
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 11, NOVEMBER 1999 1529

Improving the Observability and Controllability
of Datapaths for Emulation-Based Debugging

Darko Kirovski, Miodrag Potkonjak, and Lisa M. Guerra

Abstract—Growing design complexity has made functional
debugging of application-specific integrated circuits crucial to
their development. Two widely used debugging techniques are
simulation and emulation. Design simulation provides good con-
trollability and observability of the variables in a design, but is
two to ten orders of magnitude slower than the fabricated design.
Design emulation and fabrication provide high execution speed,
but significantly restrict design observability and controllability.

To facilitate debugging, and in particular error diagnosis, we
introduce a novel cut-based functional debugging paradigm that
leverages the advantages of both emulation and simulation. The
approach enables the user to run long test sequences in emulation,
and upon error detection, roll-back to an arbitrary instance in
execution time, and transparently switch over to simulation-based
debugging for full design visibility and controllability. The new
debugging approach introduces several optimization problems.
We formulate the optimization tasks, establish their complexity,
and develop most-constrained least-constraining heuristics to
solve them. The effectiveness of the new approach and accompa-
nying algorithms is demonstrated on a set of benchmark designs
where combined emulation and simulation is enabled with low
hardware overhead.

Index Terms—Application-specific integrated circuit (ASIC)
debugging, emulation, fast prototyping, maximum feedback set,
simulation.

I. INTRODUCTION

T HE KEY technological and application trends, mainly
related to increasingly reduced design observability and

controllability, indicate that the cost and time expenses of
debugging follow sharply ascending trajectories. Two most
directly related factors are rapid growth in the number of
transistors per pin and increased level of hardware sharing. The
analysis of physical data for state-of-the-art microprocessors
(according tothe Microprocessor Report) indicates that in less
than two years (from late 1994 to mid 1996) the number of
transistors per pin increased by more than a factor of two, from
slightly more than 7000 to 14 100 transistors per pin. At the
same time, the size of an average embedded or digital signal
processing (DSP) application has been approximately doubling
each year, the time to market has been getting shorter for each
new product generation, and there has been a strong market
need for user customization of application-specific systems.
Together, these factors have resulted in shorter available

Manuscript received July 30, 1998; revised May 7, 1999. This paper was
recommended by Associate Editor R. Camposano.

D. Kirovski and M. Potkonjak are with the Computer Science Depart-
ment, University of California, Los Angeles, CA 90095 USA (e-mail:
darko@cs.ucla.edu).

L. M. Guerra is with Conexant Systems Inc., Newport Beach, CA 92658-
8902 USA.

Publisher Item Identifier S 0278-0070(99)09467-1.

debugging time for increasingly complex designs. Finally,
design and computer-aided design (CAD) trends that addition-
ally emphasize the importance of debugging include design
reuse, introduction of system software layer, and increased
importance of collaborative design. These factors result in
increasingly intricate functional errors, often due to interaction
of parts of designs written by several designers.

Such technology and design trends indicate that functional
verification emerges as a dominant step with respect to time
and cost in the development process. The difficulty of verifying
designs is likely to worsen in the future. The Intel development
strategy team foresees that a major design concern for their
year-2006 microprocessor will be the need to exhaustively
test all possible computational and compatibility combinations
[20]. Traditional approaches, such as design emulation and
simulation, are becoming increasingly inefficient to address
system debugging needs. Design emulation—implemented on
arrays of rapidly prototyping modules [field programmable
gate arrays (FPGA’s)] or specialized hardware—is fast, but
due to strict pin limitations, provides limited and cumbersome
design controllability and observability. Simulation—software
model of the design at an arbitrary level of accuracy—has the
required controllability and observability, but is, depending on
the modeling accuracy, two to ten orders of magnitude slower
than emulation [18], [21].

The novel ideas proposed in this work advocate the de-
velopment of a new paradigm for debugging and design-for-
debugging of application-specific integrated circuits (ASIC’s).
The new debugging technique integrates design emulation
and simulation, in a way that the advantages of the two are
combined, while the disadvantages are eliminated.

The functional debugging process, depicted in Fig. 1, in-
cludes four standard debugging procedures: test input genera-
tion and execution, error detection, error diagnosis, and error
correction. Long test sequences are run in emulation. Upon
error detection, the computation is migrated to the simulation
tool for full design visibility and controllability. To explain
how execution is transferred from one execution domain to
another, we introduce the notion of acomplete cut. A complete
cut is a subset of variables that fully determines the design state
at an arbitrary time instance. The ability to read/write the state
of a particular cut from/to the design is enabled by insert-
ing register-to-port interconnects and appropriate scheduling
statements into the initial design specification. The design
techniques developed to enable migration of the execution are
applied as a design post-processing step and, thus, can be used
in conjunction with existing or future synthesis systems or
manual design approaches.

0278–0070/99$10.00 1999 IEEE

1530 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 11, NOVEMBER 1999

Fig. 1. The new concept of functional debugging. The running design
periodically outputs the cut state, which is stored in a database. Any one
of these states can be used to initialize, and then continue execution with
preserved functional and timing accuracy.

The running design (simulation or emulation) periodically
outputs the cut state. These states are saved by a monitoring
workstation. When a transition to the alternate domain is
desired, any one of the previously saved states can be used
to initialize, and then continue execution in simulation or
emulation with preserved functional and timing accuracy.
Once the error is localized and characterized in the error
diagnosis step, the emulator is updated or built-in fault
tolerance mechanisms are activated.

The new debugging approach introduces a number of opti-
mization problems involved in the design-for-debugging post-
processing phase. The developed set of optimization methods
aims to add minimum hardware overhead and still provide
efficient integration of the two functional testing domains. The
applied algorithms are constructed using the most-constrained
least-constraining heuristic methodology. The efficiency of the
developed algorithms is tested on a set of real-life exam-
ples, where combined simulation and emulation debugging is
provided with exceptionally low implementation overhead.

