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Abstract Advances in sensor technology are revolu-

tionizing the way remotely sensed data is collected,

managed and analyzed. The incorporation of latest-

generation sensors to airborne and satellite platforms is

currently producing a nearly continual stream of high-

dimensional data, and this explosion in the amount

of collected information has rapidly created new

processing challenges. For instance, hyperspectral sig-

nal processing is a new technique in remote sensing

that generates hundreds of spectral bands at different

wavelength channels for the same area on the surface

of the Earth. Many current and future applications of

remote sensing in Earth science, space science, and

soon in exploration science will require (near) real-

time processing capabilities. In recent years, several

efforts have been directed towards the incorporation

of high-performance computing (HPC) systems and

architectures in remote sensing missions. With the aim

of providing an overview of current and new trends

in parallel and distributed systems for remote sensing

applications, this paper explores three HPC-based par-

adigms for efficient implementation of the Pixel Purity
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Index (PPI) algorithm, available from the popular Ko-

dak’s Research Systems ENVI software package, as a

representative case study for demonstration purposes.

Several different parallel programming techniques are

used to improve the performance of the PPI on a

variety of parallel platforms, including a set of message

passing interface (MPI)-based implementations on a

massively parallel Beowulf cluster at NASA’s Goddard

Space Flight Center in Maryland and on a variety of

heterogeneous networks of workstations at University

of Maryland; a Handel-C implementation of the al-

gorithm on a Virtex-II field programmable gate array

(FPGA); and a compute unified device architecture

(CUDA)-based implementation on graphical process-

ing units (GPUs) of NVidia. Combined, these parts

deliver an excellent snapshot of the state-of-the-art in

those areas, and offer a thoughtful perspective on the

potential and emerging challenges of adapting HPC

systems to remote sensing problems.

Keywords Parallel systems · Hyperspectral imaging ·

Cluster computer systems · Heterogeneous parallel

systems · FPGAs · GPUs

1 Introduction

Hyperspectral imaging is concerned with the measure-

ment, analysis, and interpretation of spectra acquired

from a given scene (or specific object) at a short,

medium or long distance by an airborne or satellite sen-

sor [1]. This new technique has gained tremendous pop-

ularity in recent years. Advances in sensor technology

have led to the development of so-called hyperspectral

instruments, which are capable of collecting hundreds
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Figure 1 The concept of hyperspectral imaging.

of images corresponding to different wavelength chan-

nels for the same area on the surface of the Earth [2].

For instance, NASA is continuously gathering imagery

data with hyperspectral Earth-observing sensors such

as the Jet Propulsion Laboratory’s Airborne Visible-

Infrared Imaging Spectrometer (AVIRIS) [3], able to

record the visible and near-infrared spectrum (wave-

length region from 0.4 to 2.5 µm) of the reflected light

of an area 2 to 12 km wide and several kilometers long

using 224 spectral bands. The resulting hyperspectral

data cube [4] is a stack of images (see Fig. 1) in which

each pixel (vector) has an associated spectral signature

or ‘fingerprint’ (signal) that uniquely characterizes the

underlying objects, and the resulting data volume typi-

cally comprises several GBs per flight.

The extremely high computational requirements al-

ready introduced by hyperspectral imaging applications

(and the fact that these systems will continue increasing

their spatial and spectral resolutions in the near future)

make them an excellent case study to illustrate the need

for high performance computing (HPC) systems for

image processing [5, 6], and remote sensing applications

[7–9]. In particular, the development of computation-

ally efficient techniques for transforming the massive

amount of hyperspectral data collected on a daily basis

into scientific understanding is critical for space-based

Earth science and planetary exploration [10–12]. The

wealth of spatial and spectral information provided by

last-generation hyperspectral instruments has opened

ground-breaking perspectives in many applications, in-

cluding environmental modeling and assessment, target

detection for military and defense/security purposes,

urban planning and management studies, risk/hazard

prevention and response including wild land fire track-

ing, biological threat detection, monitoring of oil spills

and other types of chemical contamination [13]. Most of

the above-cited applications require analysis algorithms

able to provide a response in (near) real-time, which is

a very ambitious goal since the price paid for the rich

information available from hyperspectral sensors is the

enormous amounts of data that they generate.

Specifically, the utilization of HPC systems in hy-

perspectral signal processing applications has become

more and more widespread in recent years. The idea

developed by the computer science community of us-

ing commercial off-the-shelf computer equipment, clus-

tered together to work as a computational ‘team,’ is a

very attractive solution in remote sensing applications

[14]. This strategy is often referred to as Beowulf-class

cluster computing [15], and has already offered access

to greatly increased computational power at low cost

(commensurate with falling commercial PC costs) in

a number of remote sensing applications [16–19]. In

theory, the combination of commercial forces driving

down cost and positive hardware trends (e.g., CPU

peak power doubling ever 18–24 months, storage ca-

pacity doubling every 12–18 months and networking

bandwidth doubling every 9–12 months) offers super-

computing performance that can now be applied a

much wider range of remote sensing problems.

Although most parallel techniques and systems for

image information processing employed by NASA and

other institutions during the last decade have chiefly

been homogeneous in nature (i.e., they are made up of

identical processing units, thus simplifying the design

of parallel solutions adapted to those systems), a recent

trend in the design of HPC systems for data-intensive

problems is to utilize highly heterogeneous computing

resources [20]. This heterogeneity is seldom planned,

arising mainly as a result of technology evolution over

time and computer market sales and trends. In this

regard, networks of heterogeneous resources can re-

alize a very high level of aggregate performance in

remote sensing applications [21, 22], and the pervasive

availability of these resources has resulted in the cur-

rent notion of Grid computing [23], which endeavors

to make such distributed computing platforms easy to

utilize in different application domains, much like the

World Wide Web has made it easy to distribute web

content. It is expected that grid-based HPC systems will

soon represent the tool of choice for the scientific com-

munity devoted to very high-dimensional data analysis

in remote sensing.
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Although remote sensing data processing algorithms

map nicely to parallel systems made up of commod-

ity CPUs, these systems are generally expensive and

difficult to adapt to onboard remote sensing data

processing scenarios, in which low-weight and low-

power integrated components are essential to reduce

mission payload and obtain analysis results in real-time,

i.e., at the same time as the data is collected by the

sensor. In this regard, an exciting new development

in the field of commodity computing is the emergence

of field programmable gate arrays (FPGAs) [24–26]

and graphic processing units (GPUs) [27], which can

bridge the gap towards onboard and real-time analy-

sis of remote sensing data. FPGAs are now fully re-

configurable, which allows one to adaptively select a

data processing algorithm (out of a pool of available

ones) to be applied onboard the sensor from a control

station on Earth. On the other hand, the emergence

of GPUs (driven by the ever-growing demands of the

video-game industry) have allowed these systems to

evolve from expensive application-specific units into

highly parallel and programmable commodity compo-

nents. The ever-growing computational demands of

remote sensing applications can fully benefit from com-

pact hardware components and take advantage of the

small size and relatively low cost of these units as

compared to clusters or networks of computers.

The main purpose of this paper is to provide an

experimental assessment of different HPC systems in

the context of remote sensing applications. As a case

study, this paper focuses on the pixel purity index

(PPI) algorithm, one of the most widely used algo-

rithms in the hyperspectral imaging community. The

algorithm was originally developed by Boardman et al.

[28], and was soon incorporated into Kodak’s Research

Systems ENVI [29] which is one of the most widely

used commercial software packages by remote sensing

scientists. Due to the algorithm’s propriety and limited

published results, its detailed implementation has never

been made available in the public domain. Therefore,

most of the scientists who use the PPI algorithm either

appeal for ENVI software or implement their versions

of the PPI based on whatever available in the liter-

ature. In this paper, we present our experience with

the PPI algorithm and investigate several strategies for

its efficient implementation on parallel, distributed and

hardware-based systems, aimed at solving one the most

significant drawbacks of the algorithm: its very high

computational complexity. The description of several

systems and strategies for implementation of the PPI

algorithm provides an excellent snapshot of the state-

of-the-art in the application of HPC models to remote

sensing applications, and an in-depth study of a well-

known commercial algorithm that will appeal to both

practitioners and developers alike, thus providing a

thoughtful perspective on the potential of applying

HPC systems in current and planned remote sensing

missions.

The remainder of the paper is organized as fol-

lows. Section 2 focuses on related work in the area of

parallel hyperspectral imaging. Section 3 reviews the

original PPI and presents a new optimized implementa-

tion of the algorithm. Section 4 develops several high-

performance system architectures for efficient imple-

mentation of the PPI, including a commodity cluster-

based parallel implementation, a distributed implemen-

tation for (fully or partially) heterogeneous networks

of workstations, an FPGA-based implementation, and

a GPU-based implementation. Section 5 provides an

experimental comparison of the proposed implementa-

tions using several high-performance computing archi-

tectures. Specifically, we use a massively parallel Be-

owulf cluster at NASA’s Goddard Space Flight Center,

four distributed networks of workstations at University

of Maryland, a Xilinx Virtex-II FPGA device, and an

NVidia GeForce 8800 GTX GPU. The description of

results is followed by a detailed discussion on the main

observations and lessons learned after the detailed

assessment of the different parallel implementations

conducted in this work. Finally, Section 6 concludes the

paper with some remarks and hints at plausible future

research lines.

