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Abstract In this paper a new technique, named Function “Stretching”, for the
alleviation of the local minima problem is proposed. The main feature
of this technique is the usage of a two–stage transformation of the objec-
tive function to eliminate local minima, while preserving the global ones.
Experiments indicate that combined with the Particle Swarm Optimizer
method, the new algorithm is capable of escaping from local minima and
effectively locate the global ones. Our experience is that the modified
algorithm behaves predictably and reliably and the results were quite
satisfactory. The function “Stretching” technique provides stable con-
vergence and thus a better probability of success to the method with
which it is combined.
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Introduction
The global optimization problem is usually stated as finding the global

optimum x∗ of a real valued objective function f : E → R. In many
practical optimization problems the search is usually focused on locating
the global minimizer, i.e. finding a point x∗ ∈ E such that

f(x∗) ≤ f(x), ∀x ∈ E , (3.1)

where the compact set E ⊂ R
D is a D–dimensional parallelepiped.

There are many Global Optimization (GO) methods developed so far
to deal with this problem, which can be classified in two main cate-
gories: deterministic methods and probabilistic methods. Most of the
deterministic methods apply heuristics, such as modifying the trajectory
in trajectory methods or adding penalties in penalty–based methods, to
help escape from local minima. On the other hand, probabilistic meth-
ods rely on probability to indicate whether the search should move away
from the neighborhood of a local minimum, or not. Some of the most
important GO strategies, see [11] for details, are listed below:

Adaptive partition and search strategies, e.g., branch–and–bound
algorithms, interval arithmetic based methods and Bayesian ap-
proaches [4, 7, 8, 12, 13, 14, 19].
Enumerative strategies which are used for solving combinatorial
problems, or certain “structured”, e.g. concave, optimization prob-
lems [3, 7, 8].
“Globalized” local search methods that apply a grid search or ran-
dom search type global phase, and a local search algorithm [7, 13].
Heuristic strategies, such as deflation, tunneling, filled function
methods, approximate convex global underestimation, tabu search,
etc. [5, 6, 7, 13].
Homotopy (parameter continuation) methods and analogous ap-
proaches. These among others include pivoting algorithms and
fixed point methods [7].
Passive (simultaneous) strategies, such as uniform grid search, pure
random search [7, 13, 19].
Successive approximation (relaxation) methods, such as cutting
plane, more general cuts, minorant construction approaches, cer-
tain nested optimization and decomposition strategies [3, 7, 13].
Trajectory methods which are differential equation model–based,
or path–following search strategies [7].
Adaptive stochastic search algorithms. These include simulated
annealing, random search, evolution and genetic algorithms [7, 10,
13, 17, 19].
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Differently from other adaptive stochastic search algorithms, evolu-
tionary computation techniques work on a set of potential solutions,
which is called population, and find the optimal problem solution through
cooperation and competition among the potential solutions. These tech-
niques can often find optima in complicated optimization problems more
quickly than traditional optimization methods. The most commonly
used population–based evolutionary computation techniques, such as
Genetic Algorithms and Artificial Life methods, are motivated from the
evolution of nature and the social behavior.
It is worth noting that, in general, GO strategies possess strong theo-

retical convergence properties, and, at least in principle, are straightfor-
ward to implement and apply. Issues related to their numerical efficiency
are considered by equipping GO algorithms with a “traditional” local op-
timization phase. Global convergence, however, needs to be guaranteed
by the global–scope algorithm component which, theoretically, should be
used in a complete, “exhaustive” fashion. These remarks indicate the
inherent computational demand of the GO algorithms, which increases
non–polynomially, as a function of problem–size, even in the simplest
cases.
In practical applications, most of the above–mentioned methods can

detect just sub–optimal solutions of the function f . In many cases these
sub–optimal solutions are acceptable but there are applications where
the optimal solution is not only desirable but also indispensable. There-
fore, the development of robust and efficient GO methods is a subject
of considerable ongoing research.
Recently, Eberhart and Kennedy [15, 16] proposed the Particle Swarm

Optimization (PSO) algorithm: a new, simple evolutionary algorithm,
which differs from other evolution–motivated evolutionary computation
techniques in that it is motivated from the simulation of social behavior.
Although, in general, PSO results good solutions, in high–dimensional
spaces it stumbles on local minima.
In this paper we propose a new technique, named Function “Stretch-

ing”, and we show through simulation experiments that this strategy
provides a way of escape from the local minima when PSO’s conver-
gence stalls.
The paper is organized as follows: the background of the PSO is pre-

sented in Section 1. The proposed technique of function “Stretching” for
escaping local minima is derived in Section 2. In Section 3, the results
of the improved PSO algorithm that incorporates the function “Stretch-
ing” strategy are presented and discussed, and finally conclusions are
drawn in Section 4.
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1. THE PARTICLE SWARM
OPTIMIZATION METHOD

