
Improving the Performance Guarantee
for Approximate Graph Coloring

AVI WIGDERSON

Princewn Univeraty, Princeton, New Jersey

Abstract. The performance guarantee of a graph coloring algorithm is the worst case ratio between the
number of colors it uses on the input graph and the chromauc number of this graph. The previous best
known polynomial-time algorithm had a performance guarantee O(n/logn) for graphs on n vertices. This
result stood unchallenged for eight years. This paper presents an efficient algorithm with performance
guarantee of O(n(loglog n)2/(logn)2).

Categories and Subject Descriptors F.2.2 [Analysis of Algorithms and Problem ComiflexRy]: Nonnumerical
Algorithms, G.2.2 [Discrete Mathematics]: Graph Theory--graph algorithms
General Terms" Algorithms, Theory

Additional Key Words and Phrases: Approximation algorithms, graph coloring, NP-completeness, per-
formance guarantee

1. Introduction

A variety of problems in production scheduling, construction of timetables, etc. can
be modeled as graph coloring problems. A (proper) r-coloring of a graph 1 G is an
assignment of r colors to the vertices of G such that no two adjacent vertices are
assigned the same color. A graph G that has an r-coloring is said to be r-colorable.
The smallest integer r such that G has an r-coloring is called the chromatic number
of G and is denoted by x(G).

The graph coloring problem, namely, "Given a graph G, is X(G) <_ k?" is known
to be NP-complete, even i l k is fixed, k _> 3 [5, 9]. Therefore, it is unlikely that there
is a polynomial-t ime algorithm that will color every graph G with x(G) colors.
Moreover, Garey and Johnson [2] showed that a polynomial-t ime algorithm that
guarantees to color every graph G with at most ax(G) + b colors, a < 2, will imply
a polynomial algorithm to color every graph G with x(G) colors. In other words,
getting closer than within a factor o f two to the opt imum is as hard as achieving the
opt imum.

The inherent difficulty of the coloring problem caused researchers to devise
efficient heuristic algorithms, hoping that the number of colors they use is near
optimal. A few examples of this approach are [6, 7, 10, 11, 13]. In a 1976 paper [4],
Johnson analyzed the worst case behavior of such algorithms, and we follow his
notation: For a coloring algorithm A, let A(G) be the max imum number o f colors A

Throughout the paper we deal only with simple undirected graphs.

Author's present address: Computer Science Division, Electrical Engineering and Computer Science
Department, University of California at Berkeley, Berkeley, CA 94720.
Permissxon to copy without fee aU or part of tim material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwtse, or to republish, reqmres a fee and/or specific permission.
© 1983 ACM 0004-5411/83/1000-0729 $00.75

Journal of the AssocxaUon for Computing Machinery, Vol 30, No 4, October 1983, pp 729-735

730 AVI WIGDERSON

might use when applied to G, Ao(G) = A(G)/x(G), and Ao(n) = max(Ao(G) I G has
no more than n vertices}. Ao(n) is called the performance guarantee of algorithm A.
For every algorithm in a list containing most of the known heuristics for coloring,
Johnson constructs a sequence of 3-colorable graphs (Gin} with O(m) vertices such
that A(Gm) >_ m. This shows that the worst case behavior of these algorithms is as
bad as possible: Ao(n) # o(n), which is quite surprising in light of the intuitive nature
of many of them. He concludes his paper with a polynomial-time algorithm that
guarantees Ao(n) = O(n/log n), the best bound currently known. 2

To summarize, there is a huge gap between what we know is NP-hard: Ao(n) < 2,
and what we can guarantee in polynomial time: Ao(n) = O(n/logn).

In Section 2 we give a polynomial-time algorithm (Algorithm A) to color
3-colorable graphs on n vertices using at most 3,~n colors. In Section 3 we show
how to generalize the method to color k-colorablc graphs (Algorithm B). In Section
4 we give Algorithm C, which guarantees Co(G) <- 2n 1-1/~x(°)-1~. We further show
that this algorithm is very practical; it can be implemented to run in linear
time (O([V I + IEI)) for graphs with a fixed chromatic number, and in time
O((I V I + [EI)x(G)Iogx(G)) for all graphs. In Section 5 we show how to combine
Algorithm C with that of Johnson [4], so that the hybrid algorithm (Algorithm E)
guarantees Eo(n) = O(n(log log n)2/(log n)2).