The diagnosis approach and accompanying optimization
issues are illustrated using a fifth-order continued fraction in-
finite impulse response (IIR) filter. Fig. 2(a) shows the control
data flow graph for this filter. In Fig. 2(b), the assignment and
scheduling of the same computation structure is depicted for
an architecture that consists of one multiplier, one adder, and
six registers.

The goal of the design-for-debugging step is to allocate
minimal hardware resources that enable the cut state to be
observed and controlled. The primary requirement of this
design post-processing for debugging is to avoid changing
the existing design allocation, assignment, and scheduling. In
order to avoid addition of new input–output (I/O) ports, the
cut should be scheduled for transfer at control steps when the
states of input and output variables are not imported/exported
(in this example, control steps 1–11). For controllability,
during loading of the cut state, the value of each variable in the
cut should be written before its first usage. For observability,

during export of the cut, the state of each variable in the cut
should be read before the value of the same variable for the
next computation iteration or another variable will overwrite
it. An integral part of any complete cut is the primary input
and output of the system.

A trivial candidate for a subset of variables, which
constitutes a computation complete cut, is

[dotted lines in Fig. 2(b)]. The state
of the cut and the input completely defines the state of a partic-
ular iteration of the depicted computation. Hence, a particular
cut state along with a correspondingly synchronized input
sequence can be used to restart the computation correctly on an
execution engine. A possible set of control steps at which the
cut state can be input is . Since all vari-
ables in are concurrently alive, they must be stored in five
different registers. The designer requires access to read/write
into these registers from the designated I/O pins. Since the cut
is stored in five registers, five register-to-I/O connections have
to be allocated to enable cut observability and controllability.

As a lower overhead alternative, consider the cut consisting
of the output variables of additions , , , , and

[bold lines in Fig. 2(b)]. Only one register () is
required to hold the values of these variables since they are
not alive simultaneously. In this case only one register-to-port
connection is dedicated to the register that holds the cut. Cut
dispensing is performed in five consecutive control steps: 2–6.

II. BACKGROUND

State-of-the-art tools for system debugging have primarily
concentrated on enhancing the performance of software sim-
ulation models and the design visibility in emulation, rather
than trying to provide methods for their synergy. VHDL or
Verilog register transfer (RT)-level simulation environments
are capable of performing error tracing and timing analysis1

and simulation backtracking2.
Hardware emulators have been developed as early as 1979

[3], and have been under further development ever since
[15]. Modern reconfigurable systems for physical emulation
of electronic circuits include a data entry workstation where
a user may input data representing the circuit configuration.
This data is converted to a form suitable for programming an
array of programmable gate elements provided with a richly
interconnected architecture.3

The observability and controllability of variables in such
systems is a great challenge for emulator developers. The
developed approaches are inefficient, expensive, or both. A
common approach uses the expensive, low-bandwidth, and
intrusive Joint Test Action Group (JTAG) boundary scan
methodology [14]. The most advanced application of JTAG
circuitry has been introduced in the industry’s first solution
for run-time target application-host data exchange (RTDX) by
Texas Instruments [19]. Software developers use C or DSP
assembly code to address an internal data exchange library,

1http://www.interrainc.com/htmls/ver2/picasso.html.
2http://www.synopsys.com/products/simulation/simulation.html.
3FPGA-based emulation systems have been developed by a number of com-

panies. including: Quickturn, http://www.quickturn.com/products/cobalt.htm;
Ikos, http://www.ikos.com; and Axis http://www.axiscorp.com/.

KIROVSKI et al.: OBSERVABILITY AND CONTROLLABILITY OF DATAPATHS FOR EMULATION-BASED DEBUGGING 1531

Fig. 2. Optimal cut example: (a) control data flow graph (CDFG) and (b) allocated, assigned, and scheduled CDFG for the fifth-order CF IIR filter. (b)
Depicts two cuts:C1 = fIN; D1; D2; D3; D4; D5g with dotted edges andC2 = fIN; A2; A4; A6; A8; A10g with bold edges.

which in turn makes use of a scan-based emulator to move
data on and off chip via the JTAG serial test bus.

Design controllability and observability can be obtained
also by addressing user-customized SRAM memory cells
(Quickturn Cobalt) or by probing nets into the FPGA testbed
(Quickturn System Realizer, Mentor Graphics SimExpress4).
While the former case raises expenses, the latter reduces
visibility performance and continuity (e.g., 6048 probes are
available in Synopsys SimExpress; 1024 selected signals over
4 million cycles can be stored in internal buffers of Mentor
Graphics Celaro).

Novel challenges in system debugging are streamlined to-
ward partitioning the system execution in software and hard-
ware (Quickturn Q/Bridge and Axis Corporation), verification
of emulation hardware with respect to the targeted function-
ality and timing [12], and signal reconstruction for increased
visibility and reduced emulation bandwidth demands [13].

A. Computation and Hardware Model

Two main, often contradictory, criteria for evaluation of
system and behavioral synthesis models of computations are
expressiveness [6] and suitability for optimization. While high
expressiveness implies wider application domain, suitability
for optimization often implies efficient implementation. For
the sake of conceptual simplicity, in this work, we target the

4http://www.mentorg.com/codesign/main-f/index.htm.

synchronous data flow (SDF) model of computation [2]. This
computation model is often used to facilitate optimization-
intensive compilation for ASIC platforms (filtering, frequency
transforms, wavelet computation structures, error-correction
coding, encryption, etc.) [17]. Modern single-chip applica-
tions (for example, MPEG audio/video encoding/decoding, or
wireless communication protocols and data transfer) are by
default not developed based only on the SDF computation
model. However, most of the subfunctions [discrete cosine
transfer (DCT) and fast Fourier transform (FFT)] transforms,
Huffman coding, etc.) in such applications can be modeled
using the SDF computation model. The computation, that does
not follow the SDF model, can be abstracted using the semi-
infinite stream random-access machine (SISRAM) model. The
SISRAM model is created by removing a requirement for
algorithm termination from the standard RAM model [1].

