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Improving the Observability and Controllability
of Datapaths for Emulation-Based Debugging

Darko Kirovski, Miodrag Potkonjak, and Lisa M. Guerra

Abstract—Growing design complexity has made functional debugging time for increasingly complex designs. Finally,
debugging of application-specific integrated circuits crucial to design and computer-aided design (CAD) trends that addition-
their development. Two widely used debugging techniques are ally emphasize the importance of debugging include design

simulation and emulation. Design simulation provides good con- introducti f t ft | di d
trollability and observability of the variables in a design, but is reuse, Iintroduction or system software layer, and increase

two to ten orders of magnitude slower than the fabricated design. importance of collaborative design. These factors result in
Design emulation and fabrication provide high execution speed, increasingly intricate functional errors, often due to interaction
but significantly restrict design observability and controllability.  of parts of designs written by several designers.

_To facilitate debugging, and in particular error diagnosis, we — g,0h technology and design trends indicate that functional
introduce a novel cut-based functional debugging paradigm that P . . .
leverages the advantages of both emulation and simulation. The Verification emerges as a dominant step with respect to time
approach enables the user to run long test sequences in emulation,and cost in the development process. The difficulty of verifying
and upon error detection, roll-back to an arbitrary instance in  designs is likely to worsen in the future. The Intel development
execution time, and transparently switch over to simulation-based strategy team foresees that a major design concern for their

debugging for full design visibility and controllability. The new v o5. 5006 microprocessor will be the need to exhaustively
debugging approach introduces several optimization problems.

We formulate the optimization tasks, establish their complexity, (€St all possible computational and compatibility combinations
and develop most-constrained least-constraining heuristics to [20]. Traditional approaches, such as design emulation and
solve them. The effectiveness of the new approach and accompasimulation, are becoming increasingly inefficient to address
nying algorithms is demonstrated on a set of benchmark designs gystem debugging needs. Design emulation—implemented on

\r/]vhere combined emulation and simulation is enabled with low arrays of rapidly prototyping modules [field programmable

ardware overhead. . .

gate arrays (FPGA'’s)] or specialized hardware—is fast, but

Index Terms—Application-specific integrated circuit (ASIC)  dye to strict pin limitations, provides limited and cumbersome

g%ﬂlg%g'r?l’ emulation, fast prototyping, maximum feedback set, yoqi0n controllability and observability. Simulation—software
model of the design at an arbitrary level of accuracy—has the

required controllability and observability, but is, depending on

I. INTRODUCTION the modeling accuracy, two to ten orders of magnitude slower

HE KEY technological and application trends, mainifhan emulation [18], [21].
T related to increasingly reduced design observability and The novel ideas proposed in this work advocate the de-
controllability, indicate that the cost and time expenses ¥glopment of a new paradigm for debugging and design-for-
debugging follow sharply ascending trajectories. Two mo8gbugging of application-specific integrated circuits (ASIC's).
directly related factors are rapid growth in the number dfhe new debugging technique integrates design emulation
transistors per pin and increased level of hardware sharing. it simulation, in a way that the advantages of the two are
analysis of physical data for state-of-the-art microprocessé@mbined, while the disadvantages are eliminated.
(according tathe Microprocessor Repdrindicates that in less ~ The functional debugging process, depicted in Fig. 1, in-
than two years (from late 1994 to mid 1996) the number &fudes four standard debugging procedures: test input genera-
transistors per pin increased by more than a factor of two, frd#gn and execution, error detection, error diagnosis, and error
slightly more than 7000 to 14 100 transistors per pin. At tHeorrection. Long test sequences are run in emulation. Upon
same time, the size of an average embedded or digital sigREPr detection, the computation is migrated to the simulation
processing (DSP) application has been approximately doublﬁ%ﬂ for full design visibility and controllability. To explain
each year, the time to market has been getting shorter for eV execution is transferred from one execution domain to
new product generation, and there has been a strong mag@@ther, we introduce the notion otamplete cutA complete
need for user customization of application-specific systenflt is a subset of variables that fully determines the design state

Together, these factors have resulted in shorter availaBliean arbitrary time instance. The ability to read/write the state
of a particular cut from/to the design is enabled by insert-
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FUNCTIONAL DEBUGGING during export of the cut, the state of each varlablg in the cut
should be read before the value of the same variable for the
Test Vector generation and execution next computation iteration or another variable will overwrite
it. An integral part of any complete cut is the primary input
Error detection and output of the system.
A trivial candidate for a subset of variables, which
ERROR DIAGNOSIS constitutes a computation complete cut, i€ =

{D1, D2, D3, D4, D5} [dotted lines in Fig. 2(b)]. The state
of the cut and the input completely defines the state of a partic-
i ular iteration of the depicted computation. Hence, a particular
Observability and e Fast functional cut state along with a correspondingly synchronized input
controllability 4 execution sequence can be used to restart the computation correctly on an
execution engine. A possible set of control steps at which the
cut state can be input €5=1{1, 2, 3, 4, 5}. Since all vari-
ables inC are concurrently alive, they must be stored in five
different registers. The designer requires access to read/write
Fig. 1. The new concept of functional debugging. The running designto these registers from the designated I/O pins. Since the cut
periodically outputs the cut state, which is stored in a database. Any %estored in five registers, five register-to-l/O connections have
of these states can be used to initialize, and then continue execution with " L
preserved functional and timing accuracy. to be allocated to enable cut observability and controllability.
As a lower overhead alternative, consider the cut consisting

The running design (simulation or emulation) periodicall¢f the output variables of additiond2, A4, A6, A8, and
outputs the cut state. These states are saved by a monitorit§ [00ld lines in Fig. 2(b)]. Only one registerkg) is
workstation. When a transition to the alternate domain {§duired to hold the values of these variables since they are

desired, any one of the previously saved states can be uf@ alivg simultangously. In this case only one register-to-port
to initialize, and then continue execution in simulation oﬁ:pnnectlon is dedicated to the register that holds the cut. Cut

emulation with preserved functional and timing accurac;g.'Spensmg is performed in five consecutive control steps: 2—6.

