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Abstract. The performance guarantee of a graph coloring algorithm is the worst case ratio between the 
number of colors it uses on the input graph and the chromauc number of this graph. The previous best 
known polynomial-time algorithm had a performance guarantee O(n/logn) for graphs on n vertices. This 
result stood unchallenged for eight years. This paper presents an efficient algorithm with performance 
guarantee of O(n(loglog n)2/(logn)2). 

Categories and Subject Descriptors F.2.2 [Analysis of Algorithms and Problem ComiflexRy]: Nonnumerical 
Algorithms, G.2.2 [Discrete Mathematics]: Graph Theory--graph algorithms 
General Terms" Algorithms, Theory 
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1. Introduction 

A variety of  problems in production scheduling, construction of  timetables, etc. can 
be modeled as graph coloring problems. A (proper) r-coloring of  a graph 1 G is an 
assignment of  r colors to the vertices of  G such that no two adjacent vertices are 
assigned the same color. A graph G that has an r-coloring is said to be  r-colorable. 
The smallest integer r such that G has an r-coloring is called the chromatic number  
of  G and is denoted by x(G). 

The graph coloring problem, namely, "Given a graph G, is X(G) <_ k?" is known 
to be NP-complete,  even i l k  is fixed, k _> 3 [5, 9]. Therefore, it is unlikely that there 
is a polynomial-t ime algorithm that will color every graph G with x(G) colors. 
Moreover, Garey  and Johnson [2] showed that a polynomial-t ime algorithm that 
guarantees to color every graph G with at most ax(G) + b colors, a < 2, will imply 
a polynomial  algorithm to color every graph G with x(G) colors. In  other words, 
getting closer than within a factor o f  two to the opt imum is as hard as achieving the 
opt imum. 

The  inherent difficulty of  the coloring problem caused researchers to devise 
efficient heuristic algorithms, hoping that the number  of  colors they use is near  
optimal. A few examples of  this approach are [6, 7, 10, 11, 13]. In a 1976 paper  [4], 
Johnson analyzed the worst case behavior of  such algorithms, and we follow his 
notation: For  a coloring algorithm A, let A(G) be the max imum number  o f  colors A 

Throughout the paper we deal only with simple undirected graphs. 
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might use when applied to G, Ao(G) = A(G)/x(G), and Ao(n) = max(Ao(G) I G has 
no more than n vertices}. Ao(n) is called the performance guarantee of algorithm A. 
For every algorithm in a list containing most of  the known heuristics for coloring, 
Johnson constructs a sequence of  3-colorable graphs (Gin} with O(m) vertices such 
that A(Gm) >_ m. This shows that the worst case behavior of these algorithms is as 
bad as possible: Ao(n) # o(n), which is quite surprising in light of  the intuitive nature 
of  many of  them. He concludes his paper with a polynomial-time algorithm that 
guarantees Ao(n) = O(n/log n), the best bound currently known. 2 

To summarize, there is a huge gap between what we know is NP-hard: Ao(n) < 2, 
and what we can guarantee in polynomial time: Ao(n) = O(n/logn). 

In Section 2 we give a polynomial-time algorithm (Algorithm A) to color 
3-colorable graphs on n vertices using at most 3,~n colors. In Section 3 we show 
how to generalize the method to color k-colorablc graphs (Algorithm B). In Section 
4 we give Algorithm C, which guarantees Co(G) <- 2n 1-1/~x(°)-1~. We further show 
that this algorithm is very practical; it can be implemented to run in linear 
time (O([ V I + IEI)) for graphs with a fixed chromatic number, and in time 
O((I V I + [EI)x(G)Iogx(G)) for all graphs. In Section 5 we show how to combine 
Algorithm C with that of  Johnson [4], so that the hybrid algorithm (Algorithm E) 
guarantees Eo(n) = O(n(log log n)2/(log n)2). 