2 Related Work

In previous work, we have explored the implemen-

tation of different hyperspectral image and signal

processing algorithms on a variety of parallel com-

puting architectures [30]. Specifically, our efforts have

been directed towards the parallelization of hyperspec-

tral imaging algorithms that make use of spatial con-

text, such as an algorithm called automatic morpho-

logical endmember extraction algorithm (AMEE) [31]

which has been implemented in a variety of platforms

such as commodity clusters [12], several heterogeneous

networks of workstations [32, 33], and a GPU 7800

GTX from NVidia [27]. The results obtained in the

parallelization of AMEE provided us with a good in-

trospection and background on how to accomplish par-

allelization of other hyperspectral imaging algorithms,

such as the PPI discussed in this paper. In previous re-

lated work we have also focused on the optimization of

sequential versions of the PPI [34–36], thus allowing us

to obtain a solid understanding of the main properties

of the algorithm and the most relevant aspects for its
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parallelization, including the specific portions of the al-

gorithm that are more interesting for optimization due

to their computational complexity. In the past we have

also explored the relevant topic of how to find the best

possible initialization conditions for the PPI algorithm,

which may be used in future work to improve the cur-

rently adopted random initialization module for the al-

gorithm. In this work, we focus on optimizing the classic

implementation of the PPI and provide a detailed inter-

comparison of different parallel implementations of the

algorithm in different parallel computing architectures,

including commodity clusters [12], heterogeneous net-

works of workstations [32, 33], FPGAs [26] (although

some of these approaches have been presented in pre-

vious work, these have never been inter-compared),

as well a new GPU-based implementation of the PPI

which represents a completely new contribution of this

paper.

3 Pixel Purity Index (PPI) Algorithm

The PPI algorithm was originally developed by Board-

man [28] and was soon incorporated into Kodak’s

Research Systems ENVI. The underlying assumption

under the PPI algorithm is that the spectral signature

associated to each pixel vector measures the response

of multiple underlying materials at each site. For in-

stance, it is very likely that the pixel vectors shown

in Fig. 1 would actually contain a mixture of different

substances (e.g., different types of vegetation, different

types of soils, atmospheric interferers such as clouds,

etc.). This situation, often referred to as the ‘mixture

problem’ in hyperspectral analysis terminology [37], is

one of the most crucial and distinguishing properties of

spectroscopic analysis.

In hyperspectral images, mixed pixels exist for one

of two reasons [34]. Firstly, if the spatial resolution

of the sensor is not fine enough to separate different

materials, these can jointly occupy a single pixel, and

the resulting spectral measurement will be a composite

of the individual spectra. Secondly, mixed pixels can

also result when distinct materials are combined into

a homogeneous mixture. This circumstance occurs in-

dependent of the spatial resolution of the sensor. A

hyperspectral image is often a combination of the two

situations, where a few sites in a scene are pure materi-

als, but many other are mixtures of materials. To deal

with the mixture problem in hyperspectral imaging,

spectral unmixing techniques have been proposed as an

inversion technique in which the measured spectrum

of a mixed pixel is decomposed into a collection of

spectrally pure constituent spectra, called endmembers

Figure 2 Toy example illustrating the performance of the PPI
algorithm in a 2-dimensional space.

in the literature, and a set of correspondent fractions,

or abundances, that indicate the proportion of each

endmember present in the mixed pixel [4, 37].

The PPI algorithm is a tool to automatically search

for endmembers which are assumed to be the vertices

of a convex hull [28]. The algorithm proceeds by gen-

erating a large number of random, N-dimensional unit

vectors called ‘skewers’ through the dataset. Every data

point is projected onto each skewer, and the data points

that correspond to extrema in the direction of a skewer

are identified and placed on a list (see Fig. 2). As more

skewers are generated, the list grows, and the number

of times a given pixel is placed on this list is also tallied.

The pixels with the highest tallies are considered the

final endmembers.

The inputs to the algorithm are a hyperspectral data

cube F with N dimensions; a maximum number of

endmembers to be extracted, E; the number of random

skewers to be generated during the process, K; a cut-off

threshold value, tv , used to select as final endmembers

only those pixels that have been selected as extreme

pixels at least tv times throughout the PPI process; and a

threshold angle, ta, used to discard redundant endmem-

bers during the process. The output of the algorithm is

a set of E final endmembers {ee}
E
e=1

. The algorithm can

be summarized by the following steps:

1. Skewer generation. Produce a set of K randomly

generated unit vectors {skewer j}
K
j=1

.

2. Extreme projections. For each skewer j, with j =

{1, · · · , K}, all sample pixel vectors fi in the

original data set F, with i = {1, · · · , T}, where

T is the total number of pixels in the original

data, are projected onto skewer j via dot products

given by the expression: |fi × skewer j| =
∑N

l=1
f
(k)

i ∗
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skewer
(k)

j , where f
(k)

i denotes the k-th band of pixel

vector fi and skewer
(k)

j denotes the k-th component

of skewer j, to find sample vectors at its extreme

(maximum and minimum) projections, thus form-

ing an extrema set for skewer j which is denoted by

Sextrema(skewer j). Despite the fact that a different

skewer j would probably generate a different ex-

trema set Sextrema(skewer j), it is very likely that

some sample vectors may appear in more than one

extrema set. In order to deal with this situation, we

define an indicator function of a set F, denoted by

IS(x), to denote membership of an element x to that

particular set as follows:

IS(x) =

{

1 if x ∈ S

0 if x /∈ S

}

(1)

3. Calculation of PPI scores. Using the indicator func-

tion above, we calculate the PPI score associated to

the sample pixel vector fi (i.e., the number of times

that given pixel has been selected as extreme in step

2) using the following equation:

NPPI(fi) =

k
∑

j=1

ISextrema(skewer j)(fi) (2)

4. Endmember selection. Find the pixel vectors with

scores of NPPI(fi) which are above tv , and form a

unique set of endmembers {ee}
E
e=1

by calculating the

spectral angle distance (SAD) for all possible vec-

tor pairs and discarding those pixels which result in

an angle value below ta. It should be noted that the

SAD between a pixel vector fi and a different pixel

vector f j is a standard similarity metric for remote

sensing operations, mainly because it is invariant in

the multiplication of the input vectors by constants

and, consequently, is invariant to unknown multi-

plicative scalings that may arise due to differences

in illumination and sensor observation angle.

SAD(fi, f j) = cos−1(fi × f j/‖fi‖ × ‖f j‖) =

= cos−1

⎛

⎜

⎝

∑N
l=1

f
(k)

i ∗ f
(k)

j
√

∑N
l=1

f
(k)2

i ∗

√

∑N
l=1

f
(k)2

j

⎞

⎟

⎠
.

(3)

From the algorithm description above, it is clear that

the PPI is not an iterative algorithm [35]. In order to set

parameter values for the PPI, the authors recommend

using as many random skewers as possible in order

to obtain optimal results. As a result, the PPI can

only guarantee to produce optimal results asymptot-

ically and its computational complexity is very high.

According to our experiments using standard AVIRIS

hyperspectral data sets, the PPI generally requires a

very high number of skewers (in the order of K =

10
4 or K = 10

5) to produce an accurate final set of

endmembers [34], and results in processing times typ-

ically exceeding 1 h of computation in latest-generation

desktop PCs. Such response time is unacceptable in

many time-critical remote sensing applications. In the

following section, we describe three different HPC sys-

tem architectures specifically developed to speed up

computational performance of the PPI algorithm.

4 Parallel Implementations

This section first develops a parallel implementation of

the PPI algorithm which has been specifically designed

to be run on massively parallel, homogeneous clusters

of Beowulf type. Then, the parallel version is trans-

formed into a heterogeneity-aware implementation by

introducing an adaptive data partitioning algorithm

specifically developed to capture the specificities of

the underlying heterogeneous networks of distributed

workstations. Finally, FPGA and GPU implementa-

tions aimed at onboard PPI-based processing at the

same time as the data is collected on the sensor, are also

provided.

4.1 Cluster-Based (Homogeneous) Parallel

Implementation of the PPI

In this subsection, we describe a master-slave parallel

version of the PPI algorithm. To reduce code redun-

dancy and enhance reusability, our goal was to reuse

much of the code for the sequential algorithm in the

parallel implementation. For that purpose, we adopted

a spatial-domain decomposition approach [38, 39] that

subdivides the image cube into multiple blocks made up

of entire pixel vectors, and assigns one or more blocks

to each processing element (see Fig. 3).

It should be noted that the PPI algorithm is mainly

based on projecting pixel vectors which are always

Figure 3 Spatial-domain decomposition for parallel implemen-
tation of the PPI.
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treated as entire spectral signatures. This is a result

of the convex geometry process implemented by the

PPI, which relates to the spectral ‘purity’ or ‘con-

vexity’ of the entire spectral signature associated to

each pixel. Therefore, a spectral-domain partitioning

scheme (which subdivides the whole multi-band data

into blocks made up of contiguous spectral bands or

sub-volumes, and assigns one or more sub-volumes

to each processing element) is not appropriate in our

application [12, 32]. This is because the latter approach

breaks the spectral identity of the data because each

pixel vector is split amongst several processing element.

A further reason that justifies the above decision is

that, in spectral-domain partitioning, the calculations

made for each hyperspectral pixel need to originate

from several processing elements, and thus require in-

tensive inter-processor communication. Therefore, in

our proposed implementation, a master-slave spatial

domain-based decomposition paradigm is adopted (see

Fig. 3, where the master processor sends partial data

to the workers and coordinates their actions). Then,

the master gathers the partial results provided by the

workers and produces a final result.

As it was the case with the sequential version, the

inputs to our cluster-based implementation of the PPI

algorithm are a hyperspectral data cube F with N di-

mensions; a maximum number of endmembers to be

extracted, E; the number of random skewers to be

generated during the process, K; a cut-off threshold

value, tv ; and a threshold angle, ta. The output of the

algorithm is a set of E endmembers {ee}
E
e=1

. The parallel

algorithm is given by the following steps:

1. Data partitioning. Produce a set of P equally-sized

spatial-domain partitions of F and scatter all par-

titions by indicating all partial data structure ele-

ments which are to be accessed and sent to each of

the workers.