Once the error is localized and characterized in the error
diagnosis step, the emulator is updated or built-in fault
tolerance mechanisms are activated. State-of-the-art tools for system debugging have primarily
The new debugging approach introduces a number of optbncentrated on enhancing the performance of software sim-
mization problems involved in the design-for-debugging postlation models and the design visibility in emulation, rather
processing phase. The developed set of optimization methdlaign trying to provide methods for their synergy. VHDL or
aims to add minimum hardware overhead and still providéerilog register transfer (RT)-level simulation environments
efficient integration of the two functional testing domains. Thare capable of performing error tracing and timing analysis
applied algorithms are constructed using the most-constrair@itfl simulation backtrackifg
least-constraining heuristic methodology. The efficiency of the Hardware emulators have been developed as early as 1979
developed algorithms is tested on a set of real-life exarddl, and have been under further development ever since
ples, where combined simulation and emulation debugginglipl- Modern reconfigurable systems for physical emulation
provided with exceptionally low implementation overhead. of electronic circuits include a data entry workstation where
The diagnosis approach and accompanying optimizati@nUSer may input data representing the circuit configulration.
issues are illustrated using a fifth-order continued fraction ifis data is converted to a form suitable for programming an
finite impulse response (IIR) filter. Fig. 2(a) shows the contr@T@y of programmable gate elements provided with a richly

data flow graph for this filter. In Fig. 2(b), the assignment arlgt€rconnected architectufe.

scheduling of the same computation structure is depicted forThe ob_servablhty and controllability of variables in such
tems is a great challenge for emulator developers. The

an architecture that consists of one multiplier, one adder, ant® S . )
six registers. developed approaches are |neff|C|ent_, expensive, or both. A
The goal of the design-for-debugging step is to allocaf@™mMon ap.proach uses the expensive, low-bandwidth, and
9 9 99ing b FBguswe Joint Test Action Group (JTAG) boundary scan

minimal hardware resources that.enable the. cut state to mSthodology [14]. The most advanced application of JTAG
observed and controlled. The primary requirement of this ™. . ) . e :
. ) 7 . .clrcuitry has been introduced in the industry’s first solution
design post-processing for debugging is to avoid changi . L
L . . . . run-time target application-host data exchange (RTDX) by
the existing design allocation, assignment, and scheduling.-In

order to avoid addition of new input—output (I/O) ports, th exas Instruments [19]. Software developers use C or DSP
b P ports, %ssembly code to address an internal data exchange library,

cut should be scheduled for transfer at control steps when the

states of input and output variables are not imported/exporte@httpi//WWW-'me"a'nc-com/htm'S/VEFZ{P'085$0-N{“'- _

(in this example, control steps 1_11). For controllability, 3http.//www.synopsys_.com/products/&mulatlon/5|mulat|on.html.

during loading of the cut state. the value of each variable in t FPGA-based emulation systems have been developed by a number of com-

uring loading ) (R _.lagnies. including: Quickturn, http://www.quickturn.com/products/cobalt.htm;
cut should be written before its first usage. For observabilitikps, http://www.ikos.com; and Axis http://www.axiscorp.com/.

SIMULATION < — EMULATION

Error correction

Il. BACKGROUND
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a) Control data flow graph of a fifth
order continuous fraction infinite
impulse response CF IR filter.

b) Assigned, allocated, and scheduled H ; H
control data flow graph IOU'IJ IDI 1 IDZ | ID3 I Tpal Ips?

Fig. 2. Optimal cut example: (a) control data flow graph (CDFG) and (b) allocated, assigned, and scheduled CDFG for the fifth-order CF IIR filter. (b)
Depicts two cutsC1 = {IN, D1, D2, D3, D4, D5} with dotted edges and’2 = {IN, A2, A4, AG, A8, A10} with bold edges.

which in turn makes use of a scan-based emulator to mosynchronous data flow (SDF) model of computation [2]. This
data on and off chip via the JTAG serial test bus. computation model is often used to facilitate optimization-
Design controllability and observability can be obtainethtensive compilation for ASIC platforms (filtering, frequency
also by addressing user-customized SRAM memory cetlansforms, wavelet computation structures, error-correction
(Quickturn Cobalt) or by probing nets into the FPGA testbecbding, encryption, etc.) [17]. Modern single-chip applica-
(Quickturn System Realizer, Mentor Graphics SimExphesstions (for example, MPEG audio/video encoding/decoding, or
While the former case raises expenses, the latter reduegreless communication protocols and data transfer) are by
visibility performance and continuity (e.g., 6048 probes amefault not developed based only on the SDF computation
available in Synopsys SimExpress; 1024 selected signals omwasdel. However, most of the subfunctions [discrete cosine
4 million cycles can be stored in internal buffers of Mentotransfer (DCT) and fast Fourier transform (FFT)] transforms,
Graphics Celaro). Huffman coding, etc.) in such applications can be modeled
Novel challenges in system debugging are streamlined igsing the SDF computation model. The computation, that does
ward partitioning the system execution in software and hardet follow the SDF model, can be abstracted using the semi-
ware (Quickturn Q/Bridge and Axis Corporation), verificationinfinite stream random-access machine (SISRAM) model. The
of emulation hardware with respect to the targeted functio®ISRAM model is created by removing a requirement for
ality and timing [12], and signal reconstruction for increaseglgorithm termination from the standard RAM model [1].
visibility and reduced emulation bandwidth demands [13]. It is important to stress that the cut-based debugging ap-
proach is not limited to a specific computation model. How-
A. Computation and Hardware Model ever, for each computation model, a cut definition has to be

Two main, often contradictory, criteria for evaluation ofStaPlished to satisfy the generic concept of a cut: a cut at

system and behavioral synthesis models of computations Afa 7' is defined as a subset of variables from which any
expressiveness [6] and suitability for optimization. While higRther variable computed aftdr can be computed. A cut defi-

expressiveness implies wider application domain, suitabilifion for the SISRAM computation model has been presented
for optimization often implies efficient implementation. Fofisewhere [11]. In this manuscript, we describe cut selection

the sake of conceptual simplicity, in this work, we target thif" ASIC's that are synthesized using CDFG's—defined in
Section IV-A). This simplification is assumed because of