2. Algorithm A--Coloring 3-Colorable Graphs 

First, let us introduce the graph-theoretic notation we will use. For a graph G(V, E) 
we defme 

Ne(v) = the neighborhood of a vertex v ~ V -- {ul (v, u) ~ E}, 
do(v) -- the degree of a vertex v E V = IN~(v) l, 
A(G) -- the maximum degree of G = max{da(V)}. 

o E V  

The subgraph of  G induced by U __. V is the graph H(U, F), where 

F -- {(u, w) lu E U, w ~ U, and (u, w) E E}. 
(We omit "G"  from above notation when the graph at hand is clear from the context.) 

We next state three simple facts on which our algorithm is based. 

FACT 1. Any graph G can be colored in polynomial time with at most 1 + A(G) 
colors. 

FACT 2. Let G(V, E) be a 3-colorable graph. Then for every v E V, the subgraph 
of  G induced by N(v) is bipartite (2-colorable). 

FACT 3. Any bipartite graph can be 2-colored in polynomial time. 

Algorithm A 
Input: A 3-colorabl¢ graph G(V, E). 

1. n ~ l V I .  
2. i<-- 1. 
3. WhUe A(G) _> [~n 1 do: 

Let v be a vertex of maximum degree in G. 
H ~ the subgraph of G reduced by No(v). 
2-color H with colors i, i + 1. 
Color v with color i + 2. 
i*--i+2. 
G <-- the subgraph of G resulting from it by deleting N(v) U (v). 

4. (A(G) < [~n]). Color G with colors i, i + 1, i + 2 . . . .  and halt. 

2 All logarithms are to the base 2 unless otherwise noted 
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TnEo~a~M 2.1. Algorithm A colors any 3-eolorable graph G(V, F,) on n vertices 
with at most 3[x/nn]) colors, and its running time is polynomial in n. 

PROOF. T o  see that  the coloring is proper ,  we need only  to observe  tha t  each  t ime 
step 3 is executed, we use a new set o f  colors (i, i + 1} for  N(v), and  all ne ighbors  o f  
v, which is colored i + 2, were a l ready colored with smal ler  colors. Since each  t ime 
step 3 is executed we color at  least Ix/n] + 1 vertices, it will be  executed at  
mos t  [x/~] times. Each  t ime we use two colors, so a l together  this loop uses at  mos t  
2[x/-n] colors. Step 4 is executed only  once and  uses at mos t  [4nn] colors, which  
gives the total  b o u n d  o f  3[x/~]. T h e  t ime b o u n d  follows immedia t e ly  f r o m  Facts  1 
and  3. [ ]  

3. Algorithm B--Coloring k-Colorable Graphs 

A na tura l  quest ion to ask at this poin t  is: H o w  can  we use the ideas o f  the previous  
section to color  k-colorable  graphs  for  any  k in po lynomia l  t ime,  and  wha t  uppe r  
b o u n d  on  the  n u m b e r  o f  colors can  we guarantee? W e  look  again  at  the  three  facts 
stated in Sect ion 2. Fac t  1 is independen t  o f  the chromat ic  n u m b e r  o f  the graph,  a 
Fac t  2 is tr ivially general ized to: 

FACT 2'. Let G(V, E) be a (k + 1)-colorable graph. Then for every vertex v E V, 
the subgraph of G induced by N(v) is k-colorable. 

Fac t  3 was  used in the fol lowing sense: G i v e n  a po lynomia l - t ime  color ing a lgor i thm 
for  2-colorable  graphs,  we obta ined  one for  3-colorable graphs.  In  general ,  we can  
recursively use the k-colorable  graphs '  a lgor i thm in the one  for  (k + 1)-colorable 
graphs.  

T h e  above  discussion suggests the following recursive Algor i thm B. Fo r  
k ffi 2, 3 . . . .  define 

fi(n) = n 1-1/(k-I). (1) 

Algorithm B(k, G, i) 

Input: An integer k, a k-colorable graph G, and an integer i, telling it to color G with successive 
colors i, i -~ 1, . . . .  

Output: The number of  colors used to color G. 

1. n ~-- the number of  vertices in G. 
2. I f  k = 2, 2-color G with i, i + 1 and return (2). 