It is important to stress that the cut-based debugging ap-
proach is not limited to a specific computation model. How-
ever, for each computation model, a cut definition has to be
established to satisfy the generic concept of a cut: a cut at
time is defined as a subset of variables from which any
other variable computed after can be computed. A cut defi-
nition for the SISRAM computation model has been presented
elsewhere [11]. In this manuscript, we describe cut selection
for ASIC’s that are synthesized using CDFG’s—defined in
Section IV-A). This simplification is assumed because of
three reasons: brevity, availability of synthesis tools, and the

1532 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 11, NOVEMBER 1999

fact that the SDF computation model corresponds to many
data-intensive multimedia, communications, and wireless ap-
plications. In our experiments, we used Silage [17] as a
specification language for the ASIC implementation.

We assume fully deterministic behavior of hardware and
a continuous semi-infinite operation mode (not necessarily
periodic). We do not impose any restriction on the interconnect
scheme of the assumed hardware model at the register-transfer
level. Registers may or may not be grouped into register files.
Each hardware resource can be connected in an arbitrary way
to other hardware resources. We do not impose any restrictions
on the number of pipeline stages of the employed functional
units.

The design is fully specified and its functionality and
realization is not disturbed by the debugging process, with
the exception of enabling the user to write into specific con-
trollable registers. In a fully specified design each operation,
variable, and data transfer is scheduled and assigned to a
particular instance of hardware resource in one or more control
steps. In order to support debugging, we allocate additional
debugging hardware to satisfy all debugging requirements.
The goal is, of course, to add as little hardware as possible.
In particular, we do not allow increase in the number of I/O
pins, since this is a constraint that dominates other hardware
constraints in modern designs.

III. T HE NEW APPROACH—CUT-BASED

INTEGRATED DEBUGGING

The key idea behind the cut-based approach for the
integration of simulation and emulation is to leverage on the
strong aspects of each of the functional execution domains.
The resulting debugging technique provides fast, observable,
and controllable functional execution. The essence of the
idea is the establishment of the concept of a complete cut.
A complete cut of a computation represents a subset of
variables sufficient to correctly continue the computation
regardless of the values of variables that are not part of the
cut, i.e., all variables in the computation that are not part of
the cut can be recomputed using only the cut variables. The
full system state is a straightforward example of a state of a
complete cut. However, a complete cut may be substantially
smaller than the system state. Clearly, if one has complete
controllability and observability over the state of all variables
in the complete cut for a specific breakpoint, the computation
can be continued functionally correctly from that breakpoint.
A cut contains the complete information about the history of
the computation process and its primary inputs until a given
point in time (breakpoint). For the sake of brevity, from
now on when we say cut, we mean a complete cut.

Our cut-based functional debugging approach is conducted
using the following three phases of the design and debugging
process.

• Design post-processing:

a) Phase 1:Defining the cut from the RT-level design
specification.

b) Phase 2:Augmentation of the design specification
with cut statements which support controllability and

observability when the design is executed in a debug
mode.

• Debugging process:

a) Phase 3:Simultaneous and coordinated design exe-
cution of the fabricated or emulated design and the
appropriate simulator for efficient debugging.

In the first phase, a computation iteration at the behavioral-
level of specification is logically partitioned into two or
more components such that the cut between the partitions is
complete. The synthesis support for exchange of information
between simulation and emulation has the following three
degrees of design freedom.

• the determination of variables which form the cut;
• the determination of the exact control step when the state

of a particular variable is read or replaced by a user
specified state;

• the assignment of specific sets of I/O pins used to transfer
variable states to or from the chip.

It is important to notice the optimization tradeoff involved
in finding the optimal cut. The optimization procedure has
a unique goal: to add minimum hardware resources into
the initial design, while obtaining its full controllability and
observability. A cut with a minimum number of variables
seems to be an attractive solution. If those variables are
simultaneously alive, more registers that hold the variables
of the cut-set have to be provided with register-to-I/O pin
interconnects. Therefore, a favorable cut is the one which
consists of variables with long disjoint life-times and has the
property that a small number of machine registers contain the
cut variables.

Once an optimal cut is found, the next design problem is
to define the sequence of control steps in which the variables
are dispensed out of the chip. The freedom of transferring
the cut state is limited due to the control steps when the I/O
pins are busy. Due to lack of idle cycles, in some cases, all
variables of the cut cannot be transferred over the I/O pins
of the emulator. One straightforward solution to this problem
is to allocate near-minimal buffer to hold the unscheduled
variables. Potkonjak, Dey, and Wakabayashi have utilized the
concepts of pipelining debugging variables for improving their
scheduling and assignment freedom and use of I/O buffers
for improving resource utilization of I/O pins [16]. They do
not search for a complete cut of a computation. Instead, they
derive provably optimal bounds for the maximum cardinality
of the set of controllable and observable variables for a given
design specification. Most importantly, they have developed
a nongreedy heuristic minimization algorithm for I/O buffer
allocation, which can be successfully used in the cut-based
debugging framework.