“http://www.mentorg.com/codesign/main-flindex.htm. three reasons: brevity, availability of synthesis tools, and the
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fact that the SDF computation model corresponds to many observability when the design is executed in a debug

data-intensive multimedia, communications, and wireless ap- mode.

plications. In our experiments, we used Silage [17] as a. Debugging process:

specification language for the ASIC implementation. a) Phase 3:Simultaneous and coordinated design exe-
We assume fully deterministic behavior of hardware and cution of the fabricated or emulated design and the

a continuous semi-infinite operation mode (not necessarily appropriate simulator for efficient debugging.

eriodic). We do not impose any restriction on the interconnect i o . .
b ) b y In the first phase, a computation iteration at the behavioral-

scheme of the assumed hardware model at the register—traaner e . . )
vel of specification is logically partitioned into two or

level. Registers may or may not be grouped into register files, g .
Each hardware resource can be connected in an arbitrary Waye components such that the cut between the .partltlon.s IS
plete. The synthesis support for exchange of information

to other hardware resources. We do not impose any restricti 2 imulati q lation has the following th
on the number of pipeline stages of the employed function Foveen simulation and emulation has the following three

units. egrees of design freedom.

The design is fully specified and its functionality and * the determination of variables which form the cut;
realization is not disturbed by the debugging process, with® the determination of the exact control step when the state
the exception of enabling the user to write into specific con-  Of a.particular variable is read or replaced by a user
trollable registers. In a fully specified design each operation, SPecified state;
variable, and data transfer is scheduled and assigned to & the assignment of specific sets of I/O pins used to transfer
particular instance of hardware resource in one or more control Variable states to or from the chip.
steps. In order to support debugging, we allocate additionallt is important to notice the optimization tradeoff involved
debugging hardware to satisfy all debugging requirements. finding the optimal cut. The optimization procedure has
The goal is, of course, to add as little hardware as possibde.unique goal: to add minimum hardware resources into
In particular, we do not allow increase in the number of I/@he initial design, while obtaining its full controllability and
pins, since this is a constraint that dominates other hardwalgservability. A cut with a minimum number of variables
constraints in modern designs. seems to be an attractive solution. If those variables are
simultaneously alive, more registers that hold the variables
of the cut-set have to be provided with register-to-1/O pin
interconnects. Therefore, a favorable cut is the one which
consists of variables with long disjoint life-times and has the

The key idea behind the cut-based approach for thgoperty that a small number of machine registers contain the
integration of simulation and emulation is to leverage on thgt variables.
strong aspects of each of the functional execution domainsonce an optimal cut is found, the next design problem is
The resulting debugging technique provides fast, observalilg.gefine the sequence of control steps in which the variables
and controllable functional execution. The essence of thge dispensed out of the chip. The freedom of transferring
idea is the establishment of the concept of a complete Ciffe cut state is limited due to the control steps when the 1/O
A complete cut of a computation represents a subset §hs are busy. Due to lack of idle cycles, in some cases, all
variables sufficient to correctly continue the computatiofariaples of the cut cannot be transferred over the I/O pins
regardless of the values of variables that are not part of §ethe emulator. One straightforward solution to this problem
cut, i.e., all variables in the computation that are not part of o gllocate near-minimal buffer to hold the unscheduled
the cut can be recomputed using only the cut variables. Thgriaples. Potkonjak, Dey, and Wakabayashi have utilized the
full system state is a straightforward example of a state (_)fc%ncepts of pipelining debugging variables for improving their
complete cut. However, a complete cut may be substantiadyhequling and assignment freedom and use of /O buffers
smaller than the system state. Clearly, if one has complgf improving resource utilization of /O pins [16]. They do
controllability and observability over the state of all variable§qt search for a complete cut of a computation. Instead, they
in the complete cut for a specific breakpoint, the computatiouye provably optimal bounds for the maximum cardinality
can be continued functionally correctly from that breakpoings the set of controllable and observable variables for a given
A cut contains the complete information about the history Qfesign specification. Most importantly, they have developed
the computation process and its primary inputs until & give[ingngreedy heuristic minimization algorithm for /O buffer
point in time (breakpoint). For the sake of brevity, fromyiocation, which can be successfully used in the cut-based
now on when we say _cut, we mean a complete gut. debugging framework.

Our cut-based functional debugging approach is conducteqy, the second phase of the synthesis approach, the original
using the following three phases of the design and debuggifigsign specification is augmented with additional resources

I1l. THE NEwW APPROACH—CUT-BASED
INTEGRATED DEBUGGING

process. . that enable design observability and controllability. For exam-
* Design post-processing: ple, the following input operation is incorporated to provide
a) Phase 1:Defining the cut from the RT-level designcomplete controllability of variable Varusing user specified
specification. input variable Input: if (DEBUG) then Var; = Input, in the

b) Phase 2:Augmentation of the design specificatiorcase of pipelined functional units, their pipeline latches are
with cut statements which support controllability anehot subject to inclusion into cuts. However, for programmable
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platforms with states inaccessible by instructions (pipelinean representontrol precedencéenformation (for example, if
branch predictors) and memory hierarchies, the problem t@fo operations are connected with a control precedence edge
outputting the machine cut state becomes a time-lengtiwightediV, then the execution of the source operation trails
process and is addressed in [11]. The hardware/software cothe- execution of the sink operation féF control steps) [17]
sign platform presented in [11] encapsulates a complex enaid 2) control edges can be used to créate andif-then-else
ronment with a set of programmable cores, a number of ASiacro constructs as presented in [5]. Since the design-for-
accelerators, and a memory hierarchy. debugging process is performed after the RT-level synthesis
and, thus, after the operation scheduling, the control edges of
type 1) do not impose constraints on the presented debugging

) ) ] o methodology. The selected cuts partition all trajectories in the
In this section, we overview the key optimization problemsynirol flow induced by edges of type 2).

