could be obtained directly from the ROC analysis, five indexes,
TPR, FPR, PPV, NPV and the Youden index, were used to determine the
reasonable HRSS cutoffs (in bold) for selecting positive and negative
interactions. Accordingly, the HRSS values were divided into four groups with
low (L), medium-low (ML), medium-high (MH) and high (H) confidences.
doi:10.1371/journal.pone.0066745.t002
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intervals [29]. The averaging procedure dramatically improved

correlation coefficients for the Resnik similarity measure but not

for the Jiang and Lin measures, though the relationship was not

strictly linear. Jain and Bader calculated average gene expression

from Pearson’s correlation using Figher’s z transformation, and

found that TCSS rather than Resnik produced the highest

correlation [23]. Poor correlations were obtained using the ‘raw’

Pearson’s correlation values. However, the relationship between

gene expression and GO annotation may be inflated by the

averaging procedures, which indicates that the correlations

between GO semantic similarity and gene co-expression are

sensitive to the data and procedures used.

Two commonly used pairwise strategies, the maximum and

best-match average, were chosen based on node- and edge-based

semantic similarity methods to evaluate the functional similarity

between two gene products. In general, the BMA approach was a

better choice than MAX for estimating the functional conservation

of orthologs (Table 3), and evaluating correlations with sequence,

domain and ECC similarities (Figure 5, Figure S7). The MAX

strategy which considers the best match among all term pairs of

two gene products, could be potentially adversely affected by

incorrect annotations or the noise along with the IEA annotations

[33]. This may explain why HRSS (MAX) showed poor and

sometimes unstable performance including IEA annotations in the

evaluation based on human-mouse orthologs (Figure S4A and

Table S7) and CESSM platform (Figure S6A and B in MF

ontology). The MAX strategy could assess if two gene products

share a similar function, but underestimates their dissimilarity. As

Figure 3. Statistical significance of system for evaluating the functional similarity (BMA) of human-mouse orthologs. The evaluation
system was based for the BP, CC and MF ontologies (A) including or (B) excluding IEA annotations. The histograms (measured on the left y-axis)
indicate the mean and standard error of the functional similarities of observed orthologs, and the lines (measured on the right y-axis) show the Z-
score values calculated from the ASVs of observed orthologous pairs and randomized pairs (see Materials and Methods). HRSS achieved the highest
Z-score in all cases. Error bars indicate one standard error.
doi:10.1371/journal.pone.0066745.g003

Table 3. Comparison of two pairwise strategies, MAX and
BMA, on estimating the functional conservation between
human-mouse orthologs using Z-score analysis.

Including IEA Excluding IEA

BP CC MF BP CC MF

HRSS 815.28 136.27 345.35 329.13 47.26 180.37

Resnik 94.43 57.75 67.31 51.75 6.03 37.55

Jiang 250.30 105.12 145.45 196.93 55.78 62.00

Lin 160.04 92.19 124.88 106.04 50.85 49.37

RSS 99.84 52.58 93.95 42.95 22.01 37.65

The difference between the two approaches was measured by the Z-score of
the BMA approach minus the Z-score of MAX. This table showed a higher
functional conservation of human-mouse orthologs statistically using the BMA
approach.
doi:10.1371/journal.pone.0066745.t003
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a result, the MAX approach is not suitable for assessing the global

functional similarity of two gene products. The BMA strategy

considered all term pairs of two gene products but only the best

matching for each gene product. Overall, this strategy is better

than MAX [11]. However, the conclusion was reversed when

predicting positive protein-protein interactions (Table 1, Table

S2), consistent with the results of Jain and Bader [23]. The

conclusion is reasonable because two physically interacting

proteins need to participate in a similar biological process (share

similar or identical BP terms) and to locate in a same cellular

component (share similar or identical CC terms) only once.

GO annotations were grouped into two main classes. Some

were assigned by expert curators based on experimental evidences

or other evidences such as sequence similarity, structural similarity

and genomic context, and others were inferred electronically (IEA)

without individual curator supervision. A large portion of gene

annotations fall into the electronically inferred class. In our study,

IEA annotations comprised 49% of the GO annotations in yeast

and human, and the percentage in the UniProt GO annotation

database (released in October 2012) was almost 99% of

110,275,783 total annotations. Interestingly, the percentages of

proteins that have only IEA annotations vary among different

annotation corpora, with zero occurring in yeast, 65% in human

and 99% in UniProt. IEA annotations were widely considered

unreliable, so they were assigned a lower weight or were

disregarded in many studies. A recent study comprehensively

evaluated the quality of the IEA annotations based on UniProt

GO annotations in terms of reliability, coverage and specificity

measures [44]. It concluded that the electronic annotations were

significantly improved in recent years, and that the reliability of

electronic annotations now rivals that of non-experimentally

curated annotations. We have consistently observed that the

addition of IEA annotations either led to a higher Z-score for

statistically estimating the functional similarity between human-

mouse orthologs (using the BMA pairwise strategy) (Tables S6), or

did not change the results of both correlating with the CESSM

dataset (using BMA) (Figure 4 and Figures S5) and inferring

protein-protein interactions (using MAX) (Table 1 and Table S2).