As already mentioned, PSO is different from other evolutionary al-
gorithms. Indeed, in PSO the population dynamics simulates a bird
flock’s behavior where social sharing of information takes place and in-
dividuals can profit from the discoveries and previous experience of all
other companions during the search for food. Thus, each companion,
called particle, in the population, which is now called swarm, is assumed
to “fly” over the search space in order to find promising regions of the
landscape. For example, in the minimization case, such regions possess
lower functional values than other visited previously. In this context,
each particle is treated as a point in a D–dimensional space which ad-
justs its own “flying” according to its flying experience as well as the
flying experience of other particles (companions).
There are many variants of the PSO proposed so far, after Eberhart

and Kennedy introduced this technique [2, 9]. In our experiments we
used a new version of this algorithm, which is derived by adding a new
inertia weight to the original PSO dynamics [1]. This version is described
in the following paragraphs.
First let us define the notation adopted in this paper: the i-th par-

ticle of the swarm is represented by the D–dimensional vector Xi =
(xi1, xi2, . . . , xiD) and the best particle in the swarm, i.e. the particle
with the smallest function value, is denoted by the index g. The best
previous position (the position giving the best function value) of the i-th
particle is recorded and represented as Pi = (pi1, pi2, . . . , piD), and the
position change (velocity) of the i-th particle is Vi = (vi1, vi2, . . . , viD).
The particles are manipulated according to the equations

vid = w ∗ vid + c1 ∗ r1 ∗ (pid − xid) + c2 ∗ r2 ∗ (pgd − xid), (3.2)
xid = xid + vid, (3.3)

where d = 1, 2, . . . , D; i = 1, 2, . . . , N and N is the size of population; w
is the inertia weight; c1 and c2 are two positive constants; r1 and r2 are
two random values in the range [0, 1].
The first equation is used to calculate i-th particle’s new velocity by

taking into consideration three terms: the particle’s previous velocity,
the distance between the particle’s best previous and current position,
and, finally, the distance between swarm’s best experience (the position
of the best particle in the swarm) and i-th particle’s current position.
Then, following the second equation, the i-th particle flies toward a
new position. In general, the performance of each particle is measured
according to a predefined fitness function, which is problem–dependent.
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The role of the inertia weight w is considered very important in PSO
convergence behavior. The inertia weight is employed to control the
impact of the previous history of velocities on the current velocity. In
this way, the parameter w regulates the trade–off between the global
(wide–ranging) and local (nearby) exploration abilities of the swarm. A
large inertia weight facilitates global exploration (searching new areas),
while a small one tends to facilitate local exploration, i.e. fine–tuning
the current search area. A suitable value for the inertia weight w usu-
ally provides balance between global and local exploration abilities and
consequently a reduction on the number of iterations required to locate
the optimum solution. A general rule of thumb suggests that it is better
to initially set the inertia to a large value, in order to make better global
exploration of the search space, and gradually decrease it to get more
refined solutions, thus a time decreasing inertia weight value is used.
From the above discussion it is obvious that PSO, to some extent,

resembles evolutionary programming. However, in PSO, instead of using
genetic operators, each individual (particle) updates its own position
based on its own search experience and other individuals (companions)
experience and discoveries. Adding the velocity term to the current
position, in order to generate the next position, resembles the mutation
operation in evolutionary programming. Note that in PSO, however, the
“mutation” operator is guided by particle’s own “flying” experience and
benefits by the swarm’s “flying” experience. In another words, PSO is
considered as performing mutation with a “conscience”, as pointed out
by Eberhart and Shi [1].

2. THE FUNCTION “STRETCHING”
TECHNIQUE

The local minima problem which is considered in this paper can be
stated as follows. Let a point x̄ such that there exists a neighborhood B
of x̄ with

f(x̄) ≤ f(x), ∀x ∈ B. (3.4)

This point is a local minimizer of the objective function and many GO
methods get stuck in such points. In order to alleviate this problem the
following two–stage transformation in the form of the original function
f(x) can be applied soon after a local minimum x̄ of the function f has
been detected:

G(x) = f(x) +
γ1

2
‖x− x̄‖ (sign(f(x)− f(x̄)) + 1), (3.5)
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H(x) = G(x) +
γ2 (sign (f(x)− f(x̄)) + 1)
2 tanh (µ(G(x)−G(x̄)))