2. Algorithm A--Coloring 3-Colorable Graphs

First, let us introduce the graph-theoretic notation we will use. For a graph G(V, E)
we defme

Ne(v) = the neighborhood of a vertex v ~ V -- {ul (v, u) ~ E},
do(v) -- the degree of a vertex v E V = IN~(v) l,
A(G) -- the maximum degree of G = max{da(V)}.

o E V

The subgraph of G induced by U __. V is the graph H(U, F), where

F -- {(u, w) lu E U, w ~ U, and (u, w) E E}.
(We omit "G" from above notation when the graph at hand is clear from the context.)

We next state three simple facts on which our algorithm is based.

FACT 1. Any graph G can be colored in polynomial time with at most 1 + A(G)
colors.

FACT 2. Let G(V, E) be a 3-colorable graph. Then for every v E V, the subgraph
of G induced by N(v) is bipartite (2-colorable).

FACT 3. Any bipartite graph can be 2-colored in polynomial time.

Algorithm A
Input: A 3-colorabl¢ graph G(V, E).

1. n ~ l V I .
2. i<-- 1.
3. WhUe A(G) _> [~n 1 do:

Let v be a vertex of maximum degree in G.
H ~ the subgraph of G reduced by No(v).
2-color H with colors i, i + 1.
Color v with color i + 2.
i*--i+2.
G <-- the subgraph of G resulting from it by deleting N(v) U (v).

4. (A(G) < [~n]). Color G with colors i, i + 1, i + 2 and halt.

2 All logarithms are to the base 2 unless otherwise noted

Performance Guarantee for Approximate Graph Coloring 731

TnEo~a~M 2.1. Algorithm A colors any 3-eolorable graph G(V, F,) on n vertices
with at most 3[x/nn]) colors, and its running time is polynomial in n.

PROOF. T o see that the coloring is proper , we need only to observe tha t each t ime
step 3 is executed, we use a new set o f colors (i, i + 1} for N(v), and all ne ighbors o f
v, which is colored i + 2, were a l ready colored with smal ler colors. Since each t ime
step 3 is executed we color at least Ix/n] + 1 vertices, it will be executed at
mos t [x/~] times. Each t ime we use two colors, so a l together this loop uses at mos t
2[x/-n] colors. Step 4 is executed only once and uses at mos t [4nn] colors, which
gives the total b o u n d o f 3[x/~]. T h e t ime b o u n d follows immedia t e ly f r o m Facts 1
and 3. []

3. Algorithm B--Coloring k-Colorable Graphs

A na tura l quest ion to ask at this poin t is: H o w can we use the ideas o f the previous
section to color k-colorable graphs for any k in po lynomia l t ime, and wha t uppe r
b o u n d on the n u m b e r o f colors can we guarantee? W e look again at the three facts
stated in Sect ion 2. Fac t 1 is independen t o f the chromat ic n u m b e r o f the graph, a
Fac t 2 is tr ivially general ized to:

FACT 2'. Let G(V, E) be a (k + 1)-colorable graph. Then for every vertex v E V,
the subgraph of G induced by N(v) is k-colorable.

Fac t 3 was used in the fol lowing sense: G i v e n a po lynomia l - t ime color ing a lgor i thm
for 2-colorable graphs, we obta ined one for 3-colorable graphs. In general , we can
recursively use the k-colorable graphs ' a lgor i thm in the one for (k + 1)-colorable
graphs.

T h e above discussion suggests the following recursive Algor i thm B. Fo r
k ffi 2, 3 define

fi(n) = n 1-1/(k-I). (1)

Algorithm B(k, G, i)

Input: An integer k, a k-colorable graph G, and an integer i, telling it to color G with successive
colors i, i -~ 1,

Output: The number of colors used to color G.

1. n ~-- the number of vertices in G.
2. I f k = 2, 2-color G with i, i + 1 and return (2).

I f k _> logn, n-color G with i, i + l , i + n - l (each vertex gets a distinct color) and
return (n).

3. [Recursive coloring stage]
While A(G) >_ [fi(n)l do:

Let v be a vertex with riG(V) = A(G).
H "~- the subgraph of G induced by Na(v).
j ~-- B(k - 1, 1t, i). (H was colored with i, i + l i + j - l).
Color v with color i + j.
i~--i+j.
G *-- the subgraph of G resulting from it by deleting NG(V) t2 (v}.

4. [Brute force coloring stage]
(A(G) < [fi(n)]). Color G with colors i, i + l i + s - 1 and return (s).
(s --< [fi(n)]).