Figure 4. Correlation between semantic similarity (BMA) and
the CESSM dataset (including IEA). CESSM displays the data of (A)
sequence, (B) Pfam and (C) ECC similarities. The evaluation was carried
out for UniProt protein pairs from the CESSM database in the BP, CC
and MF ontologies.
doi:10.1371/journal.pone.0066745.g004

Figure 5. Comparison of two pairwise strategies, BMA and
MAX, on correlation with CESSM dataset (including IEA). The
CESSM dataset shows the similarity of (A) sequence, (B) Pfam and (C)
ECC for UniProt protein pairs. The difference between the two
strategies was measured by the correlation coefficient of the BMA
strategy minus that of MAX.
doi:10.1371/journal.pone.0066745.g005
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Therefore, IEA annotations are useful in general, especially for

large-scale studies as suggested by Guzzi et al. [33].

There are two major caveats of our method. First, the IC of a

term is normally calculated from the annotation information,

which is the number of genes annotated with the term and its

descendants in a corpus, and is thus referred to as a ‘corpus-based’

metric. An alternative approach to estimate the IC of GO terms is

based on the GO structure itself, such as those in Teng et al. and

Seco et al. [27,45], although this type of approach is less

commonly used. The semantic similarity methods that use the

corpus-based metric have the following inherent limitations: (i)

Using the corpus-based IC risks bias towards the topics that have

been more thoroughly studied. The annotation information of a

term in a particular corpus is dependent on the studies of the

annotated genes. Therefore, in some cases IC does not reflect the

biological specificity of the term [33]. This phenomenon of corpus

bias cannot be resolved. (ii) There are a number of terms (29%,

30% and 26% of GO terms in BP, CC and MF ontologies,

respectively, in UniProt annotation corpus released in October

2012) and their descendants that have no annotation information.

The IC of these terms cannot be obtained, leading to an issue of

calculating semantic similarity scores involving the unannotated

terms. This problem has no influence on calculating the semantic

similarity between pairs of genes in an annotation corpus,

however. (iii) The IC score for the same term changes as the

knowledge in a specific annotation corpus changes over time and

also varies across different annotation corpora. Therefore, the

semantic similarity scores between term pairs or gene pairs need to

be constantly updated.

Second, only a single common ancestor, the MICA, was used in

our methods. In fact, GO terms can have several disjunctive

common ancestors (DCAs), all of which contribute to various

degrees to the semantic similarity of the terms. To effectively

explore the multiple inheritance relationships present in GO,

Couto et al. designed the GraSM approach, which replaces the IC

of the MICA with the average IC of all DCAs [21], and recently

proposed DiShIn [22] to update GraSM. The shared IC obtained

through DiShIn was shown to improve the correlation of the

semantic similarity measures with sequence similarity [22]. It will

be useful to adopt DiShIn to HRSS in the future by replacing the

MICA with DiShIn and by modifying the definition of component

c as the average or maximum local distance between the two terms

and their DCAs.

In summary, we presented a new GO-based semantic similarity

method, HRSS, which is an improved version of the edge-based

measure RSS [4]. Based on the framework of the RSS algorithm,

we adopted the concept of information content and updated two

components (a and b) of RSS (Figure 1A). Thus, like RSS, HRSS

not only considered the specificity of the most informative

common ancestor of the two relevant terms (component aIC),

but also comprehensively included the generality of the two terms

(component bIC) and their local similarity relative to the most

informative ancestor (converted from component c) (Figure 1B).

