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ABSTRACT

We improve the performance of the Perfectly Matched Layer by using an automatic hp-adaptive discretization.

By means of hp-adaptivity, we obtain a sequence of discrete solutions that converges exponentially to the

continuum solution. Asymptotically, we thus recover the property of the PML of having a zero reflection

coefficient for all angles of incidence and all frequencies on the continuum level. This allows us to minimize

the reflections from the discrete PML to an arbitrary level of accuracy while retaining optimal computational

efficiency. Since our hp-adaptive scheme is automatic, no interaction with the user is required. This renders

tedious parameter tuning of the PML obsolete. We demonstrate the improvement of the PML performance

by hp-adaptivity through numerical results for acoustic, elastodynamic and electromagnetic wave-propagation

problems in the frequency domain and in different systems of coordinates.

Keywords and Phrases: Perfectly Matched Layer, hp-adaptivity, exterior boundary-value problem, acoustic

scattering, elastodynamic wave propagation, electromagnetic scattering.

1. Introduction
Most wave-propagation problems arising in acoustics, elastodynamics and electromagnetics are posed
on a spatially unbounded domain. Since domain-based discretization methods such as finite elements
can handle only bounded domains, a truncation of the unbounded physical domain to a bounded
computational domain is necessary. Any artificial boundary condition that is applied on the truncated
domain boundary must not essentially alter the original problem, i.e. it must allow for outgoing
waves only and it has to be essentially reflectionless. Many techniques have been developed for this
purpose such as Infinite Elements (see e.g. [4, 12]), the Dirichlet-to-Neumann map (see e.g. [14]),
exact nonreflecting boundary conditions (see e.g. [15]), the continued-fraction absorbing boundary
condition [16] and the Perfectly Matched Layer [3]. We refer to Refs. [17, 26, 31] for an overview over
these so-called absorbing boundary conditions, all of which have their specific strengths and weaknesses.

Among the various absorbing boundary conditions, the Perfectly Matched Layer (PML) in particu-
lar has become very popular due to its performance, conceptual simplicity and ease of implementation.
The PML is based on the concept of analytic continuation of a real function into the complex plane
(see e.g. [13]), typically also referred to as complex-coordinate stretching [8]. This concept enables
straightforward derivation of the PML equations for different types of wave propagation and differ-
ent systems of coordinates; see e.g. Refs. [24, 25, 30, 32]. The PML concept has been extensively
studied and analyzed regarding the so-called split and unsplit formulations and well-posedness (see
e.g. Refs. [1, 19]), causality [6, 29], long-time behavior [1, 2], termination of the PML [9, 27] and
finite-element dispersion and convergence analysis in the frequency domain [5, 18]. A recommendable
review of the PML in the context of Maxwell’s equations is presented in Ref. [30].

The PML has the remarkable property of having a zero reflection coefficient for all angles of
incidence and all frequencies on the continuum level. However, under discretization, this property is
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compromised and spurious reflections typically do occur at the discrete PML. Much effort has thus
been spent on optimizing the PML parameters to minimize the error resulting from discretization
and thus obtain optimal performance of the PML; see e.g. [7, 9, 28]. In this work, we advocate
the opposite approach, i.e. we optimize the discretization for any given PML parameters, rather
than resorting to tedious parameter tuning. A highly effective methodology to construct an optimal
discretization is the hp-adaptive finite-element method that allows for locally adapting the element
size h and polynomial approximation order p to the local resolution requirements of the solution. Such
adaptivity can be accomplished in an automatic way, i.e. no interaction with the user is required.
This is achieved by a so-called two-grid strategy [10] that guides the adaptive refinements. By solving
the problem on a sequence of coarse and corresponding fine grids, an approximation of the error
function is constructed at each iteration, which serves as an error estimate and based on which it
is determined where to refine and how to refine, i.e. in h or in p. This yields optimal accuracy for
the least computational expense. For details on the automatic hp-adaptive procedure, we refer to
Ref. [10] and to the recent book by Demkowicz [11]. The immense benefit that hp-adaptivity can
offer for increasing the performance of the PML is due to the property of the PML of having a zero
reflection coefficient on the continuum level. Although this property is lost under discretization, it can
be recovered asymptotically, i.e. upon convergence to the continuum solution. This implies that upon
convergence of the hp-adaptive discretization, the discretization error and the resulting reflections can
be minimized to an arbitrary level of accuracy.

The PML is designed such that traveling waves that leave the actual domain of interest and enter
the encompassing PML are converted into evanescent waves that are made to decay sufficiently fast,
i.e. they vanish before they can get reflected at the domain boundary. The rapid decay that is enforced
on the solution in the PML implies strong solution gradients which need to be resolved to prevent
reflections and an accompanying loss in accuracy. Although the significance of resolving the PML has
long been recognized, conventional discretization methods generally face difficulties in resolving strong
solution gradients and, therefore, typically revert to adjusting the PML parameters and the associated
damping profile to a given discretization. Conversely, our adaptive strategy automatically adapts the
discretization to resolve any damping profile that is imposed on the solution. This allows us to choose
the geometry of the PML independent of the geometry of the initial grid, i.e. the respective geometries
need not coincide (a cylindrical PML and a Cartesian grid, for instance) - a truly remarkable feature. In
this paper, we show that by means of hp-adaptivity PML-induced solution gradients can be effectively
resolved and the performance of the PML can be greatly improved. This renders tedious parameter
tuning of the PML obsolete. We demonstrate the performance and the versatility of our approach by
numerical results for acoustic, elastodynamic and electromagnetic wave-propagation problems in the
frequency domain and in different systems of coordinates.

The contents of this paper are organized as follows: Sections 2, 3 and 4 present the PML formulation
of the Helmholtz, linear elasticity and Maxwell’s equations, respectively, and discuss the particularities
of the respective PML formulation. Each of these sections presents numerical results that demonstrate
the potential of hp-adaptivity for improving the performance of the PML. Finally, Section 5 contains
concluding remarks.

2. Helmholtz equation
In this section, we study the formulation of the Perfectly Matched Layer for an exterior boundary-
value problem governed by the Helmholtz equation. In Section 2.1, we provide a problem statement
in coordinate-invariant form. In Section 2.2, we derive the PML formulation in Cartesian coordinates.
Based on the formalism introduced in Section 2.2, in Sections 2.3 and 2.4, we state the PML formu-
lation in 2D polar and 3D spherical coordinates, respectively. In Section 2.5, we present numerical
results for exterior Helmholtz problems that demonstrate the improvement in performance of the PML
that can be obtained by hp-adaptive finite elements.
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2.1 The Helmholtz equation in coordinate-invariant form
We consider the unbounded exterior domain Ω = Rn−Ωint with Ωint ⊂ Rn, n = 1, 2, 3, a given bounded
interior domain and n the number of space dimensions. We seek a solution for the pressure p(x), x ∈ Ω̄
that satisfies the Helmholtz equation in Ω,

−∆p− k2p = 0 inΩ , (2.1)

where ∆ denotes the Laplacian operator, and k := ω/c is the wavenumber with ω and c the angular
frequency and the sound speed, respectively. Throughout this work, we shall assume a time-harmonic
dependence of the form eiωt, where i is the imaginary unit and t denotes time and, moreover, we
consider the governing equations in their non-dimensional form. Eq. (2.1) is supplemented with a
Dirichlet boundary condition on the interior-domain boundary

p = pD onΓ = ∂Ωint , (2.2)

and the Sommerfeld radiation condition at infinity

∂p

∂r
+ ikp ∈ L2(Ω) , (2.3)

where r denotes the radius. Note that this particular form of the Sommerfeld radiation condition has
the advantage of being independent of the number of space dimensions. We further remark that the
Dirichlet boundary condition (2.2) can be replaced by a Neumann or a Cauchy (impedance) boundary
condition,

∂p

∂n
= g , (2.4a)

∂p

∂n
+ iωβp = g , (2.4b)

on the entire boundary or on parts of it, where n denotes the outward unit normal on Γ, and β > 0
and g are given functions on Γ.

