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ABSTRACT Convolutional neural networks (CNN) with their deep feature extraction capability have

recently been applied in numerous image fusion tasks. However, the image fusion of infrared and visible

images leads to loss of fine details and degradation of contrast in the fused image. This deterioration in

the image is associated with the conventional ‘‘averaging’’ rule for base layer fusion and relatively large

feature extraction by CNN. To overcome these problems, an effective fusion framework based on visual

saliency weight map (VSWM) combined with CNN is proposed. The proposed framework first employs

VSWMmethod to improve the contrast of an image under consideration. Next, the fine details in the image

are preserved by applying multi-resolution singular value decomposition (MSVD) before further processing

by CNN. The promising experimental results show that the proposed method outperforms state-of-the-art

methods by scoring the highest over different evaluation metrics such as Q0, multiscale structural similarity

(MS_SSIM), and the sum of correlations of differences (SCD).

INDEX TERMS Convolutional neural network, image fusion, visual saliency weight map, multi-resolution

singular value decomposition.

I. INTRODUCTION

Image information captured by multiple sensors can pro-

vide accurate complementary information through image

fusion [1]. Compared to an image acquired by a single

sensor, the composite image generated by image fusion

provides good visualization and rich information. Hence,

image fusion is widely employed in many fields, such as

remote sensing [2], [3], pattern recognition [4], [5], medical

imaging [6], [7], and military [8], [9].

Numerous fusion methods have been proposed in the

past which achieve good fusion performance. Typical fusion

methods include multiscale based methods [7], [10]–[15],

sparse representation based fusion methods [16]–[18],

and hybrid transformation methods [19]. Recently, deep

learning has been successfully applied in many image

processing tasks, such as image matting [20], [21],
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space clustering [22], image super-resolution [23]–[25] and

face processing [26]. Particularly, the application of deep

learning in image fusion has attracted considerable scholarly

attention [27]–[32]. For example, Yu et al. [33] first used

the convolutional neural network (CNN) for multi-focus

image fusion by solving a pixel based classification prob-

lem. Although the CNN-based method achieves better per-

formance, it is only suitable for multi-focus image fusion.

A powerful CNN was recently used by Gatys et al. [34]

for image style transfer. The method specifically employed

the VGG network to extract deep features at various layers

from ‘‘content’’ and ‘‘style’’ to generate images of high

perceptual quality. Inspired by high-level image synthesis and

manipulation capability of VGG, Hui et al. [35] applied the

VGG-19 network to achieve infrared (IR) and visible (VIS)

image fusion, obtaining better performance than conventional

methods. Their approach decomposed images into base and

detail layers. The base layer was obtained by applying the

‘‘averaging’’ rule, while the detail layer fusion was based on
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FIGURE 1. Schematic diagram of the convolution structure of the VGG19 network.

deep feature extraction using the VGG-19 network. However,

for practical application, this method has two shortcomings:

1) the ‘‘averaging’’ fusion scheme for the base layer effec-

tively reduces the image contrast, and 2) the image features

extracted by VGG-19 network are relatively large, thereby

missing fine details in the image.

To address the abovementioned problems of the existing

scheme in Ref [35], we propose an effective fusion frame-

work based on visual saliency weight map (VSWM) [36]

and CNN for IR and VIS image fusion. Compared to the

‘averaging rule’, we employ a better VSWM-based strategy

to obtain the base layer fusion, achieving better contrast

in the fused images. For the detail layer fusion, the multi-

resolution singular value decomposition (MSVD) method is

used [37]. In the past, most methods have opted to apply

singular value decomposition (SVD)method for image fusion

tasks [38], [39], which differs from MSVD. Specifically,

in Ref [38], SVD is used for base layer fusion by first decom-

posing and reconstructing the base layer, and then summing

up all the base layers. The fusion method in Ref [39] employs

a DCT dictionary learning method. The singular value of

the image is used as a reference for the coefficients fused

in the DCT dictionary. During fusion, image coefficients

with larger singular values are retained. However, the MSVD

method used in our work is quite different from the above

two methods. In principle, MSVD is very similar to a wavelet

transform. The idea behindMSVD is to replace the filters in a

wavelet transform with SVD. Therefore, the images obtained

by MSVD are multiple image groups at different scales,

retaining information during decomposition and reconstruc-

tion. According to Ref [37] the fusion byMSVD shows better

performance than wavelets. Therefore, the image detail layer

is first subjected toMSVDdecomposition, and then the image

features are extracted using the CNN. By doing this, the pro-

posed method effectively preserves fine details in the recon-

structed image. Experimental results (both qualitative and

quantitative) demonstrate the superior fusion performance of

the proposed method compared to existing state-of-the-art

schemes.