In the second phase of the synthesis approach, the original
design specification is augmented with additional resources
that enable design observability and controllability. For exam-
ple, the following input operation is incorporated to provide
complete controllability of variable Varusing user specified
input variable Input: if (DEBUG) then Var Input in the
case of pipelined functional units, their pipeline latches are
not subject to inclusion into cuts. However, for programmable

KIROVSKI et al.: OBSERVABILITY AND CONTROLLABILITY OF DATAPATHS FOR EMULATION-BASED DEBUGGING 1533

platforms with states inaccessible by instructions (pipeline,
branch predictors) and memory hierarchies, the problem of
outputting the machine cut state becomes a time-lengthy
process and is addressed in [11]. The hardware/software code-
sign platform presented in [11] encapsulates a complex envi-
ronment with a set of programmable cores, a number of ASIC
accelerators, and a memory hierarchy.

IV. SYNTHESIS FOR DEBUGGING

In this section, we overview the key optimization problems
involved in integrating debugging resources into a design spec-
ification for full controllability and observability. We present
a set of techniques that add minimal hardware resources to
a given design specification in order to achieve the design-
for-debugging objectives. The determination and integration
of inserted debugging resources is performed by the following
sequence of tasks.

First, the optimal cut is selected based on the analysis of
the computation control data flow graph (CDFG). The goal
is to identify a subset of variables that represent a CDFG
cut, such that all variables in the set are stored in minimal
number of registers. In addition, the computation graph and
timing bounds have to allow all variables in the cut-set to
be output from the chip through a designated set of I/O pins
within a single or multiple computation iterations. This task
is explained in detail in Section IV-B. Section IV-C describes
the algorithm that searches for an optimal scheduling of cut-
set variables with respect to control steps at which a subset of
available I/O ports is idle. Finally, the algorithm presented in
Section IV-D finds the minimal cardinality set of register-to-
port interconnects that enables scheduling the cut-set variables
to available ports. After cut-set variables are assigned and
scheduled, the initial specification is updated with the set of
resources that enable cut-set I/O. The chip is then ready to be
fabricated or emulated.

A. Background Definitions

Before we present the formal description of the encountered
problems and developed algorithms, we introduce a set of
definitions that build the formal foundation for our debug-
ging methodology. ACDFG of a computation iteration is
a directed graph OUT with four types
of vertices: data operations , primary inputs , primary
outputs OUT, and state delays ; and data precedence edges

. Eachdata precedence edgehas a singlesourceand a single
sink vertex. Primary inputscan be used only as sources to
edges. Aprimary outputcan be used only as a sink of one
edge. Eachdata operation has at least one incoming and
at least one outgoing data precedence edge. All edges with a
common source represent thevariable generated using
data operation . Each operation is labeledwith an
integer that specifies the number of control steps required
to execute operation . State delaysare used to distinguish
the computation state between two consecutive iterations. Each
state delay can be a sink to only one edge.

The assumed CDFG definition can be easily extended with
the following two types of control edges: 1) weighted edges

can representcontrol precedenceinformation (for example, if
two operations are connected with a control precedence edge
weighted , then the execution of the source operation trails
the execution of the sink operation for control steps) [17]
and 2) control edges can be used to createloop andif-then-else
macro constructs as presented in [5]. Since the design-for-
debugging process is performed after the RT-level synthesis
and, thus, after the operation scheduling, the control edges of
type 1) do not impose constraints on the presented debugging
methodology. The selected cuts partition all trajectories in the
control flow induced by edges of type 2).

According to the allocated resources and data and control
dependencies, during the behavioral design process, the CDFG
is scheduled and assigned to the allocated hardware resources
such that it can be executed in a particular number of control
steps. The lower bound in the number of control steps required
for execution on functional units is equivalent to the
critical path of the CDFG, i.e., largest sum of operation labels
along a path from a state delay in computation iterationto a
state delay in the next successive computation iteration .

Definition 1: A schedule of variable in a CDFG is
determined by the control step when is created and
the control steps , when is used for the first and
last times, respectively.

Definition 2: A register assignment of variable in a
CDFG is a -to-1 mapping to a register from
the set of all registers in the ASIC.

Definition 3: Read life-time of variable stored in register
begins at the control step when variableis created until

the control step when variable is overwritten by another
variable or the next iteration value for .

Definition 4: Write life-time of variable stored in register
starts at the control step when variableis computed and

ends at the control step when variableis used for the first
time.

Definition 5: A port is a set of I/O pins. When variable
is assigned to port , then is output or input in its entirety

through port in one control step.
An example of a scheduled and assigned CDFG and the

accompanying definitions are depicted using Fig. 3. Registers
that store the variables are , , and . Exact clock cycles
when operations are executed are also depicted. For example,
the last control step, when variable stored in is used, is

. Since no variable is stored in after until , it is
said that the read life-time of the variable stored inspreads
over the entire iteration. Write life-time of a variable can be
observed on the example of variable stored in. This vari-
able is computed at control step and used for the first time
in the next consecutive control step. Hence, its write life-time
includes only the control step . There are no restrictions
imposed on the type of data operations. Since we target de-
bugging designs at the behavioral level, we consider operations
such as addition, subtraction, multiplication, and division.

B. Cut Selection

In this Section, we introduce two definitions of a cut of
an SDF computation and present effective algorithms for cut

1534 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 11, NOVEMBER 1999

Fig. 3. An example of a scheduled and assigned control data flow graph and the accompanying definitions. Primary inputs and outputs, state delays, data
operations, data precedence edges, register assignment, variable write life-time, and a complete cut example are illustrated.

selection and allocation of hardware resources that enable I/O
of the cut state. The two different cut definitions enable ex-
ploration of certain tradeoffs in the cut-selection process. The
first definition of a cut imposes a limitation that all contained
variables must be selected from a single computation iteration.
The second definition relaxes this requirement by enabling
the search for a cut-set to be conducted among variables in
several consecutive computation iterations. While cuts which
obey the first definition require smaller trace capturing devices
and induce lower computation initiation start-up times, the cuts
formed according to the second definition frequently require
less hardware resources.