Finally, let us remark that the Helmholtz equation is obtained by eliminating the velocity from
the first-order system of linear acoustics equations which, in coordinate-invariant form, are{

iωp+ ρ0c
2∇ · u = 0

iωρ0u + ∇p = 0 ,
(2.5)

where p and u denote the small-amplitude disturbance in pressure and velocity, respectively, of a
uniform stationary fluid, and ρ0 is the fluid density associated with this uniform state.

2.2 PML formulation of the Helmholtz equation in Cartesian coordinates
The governing equations in the PML can be derived by applying a complex coordinate transformation
of the original equations in the direction normal to the interface between the “domain of interest”
and the PML. For this purpose, it is essential that the solution to the considered equations is analytic
in the direction normal to the interface. Analyticity of the solution is equivalent to the solution
being holomorphic, i.e. differentiable in the complex sense. This assumption allows us to consider
the solution as a function of complex variables zi in place of real variables xi, and to replace the
derivative with respect to xi with the derivative with respect to zi. This procedure is commonly also
referred to as analytic continuation [13] or as complex-coordinate stretching [8]. The motivation of
such coordinate stretching is to construct a continuation of the solution into the complex plane in
such a way that, in the PML, the solution becomes evanescent, whereas in the domain of interest the
original solution is retained.
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The analytic continuation of the solution into the complex plane is obtained by the following
transformation of the j-th coordinate

xj → zj(xj) := [xj + aj(xj)]− i[bj(xj)] j = 1, . . . , n , (2.6a)

∂

∂xj
→ ∂

∂zj(xj)
=

1
z′j

∂

∂xj
with z′j :=

dzj(xj)
dxj

=
[
1 +

daj(xj)
dxj

]
− i
[
dbj(xj)
dxj

]
, (2.6b)

where the j-th complex coordinate zj depends only on the j-th real coordinate xj . Factors aj(xj) and
bj(xj) are “suitable” functions specified in the sequel. In the domain of interest, aj(xj) = bj(xj) = 0
which yields zj(xj) = xj and, thus, the original, “unstretched” equations are recovered. A jump in aj ,
bj across the interface between the domain of interest and the PML induces a loss of regularity. To
minimize such loss of regularity, aj(xj) and bj(xj) are typically set to increase steadily from zero as
one moves away from the interface through the PML, ideally with CK-continuity across the interface.
Considering a wave traveling to the right, in the PML, aj(xj) ≥ 0 to ensure that evanescent waves
have an exponential decay that is faster in the PML than in the domain of interest; and bj(xj) ≥ 0 to
ensure that traveling waves, once they enter the PML, are converted into evanescent waves that decay
exponentially. Conversely, for a wave traveling to the left, we need aj(xj) ≤ 0 and bj(xj) ≤ 0 in the
PML. We remark that, in general, bj(xj) is chosen frequency-dependent; see for instance Ref. [30].
However, in this work, we shall not consider frequency-dependent stretching, since all our examples
consider a single frequency only. By an appropriate choice of aj(xj) and bj(xj), a sufficiently fast
decay of the solution can be enforced such that the solution of the PML-modified problem practically
vanishes at the truncated domain boundary and, thus, satisfies a homogeneous Dirichlet boundary
condition. Note, however, that the enforced rapid decay of the solution in the PML induces strong
solution gradients. We demonstrate in Section 2.5 the importance of resolving these PML-induced
solution gradients for the accuracy of the solution in the domain of interest and, moreover, that this
can be efficiently achieved by hp-adaptivity. Finally, let us remark that the choice of aj(xj) and bj(xj)
has to respect the principle of causality; see Refs. [6, 29] for details.

In the sequel, we derive the PML formulation for the Helmholtz problem considered in Section 2.1
in n dimensions and Cartesian coordinates. To this end, we start from the time-harmonic linear
acoustics equations (2.5) expressed in Cartesian coordinates

iωp+ ρ0c
2

n∑
j=1

∂uj
∂xj

= 0 ,

iωρ0uj +
∂p

∂xj
= 0 .

(2.7)

Introducing in Eqs. (2.7) complex-coordinate stretching according to (2.6) with xj → zj(xj), we obtain
iωp+ ρ0c

2
n∑
j=1

1
z′j

∂uj
∂xj

= 0 ,

iωρ0uj +
1
z′j

∂p

∂xj
= 0 .

(2.8)

Note that we do not use the Einstein summation convention here. To express Eq. (2.8)1 in a weak
form, we multiply (2.8)1 with z′ := Πn

j=1z
′
j , and then with a test function q ∈ Q and integrate over

the domain Ω. Thus, we obtain

iω

∫
Ω

z′pq dΩ + ρ0c
2

n∑
j=1

∫
Ω

z′

z′j

∂uj
∂xj

q dΩ = 0 . (2.9)

Note that in deriving the weak form (2.9) the multiplication of the expression by z′ facilitates the
subsequent integration-by-parts, because the prefactor z′/z′j in (2.9) is independent of xj . Upon
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integrating Eq. (2.9) by parts, we multiply the resulting expression by iω and eliminate uj by invoking
Eq. (2.8)2. This yields the final variational form

p ∈ p̂D +Q

−k2

∫
Ω

z′pq dΩ +
n∑
j=1

∫
Ω

z′

(z′j)2
∂p

∂xj

∂q

∂xj
dΩ =

∫
ΓN

gq dS

∀q ∈ Q ,

(2.10)

where k = ω/c is the wavenumber and g denotes the normal pressure gradient specified on the
Neumann portion of the boundary, ΓN . In (2.10), p̂D denotes a finite-energy lift of the Dirichlet data,
Q is the space of test functions

Q := {q ∈ X : q = 0 on ΓD} , (2.11)

and the “energy space” X associated with the variational problem (2.10) is defined as

X :=

q : |z′|
1
2 q,

∣∣∣∣∣ z′

(z′j)2

∣∣∣∣∣
1
2
∂q

∂xj
∈ L2(Ω)

 . (2.12)

Note that in deriving Eq. (2.10), Eq. (2.7)1 has been treated in its weak form, whereas Eq. (2.7)2 has
been treated in its strong form. This has implications for the regularity requirements of the solution
variables. In particular, this relaxes the regularity requirements for the velocity uj .

Finally, let us remark that, since the complex-coordinate stretching according to (2.6) is straightfor-
ward for first-order derivatives, the variational formulation of the PML equations is most conveniently
derived by starting from a system of first-order equations and following the procedure described above.
This equally applies to the PML formulation of the linear elasticity equations as well as to the PML
formulation of Maxwell’s equations that are stated in Sections 3.1 and 4.1, respectively.

2.3 PML formulation of the Helmholtz equation in 2D polar coordinates
In this section, we present the PML formulation for the Helmholtz equation in two dimensions and
polar coordinates (r, θ) with x = r cos θ and y = r sin θ. We employ complex-coordinate stretching
only in the r coordinate, i.e. normal to the interface between the domain of interest and the PML.
Thus, the solution to the Helmholtz equation is required to be analytic in the r coordinate only, but
not necessarily in the θ coordinate.

Since the derivation of the PML formulation for polar coordinates proceeds analogously to the
case of Cartesian coordinates (cf. Section 2.2), let us defer the derivation to Appendix A and state
here only the final variational formulation with complex-coordinate stretching according to (2.6) with
r → z(r) 

p ∈ p̂D +Q∫
Ω

(
z

z′r

∂p

∂r

∂q

∂r
+
z′

rz

∂p

∂θ

∂q

∂θ

)
rdrdθ − k2

∫
Ω

z′z

r
pq rdrdθ = 0

∀q ∈ Q .