THEOREM 3.1. Algorithm B colors any k-colorable graph on n vertices with at most
2k[fi(n)] = 2k[n 1-1/tk-1)] colors.

a Although It gives an upper bound on the chromatic number

732 AVI WIGDERSON

PROOF. We use induction on k.

k ffi 2. Bipartite graphs are colored with 2 < 4n 1-1/(2-1) = 4 colors.

k --> logn. The graph was colored with n < 2kn ~-~/(k-~).

2 < k < log n. Assume inductively that the claim is true for all k-colorable graphs,
and that B colors a (k + l)-colorable graph on n vertices. Let m be the number of
times step 3 was executed. I f m = 0, then G was colored with at most [fk+~(n)] -<
2(k + 1)[fk+~(n)] colors. I f m > 0, let vl, v2 , . . . , vm be the sequence of vertices chosen
at each execution of step 3. Let H~, 1 _< i _< m, be the subgraphs induced by No(v,)
in the current graph G, and let t, be the number of vertices in H,. By induction, the
H : s were colored properly. Each was given a different set of colors, so there is no
conflict in edges between different Hi's. Each v, was assigned a bigger color than all
its neighbors. Finally, step 4 was executed once, again with a different set of colors,
which completes the proof that the coloring is proper. To prove the upper bound on
the number of colors, we need the following:

Definition. Let S be a convex region. Then a function f : S ---> R is called
concave i f for every x, y E S and 0 _ A _< 1 we have Af(x) + (1 - A) f (y) <_
f (k x + (1 - X)y).

For concave functions one can prove the following (e.g., see [8]):

Jensen's Inequality. Let f : S -o R be a concave function, and let xl, x2 x,,, be
points in S. Then

(@) Y,p-l f (x ,) <_ f - . m
Now we can continue the proof. It is easy to see that the functionsfk(x) = x 1-1/~k-~,
which are the functions in (1) extended to the nounegative real numbers, are concave.
We also note the following: B uses no more than 2krt~ -~/(k-~] colors on H ,
Y.T=t t, _< n, and since for all i, t~ >_ n ~-I/k, m < n ~/k. Combining all that information,
the number of colors B uses in the recursive coloring stage is

_ 2krt} -1/(k-1)1 < 2k m + : I l l

~2km (1 .i xim-ltll~ml/(k-1))

S m f 1-1/(k-1)
~=1 *~

< (2k + l)m (footnote 4)
m

~_ (2k + 1)m - - (footnote 5)

= (2 k + 1)(nm~/~k-2~) ~-~/~k-~

< (2k + 1)n 1-1/k

~ (2k + l)[n~-~/k].

In the brute force coloring stage we use at most rn ~-~/k] colors, which gives
2(k + 1)rn ~-~/~] as the bound on the total number of colors used. []

4 This step is legal when 2k is smaller than the quanu ty m brackets, which is the case here as k < logn.
5 This step uses Jcnsen 's Inequahty.

Performance Guarantee for Approximate Graph Coloring 733

It is easy to show that Algorithm B requires time polynomial in n. The next
theorem states a stronger result, which shows that B is a practical algorithm.

Trmol~a~M 3.2. Algorithm B can be implemented to run in time O(k(I V I + IEI)) on
k-colorable graphs G(V, E).

PROOF. The data structures we maintain in the implementation are given below.
The input graph is given in the data structure GRAPH. It has a doubly linked list for
the vertices. Each vertex points to its adjacency list, which is also doubly linked. In
addition, if (u, w) ~ E, then w on u's list will point to u on w's list and vice versa.
GRAPH allows us to delete each edge or vertex in constant time.

GRAPH can be preprocessed to construct the data structure DEGREE. Its purpose
is to maintain the degree of each vertex so that we can update it in constant time
with each removal of an edge, and have a constant time access to a vertex of
maximum degree. Let dl - d2 -> - . . _ d p be the degree values occurring in the
graph. For each d, we keep a "bucket" D,. These buckets are doubly linked in the
above order, and we have a pointer to the In'st bucket, D1. In each bucket Di we keep
all vertices of degree d,, doubly linked in some order. Every D, points to the first
vertex in it, so we can tell when it gets empty. Each vertex in GRAPH will point to
its place in the appropriate bucket in DEGREE. Clearly, we can create or delete a
bucket in constant time. We can add or delete a vertex from a bucket in constant
time. Also, DEGREE may be constructed from GRAPH in O(1 VI + IE I) time.