involved in integrating debugging resources into a design SpeCaccording to the allocated resources and data and control

ification for fuIIl controllability anq pbservability. We presentyenendencies, during the behavioral design process, the CDFG

a set of techniques that add minimal hardware resourcesidQcheduled and assigned to the allocated hardware resources

a given design specification in order to achieve the desigejch that it can be executed in a particular number of control

for-debugging objectives. The determination and integratiQqaps. The lower bound in the number of control steps required

of inserted debugging resources is performed by the followifg; execution on|N| functional units is equivalent to the

sequence of ta§ks. . . critical path of the CDFG, i.e., largest sum of operation labels
First, the o_ptlmal cut is selected based on the analysis élf)ng a path from a state delay in computation iteratiem a

the computation control data flow graph (CDFG). The g0gjate delay in the next successive computation iteratipr.

is to identify a subset of variables that represent a CDFGpefinition 1: A schedule of variableV; in a CDFG is

cut, such that all variables in the set are stored in minimgLtermined by the control stef*®t whenV; is created and

number of registers. In addition, the computation graph apgy control stepgf™, C1** whenV; is used for the first and
timing bounds have to allow all variables in the cut-set tRct times respecz:tively.z

be output from the chip through a designated set of I/O pinspefinition 2: A register assignment of variabl®; in a
within a single or multiple computation iterations. This taskprg is am-to-1 mappingV; — R, to a registerR; from
is explained in detail in Section 1V-B. Section IV-C describeg,o setR; € R of all registers in the ASIC.

the algorithm that searches for an optimal scheduling of cutpefinition 3: Read life-time of variablé; stored in register

set variables with respect to control steps at which a SUbsetIbeegins at the control step when variableis created until

available I/O ports is idle. Finally, the algorithm presented ifho control step when variablg; is overwritten by another
Section IV-D finds the minimal cardinality set of regiSter'tOVariabler or the next iteration value fo¥;.

port interconnects that enables scheduling the cut-set variableg ofinition 4: Write life-time of variableV; stored in register

to available ports. After cut-set variables are assigned apdsiarts at the control step when variablgis computed and

scheduled, the initial specification is updated with the set gf,4s at the control step when variablgis used for the first
resources that enable cut-set I/0. The chip is then ready topge

IV. SYNTHESIS FOR DEBUGGING

fabricated or emulated. Definition 5: A port is a set ofK I/0O pins. When variable
o V' is assigned to porP, thenV is output or input in its entirety
A. Background Definitions through portP in one control step.

Before we present the formal description of the encounteredAn example of a scheduled and assigned CDFG and the
problems and developed algorithms, we introduce a set &companying definitions are depicted using Fig. 3. Registers
definitions that build the formal foundation for our debugthat store the variables afel, k2, andR3. Exact clock cycles
ging methodology. ACDFG of a computation iteratior is When operations are executed are also depicted. For example,
a directed graphG(N, PI, POUT, D, E) with four types the last control step, when variable storedAn is used, is
of vertices: data Operationyi primary inputsPL primary C1. Since no variable is stored iR1 after C1 until C3, itis
outputsPOUT, and state delay®; and data precedence edge§aid that the read life-time of the variable storediih spreads
F. Eachdata precedence edgms a Singigourceand a Singie over the entire iteration. Write life-time of a variable can be
sink vertex. Primary inputscan be used only as sources t@®bserved on the example of variable storedii This vari-
edges. Aprimary outputcan be used only as a sink of oneble is computed at control stefil and used for the first time
edge_ Eacldata operation_]\fi has at least one incoming andn the next consecutive control step. Hence, its write life-time
at least one outgoing data precedence edge. All edges witi@udes only the control step’l. There are no restrictions
common sourceV; represent theariable V; generated using imposed on the type of data operations. Since we target de-
data operationV;. Each operationV; € N is labeledwith an bugging designs at the behavioral level, we consider operations
integer L, that specifies the number of control steps requirédich as addition, subtraction, multiplication, and division.
to execute operatiov;. State delaysare used to distinguish
the computation state between two consecutive iterations. Each )
state delayD; can be a sink to only one edge. B. Cut Selection

The assumed CDFG definition can be easily extended within this Section, we introduce two definitions of a cut of
the following two types of control edges: 1) weighted edgemn SDF computation and present effective algorithms for cut
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S I’ 7 State delays

Primary input

Data operations

Variable V1 stored in R2.
It is created at control step C1.
It is used for the tirst time in C2. N T T
Therefore its write-life-time
spans only over C1.

The bold edges represent an
example of a ,V S EEEEERS SRS ----
computation complete cut.
computation complete cu ’_L‘DS o

Fig. 3. An example of a scheduled and assigned control data flow graph and the accompanying definitions. Primary inputs and outputs, state delays, data
operations, data precedence edges, register assignment, variable write life-time, and a complete cut example are illustrated.

Primary output

selection and allocation of hardware resources that enable |[/QnputSensitiveGraph ISG = Construct ISG(CDFG).
of the cut state. The two different cut definitions enable ex- ISG = Input_Sensitive Transitive Closure(ISG,CDFG).
ploration of certain tradeoffs in the cut-selection process. TheRepeat " o
first definition of a cut imposes a limitation that all containeg 2. = [nput Sensitive Dominating Set(/5G).

. . L [ until Schedule(D, ListOfPorts) != EXISTS.
variables must be selected from a single computation iteratiof-
The second definition relaxes this requirement by enablifg. 4. Pseudocode for the cut search algorithm.
the search for a cut-set to be conducted among variables in
several consecutive computation iterations. While cuts whigh a separate registe®;. Since even the problem of proving
obey the first definition require smaller trace capturing devicegether an arbitrary set of variables represents a CDFG cut
and induce lower computation initiation start-up times, the cuis of polynomial linear complexity, we transform the problem
formed according to the second definition frequently requiigto a computationally less demanding task and apply problem
less hardware resources. partitioning and most-constrained least-constraining heuristics

Definition 1—Single Iteration Complete Cuf  complete as the fundamental approach to search the transformed solution
cut is a set of variables generated within one computatigpace. The pseudocode of the developed algorithm is presented
iteration that cuts all possible paths in the computation.  in Fig. 4.