(2.13)

In (2.13), p̂D denotes a finite-energy lift of the Dirichlet data, Q is the space of test functions

Q := {q ∈ X : q = 0 on Γ} , (2.14)

where we tacitly assumed Dirichlet boundary conditions for the solution on the entire boundary, Γ,
and, accordingly, homogeneous boundary conditions for the test function q, and the “energy space”
X associated with the variational problem (2.13) is defined as

X :=

{
q :

∣∣∣∣z′zr
∣∣∣∣ 12 q, ∣∣∣ zz′r ∣∣∣ 12 ∂q∂r ,

∣∣∣∣ z′rz
∣∣∣∣ 12 ∂q∂θ ∈ L2(Ω)

}
. (2.15)
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Since the solution to problem (2.13) decays exponentially in r, we replace, upon discretization, the
infinite physical domain by a finite computational domain. We can then discretize problem (2.13) on
the truncated domain by means of finite elements. Note that the truncated domain need not have a
circular shape; moreover, we typically revert to Cartesian coordinates xj to represent the integrand
of Eq. (2.13). In particular, the integrand of the first integral in (2.13) can then be rewritten as

z

z′r

∂p

∂r

∂q

∂r
+
z′

rz

∂p

∂θ

∂q

∂θ
=

z

z′r

∂p

∂r

∂q

∂r
+
z′r

z

(
∂p

∂xj

∂q

∂xj
− ∂p

∂r

∂q

∂r

)
=
z′r

z

∂p

∂xj

∂q

∂xj
+
(
z

z′r
− z′r

z

)
∂p

∂r

∂q

∂r

= aij
∂p

∂xj

∂q

∂xi

(2.16a)

with

aij =
z′r

z
δij +

(
z

z′r
− z′r

z

)
xixj
r2

, (2.16b)

where δij denotes the Kronecker delta and the Einstein summation convention has been used. The
first equality in (2.16a) is obtained by invoking Eq. (A.58a), and the third equality is obtained by
using the fact that

∂p

∂r
=

∂p

∂xj

∂xj
∂r

=
∂p

∂xj

xj
r
, (2.17)

and likewise for ∂q/∂r.

2.4 PML formulation of the Helmholtz equation in 3D spherical coordinates
In this section, we present the PML formulation for the Helmholtz equation in three dimensions and
standard spherical coordinates (r, ψ, θ) with x = r sinψ cos θ, y = r sinψ sin θ and z = r cosψ. Since
the derivation proceeds analogously to the case of Cartesian coordinates (cf. Section 2.2), let us defer
the derivation to Appendix B and state here only the final variational formulation with complex-
coordinate stretching according to (2.6) with r → z(r)

p ∈ p̂D +Q∫
Ω

(
z2

z′r2
∂p

∂r

∂q

∂r
+
z′

r2
∂p

∂ψ

∂q

∂ψ
+

z′

r2 sin2 ψ

∂p

∂θ

∂q

∂θ
− k2z′

z2

r2
pq

)
r2 sinψdrdψdθ =

∫
ΓN

gq dS

∀q ∈ Q ,

(2.18)

where g denotes the normal pressure gradient specified on the Neumann portion of the boundary, ΓN .
For the remainder of the boundary, ΓD, we assume Dirichlet boundary conditions for the pressure
and, accordingly, homogeneous boundary conditions for the test function q. In (2.18), p̂D denotes a
finite-energy lift of the Dirichlet data, Q is the space of test functions

Q := {q ∈ X : q = 0 on ΓD} , (2.19)

and the “energy space” X is defined as

X :=

{
q :
|z′| 12 |z|
r

q ∈ L2(Ω),
|z|
|z′| 12 r

∂q

∂r
∈ L2(Ω),

|z′| 12
r

∇s q ∈ L2(Ω)

}
, (2.20)

where ∇s denotes the gradient on the unit sphere

∇s q =
1

sinψ
∂q

∂θ
eθ +

∂q

∂ψ
eψ . (2.21)
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2.5 Numerical experiments
To demonstrate the benefit of hp-adaptivity for the performance of the PML, we present below nu-
merical results of wave propagation in an acoustic medium. In particular, we consider the scattering
of a 2D plane wave on a cylinder with a polar PML and, subsequently, the scattering of a 3D plane
wave on a sphere with spherical PML.

2D polar PML
In this section, we test the hp-adaptive algorithm for a two-dimensional PML in polar coordinates
for the time-harmonic linear acoustics equations according to Eq. (2.13). This problem is suitable for
assessing the performance of the PML combined with hp-adaptivity and the accuracy of the numerical
solution, since the problem admits an analytic solution (see e.g. [21, ch. 10.5]), which is expressed in
terms of standard harmonics and Hankel functions. The validity of the analytic solution is extended
to the PML by means of complex-coordinate stretching. Note that the computational domain need
not have a cylindrical shape. In fact, to challenge our hp-adaptive algorithm, we select a cylindrical
geometry of the PML that does not match the Cartesian structure of the initial mesh. Thus, we
“truncate” the Cartesian computational domain (−5, 5)2 by a cylindrical PML for r ≥ 4. Complex-
coordinate stretching is invoked in the r coordinate only, in particular

z(r) =
{
r 0 ≤ r < 4
r − i

(
r−4
0.5

)5
r r ≥ 4

. (2.22)

Let us however remark that the stretching (2.22) is just one possible choice that ensures a sufficiently
rapid decay of the solution and that other forms are conceivable.

Below, we present numerical results for the scattering of an incident plane wave pinc = e−ikv·x on a
cylinder. We set the dimensionless cylinder radius r = 1, the dimensionless wavenumber k = 4π/3 and
the direction of the incident wave v = (1, 0). We augment the problem with homogeneous Dirichlet
boundary conditions p = 0 on the outer domain boundary adjacent to the PML and, moreover, with
Dirichlet boundary conditions on the cylinder boundary, i.e. at r = 1, that are specified according to
the analytic solution from Ref. [21, ch. 10.5].

Starting from the initial mesh shown in Fig. 1 (left), we plot in Fig. 4 (right) the convergence
curve in terms of percent relative error in the H1-seminorm (in a logarithmic scale) versus the total
number of degrees-of-freedom N (in the algebraic scale N1/3). The error is evaluated over the entire
computational domain including the PML. Fig. 4 (right) displays two convergence curves for the
cylindrical PML that use as a reference solution the exact analytic solution and the fine-grid solution,
respectively. These two convergence curves are almost indistinguishable, which indicates that the
error estimate obtained with the fine-grid solution as reference solution is indeed very accurate. The
hp-refined mesh corresponding to an error level of 1% is obtained after 16 iterations; see Fig. 1 (right).
Note the refinements that have been selected by the adaptive algorithm in particular in the PML
to resolve the cylindrical geometry of the PML and the solution that is made to decay rapidly in
radial direction in the PML. Figs. 2 (left) and (right) show the real component of the solution and of
the error function, respectively. Here, the error function is computed using the analytic solution to
the problem; cf. [21]. These plots demonstrate that hp-adaptivity is capable of effectively resolving
the rapidly decaying solution in the PML, thereby minimizing the reflections from the PML to an
arbitrary level of accuracy (here 1%) without the necessity of PML-parameter tuning. These results
are truly remarkable given the mismatch between the cylindrical PML and the Cartesian structure of
the initial mesh.