, (3.6)

where γ1, γ2 and µ are arbitrary chosen positive constants, and sign(·)
defines the well known three valued sign function.
The first transformation stage elevates the function f(x) and makes

disappear all the local minima which are located above x̄. The second
stage stretches the neighborhood of x̄ upwards, since it assigns higher
function values to those points. Both stages do not alter the local min-
ima located below x̄; thus, the location of the global minimum is left
unchanged.
It is worth noting that the sign function, which appears in the above

transformation, can be approximated by the well known logistic function:

sign(x) ≈ logsig(x) =
2

1 + exp(−λ1x)
− 1 � tanh(λ2x),

for large values of λ1 and λ2. This sigmoid function is continuously dif-
ferentiable and is widely used as a transfer function in artificial neurons.
At this point it is useful to provide an application example of the pro-

posed technique in order to illustrate its effect. The problem considered
is a notorious two dimensional test function, called the Levy No. 5:

f(x) =
5∑

i=1

i cos[(i+ 1)x1 + i]×
5∑

j=1

j cos[(j + 1)x2 + j] +

+(x1 + 1.42513)2 + (x2 + 0.80032)2, (3.7)

where −10 ≤ xi ≤ 10, i = 1, 2. There are about 760 local minima and
one global minimum with function value f∗ = −176.1375 located at
x∗ = (−1.3068,−1.4248). The large number of local optimizers makes
extremely difficult for any method to locate the global minimizer. In
Fig. 3.1, the original plot of the Levy No. 5 into the cube [−2, 2]2 is
shown.
After applying the transformation of Eq. 3.5 (first stage of function

“Stretching”) to the Levy No. 5, the new form of the function is shown
in Fig. 3.2. As one can see, local minima with higher functional values
than the “stretched” local minimum (which looks as if a pin is positioned
over it and the rest of the function is stretched around it) disappeared,
while lower minima as well as the global one have been left unaffected.
In Fig. 3.3, the final landscape, derived after applying the second

transformation stage to the Levy No. 5, is presented. It is clearly shown
how the whole neighborhood of the local minimum has been elevated;
thus, the former local minimum has now turned to be a local maximum
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Figure 3.1 The original plot of the function Levy No. 5.

Figure 3.2 Plot of the Levy No. 5 after the first stage of the “Stretching” technique.

of the function. Details on the performance of the function “Stretching”
technique on some well known test problems, as well as suggestions for
selecting parameter values are presented in the next section.

3. EXPERIMENTAL RESULTS
In this section, we present results from testing a combination of the

function “Stretching” technique and the PSO algorithm. This optimiza-
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Figure 3.3 Plot of the Levy No. 5 after the second stage of the “Stretching” technique.

tion strategy is named “Stretched” PSO (SPSO) and is initialized by
applying the PSO algorithm for the minimization of the fitness function.
In case the PSO converges to a local minimum, the function “Stretching”
technique is applied to the original function and the PSO is re–initialized.
The performance of the SPSO has been evaluated by means of simu-

lation runs in hard–optimization problems, like the minimization of the
functions Levy No. 5 and Corana, and in training Artificial Neural Net-
works (ANNs) for pattern classification problems, like the classification
of the classical eXclusive–OR (XOR) patterns.
In all the simulations reported, the values of γ1, γ2 and µ were fixed:

γ1 = 10000, γ2 = 1 and µ = 10−10. Default values for the parameters
c1 and c2 have been used: c1 = c2 = 0.5. Although the choice of the
parameter values seems to be not critical for the success of the method,
faster convergence can be obtained by proper fine–tuning. The balance
between the global and local exploration abilities of the SPSO is mainly
controlled by the inertia weights, since the particles’ positions are up-
dated according to the classical PSO strategy. A time decreasing inertia
weight value, i.e. start from 1 and gradually decrease towards 0.4, has
been found to work better than using a constant value. This is because
large inertia weights help to find good seeds at the beginning of the
search, while, later, small inertia weights facilitate a finer search.
The first test refers to the minimization of the Levy No. 5 function that

has been described in the previous section. The results of Table 3.1 have
been obtained after 100 runs using the SPSO, with a swarm of size 20,
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initialized into the cube [−2, 2]2. The average performance is exhibited
in terms of the mean value and standard deviation of the number of
function evaluations, and the percentage of SPSO success. Information
concerning the performance of the PSO algorithm with and without the
function “Stretching” technique is also illustrated. As can be seen from

“Stretched” No “Stretched” Overall

Mean Value 3854.2 1049.4 1245.8
Standard Deviation 1630.1 235.1 854.2
Success 7/7 93/93 100%

Table 3.1 Analysis of the results for the minimization of the Levy No.5 function.