Therefore, the goal of the cut-set search algorithm is to, The developed algorithm constructs the solution based on
given a computation control data flow graph, find a registéfie analysis of the input-sensitive (ISG) representation of the
subset of minimal cardinality that stores all the variablesriginal CDFG. The ISG is built from the CDFG according to
of at least one complete cut. Before we commence withe pseudocode in Fig. 5. The idea behind this transformation
the algorithm description, note that only observability-relateig to create a graph-like structure which enables fast check
algorithms will be presented. The algorithms that supposthether a subset of variables is a cut. Each node in the ISG
controllability are identical with the exception that write life-represents an operation from the CDFG, contains a single
times are used in place of read life-times. If the designeutput that represents the output variable of that operation, and
desires to use the same cut for observing and controllisgntains a number of inputs which represent the operands. A
the computation, then the cut should be determined by tbet of a computation is a selection of node outputs which cov-

controllable version of the proposed algorithms. ers all inputs of all nodes. An important step in the algorithm
The initial problem formulation is determined using thés the input-sensitive transitive closure operation which builds

standard Garey—Johnson format [7]. the dependencies between operations, i.e., nodes in the ISG.
PROBLEM—Optimal Cut-Set for Debugging: This operation is described using the pseudocode in Fig. 6. An

INSTANCE: Given a control data flow graph with read life-example ISG, which corresponds to the CDFG illustrated in
times of its variables, variable-to-register assignmeftgorts, Fig. 3, is shown in Fig. 8. The dotted edges are added while
set.S of control steps when each port is busy, and intef§er applying the input-sensitive transitive closure procedure.

QUESTION: Is there a subset of variabléSsuch that each  Using the definition of scheduled and assigned ISG, the
path in the control data flow graph CDFG contains at leaisiitial problem can be reformulated into the following standard
one variableV; € V, the cardinality of the set of registers thaGarey—Johnson format.
contains each variabl€; € V equalsk, and there exists such PROBLEM—Optimal Input Dominating Set of an ISG:
schedule that each variabl§ € V' can be output througi® INSTANCE: ISG with read life-times of its variables,
ports at control steps not included &#? variable-to-register assignment®, ports, associated sef

The NP-completeness of this problem can be proven by control steps when each port is busy, and intelger
restriction to the FEEDBACK ARC SET problem (GT8, [7, QUESTION: Is there an input dominating set of variables
p. 192]). The restriction is made by assuming that no hardwaresuch that each input is covered with at least one variable
sharing is possible, i.e., each variablein the CDFG is stored in V, the cardinality of the set of registers that contains all
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For each node N; € CDFG
Create a node M; € ISG.
For each edge En, n; directed from N; to N;
Create an input port M; , for M;, where m is the index of the input port.
For each edge En,,n; directed from N; to N;
Create an edge Ene M, ,, which connects M; and M; m,
where M7 is the output port of M;, and M; ., is mt" input of M;.
Comment: Each primary input P; of the CDFG is ignored.
Schedule and assign each I.SG node (variable) as its parent
CDFG node (variable).

Fig. 5. Construct_ISG(CDFG)—input-sensitive graph construction pseudocode.

For each pair of edges Eumz M, .., EMe m, m € I1SG such that
EM;’,Mb,m connects M, to M, and EM;;,MC’m connects My to M,
If the difference, in control steps, between the starts of read life-times of nodes (variables)
a and c is less or equal than the total number of control steps in one iteration

connecting M, and Mc .

Insert edge Enre s

c,m

Fig. 6. Input_Sensitive_Transitive_Closure(ISG, CDFG).

Preprocessing: Set of primary output variables V,"*"*** ¢ ISG is static part of the cut.
Variables read-alive during the entire iteration are static part of the optimal cut.
Select a random subset of nodes CUT € ISG, such that
CUT covers all node inputs in I.SG. Set best solution CUT* = CUT.
If there does not exist a schedule such that CUT can be output
through P ports at control steps not included in S do Preprocessing.
Repeat GLOBAL times
Unselect random subset of nodes € CUT such that at least one node input remains uncovered.
Randomly select a subset of nodes subCUT from (ISG - CUT) which covers
the uncovered set of inputs. Merge subCUT and CUT.
If Cost(CUT) < Cost(CUT*)
If there exists a schedule such that CUT can be output through P ports set CUT* = CUT.
Repeat LOCAL times
CUT+ = CUT=*
Unselect random subset of nodes € CUT+ such that at least one node input remains uncovered.
Randomly select a subset of nodes subCUT from (ISG - CUT+) which covers
the uncovered set of inputs. Merge subCUT and CUT+.
If Cost(CUT+) < Cost(CUT*)
If there exists a schedule such that CUT can be output
through P ports set CUT* = CUT+.
Return: CUT* as the optimal input dominating set (optimal cut-set).

Fig. 7. Input_Sensitive_Dominating_Set(ISG).

variables fromV' equalsk’, and there exists a schedule suckavors most-constrained solutions with few storing registers.
that all variables irt” can be output througk ports at control As the search progresses, the cost dominating factor becomes
steps not included ir5? the cumulative length of read life-times of all selected vari-
The NP-completeness of this problem can be proved hples (such variables are least-constraining). At that point
reduction to the GRAPH DOMINATING SET problem (GT2,variables with nonoverlapping read life-times are also favored.
[7, p. 190]). The restriction simplifies the ISG in such a wa¥his approach enables more assignment freedom for the final
that each node has only one input and each variiple ISG variable-to-port scheduling.
is stored in a dedicated registé;. The main disadvantage of defining a cut accordinght®
We developed a novel heuristic algorithm for this problenfirst definitionis the fact that it does not have the flexibility
The pseudocode of the proposed heuristic technique is pog-outputting a computation cut over a consecutive span of
sented in Fig. 7. The algorithm generates a large numberaafmputation iterations. The following technique of selecting a
candidate node subsets which have the property of being casmputation cut enables this property and reduces the amount
Although, the cuts are generated probabilistically uniformlgf hardware resources augmented for cut 1/O.
with respect to the search time, the most-constrained leastDefinition 2—Multiple Iteration Complete Cufs complete
constraining objective function that evaluates the candidatet is a subset of variables which bisects all cyclic paths in
cut-sets is run-time dependent. In the beginning, the algoritithre control data flow graph of a computation.
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- same path. For each edge, a list of registers that store the
Original data precedence edges . . [

inherited from the CDEG compacted variables is maintained.