2. Skewer generation. Generate k random unit vectors

{skewer j}
K
j=1

in parallel, and broadcast the entire set

of skewers to all the workers.

3. Extreme projections. For each skewer j, project all

the sample pixel vectors at each local partition p

onto skewer j to find sample vectors at its extreme

projections, and form an extrema set for skewer j

which is denoted by S
(p)
extrema(skewer j). Now calcu-

late the number of times each pixel vector f
(p)

i in

the local partition is selected as extreme using the

following expression:

N
(p)

PPI(f
(l)
i ) =

K
∑

j=1

I
S

(p)
extrema(skewer j)

(f
(l)
i ) (4)

4. Candidate selection. Each worker now sends the

number of times each pixel vector in the local par-

tition has been selected as extreme to the master,

which forms a final matrix of pixel purity indices

NPPI by combining all the individual matrices N
(p)

PPI

provided by the workers.

5. Endmember selection. The master selects those pix-

els with NPPI(fi) > tv and forms a unique set {ee}
E
e=1

by calculating the SAD for all possible pixel vector

pairs and discarding those pixels which result in

angle values below ta.

It should be noted that the proposed parallel al-

gorithm has been implemented in the C++ program-

ming language, using calls to message passing interface

(MPI) [40]. We emphasize that, in order to implement

step one of the parallel algorithm, we resorted to MPI

derived datatypes to directly scatter hyperspectral data

structures, which may be stored non-contiguously in

memory, in a single communication step. As a result,

we avoid creating all partial data structures on the root

node (thus making a better use of memory resources

and compute power).

4.2 Heterogeneous Parallel Implementation of the PPI

In this subsection, we adapt the cluster-based imple-

mentation of the PPI algorithm to a heterogeneous

environment by reutilizing most of the code available

for the cluster-based system [32, 33]. Before introduc-

ing our implementation of the PPI algorithm for het-

erogeneous systems, we must first formulate a general

optimization problem in the context of fully heteroge-

neous systems (composed of different-speed processors

that communicate through links at different capacities)

[20]. Such a computing platform can be modeled as

a complete graph where each node models a comput-

ing resource pi weighted by its relative cycle-time wi.

Each edge in the graph models a communication link

weighted by its relative capacity, where cij denotes the

maximum capacity of the slowest link in the path of

physical communication links from pi to p j (we assume

that the system has symmetric costs, i.e., cij = c ji). With

the above assumptions in mind, processor pi should

accomplish a share of αi × W of the total workload,

denoted by W, to be performed by a certain algorithm,

with αi ≥ 0 for 1 ≤ i ≤ P and
∑P

i=1
αi = 1. An abstract

view of our problem can be simply stated in the form of

a master-worker architecture, much like the commodity

cluster-based homogeneous implementation described

in the previous subsection. However, in order for such

parallel algorithm to be also effective in fully heteroge-

neous systems, the master program must be modified
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to produce a set of P spatial-domain heterogeneous

partitions of F in step one.

In order to balance the load of the processors in

the heterogeneous environment, each processor should

execute an amount of work that is proportional to its

speed. Therefore, two major goals of our partitioning

algorithm are:

– to obtain an appropriate set of workload fractions

{αi}
P
i=1

that best fit the heterogeneous environment,

and

– to translate the chosen set of values into a suitable

decomposition of the input data, taking into ac-

count the properties of the heterogeneous system.

In order to accomplish the above goals, we use a

workload estimation algorithm (WEA) [32] that as-

sumes that the workload of each processor pi must be

directly proportional to its local memory and inversely

proportional to its cycle-time wi. Below, we provide a

description of WEA algorithm, which replaces the data

partitioning step in the implementation of PPI provided

in our previous section. Steps 2–5 of the parallel algo-

rithm in the previous section would be executed im-

mediately after the WEA algorithm below and remain

exactly the same as those outlined in the algorithmic

description provided in the previous section (thus en-

hancing code reutilization). The input to WEA is F, an

N-dimensional data cube, and the output is a set of P

spatial-domain heterogeneous partitions of F:

1. Obtain necessary information about the heteroge-

neous system, including the number of available

processors P, each processor’s identification num-

ber {pi}
P
i=1

, and processor cycle-times {wi}
P
i=1

.

2. Let V denote the total volume of data in the orig-

inal hyperspectral image F. Processor psi will be

assigned a certain share αi × V of the input vol-

ume, where αi ≥ 0 for 1 ≤ i ≤ P and
∑P

i=1
αi = 1.

In order to obtain the value of αi for processor pi,

calculate αi =
(1/wi)

∑P
j=1

(1/w j)
.

3. Once the set {αi}
P
i=1

has been obtained, a further

objective is to produce P spatial-domain partitions

of the input hyperspectral data set. To do so, we

proceed as follows:

(a) Obtain a first partitioning of the hyperspectral

data set so that the number of entire pixel

vectors allocated to each processor pi is pro-

portional to its associated value of αi.

(b) If necessary, refine the initial partitioning tak-

ing into account the local memory associated

to each processor.

The parallel algorithm described above has been

implemented using two approaches. The first one is

based on the C++4 programming language with calls to

standard MPI functions. A second implementation was

developed using HeteroMPI [41], a heterogeneous ver-

sion of MPI which automatically optimizes the work-

load assigned to each heterogeneous processor (i.e.,

this implementation automatically determines the load

distribution accomplished by our proposed WEA al-

gorithm). Experimentally, we tested that both imple-

mentations resulted in very similar results and, hence,

the experimental validation provided in the following

section are based on the performance analysis achieved

by the first implementation (i.e., implementing our pro-

posed WEA algorithm using MPICH [42] to estimate

the heterogeneous workloads).

4.3 FPGA-Based Parallel Implementation of the PPI

In this subsection, we describe a hardware-based par-

allel strategy for implementation of the hyperspectral

data processing chain which is aimed at enhancing

replicability and reusability of slices in FPGA devices

through the utilization of systolic array design [43].

One of the main advantages of systolic array-based

implementations is that they are able to provide a sys-

tematic procedure for system design that allows for the

derivation of a well defined processing element-based

structure and an interconnection pattern which can

then be easily ported to real hardware configurations

[44]. Using this procedure, we can also calculate the

data dependencies prior to the design, and in a very

straightforward manner. Before describing our imple-

mentation, we emphasize that our proposed design

intends to maximize computational power of the hard-

ware and minimize the cost of communications. These

goals are particularly relevant in our specific applica-

tion, where hundreds of data values will be handled

for each intermediate result, a fact that may introduce

problems related with limited resource availability and

inefficiencies in hardware replication and reusability.

Our systolic array-based parallelization has been

inspired by the work presented in [45], but presents

several differences with regards to that work. First and

foremost, our implementation is based on the use of

a high-level language (called Handel-C [46]) for port-

ing the PPI algorithm to hardware, while reference

[45] presents a low-level implementation in Very High

Speed Integrated Circuit Hardware Description Lan-

guage (VHDL).1 Second, the implementation in [45] is

1http://www.vhdl.org

http://www.vhdl.org
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targeted at a different FPGA platform. With the above

issues in mind, our approach can be summarized as

follows. It has been shown in previous sections that

the PPI algorithm consists of computing a very large

number of dot-products, and all these dot-products can

be performed simultaneously. As a result, a possible

way of parallelization is to have a hardware system able

to compute K dot-products in the same time against

the same pixel fi, where K is the number of skewers.

Supposing such a system, the extreme projections step

of the PPI algorithm can be simply written as described

in Algorithm 1.

The par loop in Algorithm 1 expresses that K dot

products are first performed in parallel, then K min and

max operations are also computed in parallel. Now, if

we suppose that we cannot simultaneously compute K

dot products but only a fraction K/P, where P is the

number of available processing units, then the extreme

projections step of the PPI algorithm can be split into

P passes, each performing T × K/P dot products, as

indicated in Algorithm 2. From an architectural point

of view, each processor receives successively the T

pixels, computes T dot-products, and keeps in memory

the two pixels having produced the min and the max

dot products. In this scheme, each processor holds a

different skewer which must be input before each new

pass.

With the above assumptions in mind, Fig. 4 describes

the systolic array design adopted for the proposed

Figure 4 Systolic array design for the proposed FPGA imple-
mentation of the PPI algorithm.

FPGA implementation. Here, local results remain sta-

tic at each processing element, while pixel vectors are

input to the systolic array from top to bottom and

skewer vectors are fed to the systolic array from left

to right. In Fig. 4, asterisks represent delays while

skewer
(n)

j denotes the value of the n-th band of the

j-th skewer, with j ∈ {1, · · · , K} and n ∈ {1, · · · , N},

being N the number of bands of the input hyperspectral

scene. Similarly, f
(n)

i denotes the reflectance value of the

n-th band of the i-th pixel, with i ∈ {1, · · · , T}, being

T the total number of pixels in the input image. The

processing nodes labeled as dot in Fig. 4 perform the

individual products for the skewer projections. On the

other hand, the nodes labeled as max and min respec-

tively compute the maxima and minima projections

after the dot product calculations have been completed.

In fact, the max and min nodes can be respectively seen

as part of a 1-D systolic array which avoids broadcasting

the pixel while simplifying the collection of the results.

The operational functionality of each dot processing

node in Fig. 4 is depicted in Fig. 5. Each processing

node accumulates the positive or negative values of the

pixel input according to the skewer input. For instance,

if the i-th component of the skewer is 0, then the i-

th component of the pixel vector is summed up to the

accumulator (AC). If it equals 1, it is subtracted. This

unit is composed of a single 16-bit Add/Sub module.