The remainder of this paper is organized as follows.

Section 2 explains the feature map extraction process by the

convolutional layers of the VGG19 network, pointing out that

the network is insensitive to low-frequency information (such

as background) and sensitive to high-frequency information.

Section 3 presents the proposed fusion framework in detail.

Through experiments, it is concluded that the VSWM fusion

scheme enhances contrast in image fusion, and the MSVD

combined with CNN preserve information at fine scales.

Section 4 provides the experimental results and comparisons.

Section 5 concludes the paper.

II. FEATURE MAPS OF VGG19 NETWORK

A. CONVOLUTIONAL LAYER STRUCTURE OF VGG19

The VGG architecture was initially proposed in Ref. [40].

The VGG19 network comprises of five blocks of convo-

lutional layers followed by three fully-connected layers.

The convolution layers are mainly responsible for con-

structing (extracting) feature maps of an image, and the

fully-connected layers are used as classification function.

In order to better explain the image features learned by the

deep network, it is necessary to conduct an in-depth study

on the output of the convolutional layer (the fully-connected

layers are not within the scope of this study). Specifically,

the convolution structure of the VGG19 network can be rep-

resented by Fig. 1.

The yellow colored block represents the convolution layer,

the red color indicates the ReLU layer [40], and the max

pooling layer is represented by the blue color. For each convo-

lutional layer, the number of channels used are shown against

the corresponding layer in Fig. 1. For example, in Fig. 1,

the Conv1 block contains two convolutional layers (each with

64 channels), two ReLULayers, and amax pooling layer. The

purpose of employing max-pooling layer is to down-scale the
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FIGURE 2. VGG19 network convolutional layer output visualization.

FIGURE 3. Output channel summation for each block of convolutional layers.

output from convolutional layer (to half) and analyze the data

at different scales.

B. CONVOLUTION VISUALIZATION OF VGG19

Convolutional neural networks exhibit remarkable perfor-

mance in target classification and recognition. However,

there is no clear understanding of why they perform so

well, or how they might be improved. In this regard,

Zeiler and Fergus [41] first attempted to visualize convolu-

tional network by using the deconvolution method to display

different features learned by the network and explain what

each layer learned from the image. Their research paved

the way for better understanding neural networks through

visualization.

For the visualization of VGG19 network’s convolutional

layers, instead of using the deconvolution method, the output

for each convolution layer is directly visualized. This is done

to avoid the loss of information associated with deconvolu-

tion. Fig. 2 shows the output of each block of convolutional

layers in VGG19.

Fig. 2 shows the ‘car’ image used as an input to the

network. Since each block of convolutional layers contains

many channels, only 9 feature maps from each convolutional

stage are displayed. These images are the first 9 output

images (feature maps) of each convolution block. In addition,

Fig. 3 shows the superimposed channel output for every block

to clearly represent the output from convolutional blocks.

In Fig. 2, it can be found that not every feature map effectively

learns the features of an image. Since there are many feature
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FIGURE 4. Schematics of the proposed IR and VIS images fusion framework.

maps at each convolutional block, the overall feature learning

(as seen in the channel output) is not affected. For example,

the image in Fig. 2 (second row, third column-Conv5) is blank

with no features, but its impact on the overall channel output

(shown in Fig. 3 for Conv5) is negligible.

From Fig. 3, it can be seen that the shallow network

(in Fig. 1) has rich activation information in each output

channel, and tends to detect the edges and contours of the

image. The detected content is comprehensive, and some

background information is also preserved (the conv1 and

conv2 in Fig. 3 have significant edge strength, and the back-

ground can be clearly identified). As the hierarchy deepens,

the number of white spaces in the output channel of the net-

work increase because the convolution kernel does not learn

the required features. The feature map encodes more abstract

information, ignoringmany details (the conv4 and conv5 con-

volution networks in Fig. 3 extract front and rearview mirror,

and tire as the main features of the car, but the background,

edge and other information is lost).

From the analysis of feature extraction, it can be seen that

as the image propagates down the network, different types

of features are extracted by different convolutional layers.

However, in the image fusion process, it is necessary to

retain maximum information about the source image, such as

background and high frequency features. Since the deep con-

volutional layers are insensitive to background information,

the proposed method decomposes the source image into base

layer (containing background and contrast information) and

detail layer (containing edge and texture feature information),

and individually processes them through VSWM and MSVD

method respectively, to take the advantage of both methods

and improves image fusion performance.