I f k  _> logn, n-color G with i, i + l . . . .  , i + n - l (each vertex gets a distinct color) and 
return (n). 

3. [Recursive coloring stage] 
While A(G) >_ [fi(n)l do: 

Let v be a vertex with riG(V) = A(G). 
H "~- the subgraph of G induced by Na(v). 
j ~-- B(k - 1, 1t, i). (H was colored with i, i + l . . . . .  i + j - l). 
Color v with color i + j. 
i~--i+j.  
G *-- the subgraph of G resulting from it by deleting NG(V) t2 (v}. 

4. [Brute force coloring stage] 
(A(G) < [fi(n)]). Color G with colors i, i + l . . . . .  i + s - 1 and return (s). 
(s --< [fi(n)]). 

THEOREM 3.1. Algorithm B colors any k-colorable graph on n vertices with at most 
2k[ fi(n) ] = 2k[n 1-1/tk-1)] colors. 

a Although It gives an upper bound on the chromatic number 
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PROOF. We use induction on k. 

k ffi 2. Bipartite graphs are colored with 2 < 4n 1-1/(2-1) = 4 colors. 

k --> logn. The graph was colored with n < 2kn ~-~/(k-~). 

2 < k < log n. Assume inductively that the claim is true for all k-colorable graphs, 
and that B colors a (k + l)-colorable graph on n vertices. Let m be the number of  
times step 3 was executed. I f  m = 0, then G was colored with at most [fk+~(n)] -< 
2(k + 1)[fk+~(n)] colors. I f m  > 0, let vl, v2 , . . . ,  vm be the sequence of  vertices chosen 
at each execution of  step 3. Let H~, 1 _< i _< m, be the subgraphs induced by No(v,)  
in the current graph G, and let t, be the number  of  vertices in H,. By induction, the 
H : s  were colored properly. Each was given a different set of  colors, so there is no 
conflict in edges between different Hi's. Each v, was assigned a bigger color than all 
its neighbors. Finally, step 4 was executed once, again with a different set of  colors, 
which completes the proof  that the coloring is proper. To prove the upper bound on 
the number  of  colors, we need the following: 

Definition. Let S be a convex region. Then  a function f :  S ---> R is called 
concave i f  for every x, y E S and 0 _ A _< 1 we have Af(x)  + (1 - A) f ( y )  <_ 
f ( k x  + (1 - X)y). 

For  concave functions one can prove the following (e.g., see [8]): 

Jensen's Inequality. Let f :  S -o  R be a concave function, and let xl, x2 . . . . .  x,,, be 
points in S. Then  

(@) Y,p-l f ( x , )  <_ f - . m 
Now we can continue the proof. It is easy to see that the functionsfk(x) = x 1-1/~k-~, 
which are the functions in (1) extended to the nounegative real numbers, are concave. 
We also note the following: B uses no more than 2krt~ -~/(k-~] colors on H ,  
Y.T=t t, _< n, and since for all i, t~ >_ n ~-I/k, m < n ~/k. Combining all that information, 
the number of  colors B uses in the recursive coloring stage is 

_ 2krt} -1/(k-1)1 < 2k  m + : I l l  

~2km (1 .i xim-ltll~ml/(k-1) ) 

S m f 1-1/(k-1) 
~=1 *~ 

< (2k + l)m (footnote 4) 
m 

~_ (2k + 1)m - -  (footnote 5) 

= ( 2 k  + 1)(nm~/~k-2~) ~-~/~k-~ 

< (2k + 1)n 1-1/k 

~ (2k + l)[n~-~/k]. 

In the brute force coloring stage we use at most rn ~-~/k] colors, which gives 
2(k + 1)rn ~-~/~] as the bound on the total number of  colors used. [] 

4 This  step is legal when  2k is smaller than  the quanu ty  m brackets, which is the case here as k < logn. 
5 This  step uses Jcnsen 's  Inequahty.  
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It is easy to show that Algorithm B requires time polynomial in n. The next 
theorem states a stronger result, which shows that B is a practical algorithm. 