Finally, we keep an array COLOR of the vertices, global to all levels of the
recursion.

Since we have k - 1 levels in the recursion, to prove the time bound it is sufficient
to show that each level takes time O(I V I + I E 1).

Assume that the input to the current level of recursion is a k-colorable graph
G(V, E), given in GRAPH(G). I f k = 2, it is known that G can be 2-colored in linear
time. If k > 2, we construct DEGREE(G). Let v be a vertex of maximum degree. I f
we are in the recursive coloring stage, we wish to construct GRAPH(H) for the graph
H induced by Na(v), and update GRAPH(G) and DEGREE(G) to contain the new
graph G resulting from the deletion of N(v) U {v}. To do that we first remove N(v)
from GRAPH(G), leaving these vertices linked to form GRAPH(H). Then we scan
the adjacency list of each vertex u ~ N(v). For each vertex w E V - N(v) in u's list
we do the following: delete w from u's list, delete u from w's list, and decrement the
degree of w by 1 in DEGREE(G). We then delete v and N(v) from DEGREE(G).
Note that we spend constant time on each edge and vertex before they are deleted
from the graph. The brute force coloring stage can also be done in linear time using
"sequential coloring" [6]. Therefore, the time used in each level of the recursion is
o(I Vl + IEI). []

4. Algorithm C

Until now we have assumed that the chromatic number of the input graph was also
given as input. However, this is usually not the case. We overcome this problem by
trying increasing values of k in Algorithm B. We slightly change B to answer "no"
if it cannot fred a legal coloring (i.e., the value of k was too small), and "yes" if it
can. This brings us to Algorithm C.

Algorithm C
Input: A graph G(V, E).
1. Call B(k, G, 1) with k -- 2 ~, l = 1, 2 until the first I for which B answers "yes."

734 AVI WIGDERSON

2. Using 1 of step 1, apply binary search to fred the smallest k in (2 t-l, 2 t] for which
B(k, G, 1) answers "yes." Let this minimum value be/Co.

3. Color G with the coloring produced by B(ko, G, 1).

L~ .~A 4.1. /Co ~ x(G).

PRooF. We need only observe that for every k ~ x(G), B(k, G, 1) will answer
'~res" (Theorem 3.1). Since/Co is the smallest k for which B(k, G, 1) answers "yes,"
/c0_ x(G). []

THEOREM 4.1. For any graph G on n vertices, the number of colors C(G) that will
be used by C is at most 2x(G)[nl-a/(×(°)-l)].

PRooF. Let k0 be defined as above for G. By Theorem 3.1, C(G) <_ 2ko[nX-1/(~-l)],
since C uses the coloring of B(ko, G, 1). By Lemma 4.1, ko <- x(G), which renders
C(G) <-- 2x(G)[n1-1/(x~°)-1)]. []

THEOREM 4.2. For every graph G(V, E), the running time of Algorithm C is
O((l Vl + I E l)x(a)logx(G)).

PROOF. The search method that is applied in C to find /co requires at most
2 log x(G) calls to Algorithm B. By Theorem 3.2 and Lemma 4. I, each call takes time
O(([V[+ [E [)x(G)), which proves the required bound. []

COROLLARY 4.1. For any fixed integer k, the running time of Algorithm C on
graphs G with x(G) <_ k is linear, that is, O(I VI + I E I).

5. Improving the Pelformance Guarantee

The performance guarantee of the algorithm in [4] is O(n/logn) for all graphs.
It is easy to check that Algorithm C improves this bound only for graphs with
x(G) < logn/loglogn. What can we do for graphs that do not satisfy this condition?
Let us recall the Greedy Independent Set algorithm for coloring [4] (here called
Algorithm D).

Algorithm D
Input: A graph G
1. i * - 1.
2. Let W be the set of uncolored vertices. If W = 0, halt, otherwise U *-- W.
3. Let u be a vertex of minimum degree in the subgraph induced by U. Color u with i and set

u .-- u - (u} - N(u).
4. If U = 0, set i ~ i + I and goto 2. Otherwise goto 3.

Algorithm D can be implemented to run in time O(I V[2). The number of colors it
uses is given in the following.

THEOREM 5.1. Algorithm D colors any k-colorable graph G(V, E) with at most
3[VI/logkl vI colors.

This is slightly stronger than the claim in [4], but it is essential for our purposes.
The proof below follows the one in [4].