III. FUSION FRAMEWORK BASED ON VSWM

COMBINED WITH CNN

Fig. 4 presents the schematics of the proposed IR and VIS

image fusion framework, which comprises of four steps,

namely: image decomposition, base layer fusion, detail layer

fusion, and final image fusion. Step I: source images (VIS

and IR) are decomposed into base and detail layers using a

guided filter [35]. Step II: the base layers are fused using

the VSWM strategy. Step III: MSVD is employed to decom-

pose detail layers further into sub-layers before CNN oper-

ations to preserve further details. The CNN can use the

architecture of any one of the following networks: VGG-19,

VGG-16, AlexNet, and RexNet. Step IV: the composite fused

image is finally obtained by combining information fused in

detail and base parts. These four steps are further explained

as follows.

A. IMAGE DECOMPOSITION

Multi-scale decomposition (MSD) is a well-known method

for image decomposition. Shutao et al. [42] proposed a rapid

and effective image decomposition method with guided fil-

tering. The base parts through this method can be obtained
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FIGURE 5. VSWM results of base layers.

from (1)

Ib = argmin
Ib

||I − Ib||
2
F + λ∇Ib, (1)

where

∇Ib = sqrt(||∇h
p Ib||

2
F + ||∇v

pIb||
2
F ), (2)

where ∇P = (∇h
p , ∇

v
p) denotes the image gradient at pixel p

with ∇h and ∇v as the linear operators corresponding to the

horizontal and vertical first-order differences, respectively.

λ is the regularization parameter and is set to 5 [35].

After base parts Ib, the detailed content is obtained by (3)

Id = I − Ib. (3)

B. FUSION OF THE BASE LAYER

In image decomposition, the base layer contains a wealth of

information, such as image texture, contrast, edges, and other

background information. The purpose of base layer fusion

is to transfer information from the base layer of the IR and

VIS images to the fused image. However, the ‘‘averaging’’

strategy applied over base layer during its fusion by the con-

ventional methods leads to the loss of critical IR and VIS base

layer information. For example, the IR images contain strong

contrast information, while the VIS images have rich texture

information. The application of ‘‘averaging’’ process reduces

the image contrast and blurs the texture. On the contrary,

the VSWM method calculates the importance of each pixel

relative to the original image [43]. As a result, the contrast and

texture information in the source image can be well preserved

and a better base layer fusion effect can be achieved.

VSWMdefines pixel-level saliency on the basis of a pixel’s

contrast to all other pixels. The saliency value V k (p) of pixel

p is defined as follows:

V k (p) =
∑

∀q∈I k

|I kp − I kq |, (4)

where k denotes the source images and k = {IR,VIS},

Ip denotes the intensity value of pixel p in image I , and q is

each pixel of image I . The visual saliency of a particular pixel

is computed by individually subtracting its intensity value

with all the pixels in the image and then summing up those

values.

For (4), the pixel by pixel expansion of V k (p) can be

written as follows:

V k(p) = |I kp − I k1 | + |I kp − I k2 | + · · · + |I kp − I kN |, (5)

where N is the number of pixels in I . The saliency values are

equal if two pixels have the same intensity value, such that (5)

can be rewritten as follows:

V k (p) =

L−1∑

l=0

Sl |I
k
p − I kl |, (6)

where l denotes pixel intensity, Sl represents the number of

pixels whose intensities are equal to l, and L is the gray levels

of images and L = 256 in this paper. Furthermore, the visual

saliency weight map V k will be obtained by calculating the

visual saliency of other pixels in image using (6). Finally,

the V k is normalized to [0, 1].

In (6), we obtain a saliency map for the original image.

Regions with large values of VSWM typically correspond to

intensity and texture areas, whose information are useful and

necessary for fusion. The base layer fusion rule is written as

IFb =VSWM (I IRb , IVISb )

=
(V IRI IRb +(1−V IR)IVISb )+(VVISIVISb +(1− VVIS)I IRb )

2
.

(7)

where V IR and VVIS denote the VSWM of the IR and VIS

images, respectively. Fig. 5 shows the VSWM results of IR

base layer and VIS base layer.

C. FUSION OF THE DETAIL LAYER

The detail layer contains the high frequency information

about the source image. However, it is observed that if this

image is directly fed to a CNN, the feature extraction process

(of CNN more inclined towards large scale extraction) fails

to register fine details in it. Therefore, the proposed method

pre-processes this data through MSVD method, effectively

preserving fine details in the image [37]:

I kd,j = MSVD(I kd , le), (8)

where le denotes the number of decomposition levels,

j denotes the different frequency information and j =

{LL,LH ,HL,HH}, and k denotes the source images and

k = {IR,VIS}.
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FIGURE 6. Intermediate images of MSVD processing.