Trmol~a~M 3.2. Algorithm B can be implemented to run in time O(k(I V I + IEI)) on 
k-colorable graphs G( V, E). 

PROOF. The data structures we maintain in the implementation are given below. 
The input graph is given in the data structure GRAPH. It has a doubly linked list for 
the vertices. Each vertex points to its adjacency list, which is also doubly linked. In 
addition, if  (u, w) ~ E, then w on u's list will point to u on w's list and vice versa. 
GRAPH allows us to delete each edge or vertex in constant time. 

GRAPH can be preprocessed to construct the data structure DEGREE.  Its purpose 
is to maintain the degree of each vertex so that we can update it in constant time 
with each removal of  an edge, and have a constant time access to a vertex of  
maximum degree. Let dl - d2 -> - . .  _ d p  be the degree values occurring in the 
graph. For each d, we keep a "bucket" D,. These buckets are doubly linked in the 
above order, and we have a pointer to the In'st bucket, D1. In each bucket Di we keep 
all vertices of  degree d,, doubly linked in some order. Every D, points to the first 
vertex in it, so we can tell when it gets empty. Each vertex in GRAPH will point to 
its place in the appropriate bucket in DEGREE. Clearly, we can create or delete a 
bucket in constant time. We can add or delete a vertex from a bucket in constant 
time. Also, DEGREE may be constructed from GRAPH in O(1 VI + IE I) time. 

Finally, we keep an array COLOR of the vertices, global to all levels of  the 
recursion. 

Since we have k - 1 levels in the recursion, to prove the time bound it is sufficient 
to show that each level takes time O(I V I + I E 1). 

Assume that the input to the current level of  recursion is a k-colorable graph 
G(V, E), given in GRAPH(G).  I f k  = 2, it is known that G can be 2-colored in linear 
time. If  k > 2, we construct DEGREE(G). Let v be a vertex of  maximum degree. I f  
we are in the recursive coloring stage, we wish to construct GRAPH(H)  for the graph 
H induced by Na(v), and update GRAPH(G) and DEGREE(G) to contain the new 
graph G resulting from the deletion of N(v) U {v}. To do that we first remove N(v) 
from GRAPH(G),  leaving these vertices linked to form GRAPH(H).  Then we scan 
the adjacency list of  each vertex u ~ N(v). For each vertex w E V -  N(v) in u's list 
we do the following: delete w from u's list, delete u from w's list, and decrement the 
degree of w by 1 in DEGREE(G). We then delete v and N(v) from DEGREE(G).  
Note that we spend constant time on each edge and vertex before they are deleted 
from the graph. The brute force coloring stage can also be done in linear time using 
"sequential coloring" [6]. Therefore, the time used in each level of  the recursion is 
o(I Vl + IEI). [] 

4. Algorithm C 

Until now we have assumed that the chromatic number of  the input graph was also 
given as input. However, this is usually not the case. We overcome this problem by 
trying increasing values of  k in Algorithm B. We slightly change B to answer "no" 
if  it cannot fred a legal coloring (i.e., the value of k was too small), and "yes" if  it 
can. This brings us to Algorithm C. 

Algorithm C 
Input: A graph G(V, E). 
1. Call B(k, G, 1) with k -- 2 ~, l = 1, 2 . . . .  until the first I for which B answers "yes." 



734 AVI WIGDERSON 

2. Using 1 of step 1, apply binary search to fred the smallest k in (2 t-l, 2 t] for which 
B(k, G, 1) answers "yes." Let this minimum value be/Co. 

3. Color G with the coloring produced by B(ko, G, 1). 

L~ .~A 4.1. /Co ~ x(G). 

PRooF. We need only observe that for every k ~ x(G), B(k, G, 1) will answer 
'~res" (Theorem 3.1). Since/Co is the smallest k for which B(k, G, 1) answers "yes," 
/c0_ x(G). [] 

THEOREM 4.1. For any graph G on n vertices, the number of colors C(G) that will 
be used by C is at most 2x(G)[nl-a/(×(°)-l)]. 