PROOF. As G is k-colorable, it must contain an independent set o f size [Vl/k,
and hence there must be a vertex of degree at most I V[(k - 1)/k in G. Therefore, if
we start at step 3 with [U [-- n, U will not be completely emptied before we colored
at least llogknJ vertices with the current color i. Consider now the size of W. We start
with [W[- [V I. Divide the algorithm into two phases: before and after the first time

Performance Guarantee for Approximate Graph Coloring 735

I W] gets below I Vl/logk] V I. Before this point we use each color for at least logk] W I
> 0.5 log~[V I vertices, so in this phase at most 21Vl/log~[VI colors. After this point
we cannot use more colors than vertices, so this phase requires at most I VI/log~l VI
colors, which completes the proof. []

Consider now the following simple (final) algorithm.

Algorithm E
Input: A graph G
1. Color G using Algorithm C.
2. Color G using Algorithm D.
3. Produce the one of the two colorings above that uses fewer colors.

THEOREM 5.2. The performance guarantee of Algorithm E, Eo(n), satisfies
Eo(n) <_ 3n(loglogn)2/(logn) 2.

PROOF. Let G be any k-colorable graph on n vertices. From Theorems 4.1 and
5.1, respectively, we get Co(G) <- 2In 1-1/(~-~)] and Do(G) <- n/klogkn. The only
observation needed now is that if we fix n and consider Co and Do as functions o f k
(1 <_ k <_ n), then Co is increasing while Do is decreasing with k. Now, to prove the
theorem, it is sufficient to exhibit one value of k (for each n) for which both Co(G),
Do(G) <- 3n(loglogn)2/Oogn) ~ hold for any k-colorable graph on n vertices. It is easy
to verify that these inequalities hold for k ffi [logn/21oglogn]. []

ACKNOWLEDGMENTS. I wish to thank Prof. Lipton for introducing me to the
problem. I also thank the two referees for their helpful comments.

REFERENCES

(Note. References [l, 12] are not cited in the text.)
1. AHO, A.V., HOPCROFT, J.E, AND ULLMAN, J.D. The Design and Analysis of Computer Algorithms.

Addison-Wesley, Reading, Mass., 1974.
2. GAREY, M.R., AND JOHNSON, D.S. The complexity of near-optimal graph coloring. J. ACM 23, 1

(Jan. 1976), 43-49.
3. HARARY, F. Graph Theory. Reading, Mass., 1971.
4. JOHNSON, D.S. Worst case behavlour or graph coloring algorithms. In Proe. 3th South-Eastern Conf.

on Combmatorics, Graph Theory and Computing. Utditas Mathematica Publishing, Winnipeg, Canada,
1974, pp. 513-528.

5. KARl', R.M. Reducabdlty among combinatorial problems. In Complexity of Computer Computations,
R.E. Miller and J.W. Thatcher, Eds. Plenum Press, New York, 1972, pp. 85-104.

6. MAlX/LA, D.W., MARBLE, G., AND ISSACSON, J D. Graph coloring algorithms. In Graph Theory and
Computing, R.C. Reed, Ed., Academtc Press, New York, 1972, pp. 109-122.

7. MATULA, D.W. Bounded color functions on graphs. Networks 2 (1972), 29-44.
8. ROBERTS, A.W., AND VARBERG, D.E. Convex Analysys. Academic Press, New York, London, 1973,

pp. 211-216.
9. STOCKMEYER, L. Planar 3-colorabihty is polynomial complete. ACM SIGACT News .5, 3 (1973),

19-25.
10. WELSH, DJ.A., Am3 POWEL, M.B. An upper bound to the chromatic number of a graph and its

application to time tabling problems. Comput. J. 10 (1967), 85-86.
11. WILLIAMS, M.R. The coloring of very large graphs. In Combinatorial Structures and their Applications,

R. Guy, ed., Gordon and Breach, New York, 1970.
12. WIGDERSOI% A. A new approximate graph coloring algorithm. In Proc. 14th ACM Symp. on Theory

of Computing (San Francisco, Calif., May 1982), ACM, New York, pp. 325-329.
13. WOOD, D.C. A technique for coloring a graph apphcable to large scale time tabling problems.

Comput. £ 12 (1969), 317-319.

RECEIVED MARCH 1982; REVISED DECEMBER 1982; ACCEPTED DECEMBER 1982

Journal of the A~ocmUon for Computing Machinery, VoL 30,1'4o. 4, Octol~r 1983.