This module computes the dotproduct by summing up

positive or negative pixel values. The skewer is stored

in a 1-bit, N-word memory, where N is the number

of spectral channels. The initialization mechanism is

not represented. It should be noted that Fig. 5 also
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Figure 5 Architecture of each dot and max/min processing nodes
in the proposed systolic array design.

illustrates the performance of the min and max process-

ing nodes (their performance is similar and hence they

are represented in the figure as a single unit called

Min/Max). This unit performs bit-serially a compar-

ison between a Min/Max value. If the value of the

dot-product exceeds the corresponding Min/Max value,

then the current dot-product value is substituted and

the number of the pixel which has caused this change is

memorized.

Basically, a systolic cycle in the architecture de-

scribed in Figs. 4 and 5 consists in computing a single

dot-product between a pixel and a skewer, and to mem-

orize the index of the pixel if the dot-product is higher

or smaller than a previously computed Min/Max value.

Remember that a pixel is a vector of N spectral values,

just like a skewer. A dot-product calculation (dp) be-

tween a pixel fi and a skewer j can be simply obtained

using the expression
∑N

k=1
f
(k)

i ∗ skewer
(k)

j . Therefore, a

full dot product calculation requires N multiplications

and N − 1 additions, where N is the number of spectral

bands. It has been shown in previous work that the

skewer values can be limited to a very small set of

integers when N is large, as in the case of hyper spectral

images. A particular and interesting set is {1, −1} since

it avoids the multiplication [45]. The dot product is thus

reduced to an accumulation of positive and negative

values (the self-connections in the dot nodes of Fig. 4

represent the accumulation of intermediate results in

those nodes). With the above assumptions in mind, the

dot nodes only need to accumulate the positive or neg-

ative values of the pixel input according to the skewer

input. These units are thus only composed of a single

16-bit addition/subtraction operator. If we suppose that

an addition or a subtraction is executed every clock

cycle, then the calculation of a full dot-product requires

N clock cycles. During the first systolic cycle, dot11

starts processing the first band of the first pixel vector,

f1. During the second systolic cycle, the node dot12 starts

processing the first band of pixel f2, while the node dot11

processes the second band of pixel f1, and so on.

The main advantage of the systolic array described

in Figs. 4 and 5 is its scalability. Depending of the

resources available on the reconfigurable board, the

number of processors can be adjusted without mod-

ifying the control of the array. In order to reduce

the number of passes, we may decide to allocate the

maximum number of processors in the available FPGA

components, but this option would limit the room in

the FPGA for additional algorithms. In other words,

although in Fig. 4 we represent an ideal systolic array

in which T pixels can be processed, this is not the usual

situation, and the number of pixels usually has to be

divided by P, the number of available processors. In

this scenario, after T/P systolic cycles, all the nodes are

working. When all the pixels have been flushed through

the systolic array, T/P additional systolic cycles will be

required to collect the results for the considered set

of P pixels, and a new set of P different pixels would

be flushed until processing all T pixels in the original

image. In summary, the principle of our parallelization

framework is that K/P processors perform successively

N dot products. The pixels are thus broadcast to all

the processors and the computation is pipelined (sys-

tolized) to provide a highly scalable system.

Based on the system design described above, we

have developed a high-level implementation of PPI

using Handel-C [46], a design and prototyping lan-

guage that allows using a pseudo-C programming style.

The final decision on implementing our design using

Handel-C instead of other well-known hardware de-

scription languages such as VHDL or Verilog was taken

on the account that a high-level language may allow

users to generate hardware versions of available hy-

perspectral analysis algorithms in relatively short time.

For illustrative purposes, the source code in Handel-

C corresponding to the extreme projections step of our

FPGA implementation of the PPI algorithm is shown in

Algorithm 3. The skewer initialization and endmember

selection-related portions of the code are not shown for

simplicity.
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For a detailed understanding of the piece of code

shown in Algorithm 3, we point to reference ma-

terial [46]. The implementation was compiled and

transformed to an EDIF specification automatically

by using the DK3.1 software package [47]. With this

specification, and using other tools such as Xilinx ISE

[48] to simplify the final steps of the hardware im-

plementation, we also incorporated hardware-specific

limitations and constraints to the mapping process into

a Virtex-II FPGA. These tools allowed us to evaluate

the total amount of resources needed by the whole im-

plementation, along with sub-totals related to different

functional units available in the FPGA that will be

discussed in the following section, along with our results

in terms of algorithm performance and execution time

for the three parallel systems developed in this section.

4.4 GPU-Based Parallel Implementation of the PPI

GPUs can be abstracted in terms of a stream model, un-

der which all data sets are represented as streams (i.e.,

ordered data sets) [49]. Algorithms are constructed

by chaining so-called kernels, which operate on entire

streams, taking one or more streams as inputs and

producing one or more streams as outputs. Thereby,

data-level parallelism is exposed to hardware, and ker-

nels can be concurrently applied without any sort of

synchronization. Modern GPU architectures such as

NVidia GeForce cards adopt this model and implement

a generalization of the traditional rendering pipeline,

which consists of two main stages:

1. Vertex processing. The input to this stage is a stream

of vertices from a 3-D polygonal mesh. Vertex

processors transform the 3-D coordinates of each

vertex of the mesh into a 2-D screen position, and

apply lighting to determine their colors (this stage

is now fully programmable).

2. Fragment processing. In this stage, the transformed

vertices are first grouped into rendering primitives,

such as triangles, and scan-converted into a stream

of pixel fragments. These fragments are discrete

portions of the triangle surface that corresponds

to the pixels of the rendered image. Apart from

identifying constituent fragments, this stage also

interpolates attributes stored at the vertices, such

as texture coordinates, and stores the interpolated

values at each fragment. Arithmetical operations

and texture lookups are then performed by frag-

ment processors to determine the ultimate color for

the fragment. For this purpose, texture memories

can be indexed with different texture coordinates,

and texture values can be retrieved from multiple

textures.

It should be noted that fragment processors currently

support instructions that operate on vectors of four

RGBA components (Red/Green/Blue/Alpha channels)

and include dedicated texture units that operate with

a deeply pipelined texture cache [50]. As a result, an

essential requirement for mapping non-graphics algo-

rithms onto GPUs is that the data structure can be

arranged according to a stream-flow model, in which

kernels are expressed as fragment programs and data

streams are expressed as textures [51]. Using C-like,

high-level languages such as the compute unified device

architecture (CUDA), programmers can write frag-

ment programs to implement general-purpose opera-

tions.

In this section, we develop a CUDA-based technique

for mapping two of the steps of the PPI algorithm

(i.e. extreme projections, and calculation of PPI scores)

onto a GPU using a stream-based processing approach

that makes use of kernels. These steps account for most

of the execution time involved in the PPI algorithm and

exhibit enough data parallelism for a GPU implemen-

tation.

The first issue that needs to be addressed is how to

map a hyperspectral image onto the memory of the

GPU. Since the size of hyperspectral images usually

exceeds the capacity of such memory, we split them into

multiple spatial-domain partitions made up of entire

pixel vectors (see Fig. 3), i.e., each spatial-domain parti-
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Figure 6 Mapping of a spatial-domain hyperspectral data parti-
tion onto the GPU memory.

tion incorporates all the spectral information on a local-

ized spatial region and is composed of spatially adjacent

pixel vectors. As shown by Fig. 6, each spatial-domain

partition is further divided into 4-band tiles (called

spatial-domain tiles), which are arranged in different

areas of a 2-D texture. Such partitioning allows us to

map four consecutive spectral bands onto the RGBA

color channels of a texture (memory) element. Apart

from the tiles, we also allocate additional memory to

hold other information, such as the skewers which are

generated at the host (CPU) and then transmitted to

the GPU, and also intermediate results such as dot

products, norms, and pointwise distances.

Figure 7 shows a flowchart describing our GPU-

based implementation. The stream uploading stage per-

forms the data partitioning and mapping operations

described above, i.e., dividing the image into spatial-

domain partitions and uploading them as a set of tiles

onto the GPU memory. The skewer generation step

performs the generation of skewers in the host (CPU)

and transmission of these skewers to the GPU. The

remaining stages perform the actual PPI computation

and comprise the following kernels:

1. Extreme projections. The tiles are input streams

to this stage, which obtains all the inner products

and norms necessary to compute the required pro-

jections. Since streams are actually tiles, the im-

plementation of this stage is based on a multiply

and add (MAD) operation, a multi-pass kernel that

implements an element-wise multiply and add op-

eration, thus producing four partial inner products

stored in the RGBA channels of a texture element.

Figure 7 Flowchart of the proposed stream-based GPU
implementation.

2. Calculation of PPI scores. Finally this kernel uses

as inputs the projection values generated in the pre-

vious stage, and produces a stream containing (for

each pixel vector) the relative coordinates of the

pixels with maximum and minimum distance after

the projection onto each skewer, thus completing

the first three steps of the PPI algorithm.

5 Experimental Results

This section provides an assessment of the effectiveness

of the parallel versions of PPI described in the previous

section. Before describing our study on performance

analysis, we first describe the HPC system architec-

tures used in this work for evaluation purposes. These

include Thunderhead, a massively parallel Beowulf

cluster made up of homogeneous commodity compo-

nents and available at NASA’s GSFC; four different

networks of heterogeneous workstations distributed

among different locations at University of Maryland;

a Xilinx Virtex-II XC2V6000-6 FPGA; and an NVidia

8800 GTX GPU. Next, we describe the hyperspectral

data sets used for evaluation purposes. A detailed

survey on algorithm performance in a real mineral

mapping application, supported by hyperspectral data

collected by NASA’s AVIRIS sensor, is then provided.