Clearly, if the geometry of the PML is chosen according to the structure of the underlying mesh,
significantly fewer degrees-of-freedom are required to deliver the same accuracy. To support this claim,
we recompute the above test case with a Cartesian PML specified according to

zk(xk) =

{
xk 0 ≤ |xk| < 4

xk − i
(

|xk|−4
0.5

)5

xk |xk| ≥ 4
k = 1, 2 . (2.23)
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Starting from the same initial mesh as displayed in Fig. 1 (left), an hp-mesh corresponding to an error
level of 1% is obtained after 15 iterations; see Fig. 3 (left) for the hp-refined mesh, Fig. 4 (left) for the
real component of the error function with the fine-grid solution used as a reference, and Fig. 4 (right)
for the convergence curve. The real component of the solution obtained on the hp-refined mesh is
shown in Fig. 3 (right). Comparing the final hp-meshes for a cylindrical and a Cartesian PML, Fig. 1
(right) and Fig. 3 (left), respectively, we observe that the hp-mesh for a cylindrical PML consists of
8325 degrees-of-freedom, whereas the hp-mesh for a Cartesian PML consists only of 4779 degrees-of-
freedom; compare also the respective convergence curves in Fig. 4 (right). Hence, the efficiency of
the discretization can be significantly improved by constructing initial meshes in accordance with the
geometry of the PML.

p = 8

p = 1

p = 8

p = 1

Figure 1: Acoustic scattering of a plane wave on a unit cylinder with a cylindrical PML. Left: Initial
finite element mesh. Right: hp-refined mesh corresponding to 1% error and consisting of 8325 degrees-
of-freedom. The color bar indicates the order of element edges and interiors.

+1.1 · 100

−1.4 · 100

+3.4 · 10−3

−4.7 · 10−3

Figure 2: Acoustic scattering of a plane wave on a unit cylinder with a cylindrical PML. Left: Real
component of the numerical solution. Right: Real component of the error function. Both the numerical
solution and the error function were computed on the hp mesh given in Fig. 1 (right).
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p = 8

p = 1

+1.1 · 100

−1.4 · 100

Figure 3: Acoustic scattering of a plane wave on a unit cylinder with a Cartesian PML. Left: hp-
refined mesh corresponding to an error estimate of 1% and consisting of 4779 degrees-of-freedom.
Right: Real component of the numerical solution computed on the hp mesh given in Fig. 3 (left).

3D spherical PML
In this section, we consider a three-dimensional PML in spherical coordinates for the time-harmonic
linear acoustics equations according to Eq. (2.18) with complex-coordinate stretching in the r coor-
dinate only. To assess the effectiveness of the PML combined with hp-adaptivity, we compare its
performance to the one of Infinite Elements; see e.g. Refs. [4, 12].

Below, we present numerical results for the scattering of a plane wave on a sphere with dimen-
sionless radius r = λ = 1, where λ denotes the dimensionless wavelength. We set the dimensionless
wavenumber k = 2π and the direction of the incident wave v = (0, 0,−1). The computational domain
is truncated by a spherical PML for 2 ≤ r < 3. In particular, we have employed coordinate stretching
according to

z(r) =
{
r 0 ≤ r < 2
r − iC(r − 2)6 r ≥ 2 (2.24)

in order to have z ∈ C5 globally, and the constant C = − log ε, where ε is the machine precision.
Such a setting of C ensures that the analytic solution at the PML boundary is of the order of the
machine precision and thus allows us to truncate the PML by a homogeneous Dirichlet boundary
condition p = 0 at r = 3. The rigid scatterer is represented by the Neumann boundary condition
∂p/∂n = −∂pinc/∂n on ΓN , i.e. at r = 1, where pinc = e−ikv·x is the incident plane wave.

Figs. 5 (left) and (right) show cutaway views of two initial meshes used for comparison. Mesh (a)
simply captures the geometry of the problem with the PML in the outer layer of elements. Mesh (b)
includes one h-refinement in the radial direction. In Fig. 6 (right), we plot the percent relative error
in the H1-seminorm (in a logarithmic scale) versus the total number of degrees-of-freedom N (in the
algebraic scale N1/3) for uniform p = 2, . . . , 9 and both meshes (a) and (b). The error is evaluated
only over the domain of interest 1 < r < 2 with the exact solution (see e.g. [20, sec. 2.1.2]) used as a
reference. We see that the radial h-refinement is essential, and that the curve for mesh (b) “looks like”
exponential convergence with respect to p in this range. We also show convergence for the p-method
when the PML in mesh (a) is replaced by infinite elements on the sphere r = 2. The exact solution
is then analytic, and we observe exponential convergence in p, but with a faster rate than in the case
with the PML. Finally, we apply our algorithm for fully-automatic hp-adaptivity (see [22]) with PML
and using mesh (a) as the initial coarse grid. We plot the error for the first nine coarse grids and
corresponding fine grids generated by the algorithm. The final coarse grid, shown in Fig. 6 (left),
achieves 0.6% relative error with 10K degrees-of-freedom, and the corresponding fine grid has 0.008%
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+1.9 · 10−3

−2.1 · 10−3

Figure 4: Acoustic scattering of a plane wave on a unit cylinder. Left: Real part of the error estimate
for the case with Cartesian PML. Right: Percent relative error versus number of degrees-of-freedom
for the cylindrical PML (exact error and error estimate) and for the Cartesian PML (error estimate).

relative error with 137K degrees-of-freedom. We note that the algorithm has automatically selected
radial h-refinements within the PML, and that the convergence for the coarse grid appears to recover
the rate delivered by infinite elements. In Figs. 7 (left) and (right), we show the real component of
the solution and of the error function, respectively.

(a)

p = 8

p = 1 (b)

p = 8

p = 1

Figure 5: Acoustic scattering of a plane wave on a sphere. Two different initial grids for assessing the
performance of a spherical PML and infinite elements.

3. Linear elasticity
In Section 3.1, we derive the PML formulation of the equations governing linear elasticity. In Sec-
tion 3.2, we present numerical results that demonstrate the validity of the PML formulation for a
two-layered elastic medium and the improvement in PML performance obtained by hp-adaptivity.



3. Linear elasticity 11

p = 8

p = 1

Figure 6: Acoustic scattering of a plane wave on a sphere. Left: hp-refined coarse mesh for the
spherical PML after 9 iterations corresponding to 0.6% relative error and consisting of 10K degrees-
of-freedom. Right: Comparison of hp-coarse and fine grids with the p-method for spherical PML and
with the p-method for infinite elements.

3.1 PML formulation of the linear elasticity equations
In this section, we present the PML formulation for linear elasticity and discuss its implications. To
this end, let us recall the equations of linear elasticity in Rn which, in time-harmonic form, are given
by 

−ρω2ui − σij,j = 0 i = 1, . . . , n

σij = Eijkl
1
2
(uk,l + ul,k) i, j = 1, . . . , n ,

(3.25)

where ui denotes the i-th component of the displacement vector, σij is the stress tensor, ρ is the
density and Eijkl is the elasticity tensor satisfying the usual symmetry properties

Eijkl = Ejikl, Eijkl = Eijlk, Eijkl = Eklij . (3.26)

The second symmetry property implies

Eijkl
1
2
(uk,l + ul,k) = Eijkluk,l . (3.27)

For an isotropic homogeneous material, the elasticity tensor depends on two constants only, viz.

Eijkl = µ(δikδjl + δilδjk) + λδijδkl , (3.28)

where µ and λ are the Lamé constants and δij is the Kronecker delta. In Eqs. (3.25)-(3.28) and
throughout this section, we make use of the Einstein summation convention.