Table 3.1, in 93 out of 100 cases PSO found the global minimum without
any help, while in 7 cases it got stuck in a local minimum. In these cases
function “Stretching” has been applied and the global minimum had
finally been detected. Thus the success rate of PSO increased by 7%.
The second experiment concerns the minimization of the Corana func-

tion:

f(x) =
4∑

j=1



0.15×

(
zj − 0.05× sgn(zj)

)2

× dj , if |xj − zj | < 0.05,

dj × x2
j , otherwise,

where xj ∈ [−1000, 1000], dj = 1, 1000, 10, 100 and

zj =
⌊∣∣∣ xj

0.2

∣∣∣ + 0.49999
⌋
× sgn(xj)× 0.2.

SPSO has been tested in 100 simulation runs with a swarm consisted
of 40 particles, initialized and constrained inside the hypercube [−1, 1]4.
The success rate of SPSO for the minimization of this function is 100%
(see Table 3.2), but the success percentage of the plain PSO is just 74%.
In this case, the “Stetching” technique increased the success percentage
by 26%, which is a significant improvement on the performance of the
PSO.
Results for the unconstrained–swarm case are exhibited in Table 3.3.

If free movement of population in the search space is allowed, the plain
PSO has a success of 96%. Regarding the rest of the cases, in 2 of
them the “Stetching” technique has been successfully applied leading the
SPSO to reach the global minimum within the predefined limit of 2000
iterations. However, in 2 cases the SPSO didn’t reach the desirable accu-
racy within the 2000 limit. This may suggest that in high–dimensional
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“Stretched” No “Stretched” Overall

Mean Value 13704.6 2563.2 5460.0
Standard Deviation 7433.5 677.5 6183.8
Success 26/26 74/74 100%

Table 3.2 Analysis of the results for the minimization of the Corana function with
constrained population.

spaces the constrained movement of the swarm helps the algorithm to
exhibit better performance; further investigation is necessary to extract
useful conclusions.

“Stretched” No “Stretched” Overall

Mean Value 72200.0 3219.1 8737.6
Standard Deviation 12269.1 590.1 19154.5
Success 2/4 96/96 98%

Table 3.3 Analysis of the results for the minimization of the Corana function without
constraint.

In the third experiment an ANN has been trained using the SPSO
to learn the XOR Boolean classification problem. The XOR function
maps two binary inputs to a single binary output and the ANN that
was trained to solve the problem had 2 linear input nodes, two hidden
nodes with logistic activations and one linear output node. This task
corresponds to the minimization of the following objective function [18]:

f(x) =

[
1 + exp

(
− x7

1 + exp(−x1 − x2 − x5)
− x8

1 + exp(−x3 − x4 − x6)
− x9

)]−2

+

[
1 + exp

(
− x7

1 + exp(−x5)
− x8

1 + exp(−x6)
− x9

)]−2

+

[
1 −

{
1 + exp

(
− x7

1 + exp(−x1 − x5)
− x8

1 + exp(−x3 − x6)
− x9

)}−1
]2

+

[
1 −

{
1 + exp

(
− x7

1 + exp(−x2 − x5)
− x8

1 + exp(−x4 − x6)
− x9

)}−1
]2

.

In the context of ANNs, the parameters x1, x2, . . . , x9 are called weights
and are usually initialized in the interval [−1, 1]. It is well known from
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the neural networks literature that successful training in this case, i.e.
reaching a global minimizer, strongly depends on the initial weight val-
ues and that the above–mentioned function presents a multitude of local
minima. It is obvious from the results reported in Table 3.4 that the
function “Stretching” technique helped to increase significantly the suc-
cess percentage of the PSO, i.e. the success rate has been increased from
77% to 100%.

“Stretched” No “Stretched” Overall

Mean Value 29328.6 1459.7 7869.6
Standard Deviation 15504.2 1143.1 13905.4
Success 23/23 77/77 100%

Table 3.4 Analysis of the results for the XOR problem.

4. CONCLUSIONS
A new technique, named function “Stretching”, for the alleviation of

the local minima problem was introduced. The main feature of this tech-
nique is that it uses a two–stage transformation of the fitness function
to eliminate local minima, while preserving the global ones.
Experiments indicate that the PSO method when equipped with the

proposed technique is capable to escape from local minima and locate
the global one effectively. The function “Stretching” technique provides
stable convergence and thus a better probability of success for the PSO.
Further work is focused on optimizing the performance of the pro-

posed modification of the PSO algorithm. In addition, extensive testing
on high–dimensional and more complex real–life optimization tasks is
necessary to fully investigate the properties and evaluate the perfor-
mance of the function “Stretching” technique.
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