The section concludes with a detailed discussion on

the main observations and lessons learned from the

application of each particular system to the considered

remote sensing problem.
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5.1 Parallel Computing Systems

5.1.1 Beowulf Cluster

The first parallel system used for experimental val-

idation in this work is the Thunderhead system at

NASA’s Goddard Space Flight Center in Maryland.

This Beowulf cluster can be seen as an evolution of the

HIVE (Highly Parallel Virtual Environment) project,

started in spring of 1997 to build a commodity clus-

ter intended to be exploited by different users in a

wide range of scientific applications. The idea was

to have workstations distributed among many offices

and a large number of compute nodes (the compute

core) concentrated in one area. The workstations would

share the compute core as though it was apart of each.

At the time of the experiments, Thunderhead was

composed of 284 dual 2.4 Ghz Intel 4 Xeon nodes,

each with 1 GB of memory and 80 GB of hard disk

(see http://thunderhead.gsfc.nasa.gov for additional de-

tails). The total disk space available in the system was

21.44 Tbyte, and the theoretical peak performance of

the system was 2.5728 Tflops (1.2 Tflops on the Lin-

pack benchmark). The estimated cost of the Thun-

derhead system is 1.25M U.S. dollars. Along with the

568-processor computer core (out of which 256 were

used for experiments), Thunderhead has several nodes

attached to the core with Myrinet 2000 connectivity.

Our parallel algorithms were run from one of such

nodes, called thunder1. The operating system is Linux

Fedora Core, and MPICH was the message-passing

library used.

5.1.2 Heterogeneous Networks Of Computers

To explore the performance of the heterogeneity-

aware implementation of PPI developed in this chapter,

we have considered four different heterogeneous net-

works. All of them were custom-designed in order to

approximate a recently proposed framework for evalu-

ation of heterogeneous parallel algorithms [52], which

relies on the assumption that a heterogeneous algo-

rithm cannot be executed on a heterogeneous network

faster than its homogeneous version on the equivalent

homogeneous network. Let us assume that a heteroge-

neous network consists of {pi}
P
i heterogeneous work-

stations with different cycle-times wi, which span m

communication segments {s j}
m
j=1

, where c( j) denotes the

communication speed of segment s j. Similarly, let p( j)

be the number of processors that belong to s j, and let

w
( j)
t be the speed of the t-th processor connected to s j,

where t = 1, ..., p( j). Finally, let c( j,k) be the speed of the

communication link between segments s j and sk, with

j, k = 1, ..., m. According to [52], the above network

can be considered equivalent to a homogeneous one

made up of {qi}
P
i=1

processors with constant cycle-time

and interconnected through a homogeneous communi-

cation network with speed c if the following expressions

are satisfied:

c =

∑m
j=1

c( j) · [
p( j)(p( j)−1)

2
]

P(P−1)

2

+

+

∑m
j=1

∑m
k= j+1

p( j) · p(k) · c( j,k)

P(P−1)

2

, (5)

w =

∑m
j=1

∑p( j)

t=1
w

( j)
t

P
, (6)

where Eq. (5) states that the average speed of point-to-

point communications between the processors {pi}
P
i=1

in the heterogeneous network should be equal to

the speed of point-to-point communications between

processors {qi}
P
i=1

in the homogeneous network, with

both networks having the same number of processors.

On the other hand, Eq. (6) states that the aggregate

performance of processors {pi}
P
i=1

should be equal to

the aggregate performance of processors {qi}
P
i=1

.

With the above principles in mind, a heterogeneous

algorithm may be considered optimal if its efficiency

on a heterogeneous network is the same as that evi-

denced by its homogeneous version on the equivalent

homogeneous network. This allows using the parallel

performance achieved by the homogeneous version as

a benchmark for assessing the parallel efficiency of

the heterogeneous algorithm. The four considered net-

works are considered approximately equivalent under

the above framework. Their detailed description fol-

lows:

– Fully heterogeneous network. Consists of 16

different workstations, and four communication

segments. Table 1 shows the properties of the

16 heterogeneous workstations, where processors

{pi}
4

i=1
are attached to communication segment s1,

processors {pi}
8

i=5
communicate through s2, proces-

sors {pi}
10

i=9
are interconnected via s3, and proces-

sors {pi}
16

i=11
share the communication segment s4.

The communication links between the different

segments {s j}
4

j=1
only support serial communica-

tion. For illustrative purposes, Table 2 also shows

the capacity of all point-to-point communications in

the heterogeneous network, expressed as the time

in milliseconds to transfer a one-megabit message

between each processor pair (pi, p j) in the hetero-

http://thunderhead.gsfc.nasa.gov
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Table 1 Specifications of heterogeneous computing nodes in a
fully heterogeneous network of distributed workstations.

Processor Architecture Cycle-time Memory Cache

number overview (seconds/Mflop) (MB) (KB)

p1 Intel Pentium 4 0.0058 2,048 1024

p2, p5, p8 Intel Xeon 0.0102 1,024 512

p3 AMD Athlon 0.0026 7,748 512

p4, p6, p7, p9 Intel Xeon 0.0072 1,024 1,024

p10 UltraSparc-5 0.0451 512 2,048

p11 − p16 AMD Athlon 0.0131 2,048 1,024

geneous system. As noted, the communication net-

work of the fully heterogeneous network consists

of four relatively fast homogeneous communication

segments, interconnected by three slower commu-

nication links with capacities c(1,2) = 29.05, c(2,3) =

48.31, c(3,4) = 58.14 in milliseconds, respectively.

The first group of processors (p1 − p4) is connected

to the second group (p5 − p8) via c(1,2); the second

group of processors (p5 − p8) is connected to the

third group (p9 − p10) via c(2,3), and finally the third

group of processors (p9 − p10) is connected to the

fourth group (p11 − p16) via c(3,4). Although this is

a simple architecture, it is also a quite typical and

realistic one as well.

– Fully homogeneous network. Consists of 16 iden-

tical Linux workstations with processor cycle-time

of w = 0.0131 s per megaflop, interconnected via

a homogeneous communication network where the

capacity of links is c = 26.64 ms.

– Partially heterogeneous network. Formed by the

set of 16 heterogeneous workstations in Table 1 but

interconnected using the same homogeneous com-

munication network with capacity c = 26.64 ms.

– Partially homogeneous network. Formed by 16

identical Linux workstations with cycle-time of

w = 0.0131 s per megaflop, interconnected using

the communication network in Table 2.

5.1.3 Field Programmable Gate Array

In order to test the proposed systolic array design in

a hardware-based computing architecture, our parallel

Table 2 Capacity of communication links (time in milliseconds
to transfer a one-megabit message) in a fully heterogeneous
network of distributed workstations.

Processor p1 − p4 p5 − p8 p9 − p10 p11 − p16

p1 − p4 19.26 48.31 96.62 154.76

p5 − p8 48.31 17.65 48.31 106.45

p9 − p10 96.62 48.31 16.38 58.14

p11 − p16 154.76 106.45 58.14 14.05

design was implemented on a Virtex-II XC2V6000-6

FPGA of the Celoxica’s ADMXRC2 board. It contains

33,792 slices, 144 Select RAM Blocks and 144 multi-

pliers (of 18 × 18-bit). Concerning the timing perfor-

mances, we decided to pack the input/output registers

of our implementation into the input/output blocks in

order to try and reach the maximum achievable perfor-

mance.

5.1.4 Graphics Processing Unit

Our GPU-based experiments were performed on a

2006-model HP xw8400 workstation based on dual

Quad-Core Intel Xeon processor E5345 running at

2.33 GHz with 1.333 MHz bus speed and 3 GB RAM.

The computer was equipped with an NVidia GeForce

8800 GTX with 16 multiprocessors, each composed

of 8 SIMD processors operating at 1,350 Mhz. Each

multiprocessor has 8,192 registers, a 16 KB parallel data

cache of fast shared memory, and access to 768 MB

of global memory. This card is used most efficiently

in a data-parallel fashion, when the ratio of computa-

tions to memory access is high and when many com-

putations are performed concurrently, which ideally

suits the implementation of the PPI algorithm. The

algorithm was implemented using NVidia’s CUDA,

which is a collection of C extensions and a runtime

library. CUDAs functionality primarily allows a devel-

oper to write C functions to be executed on the GPU.

CUDA also includes memory management and execu-

tion configuration so that, with CUDA, a developer can

control the number of GPU processors and threads that

are to be invoked during a functions execution.

5.2 Hyperspectral Data

A well-known hyperspectral data set collected over the

Cuprite mining district in Nevada was used in exper-

iments to evaluate the algorithms in the context of a

real mineral mapping application. The data set2 con-

sists of 1,939 × 677 pixels and 224 bands in the wave-

length range 0.4–2.5 µm (574 MB in size). The Cuprite

data set is atmospherically corrected and available in

reflectance units (it has been atmospherically and geo-

metrically corrected by JPL [3]), thus allowing direct

comparison of pixel vectors to ground spectral signa-

tures. The Cuprite site has been extensively mapped by

the U.S. Geological Survey (USGS) in the last 20 years,

and there is extensive ground-truth information avail-

able, including a library of mineral signatures collected

2http://aviris.jpl.nasa.gov/html/aviris.freedata.html

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Figure 8 a AVIRIS scene over Cuprite mining district. b, c Ground-truth mineral spectra provided by USGS.

on the field.3 Figure 8a shows the spectral band at 587

nm wavelength of the AVIRIS scene. The spectra of

USGS ground minerals: alunite, buddingtonite, calcite,

kaolinite, muscovite [Fig. 8b], chlorite, jarosite, mont-

morillonite, nontronite, pyrophyllite [Fig. 8c] are also

displayed. These selected spectral signatures will be

used in this work to evaluate endmember extraction

accuracy of the proposed implementations of PPI algo-

rithm.