In the next step, an objective function decides which node

Edges added due to the input  (variable) in the current set of SCC'’s is to be deleted. The
Se“S‘“V:fttrI?:SC“l‘)‘;folosure function analyzes, for the deletion of each vertex, the cardi-
—— nality of the newly created set of SCC'’s, the registers that are

5 storing the variables in these SCC's, the length of the read life-
N N times of variables in the SCC'’s, and the vertex cardinalities of
+ the new set of SCC’s. The vertex that results in the smallest

N3 objective function is deleted from the set of nodes as well as all
i 7 adjacent edges. The deleted vertex is added to the resulting cut-
e set. The process of graph compaction, candidate node deletion
evaluation, node deletion, and graph updating is repeated while
the set of nontrivial SCC'’s in the graph is not empty. The set
of nodes (variables) deleted from the computation represents
the final cut-set selection.

Consider the example shown in Fig. 10. The CDFG of the
Fig. 8. Example of an ISG which corresponds to the CDFG shown in Fig. third-order Gray—Markel ladder IIR filter, shown in Fig. 11,
Each node corresponds to a data operafignin the original CDFG and hgs only one nontrivial SCC. The graph compaction step is
has a set of inputs which correspond to the operand®,0fThe edges in . . . L .
the graph are either inherited from the original CDFG or created using tﬁé(plamed using Fig. 10(a)—(c). Inltlally, verte is merged
input-sensitive transitive closure procedure. with vertex A, which imposes variabl®’ to be merged with
variable V. Next, the shaded nodes in Fig. 10(b) are merged

The targeted optimization problem of finding a cut whici#s Well as the corresponding variables. The node compaction
is contained in minimal number of registers and a schedupgocess results in a SCC presented in Fig. 10(c). Fig. 10(e)
according to which all variables of the cut can be output, califistrates the resulting set of SCC’s, after naleis deleted
be defined using the standard Garey—Johnson format. ~ from the SCC depicted in Fig. 10(d).

PROBLEM—Optimal Cut-Set for Debugging (I1): Finally, let's compare the cuts retrieved according to the two

INSTANCE: Given a control data flow graph with read life-different definitions on the example of a Gray—Markel ladder
times of its variables, variable-to-register assignmehtgorts, filter. In Fig. 11, the variables of a cut-set that corresponds to

associated sef of control steps when each port is busy, anthe first definition are represented as bold dotted lines. In order
integer K. to define a single iteration, the output variables of addss

QUESTION: Is there a subset of variablds, such that A8, and A9 stored in registerdi4, K2, and k3, respectively,
when removed from the CDFG leaves no directed Cyc|es @he OUtpUt as a cut. Such a set of variables fU”y determines
the CDFG, the cardinality of the set of registers that contaiffte state of the machine.
all variables fromV’ equalsk, and there exists such schedule Consider the cut that corresponds to the second definition. It
that each variabld’; € V can be output through? ports at contains three variables: the outputs of add&rs A3, and A5,
control steps not included i§? all stored in registe?1. This subset of variables bisects all

The specified problem is an NP-complete problem sin&¥clic paths in the CDFG; by deleting the edges in the CDFG
there is an one-to-one mapping between the special case of ¥ich represent these variables, all cyclic paths are removed.
problem, when all operations in the computation are executguorder to use these variables in restarting verification, cut
exactly the same number of times, and the FEEDBACK AR¥alues from three consecutive iterations are required before
SET problem (GT8, [7, p. 192]). The developed heuristic algéhe machine state is correctly restored.
rithm for this problem is summarized using the pseudocode in
Fig. 9. The heuristic starts by logically partitioning the graph . )
into a set of strongly connected components (SCC’s) using the Variable Scheduling
depth-first search algorithm [1]. This algorithm has complexity The design has to be able to output all variables in the
O(V + E), whereV is the number of vertices anB is the cut-set through a limited number of 1/O ports within a single
number of edges in a graph. All trivial SCC’s which contair multiple computation iterations. Since the procedure which
exactly one vertex are deleted from the resulting set since thehecks whether this is achievable is invoked every time a
do not form cycles. Then, the algorithm iteratively performsandidate cut-set is found, we propose a most-constrained
several processing steps on each of the nontrivial SCC’s. least-constraining heuristic technique to quickly provide an

At the beginning of each iteration, to reduce the solutioanswer to this question. If the answer is positive, a search for
search space, a graph compaction step is performed. In thie minimal cardinality set of register-to-port interconnects is
step each patt?: A ~~ B that contains only vertice¥ € P, performed. The interconnects are such that cut-set variables
V' # A with exactly one variable input is replaced with aan be output through the ports at idle control steps. In this
new edger s g which connects the sourcé and destination Section we present the algorithm for the first subproblem. The
B and represents an arbitrary selected edge (variable) of fireblem can be formulated using the following format.