The system of equations (3.25) can be complemented by various boundary conditions of which we
shall restrict ourselves to the simplest ones:

ui = 0, i = 1, . . . , n onΓD , (3.29a)

σijnj = gi, i = 1, . . . , n onΓN , (3.29b)
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+1

−1

+0.01

−0.01

Figure 7: Acoustic scattering of a plane wave on a sphere. Real component of the numerical solution
(left) and real component of the error function (right) computed on the hp mesh given in Fig. 6 (left)
and using the spherical PML.

where nj are the components of the outward normal unit vector, and gi are prescribed tractions.
Eq. (3.29a) prescribes zero displacements and corresponds to homogeneous Dirichlet boundary con-
ditions, whereas Eq. (3.29b) prescribes given tractions and corresponds to Neumann boundary condi-
tions.

To derive the standard variational formulation in terms of the displacement vector, we multiply
the momentum equations (3.25)1 with a test function v := vi ∈ V , integrate over the domain Ω and,
upon integration-by-parts, we obtain∫

Ω

σijvi,j dΩ−
∫

ΓN

σijnjvi dS − ω2

∫
Ω

ρuivi dΩ = 0 , (3.30)

where we have tacitly restricted ourselves to test functions that satisfy homogeneous boundary con-
ditions on the Dirichlet portion of the boundary, ΓD. Substitution of the constitutive law (3.25)2 and
Neumann boundary condition (3.29b) into Eq. (3.30) then yields the final variational formulation

u ∈ V∫
Ω

Eijkluk,lvi,j dΩ− ω2

∫
Ω

ρuivi dΩ =
∫

ΓN

givi dS,

∀v ∈ V ,

(3.31)

where V is the space of test functions

V := {v ∈ X : v = 0 on ΓD} , (3.32)

which constitutes a subspace of the energy space X := H1(Ω).
Complex-coordinate stretching of the linear elasticity equations and derivation of the PML for-

mulation is straightforward, and we shall thus discuss only the Cartesian form here. Under analytic
continuation according to Eq. (2.6) with xj → zj(xj), the elasticity equations (3.25) transform into

−ρz′ω2ui −
z′

z′j
σij,j = 0 i = 1, . . . , n

σij = Eijkl
1
z′l
uk,l i, j = 1, . . . , n ,

(3.33)
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where Eq. (3.33)1 has been multiplied by z′ := Πn
j=1z

′
j , which facilitates the subsequent integration-

by-parts, since the prefactor z′/z′j is independent of xj .
The variational formulation of (3.33) can then be derived along the same lines as for the standard

case considered in the beginning of this section, which yields
u ∈ Ṽ ,∫

Ω

Ẽijkluk,lvi,j dΩ− ω2

∫
Ω

ρ̃uivi dΩ =
∫

ΓN

givi dS,

∀v ∈ Ṽ ,

(3.34)

where the “modified” elasticity tensor and density are given by

Ẽijkl := Eijkl
z′

z′jz
′
l

(no summation) (3.35a)

ρ̃ := ρz′ . (3.35b)

In (3.34), the test space Ṽ is a subspace of the energy space X̃ for the stretched variational form (3.34)
which can be defined as

Ṽ := {v ∈ X̃ : v = 0 on ΓD} (3.36)

with

X̃ :=
{

v :
∫

Ω

|Ẽijkl|vk,lv̄i,j dΩ +
∫

Ω

|ρ̃|viv̄i dΩ <∞
}

(3.37)

with the overbar denoting the complex conjugate. Hence, the energy space (3.37) corresponding to
the variational form (3.34) is a weighted H1 space with weights that incorporate the derivatives of
the stretching functions. Note that under complex-coordinate stretching the minor symmetries of the
elasticity tensor (cf. (3.26)) are lost, which renders the elasticity tensor in the PML non-physical.
However, since the major symmetry is retained, the bilinear form (3.34) is complex-symmetric.

Finally, let us point out that the formulation (3.34) is valid also for layered media with inter-
faces that are aligned with the Cartesian axes. This is a consequence of the fact that the solution
remains analytic in terms of the coordinate parallel to the interface. We present numerical results
demonstrating the validity of (3.34) for layered media in Section 3.2.

3.2 Numerical results for an elastic layered medium
In this section, we demonstrate the validity of the elasticity PML formulation (3.34) for layered media
with interfaces that are aligned with the Cartesian axes. To this end, we consider a vibrating cylinder
in a two-layered medium. Elastodynamic wave propagation in the presence of material layers is
especially relevant for borehole geophysics applications; see e.g. Ref. [23].

We solve the linear elasticity equations on a rectangular domain (−4, 4)2 with a circular hole of
unit radius r in its center. The domain is surrounded by a Cartesian PML of unit thickness in which
we apply complex-coordinate stretching according to

zk(xk) =

 xk 0 ≤ |xk| < 4(
1 +

(
|xk|−4

0.5

)5

− i
(

|xk|−4
0.5

)5
)
xk |xk| ≥ 4 k = 1, 2 . (3.38)

Note that, in contrast to the complex-coordinate stretching that we used earlier in this work (see for
instance Eq. (2.23)), the present form of stretching accounts also for the term aj(xj) in accordance
with Eq. (2.6) to accelerate the decay of evanescent waves in the PML; cf. also the discussion regarding
the complex stretching in Section 2.2. Such evanescent waves are generated at the interface between
the two material layers. This term in the stretching formula warrants that evanescent waves are
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made to vanish in the PML before reaching the domain boundary. We remark that void of this term,
spurious reflections of evanescent waves off the domain boundary would compromise convergence and
accuracy.

Traction boundary conditions corresponding to a unit pressure are applied along the circumference
of the hole, and homogeneous Dirichlet boundary conditions are applied on the outer domain boundary
adjacent to the PML. The material data are given in terms of the Poisson ratio ν, the dimensionless
density ρ and the dimensionless Young’s modulus E

ν = 0.3 , ρ = 1 , E =
{

4 x2 ≥ 0
1 x2 < 0 . (3.39)

Moreover, we set ω = π.
Starting from the same initial mesh as displayed in Fig. 1 (left), an hp-refined mesh correspond-

ing to an error estimate of 1% in the H1-seminorm and consisting of 6508 degrees-of-freedom is
obtained after 16 iterations; see Fig. 8 (left). Observe the refinements that are selected by the adap-
tive algorithm, in particular in the PML layer to resolve the enforced rapid decay of the solution.
In Fig. 8 (right), we compare the convergence of hp-adaptive refinements and the simpler h-adaptive
refinements with approximation degree p = 2 by plotting the percent relative error estimate in the H1-
seminorm (in a logarithmic scale) versus the total number of degrees-of-freedom N (in the algebraic
scale N1/3). The error estimate is obtained using the fine-grid solution as a reference solution and is
evaluated over the entire computational domain including the PML. We remark that the h-adaptive
refinement strategy allows for anisotropic refinements that are crucial for resolving the PML-induced
gradients of the solution. Fig. 8 (right) indicates that both hp- and h-adaptive refinements deliver
exponential convergence. Indeed, in the preasymptotic range, h-refinements can deliver exponential
convergence before algebraic convergence sets in; cf. Ref. [11, ch. 14.3 and 14.4]. Note, however,
that the convergence rates and error levels of hp- and h-refinements are significantly different. Hence,
for a user-specified error tolerance, an hp-adaptive discretization is computationally much cheaper
than an h-adaptive discretization. Moreover, it is obvious that for the resolution of PML-induced
solution gradients an h-uniform discretization would be prohibitive in terms of computational cost.
Our numerical results thus demonstrate that by means of hp-adaptivity reflections from the PML can
be minimized to an arbitrary tolerance while retaining optimal accuracy for the least computational
expense. In Figs. 9 (left) and (right), we show the real component of the solution of the horizontal
and vertical displacement, respectively, obtained on the hp-mesh given in Fig. 8 (left). From Fig. 9
it is apparent that, in comparison with the greater Young’s modulus for x2 ≥ 0, the smaller Young’s
modulus for x2 < 0 results in a shorter wavelength of the solution and, thus, necessitates a finer hp
discretization (see Fig. 8 (left)).