5.3 Performance Evaluation

Before analyzing the parallel properties of the

proposed implementations, we first conducted an

experiment-based cross-examination of endmember

extraction accuracy to assess the SAD-based spec-

tral similarity scores obtained after comparing the ten

USGS library spectra with the corresponding endmem-

bers extracted by the three parallel implementations of

the PPI algorithm. Table 3 shows the SAD between

the most similar target pixels detected by the original

ENVI implementation and our three proposed parallel

implementations with regards to the USGS signatures.

In all cases, the total number of endmembers to be

extracted was set to E = 16 for all versions after es-

timating the virtual dimensionality (VD) of the data

[4], although only ten endmembers were available for

quantitative assessment due to the limited number of

ground-truth signatures in our USGS library. In or-

der to display the results in a more effective manner,

we only report the SAD score associated to the most

similar spectral endmember (out of 16 endmembers

obtained for each implementation of the PPI) with

regards to its corresponding USGS signature. It is im-

portant to emphasize that smaller SAD values indicate

3http://speclab.cr.usgs.gov/spectral-lib.html

higher spectral similarity [36]. Table 3 revealed that

the three considered parallel implementations did not

produce exactly the same results as those obtained by

the original PPI algorithm implemented in Kodak’s

Research Systems ENVI 4.0 [29], although the spectral

similarity scores with regards to the reference USGS

signatures were very satisfactory in all cases. Prior to

a full examination and discussion of results, it is also

important to outline parameter values used for the PPI.

It is worth noting that, in experiments with the Cuprite

AVIRIS scene, we observed that the PPI produced

the same final set of experiments when the number of

randomly generated skewers was set to K = 10
4 and

above (values of K = 10
3, 10

5 and 10
6 were also tested).

Based on the above simple experiments, we empirically

set parameter tv (threshold value) to the mean of NPPI

scores obtained after K = 10
4 iterations. In addition,

we set the threshold angle value used to discard re-

dundant endmembers during the process to ta = 0.01.

These parameter values are in agreement with those

used before in the literature [34].

5.3.1 Parallel Performance on a Beowulf Cluster System

To empirically investigate the parallel properties of

our multiprocessor PPI implementation, we tested its

performance on NASAs Thunderhead Beowulf cluster.

For that purpose, we measured the speedups achieved

by the multiprocessor runs over a single-processor run

of our sequential C++ implementation of the PPI algo-

rithm using only one Thunderhead processor. It should

be noted that the speedup factors were calculated as

follows: the real time required to complete a task on P

processors, TP, was approximated by TP = AP + BP

P
+

CP, where AP is the sequential (non-parallelizable)

portion of the computation, BP is the parallel portion,

and CP is the communication time. In our parallel

codes, AP corresponds to the data partitioning and

http://speclab.cr.usgs.gov/spectral-lib.html
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Table 3 SAD-based spectral
similarity scores between the
endmembers extracted by
different system
implementations of PPI and
ten USGS reference
signatures.

USGS ENVI Homogeneous Heterogeneous FPGA-based GPU-based

Mineral software PPI PPI PPI PPI

Alunite 0.084 0.084 0.084 0.084 0.084

Buddingtonite 0.071 0.071 0.071 0.073 0.071

Calcite 0.099 0.099 0.099 0.099 0.099

Chlorite 0.065 0.065 0.065 0.065 0.065

Jarosite 0.091 0.091 0.091 0.102 0.102

Kaolinite 0.136 0.136 0.136 0.136 0.136

Montmorillonite 0.106 0.106 0.106 0.112 0.106

Muscovite 0.092 0.092 0.092 0.092 0.092

Nontronite 0.099 0.102 0.102 0.099 0.096

Pyrophyllite 0.094 0.094 0.094 0.097 0.097

endmember selection steps (performed by the master),

while BP corresponds to the skewer generation, ex-

treme projections and candidate selection steps, which

are performed (in ‘embarrassingly parallel’ fashion) at

the different workers. Since communications only take

place at the beginning (initial data scatter in the data

partitioning step) and at the end (final data gather in

the endmember selection step) of the parallel algorithm,

these are not overlapped with the computations in our

parallel implementation. With the above assumptions

in mind, we can define the speedup for P processors,

SP, as follows:

SP =
T1

TP

≈
AP + BP

AP + BP

P
+ CP

, (7)

where T1 denotes the time measured for the sequential

version of the algorithm in a single processor. The

relationship above is known as Amdahl’s Law [53]. It

is obvious from this expression that the speedup of a

parallel algorithm does not continue to increase with

increasing the number of processors. The reason is

that the sequential portion AP is proportionally more

important as the number of processors increase and,

thus, the performance of the parallelization is generally

degraded for a large number of processors. With the

above definitions in mind, Table 4 shows the total time

spent by the parallel implementation in communica-

tions and computations in the Thunderhead Beowulf

cluster, where two types of computation times were

analyzed, namely, sequential (those performed by the

root node with no other parallel tasks active in the

system, labeled as AP in the table) and parallel (the

rest of computations, i.e., those performed by the root

node and/or the workers in parallel, labeled as BP/P

in the table). The latter includes the times in which the

workers remain idle. In addition, Table 4 also displays

the communication times CP, the total execution times

TP, and the speedups SP.

It can be seen from Table 4 that, although AP scores

were non-zero mainly due to the endmember selection

step of the parallel algorithm, which is performed at

the master node once the workers have finalized their

parallel computations, these scores were always very

low and irrelevant when compared to the BP/P scores,

which anticipates high parallel efficiency of the multi-

processor algorithm, even for a very high number of

processors. On the other hand, it can also be seen from

Table 4 that the impact of communications is not par-

ticularly significant since CP scores are always very sim-

ilar, regardless of the number of processors used, while

BP/P scores are generally higher than CP scores except

in those cases in which the number of processors is 196

and above, in which the ratio of parallel computations

to communications is reduced resulting from the fact

Table 4 Sequential computation (AP), parallel computation (BP/P), communication times (CP), total execution times (TP) and
speedups (SP) achieved by multiprocessor runs of the parallel PPI on Thunderhead.

# CPUs (P) 4 16 36 64 100 144 196 256

AP 1.63 1.26 1.12 1.19 1.06 0.84 0.91 0.58

BP/P 292.09 73.24 30.46 15.44 8.76 5.08 3.18 1.91

CP 2.20 2.41 2.39 2.21 2.46 2.65 2.32 2.49

TP 295.92 76.91 33.97 18.84 12.38 8.57 6.41 4.98

SP 3.93 15.12 34.23 61.73 93.89 135.67 181.34 233.45

DP 1.15 1.10 1.09 1.11 1.07 1.10 1.05 1.04

DP−1 1.04 1.02 1.04 1.03 1.01 1.02 1.03 1.01

For illustrative purposes, load-balancing rates considering all processors (DP), and considering all processors but the root (DP−1), are
also displayed. The total execution time measured for the sequential version of PPI on one Thunderhead processor was T1 = 1163.05 s.
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that the size of the partitions to be processed at each

local node is very small. On the other hand, although

the speedup SP scores in Table 4 flatten out a little for a

large number of processors, they are still close to linear

speedup. Finally, the execution times reported reveal

that our multiprocessor implementation of PPI can

effectively adapt to a massively parallel environment

and provide a response below 5 s using a relatively

moderate number of processors. Despite the fact that

the above results seem promising from the viewpoint

of obtaining a highly scalable parallel algorithm, the

fact that BP/P is usually the most significant fraction of

the parallel algorithm requires a detailed study of load

balance to fully substantiate the parallel properties of

the considered algorithm.

To analyze the important issue of load balance in

more detail, Table 4 also shows the imbalance scores

achieved by the multiprocessor implementation of PPI

on Thunderhead. The imbalance is simply defined as

D = Rmax/Rmin, where Rmax and Rmin are the maxima

and minima processor run times, respectively. There-

fore, perfect balance is achieved when D = 1. In the

table, we display the imbalance considering all proces-

sors, DP, and also considering all processors but the

root, DP−1. As we can see from Table 4, the multi-

processor PPI was able to provide values of DP close

to 1 in all considered networks. Further, the algorithm

provided almost the same results for both DP and

DP−1, which indicates that the workload assigned to the

master node is balanced with regards to that assigned to

the workers.

5.3.2 Parallel Performance on Heterogeneous Systems

After evaluating the performance of the proposed

cluster-based implementation on a fully homogeneous

cluster, a further objective was to evaluate how the pro-

posed heterogeneous implementation performed on

the four considered heterogeneous networks. For that

purpose, we evaluated its performance by timing the

parallel heterogeneous code using four (equivalent)

networks of distributed workstations. For that purpose,

Table 5 shows the total time spent by the tested al-

gorithms in communications and computations in the

four considered networks, as well as the total execution

times and load-balancing rates. For comparative pur-

poses, Table 6 reports the measured execution times

achieved by the cluster-based (homogeneous) version

of the PPI which is the equivalent homogeneous version

of the proposed heterogeneous parallel implementa-

tion. In all cases, the number of processors available in

the heterogeneous network was P = 16.

Table 5 Sequential computation (A16), parallel computation
(B16), communication time (C16) and total execution time (T16)
achieved by the heterogeneous version of PPI on the four consid-
ered networks with P = 16 workstations.

Fully Fully Partially Partially

heterogeneous homogeneous heterogeneous homogeneous

A16 19.03 16.12 18.87 20.45

B16 58.23 62.04 61.93 60.76

C16 7.15 11.45 8.03 8.24

T16 84,41 89,61 88,93 89.45

D16 1.19 1.16 1.24 1.22

D15 1.05 1.03 1.06 1.03

For illustrative purposes, load-balancing rates considering all
processors (D16), and considering all processors but the root
(D15), are also displayed.