PRooF. Let k0 be defined as above for G. By Theorem 3.1, C(G) <_ 2ko[nX-1/(~-l)], 
since C uses the coloring of  B(ko, G, 1). By Lemma 4.1, ko <- x(G), which renders 
C(G) <-- 2x(G)[n1-1/(x~°)-1)]. [] 

THEOREM 4.2. For every graph G(V, E), the running time of Algorithm C is 
O((l Vl + I E l)x(a)logx(G)). 

PROOF. The search method that is applied in C to find /co requires at most 
2 log x(G) calls to Algorithm B. By Theorem 3.2 and Lemma 4. I, each call takes time 
O(([ V[ + [E [)x(G)), which proves the required bound. [] 

COROLLARY 4.1. For any fixed integer k, the running time of Algorithm C on 
graphs G with x(G) <_ k is linear, that is, O(I VI + I E I). 

5. Improving the Pelformance Guarantee 

The performance guarantee of  the algorithm in [4] is O(n/logn) for all graphs. 
It is easy to check that Algorithm C improves this bound only for graphs with 
x(G) < logn/loglogn. What  can we do for graphs that do not satisfy this condition? 
Let us recall the Greedy Independent Set algorithm for coloring [4] (here called 
Algorithm D). 

Algorithm D 
Input: A graph G 
1. i * -  1. 
2. Let W be the set of uncolored vertices. If W = 0, halt, otherwise U *-- W. 
3. Let u be a vertex of minimum degree in the subgraph induced by U. Color u with i and set 

u .-- u - (u} - N(u). 
4. If U = 0, set i ~ i + I and goto 2. Otherwise goto 3. 

Algorithm D can be implemented to run in time O(I V[2). The number of  colors it 
uses is given in the following. 

THEOREM 5.1. Algorithm D colors any k-colorable graph G(V, E) with at most 
3[ VI/logkl vI colors. 

This is slightly stronger than the claim in [4], but it is essential for our purposes. 
The proof  below follows the one in [4]. 

PROOF. As G is k-colorable, it must contain an independent set o f  size [ Vl/k,  
and hence there must be a vertex of  degree at most I V[(k - 1)/k in G. Therefore, if 
we start at step 3 with [ U [ -- n, U will not be completely emptied before we colored 
at least llogknJ vertices with the current color i. Consider now the size of  W. We start 
with [ W[ - [ V I. Divide the algorithm into two phases: before and after the first time 



Performance Guarantee for Approximate Graph Coloring 735 

I W] gets below I Vl/logk ] V I. Before this point we use each color for at least logk] W I 
> 0.5 log~[ V I vertices, so in this phase at most 21Vl/log~[ VI colors. After this point 
we cannot use more colors than vertices, so this phase requires at most I VI/log~l VI 
colors, which completes the proof. []  

Consider now the following simple (final) algorithm. 

Algorithm E 
Input: A graph G 
1. Color G using Algorithm C. 
2. Color G using Algorithm D. 
3. Produce the one of the two colorings above that uses fewer colors. 

THEOREM 5.2. The performance guarantee of Algorithm E, Eo(n), satisfies 
Eo(n) <_ 3n(loglogn)2/(logn) 2. 

PROOF. Let G be any k-colorable graph on n vertices. From Theorems 4.1 and 
5.1, respectively, we get Co(G) <- 2In 1-1/(~-~)] and Do(G) <- n/klogkn. The only 
observation needed now is that if  we fix n and consider Co and Do as functions o f  k 
(1 <_ k <_ n), then Co is increasing while Do is decreasing with k. Now,  to prove the 
theorem, it is sufficient to exhibit one value of  k (for each n) for which both Co(G), 
Do(G) <- 3n(loglogn)2/Oogn) ~ hold for any k-colorable graph on n vertices. It is easy 
to verify that these inequalities hold for k ffi [logn/21oglogn]. [] 
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