Definition 1—Single Iteration Complete Cut:A complete
cut is a set of variables generated within one computation
iteration that cuts all possible paths in the computation.

Therefore, the goal of the cut-set search algorithm is to,
given a computation control data flow graph, find a register
subset of minimal cardinality that stores all the variables
of at least one complete cut. Before we commence with
the algorithm description, note that only observability-related
algorithms will be presented. The algorithms that support
controllability are identical with the exception that write life-
times are used in place of read life-times. If the designer
desires to use the same cut for observing and controlling
the computation, then the cut should be determined by the
controllable version of the proposed algorithms.

The initial problem formulation is determined using the
standard Garey–Johnson format [7].

PROBLEM—Optimal Cut-Set for Debugging:
INSTANCE: Given a control data flow graph with read life-

times of its variables, variable-to-register assignments,ports,
set of control steps when each port is busy, and integer.

QUESTION: Is there a subset of variablessuch that each
path in the control data flow graph CDFG contains at least
one variable , the cardinality of the set of registers that
contains each variable equals , and there exists such
schedule that each variable can be output through
ports at control steps not included in?

The NP-completeness of this problem can be proven by
restriction to the FEEDBACK ARC SET problem (GT8, [7,
p. 192]). The restriction is made by assuming that no hardware
sharing is possible, i.e., each variablein the CDFG is stored

Fig. 4. Pseudocode for the cut search algorithm.

in a separate register . Since even the problem of proving
whether an arbitrary set of variables represents a CDFG cut
is of polynomial linear complexity, we transform the problem
into a computationally less demanding task and apply problem
partitioning and most-constrained least-constraining heuristics
as the fundamental approach to search the transformed solution
space. The pseudocode of the developed algorithm is presented
in Fig. 4.

The developed algorithm constructs the solution based on
the analysis of the input-sensitive (ISG) representation of the
original CDFG. The ISG is built from the CDFG according to
the pseudocode in Fig. 5. The idea behind this transformation
is to create a graph-like structure which enables fast check
whether a subset of variables is a cut. Each node in the ISG
represents an operation from the CDFG, contains a single
output that represents the output variable of that operation, and
contains a number of inputs which represent the operands. A
cut of a computation is a selection of node outputs which cov-
ers all inputs of all nodes. An important step in the algorithm
is the input-sensitive transitive closure operation which builds
the dependencies between operations, i.e., nodes in the ISG.
This operation is described using the pseudocode in Fig. 6. An
example ISG, which corresponds to the CDFG illustrated in
Fig. 3, is shown in Fig. 8. The dotted edges are added while
applying the input-sensitive transitive closure procedure.

Using the definition of scheduled and assigned ISG, the
initial problem can be reformulated into the following standard
Garey–Johnson format.

PROBLEM—Optimal Input Dominating Set of an ISG:
INSTANCE: ISG with read life-times of its variables,

variable-to-register assignments, ports, associated set
of control steps when each port is busy, and integer.

QUESTION: Is there an input dominating set of variables
such that each input is covered with at least one variable

in , the cardinality of the set of registers that contains all

KIROVSKI et al.: OBSERVABILITY AND CONTROLLABILITY OF DATAPATHS FOR EMULATION-BASED DEBUGGING 1535

Fig. 5. Construct_ISG(CDFG)—input-sensitive graph construction pseudocode.

Fig. 6. Input_Sensitive_Transitive_Closure(ISG, CDFG).

Fig. 7. Input_Sensitive_Dominating_Set(ISG).

variables from equals , and there exists a schedule such
that all variables in can be output through ports at control
steps not included in ?

The NP-completeness of this problem can be proved by
reduction to the GRAPH DOMINATING SET problem (GT2,
[7, p. 190]). The restriction simplifies the ISG in such a way
that each node has only one input and each variable ISG
is stored in a dedicated register .

We developed a novel heuristic algorithm for this problem.
The pseudocode of the proposed heuristic technique is pre-
sented in Fig. 7. The algorithm generates a large number of
candidate node subsets which have the property of being cuts.
Although, the cuts are generated probabilistically uniformly
with respect to the search time, the most-constrained least-
constraining objective function that evaluates the candidate
cut-sets is run-time dependent. In the beginning, the algorithm

favors most-constrained solutions with few storing registers.
As the search progresses, the cost dominating factor becomes
the cumulative length of read life-times of all selected vari-
ables (such variables are least-constraining). At that point
variables with nonoverlapping read life-times are also favored.
This approach enables more assignment freedom for the final
variable-to-port scheduling.

The main disadvantage of defining a cut according tothe
first definition is the fact that it does not have the flexibility
of outputting a computation cut over a consecutive span of
computation iterations. The following technique of selecting a
computation cut enables this property and reduces the amount
of hardware resources augmented for cut I/O.

Definition 2—Multiple Iteration Complete Cut:A complete
cut is a subset of variables which bisects all cyclic paths in
the control data flow graph of a computation.

1536 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 11, NOVEMBER 1999

Fig. 8. Example of an ISG which corresponds to the CDFG shown in Fig. 3.
Each node corresponds to a data operationNi in the original CDFG and
has a set of inputs which correspond to the operands ofNi. The edges in
the graph are either inherited from the original CDFG or created using the
input-sensitive transitive closure procedure.

The targeted optimization problem of finding a cut which
is contained in minimal number of registers and a schedule
according to which all variables of the cut can be output, can
be defined using the standard Garey–Johnson format.
PROBLEM—Optimal Cut-Set for Debugging (II):

INSTANCE: Given a control data flow graph with read life-
times of its variables, variable-to-register assignments,ports,
associated set of control steps when each port is busy, and
integer .

QUESTION: Is there a subset of variables, such that
when removed from the CDFG leaves no directed cycles in
the CDFG, the cardinality of the set of registers that contains
all variables from equals , and there exists such schedule
that each variable can be output through ports at
control steps not included in?