Different performances for semantic similarity measures have been

reported under different circumstances: Resnik, simGIC and

TCSS are often identified as the best measures [33]. In our study,

the performance of HRSS on different biological issues was

assessed independently against other methods. HRSS (BMA) was

the most suitable measure for evaluating the functional conserva-

tion of human-mouse orthologs. For inferring high-quality positive

and negative protein-protein interactions, HRSS was slightly

superior to Resnik and TCSS in CC ontology and performed

similarly to them in BP ontology. Using the CESSM platform,

both HRSS (BMA) and simGIC were best at correlating with

sequence similarity and Pfam similarity, and all of the methods gave

nearly similar results for correlating with ECC similarity. RSS, Jiang

and Lin performed poorly in general. As an edge-based measure,

RSS relies only on the intrinsic structure of the GO DAG, causing

some problems (see Introduction). Jiang and Lin only assess the two

terms with interest relative to their common ancestor, and therefore

neglect the specificity of the terms in the GO DAG. Furthermore,

we used several indexes (the Youden index, TPR, FPR, PPV and

NPV) of the ROC plots to simply choose the thresholds for high-

quality positive and negative protein-protein interactions. Based on

the thresholds, the HRSS values were divided into four groups with

high confidence (H), medium-high confidence (MH), medium-low

confidence (ML) and low confidence (L) (Table 2). Although the

method to define the thresholds is not completely objective, we hope

the thresholds chosen are useful for predicting high-quality positive

and negative protein-protein interactions or assessing the confi-

dence of interactions using HRSS.

Supporting Information

Figure S1 ROC curves comparing different methods
based on the human protein-protein interaction datasets
(including IEA).The evaluation was carried out for the BP and CC

ontologies. The (A and B) maximum (MAX) and (C and D) best-

match average (BMA) pairwise rules were used in the ROC analysis.

(PDF)

Figure S2 ROC curves comparing different semantic
similarity methods based on yeast protein-protein
interaction datasets (including IEA). The evaluation was

done for the BP and CC ontologies. The (A and B) MAX and (C
and D) BMA pairwise rules were applied.

(PDF)

Figure S3 Distributions of the positive and negative
interacting protein pairs with various HRSS (MAX)
values. HRSS was calculated for (A and B) yeast and (C and

D) human protein-protein interactions in the gold standard

positive and negative datasets for BP and CC ontologies (including

IEA annotations). The [0,1] interval of HRSS values is equally

divided into 11 categories, which are {[0.16i, 0.16(i+1)),

i=0,1,…,9} plus HRSS= 1.

(PDF)

Figure S4 Statistical significance of system for evaluat-
ing the functional similarity (MAX) of human-mouse
orthologs. The evaluation system was based on BP, CC and MF

ontologies (A) including or (B) excluding IEA annotations. The

histograms (measured on the left y-axis) indicate the mean and

standard error of the functional similarities of observed orthologs,

and the lines (measured on the right y-axis) show the Z-score

values calculated from the ASVs of observed orthologous pairs and

randomized pairs (see Materials and Methods). Error bars indicate

one standard error.

(PDF)

Figure S5 Correlation between semantic similarity
(BMA) and the CESSM dataset (excluding IEA). CESSM
displays the data of (A) sequence, (B) Pfam and (C) ECC

similarities.

(PDF)

Figure S6 Correlation between semantic similarity
(MAX) and the CESSM dataset (including and excluding
IEA). CESSM holds the data of (A and D) sequence, (B and E)
Pfam and (C and F) ECC similarities.

(PDF)
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Figure S7 Comparison of two pairwise strategies, MAX
and BMA, on correlation with CESSM dataset (excluding
IEA). The CESSM dataset shows the similarity of (A) sequence,
(B) Pfam and (C) ECC for UniProt protein pairs. The difference

between the two strategies was measured by the correlation

coefficient of the BMA strategy minus that of MAX.

(PDF)

Figure S8 Correlation between semantic similarity and
gene expression similarity. The (A and B) BMA and (C and

D) MAX pairwise strategies were used. The evaluation based on

the BP and MF ontologies (including IEA) was carried out for

human and yeast, independently.

(PDF)

Table S1 The sizes of gold standard positive and
negative interaction datasets used for ROC analysis in
human and yeast.
(PDF)

Table S2 Area under the ROC curves (AUCs) for the
yeast PPI dataset.
(PDF)

Table S3 Indexes used for evaluating the performance
of HRSS (MAX) on scoring protein-protein interactions
in yeast.
(PDF)

Table S4 Indexes used for evaluating the performance
of HRSS (MAX) on scoring protein-protein interactions
in human.
(PDF)

Table S5 Summary of the functional similarities of

observed human-mouse orthologs calculated by various

semantic similarity methods (including IEA).

(PDF)

Table S6 Z-score analysis of various semantic similar-

ity methods (BMA) for estimating the functional simi-

larity among human-mouse orthologs.

(PDF)

Table S7 Z-score analysis of various semantic similar-

ity methods (MAX) for estimating the functional simi-

larity among human-mouse orthologs.

(PDF)

Text S1 Describes additional details of the semantic

similarity methods used in this study, as well as

additional information regarding the correlation be-

tween semantic similarities and gene co-expression.

(PDF)
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