FIGURE 7. Procedure of the deep learning network in FIGURE 4.

As shown in the detail layer fusion part in Fig. 4, the detail

layer obtained by image decomposition is preprocessed by

the MSVD method to obtain a sub-set of images, which are

similar to the results obtained by a wavelet transform. These

sub-images can effectively retain fine details, which has been

proven by the experiments in Ref [37]. Fig. 6 shows the

intermediate images of MSVD processing.

As shown in Fig. 4, I kd,j is viewed as an input to the CNN,

and image information is extracted in depth from each of the

hidden layers:

φ
k,net,name,m
d,j = 8net

name(I
k
d,j) m = 1, 2, · · · ,M , (9)

where net denotes the model of CNN, name refers to the

hidden layer name in themodel net,M is the number of output

channels of name, and 8 denotes the operation of the hidden

layer. The L1-norm is used to obtain the final detail image as:

I
k,net,name
d,j (x, y) =

1

w

∑

x,y∈w

||φ
k,net,name,m
d,j (x, y)||1

m = 1, 2, · · · ,M , (10)

where w is a sliding window set to a size of 3 × 3 [35]. Then,

we can obtain the detail fusion MSVD as:

I
F,net
d,j = VSWM (I

IR,net,name
d,j , I

VIS,net,name
d,j )

j ∈ {LL,LH ,HL,HH}, (11)

where I
IIR,net,name
d,j and I

IIR,net,name
d,j denote the output corre-

sponding to name hidden layer in network net. The fusion of

detail layer is obtained by MSVD reconstruction, given by:

I
F,net
d = MSVD−1(I

F,net
d,j ). (12)

where the VGG-19 network is selected and name = {relu1,

relu2, relu3, relu4}. Fig. 7 illustrates this procedure.

Specifically, there are three steps in Fig.7. The first step is

to use the sub-images, obtained by the MSVD preprocessing

of the image detail layer, as input to train the VGG-19 net-

work. The second step is to extract (and visualize) images of

different network depths (scales) from the convolution blocks

of VGG19 network. The third step is to further process these

images to reconstruct visualization images (through VSWM)
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FIGURE 8. Comparison of fusion results from different methods. From top to bottom are ‘‘Steamboat,’’ ‘‘Household,’’ and ‘‘Soldier.’’

and finally obtain the final detail layer fusion result. This is

consistent with the theoretical part.

Comparing the detail layers and MSVD-processed images

in Fig. 6 with the fused output image (obtained by MSVD

reconstruction) in Fig. 7, it can be observed that the details

fused in the output image (Fig. 7) contain enhanced features

from both infrared and visible detail layers. Through further

qualitative comparison, it can be seen that the VGG19 net-

work is prone to loss of fine details (across different blocks

in Fig. 3), whereas the fine details in the fused image of

Fig. 7 (e.g., the ground texture on the bottom left) are retained.

The enhanced fused image information in Fig. 7 reflects the

advantages of the MSVD method.

D. FUSION OF THE IMAGE

The final fused image is obtained from (13) using the

acquired fused detail contents IFb and IFd as:

IF = IFb + IFd . (13)

IV. EXPERIMENTS AND RESULTS

A. EXPERIMENTAL SETTINGS

To verify the effectiveness of the proposed framework,

twenty-one pairs of images [35] are used to compare its

performance with existing state-of-the-art fusion methods of

cross-bilateral filter fusion (CBF) [44], joint SR (JSR) [16],

JSR with saliency detection fusion (JSRSD) [17], convo-

lutional SR model (ConvSR) [18], gradient transfer fusion

(GTF) [45], and deep learning network (DLN) [35].

According to Ref [46], the qualitative performance of a

fusion algorithm differs from its quantitative performance.

Therefore, to effectively quantify fusion strategies (of visual

saliency, MSVD, and CNN) in our algorithm, we use three

quality metrics, namely, Q0 [47], multiscale structural sim-

ilarity (MS_SSIM) [48], and sum of correlations of differ-

ences (SCD) [49]. Q0 measures how much salient informa-

tion contained by input images is transferred into the fused

imagewithout introducing distortions. SCD computes quality

by considering the source images and their impact on the

fused image. MS_SSIM is based on the structural similarity,

which provides more flexibility than a single-scale approach

in incorporating the variations of image resolution and view-

ing conditions. For all three metrics, a large value indicates a

better fused result.