The specified problem is an NP-complete problem since
there is an one-to-one mapping between the special case of this
problem, when all operations in the computation are executed
exactly the same number of times, and the FEEDBACK ARC
SET problem (GT8, [7, p. 192]). The developed heuristic algo-
rithm for this problem is summarized using the pseudocode in
Fig. 9. The heuristic starts by logically partitioning the graph
into a set of strongly connected components (SCC’s) using the
depth-first search algorithm [1]. This algorithm has complexity

, where is the number of vertices and is the
number of edges in a graph. All trivial SCC’s which contain
exactly one vertex are deleted from the resulting set since they
do not form cycles. Then, the algorithm iteratively performs
several processing steps on each of the nontrivial SCC’s.

At the beginning of each iteration, to reduce the solution
search space, a graph compaction step is performed. In this
step each path that contains only vertices ,

with exactly one variable input is replaced with a
new edge which connects the source and destination

and represents an arbitrary selected edge (variable) of the

same path. For each edge, a list of registers that store the
compacted variables is maintained.

In the next step, an objective function decides which node
(variable) in the current set of SCC’s is to be deleted. The
function analyzes, for the deletion of each vertex, the cardi-
nality of the newly created set of SCC’s, the registers that are
storing the variables in these SCC’s, the length of the read life-
times of variables in the SCC’s, and the vertex cardinalities of
the new set of SCC’s. The vertex that results in the smallest
objective function is deleted from the set of nodes as well as all
adjacent edges. The deleted vertex is added to the resulting cut-
set. The process of graph compaction, candidate node deletion
evaluation, node deletion, and graph updating is repeated while
the set of nontrivial SCC’s in the graph is not empty. The set
of nodes (variables) deleted from the computation represents
the final cut-set selection.

Consider the example shown in Fig. 10. The CDFG of the
third-order Gray–Markel ladder IIR filter, shown in Fig. 11,
has only one nontrivial SCC. The graph compaction step is
explained using Fig. 10(a)–(c). Initially, vertex is merged
with vertex , which imposes variable to be merged with
variable . Next, the shaded nodes in Fig. 10(b) are merged
as well as the corresponding variables. The node compaction
process results in a SCC presented in Fig. 10(c). Fig. 10(e)
illustrates the resulting set of SCC’s, after nodeis deleted
from the SCC depicted in Fig. 10(d).

Finally, let’s compare the cuts retrieved according to the two
different definitions on the example of a Gray–Markel ladder
filter. In Fig. 11, the variables of a cut-set that corresponds to
the first definition are represented as bold dotted lines. In order
to define a single iteration, the output variables of adders,

, and stored in registers , , and , respectively,
are output as a cut. Such a set of variables fully determines
the state of the machine.

Consider the cut that corresponds to the second definition. It
contains three variables: the outputs of adders, , and ,
all stored in register . This subset of variables bisects all
cyclic paths in the CDFG; by deleting the edges in the CDFG
which represent these variables, all cyclic paths are removed.
In order to use these variables in restarting verification, cut
values from three consecutive iterations are required before
the machine state is correctly restored.

C. Variable Scheduling

The design has to be able to output all variables in the
cut-set through a limited number of I/O ports within a single
or multiple computation iterations. Since the procedure which
checks whether this is achievable is invoked every time a
candidate cut-set is found, we propose a most-constrained
least-constraining heuristic technique to quickly provide an
answer to this question. If the answer is positive, a search for
the minimal cardinality set of register-to-port interconnects is
performed. The interconnects are such that cut-set variables
can be output through the ports at idle control steps. In this
Section we present the algorithm for the first subproblem. The
problem can be formulated using the following format.

KIROVSKI et al.: OBSERVABILITY AND CONTROLLABILITY OF DATAPATHS FOR EMULATION-BASED DEBUGGING 1537

Fig. 9. Pseudocode for optimal cut-set for debugging (II) search.

Fig. 10. Finding the cut-set of the third-order Gray–Markel ladder IIR filter. Subfigures (a)–(c) demonstrate the node merger procedure. Subfigures (d)–(e)
illustrate the removal of a node from the set of SCC’s and its inclusion in the set of selected cut variables.

1538 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 11, NOVEMBER 1999

Fig. 11. (a) The unscheduled and (b) scheduled and assigned control data flow of a third-order Gray–Markel ladder filter.

Fig. 12. Pseudocode for the cut-set output scheduling heuristic.

PROBLEM—Output Scheduling of a Set of Variables in a
CDFG:

INSTANCE: Set of variables , each with its read life-time,
ports and associated setof control steps when each port

is busy.
QUESTION: Is there a schedule such that all variables can

be output through ports at control steps not included in?
The NP-completeness of this problem is proved by restric-

tion to the SEQUENCING WITH RELEASE TIMES AND
DEADLINES problem (SS1, [7, p. 236]). The restriction is
imposed by selecting only those variables inthat are not in
the set of state (delay) variables. The heuristic developed
for this problem schedules variables using a greedy strategy.
First, the constraint of each control step in the scheduled
and assigned CDFG is calculated as the number of
variables being read-alive during that control step. For each
variable its constraint is computed as a sum of ,

where is in the set of control steps when is read alive.
Consequently, the most constrained variable is assigned to
the least constraining control step. The process of computing
constraints and scheduling variables to distinct control steps
is iterated until all variables in the cut-set are not output
scheduled. Pseudocode of the proposed most-constrained least-
constraining heuristic is presented in Fig. 12.