4. Maxwell’s equations
In Section 4.1, we derive the PML formulation of Maxwell’s equations in two-dimensional Carte-
sian coordinates. In Section 4.2, we present numerical results that demonstrate the improvement
in performance of the PML for Maxwell’s equations that can be obtained by using an hp-adaptive
discretization.

4.1 PML formulation of Maxwell’s equations in 2D Cartesian coordinates
To derive the PML formulation of Maxwell’s equations, let us recall the time-harmonic form of
Ampère’s law and Faraday’s law in three dimensions

(iωε+ σ)E −∇×H = −J imp (4.40a)

iωµH + ∇×E = 0 , (4.40b)



4. Maxwell’s equations 15

p = 8

p = 1

Figure 8: Wave propagation in an elastic two-layered medium. Left: hp-mesh corresponding to an
error estimate of 1% and consisting of 6508 degrees-of-freedom. Right: Percent relative error estimate
versus number of degrees-of-freedom for hp-adaptive and h-adaptive refinement.

respectively. In (4.40), E and H denote the electric and magnetic field vector, respectively, ω is the
angular frequency, µ, ε and σ are the permeability, permittivity and conductivity, respectively, J imp

is a given impressed volume current, and i denotes the imaginary unit.
Eqs. (4.40) invoke the curl operator which, in Cartesian coordinates, is expressed as

∇×E =
(
∂E3

∂x2
− ∂E2

∂x3
,
∂E1

∂x3
− ∂E3

∂x1
,
∂E2

∂x1
− ∂E1

∂x2

)
. (4.41)

In this section, we shall confine ourselves to Maxwell’s equations in two dimensions. However, for
future reference, we include the PML derivation for the three-dimensional Maxwell’s equations in
Appendix C. For a vector-valued two-dimensional electric field E = (E1, E2, 0) with components that
depend only on x1, x2, only the third component of the three-dimensional curl operator is different
from zero

∇×E =
(

0 , 0 ,
∂E2

∂x1
− ∂E1

∂x2

)
. (4.42)

Accordingly, we shall define a two-dimensional scalar-valued curl operator as

curlE :=
∂E2

∂x1
− ∂E1

∂x2
. (4.43)

Similarly, for a scalar-valued one-dimensional magnetic field H = (0, 0,H3) the curl operator reduces
to

∇×H =
(
∂H3

∂x2
,−∂H3

∂x1
, 0
)
. (4.44)

Invoking Eqs. (4.41)-(4.44), the two-dimensional Maxwell’s equations in time-harmonic form follow
from (4.40) 

iωεE1 + σE1 −
∂H3

∂x2
= −J imp

1

iωεE2 + σE2 +
∂H3

∂x1
= −J imp

2

iωµH3 +
∂E2

∂x1
− ∂E1

∂x2
= 0 .

(4.45)
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+0.26

−0.26

+0.17

−0.23

Figure 9: Wave propagation in an elastic two-layered medium. Real component of the horizontal
displacement (left) and of the vertical displacement (right).

If the solution is analytic in x1 and x2, the Cartesian coordinates x1 and x2 can be replaced by
the complex coordinates z1 and z2, respectively, and the derivatives can be interpreted in the complex
sense. Under complex-coordinate stretching according to (2.6) with xj → zj(xj), Eqs. (4.45) transform
into 

(iωε+ σ)E1 −
1

z′1z
′
2

∂(z′1H3)
∂x2

= −J imp
1

(iωε+ σ)E2 +
1

z′1z
′
2

∂(z′2H3)
∂x1

= −J imp
2

iωµH3 +
1

z′1z
′
2

∂(z′2E2)
∂x1

− 1
z′1z

′
2

∂(z′1E1)
∂x2

= 0 ,

(4.46)

where we have made use of the fact that the j-th complex coordinate depends only on the j-th real
coordinate, zj = zj(xj). Upon multiplication of Eq. (4.46)1 by iωz′1z

′
2F1 and Eq. (4.46)2 by iωz′1z

′
2F2

with F := (F1, F2) a test function, integration over domain Ω and integration-by-parts, we obtain∫
Ω

(−ω2ε+ iωσ)
(
z′2
z′1

(z′1E1)(z′1F1) +
z′1
z′2

(z′2E2)(z′2F2)
)
dΩ +

∫
Ω

iωH3

(
∂(z′1F1)
∂x2

− ∂(z′2F2)
∂x1

)
dΩ

+
∫
∂Ω

iωH3(z′1F1(−n2) + z′2F2n1) dS = −iω
∫

Ω

(z′2J
imp
1 (z′1F1) + z′1J

imp
2 (z′2F2)) dΩ , (4.47)

where n = (n1, n2) denotes the outward normal unit vector. Integrability considerations imply that
the “generalized tangential component” in Eq. (4.47),

Ft := z′1F1(−n2) + z′2F2n1 , (4.48)

must be continuous across inter-element boundaries.
Substituting Eq. (4.46)3 into (4.47) and assuming firstly, a nonhomogeneous Dirichlet boundary

condition on the physical boundary
n×E = −n×Einc (4.49)

with Einc a prescribed incident wave, secondly, a homogeneous Dirichlet boundary condition on the
PML boundary

z′1E1(−n2) + z′2E2n1 = 0 , (4.50)
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and thirdly, a homogeneous boundary condition for the test function on the entire boundary

Ft = 0 , (4.51)

we obtain the final variational statement∫
Ω

1
µz′1z

′
2

(
∂(z′2E2)
∂x1

− ∂(z′1E1)
∂x2

)(
∂(z′2F2)
∂x1

− ∂(z′1F1)
∂x2

)
dΩ

−
∫

Ω

(ω2ε− iωσ)
(
z′2
z′1

(z′1E1)(z′1F1) +
z′1
z′2

(z′2E2)(z′2F2)
)
dΩ

= −iω
∫

Ω

(
z′2J

imp
1 (z′1F1) + z′1J

imp
2 (z′2F2)

)
dΩ ∀F . (4.52)

We now redefine the variables

Ej ← z′jEj , j = 1, 2 , (4.53a)

Fj ← z′jFj , j = 1, 2 . (4.53b)

Note that the factor z′j grows algebraically in the PML, whereas the solution Ej decays exponentially.
Therefore, the redefined variables will eventually also decay exponentially in the PML, but an initial
algebraic growth may be observed. In terms of the redefined variables, Eq. (4.52) assumes the standard
form 

E ∈ Ê + F̃∫
Ω

(
1

µz′1z
′
2

curlE curlF − (ω2ε− iωσ)
(
z′2
z′1
E1F1 +

z′1
z′2
E2F2

))
dΩ

= −iω
∫

Ω

(
z′2J

imp
1 F1 + z′1J

imp
2 F2

)
dΩ

∀F ∈ F̃ .

(4.54)

Note that problem (4.54) is complex symmetric. In Eq. (4.54), Ê denotes a lift of the Dirichlet data,
and the test space F̃ is a subspace of the “energy space” X̃ for the stretched variational form (4.54)
which can be defined as

F̃ := {F ∈ X̃ : Ft = 0 on ∂Ω} (4.55)

with

X̃ :=

{
F :

∣∣∣∣z′2z′1
∣∣∣∣ 12F1,

∣∣∣∣z′1z′2
∣∣∣∣ 12F2,

1
|z′1z′2|

1
2

curlF ∈ L2(Ω)

}
. (4.56)

Note that the “energy space” X̃ is a weighted H(curl) space with weights associated with the deriva-
tives of the stretching functions.