Data operation

opera\md_s/
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Create a set SCC = ComputeScc(CDFG(V, E)) of strongly connected components [Aho83]
For each SCC; € SCC
If |SCC;| = 1 delete SCC; from SCC

Repeat LOOPS times
Repeat
CUT = null
While SCC # empty
For each SCC; € SCC
GraphCompaction(SCC;)
For each node V; ;
S = ComputeScc(SCC; — Vi ;)
OF(S) = (14 ) Y% (1S:| - Edges(S:) - LifeTime(S;)) - Registers(S)*),
where « is random number a € {0, TWIC['Z}’ LifeTime(S;) returns the read life-time
and Registers(S) returns the number of registers which store all variables in S
End For
Select vertex V; ; which results in minimal OF(S(E; ;))
Delete V;,; from SCC;
SCC = S(Vi ;)
For each SCC; € SCC
If |SCC;| = 1 delete SCC; from SCC
End For
CUT = CUT U Vy,
End For
End While
until Schedule(D, ListOfPorts) 1= EXISTS.
If |CUT| < |[BESTCUT| then BESTCUT = CUT

of variables in S;,

Return BESTCUT

Procedure GraphCompaction{(SCC;)
For each vertex V; € SCC;
If V; has exactly one input edge E;; with a source in vertex V;

For each edge E; ;
Create edge Ej
Delete E; i

End For

Delete E;; and V;

Fig. 9. Pseudocode for optimal cut-set for debugging (Il) search.

V is the node considered
for deletion

(@

Bold edges and nodes
represent the remaining
SCCs when V is deleted

Fig. 10. Finding the cut-set of the third-order Gray—Markel ladder IIR filter. Subfigures (a)-(c) demonstrate the node merger procedure. Sybfegjures (d

illustrate the removal of a node from the set of SCC’s and its inclusion in the set of selected cut variables.
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a) Control tlow graph of a third order Gray
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control flow graph of a third order Gray 1] 5 H H
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Markel ladder filter : : Alkg

Fig. 11. (a) The unscheduled and (b) scheduled and assigned control data flow of a third-order Gray—Markel ladder filter.

Repeat until no additional variable can be scheduled
For each variable V;
If V; can be scheduled only in one control step Cj,
schedule V; to C; and any port P, available at Cj.
For each control step C;
Set C?*" as number of all variables which are read-alive at C;.

Schedule variable V; with (Cost(V3)) = (ZJ‘=A”Cmmstew<"3’”'Rmd"“”e(‘“*0ﬂ
chedule variable V; with maxz(Cost(V;)) = max ReadLifeTime(Vi) =1

to the control step Cy which has min(C;®") and any port P, still available at Cy.
ReadAlive(Vi, C;) returns 1 if V; is read-alive at Cj.
ReadLifeTime(V;) is the number of control steps for which V; is read-alive.

Fig. 12. Pseudocode for the cut-set output scheduling heuristic.

PROBLEM—Output Scheduling of a Set of Variables inaherej is in the set of control steps whén is read alive.
CDFG: Consequently, the most constrained variable is assigned to

INSTANCE: Set of variabled’, each with its read life-time, the least constraining control step. The process of computing
P ports and associated sgtof control steps when each portconstraints and scheduling variables to distinct control steps
is busy. is iterated until all variables in the cut-set are not output

QUESTION: Is there a schedule such that all variables catheduled. Pseudocode of the proposed most-constrained least-
be output throughP ports at control steps not included &9 constraining heuristic is presented in Fig. 12.

The NP-completeness of this problem is proved by restric- The algorithm is described using Fig. 13. There are 12
tion to the SEQUENCING WITH RELEASE TIMES AND variables in the cut-set, three output ports which are all busy
DEADLINES problem (SS1, [7, p. 236]). The restriction idduring control stepC,. The schedule is found using the
imposed by selecting only those variableslirthat are not in described heuristic by sequentially assigning variables to ports
the set of state (delay) variabld3. The heuristic developed as depicted. First, variabldg, Vs, and Vi, are scheduled to
for this problem schedules variables using a greedy strate@¥, and Vi; to Cs since they do not have a choice. In the
First, the constraint of each control stép in the scheduled next step, since all ports are used@, we scheduleVy to
and assigned CDFG is calculated as the numbBgr of ) andVi to C's. Next, variableV;, is the most-constrained
variables being read-alive during that control step. For eaalcording to the formula in the pseudocode so we schedule it
variable V; its constraint is computed as a sum 6F*, to its least-constraining control stép. ThenV; andV; have
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Variables
V9

Order of decisions
of the sequencing algorithm

Control Steps

Fig. 13. Example of output scheduling.

Interconnects = |R|
Repeat LOOPS times
Repeat Interconnects times
Connect register R with maz(ProbabilisticCost(R)) to port P with max(ProbabilisticCost(P))
End Repeat
If Bipartite Matching(variables, ports,interconnects) == EXISTS
Decrease(Interconnects)
End Repeat

Fig. 14. Pseudocode for the variable-to-port scheduling heuristic.

no choice and have to be scheduled(at Finally, V5, V3, port P;, all variables assigned t8; are scheduled for output.
and V, are scheduled t¢’; and C, according to the already The pseudocode for the combined algorithm is presented in

described principles. Fig. 14.
For the assignment problem, the developed heuristic iter-
D. Variable-to-Port Scheduling atively tries to assign as few as possible most-constrained

The second phase of the synthesis for the debugging procrggsters to least-constraining ports such that the final variable-

has as an input the selected cut-set from the first phase and!fhBOrt scheduling is achievable. Objective function that quan-
information about the read life-times of each variable as wéifi€S the constraint of registeR is given as

as its storing register. The available number of output ports is Cvar
also available. The key design question is to assign each cut-s€0S(R) = Z Z 7.