The algorithm is described using Fig. 13. There are 12
variables in the cut-set, three output ports which are all busy
during control step . The schedule is found using the
described heuristic by sequentially assigning variables to ports
as depicted. First, variables , , and are scheduled to

, and to since they do not have a choice. In the
next step, since all ports are used at, we schedule to

and to . Next, variable is the most-constrained
according to the formula in the pseudocode so we schedule it
to its least-constraining control step . Then and have

KIROVSKI et al.: OBSERVABILITY AND CONTROLLABILITY OF DATAPATHS FOR EMULATION-BASED DEBUGGING 1539

Fig. 13. Example of output scheduling.

Fig. 14. Pseudocode for the variable-to-port scheduling heuristic.

no choice and have to be scheduled at. Finally, , ,
and are scheduled to and according to the already
described principles.

D. Variable-to-Port Scheduling

The second phase of the synthesis for the debugging process
has as an input the selected cut-set from the first phase and the
information about the read life-times of each variable as well
as its storing register. The available number of output ports is
also available. The key design question is to assign each cut-set
variable to a specific output port in such a way that the number
of connections between registers and I/O ports is minimal. We
present the problem in the standard Garey–Johnson format.

PROBLEM—Optimal Output Scheduling of a Set of Vari-
ables in a CDFG for Debugging:

INSTANCE: An ordered set of variables , each with its
read life-time and designated register,ports, associated set

of control steps when each port is busy, and integer.
QUESTION: Is there a schedule such that all variables can

be output from the chip through ports at control steps not
included in , and the cardinality of register-port connections
equals ?

If the optimization demand in the problem is ignored, the
proof that this problem is NP-complete is equivalent to the NP-
completeness proof for the scheduling problem described in
Section IV-C. We have partitioned this problem into two fully
modular optimization subproblems. Initially, register-to-port
assignment is performed such that optimization requirements
are met and variables of the proposed cut-set can be output
through all designated ports. In the second phase, for each

port , all variables assigned to are scheduled for output.
The pseudocode for the combined algorithm is presented in
Fig. 14.

For the assignment problem, the developed heuristic iter-
atively tries to assign as few as possible most-constrained
registers to least-constraining ports such that the final variable-
to-port scheduling is achievable. Objective function that quan-
tifies the constraint of register is given as

Cost
ReadLifeTime

where ReadLifeTime returns the number of control steps
for which is read-alive. Similarly, the objective function
that quantifies the constraint of port is

Cost

ReadLifeTime Assigned
Number of Registers Already Assigned to

where Assigned returns one if is already assigned
to . Otherwise, it returns zero.

In the conducted experiments we used a probabilistic ver-
sion of the described heuristic which iteratively generated
randomized solutions. The solutions were still guided by the
described objective functions augmented with a certain random
offset.

Once registers are assigned to ports, variable-to-port sched-
uling is performed only for variables stored in registers as-

1540 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 11, NOVEMBER 1999

TABLE I
APPLICATION OF THE DESIGN-FOR-DEBUGGING STEP TO A SET OF STANDARD BENCHMARKS FOR ESTIMATION OF HARDWARE OVERHEAD

signed to a single port. This problem is equivalent to the
problem ofmaximum bipartite matching([4, p. 601]) which
can be efficiently solved in polynomial time. A bipartite graph

for each port is constructed. The first partition of
contains a node for each control step in the computation
iteration for which port is not busy. A node in the other
partition is created for each variable assigned to port. Edges
are drawn between each node which represents variable
and all nodes in the first control-step partition associated with
control steps for which is read-alive. To efficiently solve
this problem we use the Ford–Fulkerson method which runs
in , where is the number of vertices and is the
number of edges in graph [4].

The presented algorithm assumes that the required number
of I/O ports is sufficient to enable the I/O of the cut state. Since
this number is often small and not known at design time, we
perform an exhaustive binary search for the smallest number of
I/O ports, which can satisfy the scheduling constraints. This
search is performed as an outer shell to the scheduling and
variable-to-port matching heuristic.

V. EXPERIMENTAL RESULTS

In order to evaluate the developed debugging technique and
accompanying algorithms, we have applied them on several
benchmark designs. The examples were collected from the
following technical manuscripts: eighth-order continued frac-
tion IIR filter, linear GE controller, Volterra filters, long echo
canceler, wavelet filter, modem filter, Motorola C133 filter [8],
[16], [17], and a real-life avionics VTSOL controller [10]. For
all experiments, HYPER was used as a behavioral compiler
to obtain register-transfer level (RTL) implementations [17].
Design-for-debugging analysis was performed to determine
the cuts and the extra hardware overhead needed to support
the proposed debugging technique. Table I, column 1, lists
the set of designs evaluated. For each design, an optimized
(first and second rows) and a nonoptimized version (third and
fourth rows) were used. Additionally, on each version, both
tight and more relaxed performance constraints were assumed.
Optimized versions were obtained by applying scripts for
speed optimizations [9]. Available control step budgets, equal

KIROVSKI et al.: OBSERVABILITY AND CONTROLLABILITY OF DATAPATHS FOR EMULATION-BASED DEBUGGING 1541

to the computation’s critical path and twice that amount, were
used for the tight and more relaxed performance constraints,
respectively.

Table I, columns 3–7, describe the behavioral structure of
the designs in the form of available control steps, critical path,
number of variables, registers used in the RTL implementation,
and computation states. Columns 8–10 and 11–13, display the
structural properties of cuts obtained using the first and second
cut definition, respectively: the number of cut variables, num-
ber of registers used by the cut variables (each of which require
register-to-port connections), and additional ports needed. The
experimental results point to the advantage of selecting compu-
tation cuts according to the second definition for designs which
do not have large numbers of strongly connected components
because of smaller cut-set cardinalities. This advantage comes
at the expense of longer startup sequences during computation
initialization. For example, in order to initialize correctly the
computation for all design cases of the Motorola C-133 filter,
its cut variable (according to the second cut definition) has
to be input/output throughout 133 consecutive computation
iterations. In the attempt to input/output the cut in a single
iteration, 67 (or in the extremely constrained case, 133)
different variables have to be transferred through the I/O pins
of the ASIC.