We emphasize that the redefinition of the variables according to (4.53) is not merely a convenience.
Integrability assumptions in conformity with (4.56) imply continuity of the tangential component
Ft of the redefined variable across interelement boundaries and, consequently, the redefinition (4.53)
enables discretization with H(curl)-conforming elements. Moreover, let us point out that the redefined
variables satisfy the original Maxwell’s equations and, consequently, the variational statement (4.54)
assumes the usual form associated with Maxwell’s equations. Therefore, this form of PML is typically
also referred to as Maxwellian PML; see e.g. Ref. [30].
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4.2 Numerical experiments
In this section, we demonstrate the validity of the PML formulation for Maxwell’s equations, Eq. (4.54),
and the benefit of hp-adaptivity for improving the PML performance. To this end, we consider the
scattering of a plane wave on a cylinder.

We solve Maxwell’s equations on a rectangular domain (−4, 4)2 with a circular hole of unit radius
in its center. The domain is surrounded by a PML of unit thickness in which complex-coordinate
stretching according to

zk(xk) =

{
xk 0 ≤ |xk| < 4

xk − i
(

|xk|−4
0.5

)5

xk |xk| ≥ 4
k = 1, 2 (4.57)

is invoked. Dirichlet boundary conditions corresponding to an incident plane wave Einc = pe−ikv·x

are applied along the circumference of the cylinder, and homogeneous Dirichlet boundary conditions
are applied on the outer domain boundary adjacent to the PML. The physical parameters are given in
Table 1, where v and p denote the direction and the polarization of the incident wave, respectively, and
r is the cylinder radius. With the parameters specified in Table 1, the speed of light is c = 1/

√
µε = 1

and the wavenumber is k = ω/c = 2π.

Table 1: Physical parameters.

ω r v p µ ε σ
2π 1 (−1, 0) (0, 1) 1 1 0

Starting from the same initial mesh as displayed in Fig. 1 (left), an hp-refined mesh corresponding
to an error estimate of 1% in the H(curl)-seminorm and consisting of 14664 degrees-of-freedom is
obtained after 16 iterations; see Fig. 10 (left). Note the refinements that are selected by the adaptive
algorithm, in particular in the PML layer. In Fig. 10 (right), we show the real part of the second
component of the solution obtained on the hp-mesh given in Fig. 10 (left). The corresponding error
estimate, i.e. the difference between the coarse and fine grid solution, is shown in Fig. 11 (left).
We remark that, in contrast to acoustics or elasticity problems, the solution to the PML-modified
Maxwell’s equations may exhibit an initial growth in the PML domain. To support this claim, we
display in Fig. 11 (right) the real part of the second component of the solution for a wavenumber k = 1.
The initial growth in the PML domain is caused by the fact that we have chosen to discretize the
modified variable (z′1E1, z

′
2E2) rather than (E1, E2) directly. In the PML, the stretching coefficients

zi initially grow algebraically, whereas the solution Ei decays exponentially. Therefore, the modified
variable (z′1E1, z

′
2E2) also grows initially before it exhibits the exponential decay.

5. Conclusion
In this work, we improved the performance of the Perfectly Matched Layer by using an automatic hp-
adaptive discretization. The PML has the remarkable property of having a zero reflection coefficient
for all angles of incidence and all frequencies on the continuum level. However, this property is
compromised under discretization, i.e. at a discrete PML spurious reflections typically do occur. Only
for vanishing mesh size, i.e. upon convergence to the continuum solution, the property of having a
zero reflection coefficient can be recovered. By means of an automatic hp-adaptive discretization, we
obtain a sequence of discrete solutions that converges exponentially to the continuum solution. This
allows us to minimize reflections from the discrete PML to an arbitrary level of accuracy. The strength
of our hp-adaptive discretization is that it can effectively resolve the strong PML-induced gradients of
the solution by adapting the element size h and polynomial approximation order p for any given PML
profile. Since the hp-adaptivity is automatic, no interaction with the user is required. This renders
tedious parameter tuning of the PML obsolete.
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Figure 10: Electromagnetic scattering of a plane wave on a cylinder. Left: hp-refined mesh corre-
sponding to an error estimate of 1% and consisting of 14664 degrees-of-freedom; k = 2π. Right: Real
part of the second component of the numerical solution; k = 2π.

We demonstrated the improvement of the PML performance by hp-adaptivity and the versatility of
this approach by numerical results for acoustic, elastodynamic and electromagnetic wave-propagation
problems in the frequency domain and in different systems of coordinates. Our results show that
hp-adaptivity minimizes reflections from the PML to an arbitrary level of accuracy while retaining
optimal computational efficiency. Moreover, we showed that hp-adaptivity provides the freedom to
select the geometry of the PML independently of the geometry of the initial mesh, i.e. the respective
geometries need not coincide. Our results suggest that hp-adaptivity is ideally suited for improving
the performance of the PML and, conversely, the PML is the ideal absorbing boundary condition for
hp-adaptive finite-element methods.
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A. Derivation of the PML formulation for the Helmholtz equation in 2D polar co-
ordinates

In the sequel, we derive the PML formulation for the Helmholtz equation in two dimensions and polar
coordinates which leads to the variational statement (2.13) that is given in Section 2.3.

Recalling the formulas for the gradient of a scalar p and for the divergence of a vector field
u = urer + uθeθ in polar coordinates

∇p =
∂p

∂r
er +

1
r

∂p

∂θ
eθ , (A.58a)

∇ · u =
1
r

∂

∂r
(rur) +

1
r

∂uθ
∂θ

, (A.58b)
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Figure 11: Electromagnetic scattering of a plane wave on a cylinder. Left: Real part of the second
component of the error estimate; k = 2π. Right: Real part of the second component of the numerical
solution; k = 1.

respectively, we convert the first-order system of linear acoustics equations (2.5) to polar coordinates

iωp+ ρ0c
2

(
1
r

∂

∂r
(rur) +

1
r

∂uθ
∂θ

)
= 0

iωρ0ur +
∂p

∂r
= 0

iωρ0uθ +
1
r

∂p

∂θ
= 0 .

(A.59)

Introducing in (A.59) complex-coordinate stretching according to (2.6) with r → z(r) yields

iωp+ ρ0c
2

(
1
z′z

∂

∂r
(zur) +

1
z

∂uθ
∂θ

)
= 0

iωρ0ur +
1
z′
∂p

∂r
= 0

iωρ0uθ +
1
z

∂p

∂θ
= 0 .

(A.60)

Multiplying Eq. (A.60)1 by iωz′z/r and subsequently by a test function q, integrating the resulting
expression over domain Ω and integrating by parts, we obtain

−ω2

∫
Ω

z′z

r
pq rdrdθ − iωρ0c

2

∫
Ω

(
z

r
ur
∂q

∂r
+
z′

r
uθ
∂q

∂θ

)
rdrdθ = 0 , (A.61)

where we tacitly assumed Dirichlet boundary conditions for the solution on the entire boundary, Γ,
and, accordingly, homogeneous boundary conditions for the test function q. To eliminate the velocity
components ur and uθ from Eq. (A.61), we substitute Eqs. (A.60)2,3 into (A.61), and obtain the final
variational formulation (2.13).