. . . , ReadLifeTiméV;) — 1
variable to a specific output port in such a way that the number V;€R j=All Control Steps

of connections between registers and 1/O ports is minimal. W

present the problem in the standard Garey—Johnson format’"€"® ReadLifeTim@;) returns the number of control steps

PROBLEM—Optimal Output Scheduling of a Set of Varfpr which V; is read-alive. Similarly, the objective function
ables in a CDFG for Debugging: that quantifies the constraint of paR, is

INSTANCE: An ordered set of variable®, each with its

read life-time and designated registét,ports, associated set Cos(F:) = Z
S of control steps when each port is busy, and inteljer =All Variables
QUESTION: Is there a schedule such that all variables can ReadLifeTiméV;) - AssignedV;, F.)
be output from the chip through ports at control steps not "1+ Number of Registers Already AssignedAo
included inS, and the cardinality of register-port connections
equals K? where Assigne@d’;, P,) returns one ifV; is already assigned

If the optimization demand in the problem is ignored, tht#® .. Otherwise, it returns zero.

proof that this problem is NP-complete is equivalent to the NP- In the conducted experiments we used a probabilistic ver-
completeness proof for the scheduling problem describedsion of the described heuristic which iteratively generated
Section IV-C. We have partitioned this problem into two fullyandomized solutions. The solutions were still guided by the
modular optimization subproblems. Initially, register-to-pordescribed objective functions augmented with a certain random
assignment is performed such that optimization requiremewiset.

are met and variables of the proposed cut-set can be outpuDnce registers are assigned to ports, variable-to-port sched-
through all designated ports. In the second phase, for eadimg is performed only for variables stored in registers as-
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TABLE |
APPLICATION OF THE DESIGN-FOR-DEBUGGING STEP TO A SET OF STANDARD BENCHMARKS FOR ESTIMATION OF HARDWARE OVERHEAD

Design Structure Complete Cut - Def.1 Complete Cut - Def.2
Description Hyper | Control | Critical | Vari- | Regi- | States | Vari- | Regi- | Ports | Vari- | Regi- | Ports
optim. steps path ables | sters ables | sters | added | ables | sters | added

8th Order NO 18 18 35 19 8 8 1 0 8 1 0

Continued NO 36 18 35 19 8 8 1 0 8 1 0

Fraction YES 4 4 49 30 8 8 6 2 8 6 2

IIR Filter YES 8 4 49 29 8 10 5 1 10 5 1

Linear GE NO 12 12 48 19 5 8 3 0 8 3 0

Controller 1 NO 24 12 48 23 5 13 1 0 13 1 0

YES 6 6 48 27 5 5 5 1 5 5 1

YES 12 6 48 26 5 8 4 0 8 4 0

Wavelet NO 16 16 31 20 15 15 1 0 1 1 0

Filter NO 32 16 31 20 15 15 1 0 1 1 0

YES 1 1 31 31 15 15 15 15 1 1 1

YES 2 1 31 31 15 15 15 7 1 1 0

Modem NO 10 10 33 16 8 12 2 0 4 1 0

Filter NO 20 10 33 15 8 12 1 0 4 1 0

YES 4 4 47 29 8 8 6 2 8 6 2

YES 8 4 47 27 8 11 4 1 8 4 1

Volterra NO 12 12 28 15 4 4 1 0 4 1 0

2nd NO 12 24 28 15 4 4 1 0 4 1 0

order YES 6 6 28 19 4 4 1 0 4 1 0

filter YES 6 12 28 17 4 4 1 0 4 1 0

Volterra NO 20 20 50 22 6 6 1 0 6 1 0

3rd order NO 20 40 50 22 6 6 1 0 6 1 0

nonlinear YES 8 8 50 31 6 6 1 0 6 1 0

filter YES 8 16 50 27 6 6 1 0 6 1 0

Controller NO 15 15 114 38 14 14 6 4} 1r 3 0

VSTOL NO 30 15 114 37 14 14 4 0 11 2 0

aircraft YES 6 6 114 46 14 14 9 2 14 9 2

YES 12 6 114 44 14 14 5 1 14 5 1

Digital to NO 132 132 354 167 74 76 3 0 2 1 0

Analog NO 132 264 354 171 74 77 2 0 2 1 0

Converter YES 5 5 398 189 74 76 29 18 2 1 0

YES 10 5 398 178 74 76 28 8 2 1 0

Motorola NO 134 132 217 121 133 133 67 ¢] 1 1 0

C-133 NO 268 268 217 128 133 133 67 0 1 1 0

filter YIES 1 1 217 217 133 133 133 133 1 1 0

YES 2 1 217 129 133 133 67 67 1 1 0

Long NO 2566 2566 1082 1056 1024 1027 5 0 2 1 0

Echo NO 5132 2566 1082 1061 1024 1027 4 0 2 1 0

Canceler YES 1088 1088 1107 1064 1024 1028 6 0 2 1 0

YES 2176 1088 1107 1059 1024 1027 5 0 2 1 0

signed to a single port. This problem is equivalent to the V. EXPERIMENTAL RESULTS

In order to evaluate the developed debugging technique and
gccompanying algorithms, we have applied them on several
benchmark designs. The examples were collected from the

iteration for which portP is not busy. A node in the other?&lowmg. techr_ucal manuscripts: elghth-orde_r continued frac-
tion lIR filter, linear GE controller, Volterra filters, long echo

partition is created for each variable assigned to pbrEdges | let fil dem fil | .
are drawn between each node which represents varidble"ance'er, wave et |te_r, modem llter, Motorola C133 filter [8],
17], and a real-life avionics VTSOL controller [10]. For

and all nodes in the first control-step partition associated WiH‘IG]’ [ : _ :
control steps for which” is read-alive. To efficiently solve @l €xperiments, HYPER was used as a behavioral compiler

this problem we use the Ford—Fulkerson method which rulR obtain register-transfer level (RTL) implementations [17].
in O(V E), whereV is the number of vertices an#l is the Design-for-debugging analysis was performed to determine
number of edges in grap& [4]. the cuts and the extra hardware overhead needed to support
The presented algorithm assumes that the required numit Proposed debugging technique. Table I, column 1, lists
of I/0 ports is sufficient to enable the 1/O of the cut state. SindBe set of designs evaluated. For each design, an optimized
this number is often small and not known at design time, wérst and second rows) and a nonoptimized version (third and
perform an exhaustive binary search for the smallest numberfofirth rows) were used. Additionally, on each version, both
I/O ports, which can satisfy the scheduling constraints. Thilght and more relaxed performance constraints were assumed.
search is performed as an outer shell to the scheduling dogtimized versions were obtained by applying scripts for
variable-to-port matching heuristic. speed optimizations [9]. Available control step budgets, equal

G for each portP is constructed. The first partition aff
contains a node for each control step in the computati
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VI. CONCLUSION
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