As expected, the execution times reported on

Table 5 show that the heterogeneous algorithm was

able to adapt much better to fully (or partially) het-

erogeneous environments than the homogeneous ver-

sion, which only performed satisfactorily on the fully

homogeneous network as shown by Table 6. One can

see that the heterogeneous algorithm was always sev-

eral times faster than its homogeneous counterpart in

the fully heterogeneous network, and also in both the

partially homogeneous and the partially heterogeneous

networks. On the other hand, the homogeneous al-

gorithm only slightly outperformed its heterogeneous

counterpart in the fully homogeneous network. Table 5

also indicates that the performance of the heteroge-

neous algorithm on the fully heterogeneous platform

was almost the same as that evidenced by the equiv-

alent homogeneous algorithm on the fully homoge-

neous network (see Table 6). This indicated that the

proposed heterogeneous algorithm was always close to

the optimal heterogeneous modification of the basic

homogeneous one. On the other hand, the homoge-

neous algorithm performed much better on the par-

Table 6 Sequential computation (A16), parallel computation
(B16), communication time (C16) and total execution time (T16)
achieved by the homogeneous version of PPI on the considered
16-processor networks of workstations.

Fully Fully Partially Partially

heterogeneous homogeneous heterogeneous homogeneous

A16 19.24 16.93 18.03 20.25

B16 634.12 59.56 611.34 342.50

C16 14.44 6.56 9.03 12.92

T16 667.8 83.05 638.4 375.67

D16 1.62 1.20 1.67 1.41

D15 1.23 1.04 1.26 1.06

For illustrative purposes, load-balancing rates considering all
processors (D16), and considering all processors but the root
(D15), are also displayed.
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tially homogeneous network (made up of processors

with the same speed) than on the partially heteroge-

neous network. This fact reveals that processor het-

erogeneity has a more significant impact on algorithm

performance than network heterogeneity, a fact that

is not surprising given our adopted strategy for data

partitioning in the design of the parallel heterogeneous

algorithm. Finally, Table 6 shows that the homoge-

neous version only slightly outperformed the hetero-

geneous algorithm in the fully homogeneous network

(see Table 5). This clearly demonstrates the flexibility

of the proposed heterogeneous algorithm, which was

able to adapt efficiently to the four considered network

environments.

Regarding load balance, we can see from Table 5

that the heterogeneous PPI was able to provide values

of D16 close to 1 in all considered networks. Further,

this algorithm provided almost the same results for

both D16 and D15 while, for the homogeneous PPI in

Table 6, load balance was much better when the root

processor was not included. In addition, it can be seen

from Table 6 that the homogeneous algorithm executed

on the (fully or partially) heterogeneous networks pro-

vided the highest values of D16 and D15 (and hence

the highest imbalance), while the heterogeneous algo-

rithm executed on the homogeneous network resulted

in values of D15 which were close to 1 (see Table 5).

It is our belief that the (relatively high) unbalance

scores measured for the homogeneous PPI executed on

the fully heterogeneous network are not only due to

memory considerations or to an inefficient allocation of

spatial-domain partitions to heterogeneous resources,

but to the lack of a model of communications in our

design of parallel algorithms. As future research, we are

planning to include considerations about the heteroge-

neous communication network in the design of the data

partitioning algorithm.

In order to further compare the performance gain of

heterogeneous algorithms as compared to their respec-

tive sequential versions in more detail, we have con-

ducted a thorough study of scalability on the fully het-

erogeneous network. For that purpose, Table 7 shows

the performance gain of heterogeneous algorithms with

regards to their respective sequential versions as the

number of processors was increased on the hetero-

geneous cluster. Here, we assumed that processor p3

(the fastest) was always the master and varied the

number of slaves. The construction of speedup plots

in heterogeneous environments is not straightforward,

mainly because the workers do not have the same

relative speed, and therefore the order in which they

are added to plot the speedup curve needs to be further

analyzed. In order to evaluate the impact of the order

Table 7 Speedups achieved by the proposed parallel heteroge-
neous algorithms on the fully heterogeneous network (processor
p3 is used as the master).

# CPUs Strategy #1 Strategy #2 Strategy #3

2 1.93 1.90 1.87

3 2.91 2.92 2.88

4 3.88 3.89 3.67

5 4.83 4.89 4.72

6 5.84 5.81 5.74

7 6.75 6.83 6.55

8 7.63 7.76 7.61

9 8.81 8.74 7.65

10 9.57 9.68 9.53

11 10.62 10.65 10.44

12 11.43 11.55 11.41

13 12.25 12.42 12.36

14 13.16 13.32 13.29

15 14.22 14.25 14.22

16 15.19 15.22 15.16

of selection of slaves, we have tested three different

ordering strategies:

1. Strategy #1. First, we used an ordering strategy

based on increasing the number of processors ac-

cording to their processor numbers in Table 1, i.e.,

the first case study tested (labeled as “2 CPUs” in

Table 7 consisted of using processor p3 as the mas-

ter and processor p0 as the slave; the second case

tested (labeled as “3 CPUs” in Table 7 consisted of

using processor p3 as the master and processors p0

and p1 as slaves, and so on, until a final case (la-

beled as “15 CPUs” in Table 7 was tested, based on

using processor p3 as the master and all remaining

15 processors as slaves.

2. Strategy #2. Second, we used an ordering strategy

based on the relative speed of processors in Table 1,

i.e., the first case study tested (labeled as “2 CPUs”

in Table 7 consisted of using processor p3 as the

master and processor p10 (i.e., the one with lowest

relative speed) as the slave; the second case tested

(labeled as “3 CPUs” in Table 7 consisted of using

processor p3 as the master and processors p10 and

p11 (i.e., the two processors with lowest relative

speed) as slaves, and so on, until a final case (la-

beled as “15 CPUs” in Table 7 was tested, based on

using processor p3 as the master and all remaining

15 processors as slaves.

3. Strategy #3. Finally, we also used a random ordering

strategy, i.e., the first case study tested (labeled as

“2 CPUs” in Table 7 consisted of using processor

p3 as the master and a different processor, selected

randomly among the remaining processors (say,

processor pi) as the slave; the second case (labeled
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as “3 CPUs” in Table 7 consisted of using processor

p3 as the master, processor pi as the first slave, and

a different processor, selected randomly among the

remaining processors, as the second slave, and so

on, a final case was tested (labeled as “15 CPUs” in

Table 7, based on using processor p3 as the master

and all remaining 15 processors as slaves.

As shown by Table 7, the incorporation of addi-

tional processing nodes by means of the three ordering

strategies tested provided almost linear performance

increase (regardless of the relative speed of the nodes).

Although the results presented for homogeneous and

heterogeneous clusters above demonstrate that the pro-

posed multiprocessor implementation of the PPI algo-

rithm is satisfactory from the viewpoint of algorithm

scalability, code reusability and load balance, there are

several restrictions in order to incorporate this type

of platform for onboard processing in remote sensing

missions. Although the idea of mounting clusters and

networks of processing elements onboard airborne and

satellite hyperspectral imaging facilities has been ex-

plored in the past, the number of processing elements in

such experiments has been very limited thus far due to

several reasons. For instance, a mini-Beowulf, portable

Myrinet cluster (with similar specifications as those of

the homogeneous network of 16 workstations used in

experiments) was recently developed for the purpose of

low power supercomputing at NASA’s Goddard Space

Flight Center.4 The portable system, called Proteus and

composed of 12 mini-ITX (PC) nodes, was developed

for the purpose of spacecraft/satellite data processing

and also used as a mobile cluster for field processing

of collected data. The cost of the portable cluster was

only 3,000 U.S. dollars. Unfortunately, it could still

not facilitate real-time performance since the measured

processing times were similar to those reported in

Table 6, and the incorporation of additional processing

elements to the cluster was reportedly difficult due to

heat, power and weight considerations which limited its

exploitation for onboard processing.

5.3.3 Parallel Performance on the FPGA System

As an alternative to cluster computing, FPGA-

based computing provides several advantages for

image processing, such as increased computational

power, adaptability to different applications via re-

configurability, and compact size [26]. Specifically, the

cost of the Xilinx Virtex-II XC2V6000-6 FPGA used

4http://thunderhead.gsfc.nasa.gov/PDF/Low_Power.pdf

for experiments in this work is currently only slightly

higher than that of the portable Myrinet cluster men-

tioned in the previous subsection (3,000 U.S. dollars).

However, the mobile cluster required several 9U VME

motherboards to accommodate the multiple proces-

sors, with an approximate weight of 14 lb and required

power of 300 W. On the other hand, the Xilinx Virtex-II

FPGA required only one 3U Compact PCI card (weight

below 1 lb) and power of approximately 25 W, offering

full realtime reconfigurability. These are very impor-

tant consideration from the viewpoint of remote sens-

ing mission payload requirements, which are widely

regarded as a key aspect for sensor design and opera-

tion. In particular, it is important to note that electronic

components and hardware susceptible of compromising

mission payload are often discarded from Earth obser-

vation instruments, and therefore evaluating the poten-

tial use of FPGAs as an alternative to much heavier

computer equipment is of great importance for remote

sensing mission design and planning.

In order to fully substantiate the performance of our

systolic array-based FPGA implementation, we should

first describe the scalability of the systolic array. The

peak performance of the array is mainly determined

by the dot-product capacity, that is the number of

additions/subtractions executed in 1 s. It is expressed

(in millions of operations per second) as follows:

Ppeak =
F × T × N

P
, (8)

where F is the frequency in MHz, T is the total number

of pixel vectors, N is the number of spectral bands

in the input scene, and P is the number of proces-

sors of the systolic array. The above formula assumes

that the array is constantly fed, i.e., on each cycle a

new data is available on its input. Unfortunately, this

may not be the case, especially if we consider a re-

configurable board plugged trough the IO bus system of

the micro-processor. The PPI algorithm proceeds into

T/P passes, and each pass requires flushing the hy-

perspectral image from the main memory to the array.