In 21 out of 80 cases, the available I/O ports were sufficient
to support full observability and controllability. For example,
the nonoptimized modem filter shown in row 9 used two
registers and required no extra ports to support its 12 variable
cut. However, in several cases, extra ports were needed to
obtain a design implementation, which was enabled for cut-
based debugging. Extra ports were needed only for the highly
optimized designs with exceptionally high sampling rates. In
particular, the optimized wavelet filter and digital-to-analog
converter have cuts of 15 and 76 variables, respectively. To
support the required I/O of these variables, an additional 15
and 18 ports, respectively, were needed, since existing ports
were already fully utilized for I/O of the primary input and
output. It is important to stress, that such design constraints
are rarely imposed on the behavioral compilers.

VI. CONCLUSION

The run-time of a design simulation results in several orders
of magnitude slower functional execution with respect to em-
ulation or fabrication. Design emulation and implementation
significantly restrict design controllability and observability
during functional debugging. We introduce a new cut-based
functional debugging paradigm which integrates design emu-
lation and simulation in such a way that advantages of both
domains are fully utilized and result in a design approach
which enables fast debugging with complete observability and
controllability. We have identified the associated optimization
synthesis tasks, established their computational complexity,
and developed most-constrained least-constraining heuristics
to solve them. The experimental results clearly indicate the
power of the approach and new debugging tool on a number
of real-life design examples with minimal hardware overhead.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman,Data Structures and
Algorithms. Reading, MA: Addison-Wesley, 1983.

[2] S. S. Bhattacharyya and E. A. Lee, “Scheduling synchronous dataflow
graphs for efficient looping,”J. VLSI Signal Processing,vol. 6, no. 3,
pp. 271–288, 1993.

[3] J. Cocke, R. L. Malm, and J. J. Shedletsky, “Logic simulation machine,”
U.S. Patent 4 306 286, issued 1981.

[4] T. H. Cormen, C. E. Leisserson, and R. L. Rivest,Introduction to
Algorithms. Cambridge, MA: MIT Press, 1990.

[5] G. De Micheli, Synthesis and Optimization of Digital Circuits.New
York: McGraw-Hill, 1994.

[6] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli,
Design of embedded systems: Formal models, validation, and synthesis,
Proc. IEEE,vol. 85, pp. 366–390, Mar. 1997.

[7] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness.San Francisco, CA: Freeman, 1979.

[8] L. Guerra, M. Potkonjak, and J. Rabaey, “High level synthesis for
reconfigurable datapath structures,” inProc. Int. Conf. Computer-Aided
Design,1993, pp. 26–29.

[9] I. Hong, D. Kirovski, and M. Potkonjak, “Potential-driven statistical
ordering of transformation,” inProc. Design Automation Conf.,1997,
pp. 347–352.

[10] R. A. Hyde and K. Glover, “The application of scheduledHj1
controllers to a VSTOL aircraft,”IEEE Trans Automat. Contr.,vol. 38,
pp. 1021–1039, July 1993.

[11] D. Kirovski, M. Potkonjak, and L. M. Guerra, “Functional debugging
of systems-on-chip,” inProc. Int. Conf. Computer-Aided Design,1998,
pp. 525–528.

[12] D. L. Liu, J.-T. Li, T. B. Huang, and K. S. K. Choi, “Method and
apparatus for debugging reconfigurable emulation systems,” U.S. Patent
5 425 036, issued 1995.

[13] J. Marantz, “Enhanced visibility and performance in functional verifi-
cation by reconstruction,” inProc. Design Automation Conf.,1998, pp.
164–169.

[14] C. Maunder, “JTAG, the Joint Test Action Group,”Inst. Elect. Eng.
Colloquium New Ideas in Testing,pp. 6/1–6/4, 1986.

[15] M. Poret and J. McKinley, “In-circuit emulator,” U.S. Patent 4 674 089,
issued 1987.

[16] M. Potkonjak, S. Dey, and K. Wakabayashi, “Design-for-debugging of
application specific designs,” inProc. Int. Conf. Computer-Aided Design,
1995, pp. 295–301.

[17] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast prototyping of
datapath-intensive architectures,”IEEE Design Test Comput.,vol. 8, pp.
40–51, June 1991.

[18] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta, “Complete
computer system simulation: The SimOS approach,”IEEE Parallel
Distributed Technol.: Syst. Applicat.,vol. 3, no. 4, pp. 34–43, winter
1995.

[19] G. L. Swoboda, M. D. Daniels, and J. A. Coomes, “Emulation devices,
systems and methods utilizing state machines,” U.S. Patent 5 329 471,
issued 1994.

[20] A. Yu, “The future of microprocessors,”IEEE Micro,vol. 16, pp. 46–53,
Dec. 1996.

[21] V. Zivojnovic and H. Meyr, “Compiled HW/SW co-simulation,” in
Proc. Design Automation Conf.,1996, pp. 690–695.

Darko Kirovski , for a biography, see p. 1326 of the September 1999 issue
of this TRANSACTIONS.

Miodrag Potlonjak , for a biography, see p. 1326 of the September 1999
issue of this TRANSACTIONS.

Lisa M. Guerra received th B.S. degree in electrical engineering from
Stanford University, Stanford, CA, in 1990 and the Ph.D. degree in electrical
engineering and computer science from the University of California at
Berkeley in 1996.

Since 1996, she worked for several years on system design methodologies
and system-on-chip verification at Conexant Systems, Newport Beach, CA.
She is currently a Software Startup Engineer. She holds one U.S. patent.

Dr. Guerra was an AT&T Bell Labs and an Office of Naval Research
scholar.