B. COMPARISON WITH OTHER FUSION METHODS

The fused images processed by six existing methods and

the proposed method are shown in Fig. 8. For qualita-

tive comparison, the details in each image (marked by

red box) are shown as zoomed inset (inside the red dot-

ted box). The cyan box in each image highlights its salient

area.

It can be seen from Fig. 8. that the fused images of CBF

and ConvSRmethods produce serious artifacts, which are not

suitable for subsequent image processing. Similarly, in the

case of ‘Soldier’ image, the salient target information is lost

in the fused results of both JSR and JSRSD methods, which

is an unacceptable error. In contrast, the fused images of

GTF, DLN, and the proposed method efficiently retain salient

information about the original image. In addition, the contrast

of fused images for the proposed and GTF methods is higher

than that of the DLN method (the cyan box in the ‘Steam-

boat’ and ‘Household’ images). Particularly, for the ‘Soldier’

image, the fused image of the proposedmethod containsmore

information than that of the DLN method (which is more like

the source IR image).

The details (marked by red box) in Fig. 8 for the ‘Steam-

boat’ (its windows) and ‘Household’ (trees in the scene)

images are further studied for comparison. It can be seen for

the ‘steamboat’ image that the windows (zoomed details in

the dotted red box) have disappeared in the fused images

of JSR, CBF, ConvSR and JSRSD methods. In contrast,

the fused images of the proposed, GTF and DLN methods

accurately retain fine details (windows). Moreover, the fused

images of the Proposed and GTF methods show better recon-

struction compared to the DLN method. For the ‘Household’

image, the fused images of the CBF, ConvSR, GTF, and DLN
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FIGURE 9. Comparison of fusion results from different methods on the (a) Campsite, (b) Steamboat, (c) People, (d) House,
(e) Marne, and (f) Movie.

show obvious artifacts in the tree area. Whereas, the results

for the proposed, JSRSD, and JSRmethods are very clear and

accurate. Therefore, it can be concluded from the qualitative

comparison of Fig. 8 that the proposed method outperforms

other methods by achieving better fusion performance in

terms of reconstructing both low-frequency (contrast) and

high-frequency (detail) information.

The purpose of image fusion is to fuse the information

of different images to obtain an image with rich informa-

tion. Considering the case of ‘‘household’’ image in Fig. 8,

the contrast between the trees and sky in the IR image is not

high. Opposite to that, the visible image can better distinguish

between the trees and sky, with a high a contrast. Thus,

to retain this significant information (of trees and sky) in

the fused image, the proposed method reconstructs an image

where the sky and trees are detectedmore like a visible image,

along with all the significant details of IR image. This result

further highlights the effectiveness of our fusion method in

clearly distinguishing different targets and fusing with high

efficiency.

Further qualitative comparison of the proposed framework

with six other methods is provided in Fig. 9. The first two
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TABLE 1. Quantitative comparison of the results in figure 9.

rows in Fig. 9 present the original IR and VIS images,

whereas the remaining seven rows correspond to the fusion

results of seven different methods. From Fig. 9 it can be

observed that the fused results of GTF, DLN, and proposed

methods have few artifacts. The fused images of the proposed

method tend to preserve the thermal radiation distribution

in the IR images. Hence, the targets can be easily detected.

Meanwhile, the details of the backgrounds in the VIS images

are also retained in the fused results.

The quantitative analysis for the results in Fig. 9 is pre-

sented in table 1. The proposed method outperforms other

fusion methods (except for JSR and DLN) over different

metrics (of Q0, MS_SSIM, and SCD). The JSR method

achieves the highest value of the metric SCD on the ‘‘Camp-

site’’ source image. The DLN method achieves the best per-

formance in terms of the metric Q0 on the ‘‘Movie’’ and

‘‘Marne’’ source images. This result is basically consistent

with the results of our subjective observations. This finding

indicates that the fused images obtained by the proposed

method contain more information and provide better fusion

effect.

V. CONCLUSION

An effective IR and VIS fusion method based on VSWM and

CNN is proposed in this study to solve the problems of low

contrast and loss of fine details in fused images. We simul-

taneously retain the thermal radiation information of the IR

image and preserve the appearance information of the VIS

image. The quantitative comparisons between six state-of-

the-art fusion methods and our proposed method demonstrate

that the latter captures the most important information and

retains approximately the largest amount of information in

the source images. Furthermore, the experiments show that

the proposed method is more stable and versatile than the

existing state-of-the-art fusion methods.
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