Thus, instead of considering that a data is present every

clock cycle, it is better to consider the transfer capacity

of the I/O bus for estimating the average performance

of the array. The average performance is estimated as

follows:

Pavg =
Bw × T × N

P
, (9)

where Bw denotes the bandwidth in Mbytes/second.

http://thunderhead.gsfc.nasa.gov/PDF/Low_Power.pdf
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Figure 9 a Time, in seconds,
for executing the PPI
algorithm on a reconfigurable
board connected to a PC
through the I/O bus.
b Achieved speedup
compared to a
single-processor version
running on a single
Thunderhead node.

Now, if we want to estimate the execution time for com-

puting the PPI algorithm, texec, the available bandwidth

should be taken into consideration as follows:

texec =
P × T × N

Bw

, (10)

Using the above rationale [45], we have performed

an estimation of the computing time and speedup that

can be achieved by the proposed FPGA implemen-

tation of the PPI on the considered AVIRIS Cuprite

scene using a reconfigurable board connected to a mi-

croprocessor through its I/O bus. Figure 9a shows the

estimated computing times considering various band-

widths (from F = 10 Mbytes/s to F = 50 Mbytes/s)

and various numbers of processors (P = 100, P = 200

and P = 400). On the other hand, Fig. 9b shows the

speedups compared to a single-processor run of the

PPI in one of the Thunderhead nodes (which took

1163.05 s), again with a bandwidth ranging from 10 to

50 Mbytes/s and a systolic array with 100, 200 and 400

processors. As it can be seen in Fig. 9, the achieved

speedups can be very high, reducing hours of compu-

tation to only a few seconds.

In the following, we validate the theoretical estima-

tions given in Fig. 9 on a real Xilinx FPGA architecture.

Table 8 shows a summary of resource utilization by

the proposed systolic array-based implementation of

the PPI on a complete system (systolic array plus PCI

interface), implemented on a XC2V6000-6 board, using

different numbers of processors. We measured an aver-

Table 8 Summary of resource utilization for the FPGA-based
implementation of the PPI algorithm (operation frequency is
given in MHz and processing time in seconds).

Number of Total Total % of Operation Processing

processors gates slices total frequency time

100 97,443 1,185 3% 29,257 69.91

200 212,412 3,587 10% 21,782 35.36

400 526,944 12,418 36% 18,032 20.48

age PCI bandwidth of 15 Mbytes between the PC and

the board, leading to a speed-up of 120 when running

the PPI algorithm with 400 processors. It should be

noted that, in our experimentation, the performance

was seriously limited by the transfer rate between the

PC and the board: the array is able to absorb a pixel

flow of above 40 Mbytes/s, while the PCI interface can

only provide a flow of 15 Mbytes. This experiment,

however, demonstrates that the considered board, even

with a non-optimized PCI connection (with no DMA),

can still yield very good speedup for the PPI algorithm,

with a final measured processing time of about 20 s

for P = 400 processors. This response, although not in

real-time, can still be further optimized by increasing

the number of processors in the FPGA. However, in

our opinion it is very important to leave room in the

FPGA for additional algorithms so that dynamic algo-

rithm selection can be performed on the fly. In addition,

it is worth noting that full reconfigurability requires

additional logic and space in the FPGA [54]. Therefore,

we have decided to report realistic experiments by

resorting to a moderate amount of resources (gates)

in the considered FPGA board. As shown by Table 8,

when 400 processors are used, only 36% of the total

available resources in the FPGA are consumed. This

opens appealing perspectives from an application point

of view, such as the possibility of adaptively selecting

one out of a pool of algorithms to be applied on-board.

5.3.4 Parallel Performance on the GPU

In this subsection we compare the performance of the

CPU and GPU-based implementations by measuring

the execution time as a function of the image size,

where the largest one corresponds to the full hyperspec-

tral scene (1,939 × 677 pixels and 224 bands) whereas

the others correspond to cropped portions of the same

image. Table 9 shows the execution times measured

for different image sizes by the CPU and GPU-based
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Table 9 Processing time (in milliseconds) for the CPU and GPU-
based implementations of the PPI.

Size (MB) Processing time (CPU) Processing time (GPU)

68 81.5 6.3

136 162.7 10.7

205 244.2 15.9

273 325.2 21.5

410 489.6 32.1

574 685.4 45.2

implementations, respectively. To determine the pro-

gram execution time, the C function clock() was used

for the CPU implementation and the CUDA timer was

used to measure time for the GPU implementation.

The total time measurement is started right after the

hyperspectral image file is read to the CPU memory

and stopped right after the resulting PPI map is ob-

tained and stored in the CPU memory.

From Table 9, it is worth noting that the AVIRIS

data cube was processed in about 45 s, in spite of the

overheads involved in data transfer between the main

memory and the GPU. Although the processing time

measured in the GPU is about two times higher than

the one measured in the FPGA, the cost in U.S. dollars

of the GPU device is about ten times lower than the

cost of the FPGA device. Results in Table 9 further

demonstrate that the complexity of the implementation

scales linearly with the problem size, i.e., doubling the

image size doubles the execution time. It can also be

seen from the tables that the speedups achieved by the

GPU implementations over their CPU counterparts re-

mained close to 15 for all considered image sizes, which

confirms our intuition that GPUs are indeed suitable

for parallel processing of hyperspectral data cubes. The

above results are significant, in particular, taking into

account that one single GPU device was used in exper-

iments (networks of GPUs may significantly improve

the speedup factors).

5.4 Discussion

Through the detailed analysis of the PPI algorithm,

we have explored different systems and strategies to

increase computational performance of the algorithm

(which can take up to several hours of computation

to complete its calculations in latest-generation desk-

top computers). Two of the considered techniques,

i.e., commodity cluster-based parallel computing and

heterogeneous parallel computing seem particularly

appropriate for efficient information extraction from

very large hyperspectral data archives. In this regard,

we have provided a detailed discussion on the effects

that platform heterogeneity has on degrading parallel

performance of hyperspectral image and signal process-

ing algorithms. The evaluation strategy conducted in

this work was based on experimentally assessing het-

erogeneous algorithms by comparing their efficiency on

(fully or partially) heterogeneous networks of work-

stations with the efficiency achieved by their homo-

geneous versions on equally powerful homogeneous

networks. Our study reveals that the combination of

the (readily available) computational power offered

by heterogeneous computing with the recent advances

in sensor technology is likely to introduce substantial

changes in the (mostly homogeneous and expensive)

parallel systems currently used by NASA and other

agencies for exploiting the sheer volume of Earth and

planetary remotely sensed data which is already avail-

able in data repositories.

To fully address the time-critical constraints intro-

duced by many remote sensing applications, we have

also developed FPGA and GPU-based implementa-

tions of the hyperspectral data processing chain for on-

board analysis (before the hyperspectral data is trans-

mitted to Earth). A major goal is to overcome an

existing limitation in many remote sensing and ob-

servatory systems: the bottleneck introduced by the

bandwidth of the downlink connection from the obser-

vatory platform. Experimental results demonstrate that

our hardware implementations make appropriate use

of computing resources in the considered FPGA and

GPU architectures, and further provides a response in

(near) real-time which is believed to be acceptable in

most remote sensing applications. The reconfigurability

of FPGA systems on the one hand, and the low cost

of GPU systems on the other, open many innovative

perspectives from an application point of view, rang-

ing from the appealing possibility of being able to

adaptively select one out of a pool of available data

processing algorithms (which could be applied on the

fly aboard the airborne/satellite platform, or even from

a control station on Earth), to the possibility of provid-

ing a response in real-time in applications that certainly

demand so, such as military target detection, wildland

fire monitoring and tracking, oil spill quantification,

etc. Although the experimental results presented in this

paper are encouraging, further work is still needed to

arrive to optimal parallel design and implementations

for the PPI and other hyperspectral image and signal

processing algorithms.

6 Conclusions

Remotely sensed hyperspectral data processing exem-

plifies a subject area that has drawn together an eclectic
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collection of participants. However, a common require-

ment in most available hyperspectral image and signal

processing applications is the need to develop efficient

systems and architectures able to cope with the ex-

tremely high dimensionality of the data. In this paper,

we have taken a necessary first step towards the un-

derstanding and assimilation of advanced parallel and

distributed systems and architectures in remote sens-

ing applications. We have also discussed some of the

problems that need to be addressed in order to trans-

late the tremendous advances in our ability to gather

and store remotely sensed hyperspectral data into

fundamental, application-oriented scientific advances

through the design of efficient data processing algo-

rithms. Specifically, four innovative parallel implemen-

tations have been introduced and evaluated from the

viewpoint of both algorithm accuracy and parallel per-

formance. Techniques discussed include a commodity

cluster-based implementation, a heterogeneity-aware

parallel implementation developed for distributed net-

works of workstations, an FPGA-based hardware im-

plementation, and a GPU-based implementation. The

discussed techniques provide a snapshot of the state-

of-the-art in current remote sensing research which,

despite the enormous computational demands and po-

tential societal impact, has not yet developed standard-

ized parallel-solution algorithms able to process high-

dimensional data sets. Regarding our future research

avenues, we are currently working towards the im-

plementation of the proposed parallel techniques on

other massively parallel computing architectures, such

as NASA’s Project Columbia and Grid/heterogeneous

computing environments.
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