B. Derivation of the PML formulation for the Helmholtz equation in 3D spherical
coordinates

In the sequel, we derive the PML formulation for the Helmholtz equation in three dimensions and
spherical coordinates which leads to the variational statement (2.18) that is given in Section 2.4.
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Recalling the formulas for the gradient of a scalar p and the divergence of a vector field u =
urer + uψeψ + uθeθ in spherical coordinates

∇p =
∂p

∂r
er +

1
r

∂p

∂ψ
eψ +

1
r sinψ

∂p

∂θ
eθ , (B.62a)

∇ · u =
1
r2

∂

∂r
(r2ur) +

1
r sinψ

∂

∂ψ
(uψ sinψ) +

1
r sinψ

∂uθ
∂θ

, (B.62b)

we convert the first-order system of linear acoustics equations (2.5) to spherical coordinates

iωp+ ρ0c
2

(
1
r2

∂

∂r
(r2ur) +

1
r sinψ

∂

∂ψ
(uψ sinψ) +

1
r sinψ

∂uθ
∂θ

)
= 0

iωρ0ur +
∂p

∂r
= 0

iωρ0uψ +
1
r

∂p

∂ψ
= 0

iωρ0uθ +
1

r sinψ
∂p

∂θ
= 0 .

(B.63)

In spherical coordinates, the reflectionless absorption of outward traveling waves can be achieved
through analytic continuation on the radial variable r according to Eq. (2.6) with r → z(r). This
transforms Eq. (B.63) into

iωp+ ρ0c
2

(
1
z′z2

∂

∂r
(z2ur) +

1
z sinψ

∂

∂ψ
(uψ sinψ) +

1
z sinψ

∂uθ
∂θ

)
= 0

iωρ0ur +
1
z′
∂p

∂r
= 0

iωρ0uψ +
1
z

∂p

∂ψ
= 0

iωρ0uθ +
1

z sinψ
∂p

∂θ
= 0 .

(B.64)

We multiply Eq. (B.64)1 by iωz′z2/r2 and then by a test function q, and we integrate the resulting
expression over the domain Ω, which yields

− ω2

∫
Ω

z′
z2

r2
pq r2 sinψdrdψdθ

+ iωρ0c
2

∫
Ω

(
1
r2

∂

∂r
(z2ur)q +

z′z

r2 sinψ
∂

∂ψ
(uψ sinψ)q +

z′z

r2 sinψ
∂uθ
∂θ

q

)
r2 sinψdrdψdθ = 0 . (B.65)

Upon integrating Eq. (B.65) by parts and eliminating ur, uψ and uθ by invoking Eqs. (B.64)2,3,4,
respectively, we obtain the final variational formulation (2.18).

C. PML formulation of Maxwell’s equations in 3D Cartesian coordinates
As an extension of Section 4.1, we derive in the sequel the PML formulation for Maxwell’s equations
in three dimensions and Cartesian coordinates. To this end, it is convenient to rewrite the time-
harmonic form of Ampère’s and Faraday’s law, Eqs. (4.40a) and (4.40b), respectively, expressing the
curl operator by means of the permutation symbol εijk that is defined as

εijk :=

 0 , if any two indices are repeated
1 , if ijk is an even permutation of 123
−1 , if ijk is an odd permutation of 123

, (C.66)
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which then yields

(iωε+ σ)Ei −
∑
j,k

εijkHk,j = −J imp
i i = 1, 2, 3

iωµHk +
∑
m,n

εkmnEn,m = 0 k = 1, 2, 3 ,
(C.67)

respectively. Mind that in this section, we write sums explicitly using the summation symbol, rather
than making use of the Einstein summation convention. Under complex-coordinate stretching accord-
ing to Eq. (2.6) with xi → zi(xi), system (C.67) transforms into

(iωε+ σ)Ei −
∑
j,k

εijk
1
z′j
Hk,j = −J imp

i (C.68a)

iωµHk +
∑
m,n

εkmn
1
z′m

En,m = 0 . (C.68b)

Upon multiplication of Eq. (C.68a) by z′ := z′1z
′
2z

′
3, we obtain

(iωε+ σ)
z′

z′i
(z′iEi)−

∑
j,k

εijk
z′

z′j
Hk,j = −z′J imp

i . (C.69)

We then multiply Eq. (C.69) by a test function Fi, integrate over a domain Ω and integrate by parts,
which yields

∫
Ω

(iωε+ σ)
z′

(z′i)2
(z′iEi)(z

′
iFi) +

∑
j,k

εijk
z′

z′iz
′
j

Hk(z′iFi),j

 dΩ

= −
∫

Ω

z′

z′i
J imp
i (z′iFi) dΩ +

∫
∂Ω

∑
j,k

εijk
z′

z′iz
′
j

Hk(z′iFi)nj dS . (C.70)

Next, we multiply Eq. (C.70) by iω and eliminate Hk from the volume integral by invoking (C.68b)

∫
Ω

(−ω2ε+ iωσ)
z′

(z′i)2
(z′iEi)(z

′
iFi)−

1
µ

∑
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z′

z′iz
′
j
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εkmn
1

z′nz
′
m

(z′nEn),m(z′iFi),j

 dΩ

= −iω
∫
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z′

z′i
J imp
i (z′iFi) dΩ + iω

∫
∂Ω

∑
j,k

εijk
z′

z′iz
′
j

Hk(z′iFi)nj dS . (C.71)

Summation over index i and some straightforward algebraic manipulations then yield

∫
Ω

(−ω2ε+ iωσ)
∑
i

z′

(z′i)2
(z′iEi)(z

′
iFi)−

z′

µ

∑
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1
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m

(z′nEn),m

)(∑
i,j

εkij
1
z′iz

′
j

(z′iFi),j

) dΩ

= −iω
∫

Ω

∑
i

z′

z′i
J imp
i (z′iFi) dΩ + iω

∫
∂Ω

∑
i,j,k

εijk
z′

z′iz
′
j

Hk(z′iFi)nj dS . (C.72)

Upon redefining the variables

Ei ← z′iEi, i = 1, 2, 3 , (C.73a)



C. PML formulation of Maxwell’s equations in 3D Cartesian coordinates 23

Hi ← z′iHi, i = 1, 2, 3 , (C.73b)

Fi ← z′iFi, i = 1, 2, 3 , (C.73c)

and incorporating into Eq. (C.72) a Neumann boundary condition with J imp
S,i an impressed surface

current, we obtain the final variational formulation

E ∈ Ê + F̃∫
Ω

(−ω2ε+ iωσ)
∑
i

z′

(z′i)2
EiFi −

z′

µ

∑
k

(∑
m,n

εkmn
1

z′nz
′
m

En,m

)(∑
i,j

εkij
1
z′iz

′
j

Fi,j

) dΩ

= −iω
∫

Ω

∑
i

z′

z′i
J imp
i Fi dΩ + iω

∫
ΓN

∑
i

J imp
S,i Fi dS

∀F ∈ F̃ ,
(C.74)

where Ê denotes a lift of the Dirichlet data, and the test space F̃ is a subspace of the “energy space” X̃
for the stretched variational form (C.74) which can be defined as

F̃ := {F ∈ X̃ : n× F = 0 on ΓD} (C.75)

with

X̃ =

{
F :

|z′| 12
|z′i|

Fi,
|z′i|
|z′| 12

(∇× F )i ∈ L2(Ω)

}
. (C.76)

Note that the “energy space” X̃ is a weighted H(curl) space with weights associated with the deriva-
tives of the stretching functions.

Since the electric and magnetic field redefined according to (C.73) satisfy the original Maxwell’s
equations in a medium with complex permittivity and permeability constitutive tensors, this form of
PML is typically also referred to as Maxwellian PML; see e.g. Ref. [30]. With complex permittivity
and permeability constitutive tensors redefined according to ε̃ = εΛ̃ and µ̃ = µΛ̃ with

Λ̃ = e1e1

(
z′2z

′
3

z′1

)
+ e2e2

(
z′3z

′
1

z′2

)
+ e3e3

(
z′1z

′
2

z′3

)
, (C.77)

such PML formulation yields a physically meaningful material. In contrast, the PML formulation of
the linear elasticity equations yields a modified elasticity tensor that is non-physical; cf. Section 3.1.
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