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Abstract 

Three methods for improving the performance of (gaussian) radial basis 
function (RBF) networks were tested on the NETtaik task. In RBF, a 
new example is classified by computing its Euclidean distance to a set of 
centers chosen by unsupervised methods. The application of supervised 

learning to learn a non-Euclidean distance metric was found to reduce the 
error rate of RBF networks, while supervised learning of each center's vari­
ance resulted in inferior performance. The best improvement in accuracy 
was achieved by networks called generalized radial basis function (GRBF) 
networks. In GRBF, the center locations are determined by supervised 
learning. After training on 1000 words, RBF classifies 56.5% of letters 
correct, while GRBF scores 73.4% letters correct (on a separate test set). 
From these and other experiments, we conclude that supervised learning 
of center locations can be very important for radial basis function learning. 

1 Introduction 

Radial basis function (RBF) networks are 3-layer feed-forward networks in which 
each hidden unit a computes the function 

IIX-X",1I2 

fa(x) = e- ,,2 , 

and the output units compute a weighted sum of these hidden-unit activations: 
N 

J*(x) = L cafa(x). 
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In other words, the value of rex) is determined by computing the Euclidean dis­
tance between x and a set of N centers, Xa. These distances are then passed 
through Gaussians (with variance 172 and zero mean), weighted by Ca, and summed. 

Radial basis function networks (RBF networks) provide an attractive alternative 
to sigmoid networks for learning real-valued mappings: (a) they provide excellent 
approximations to smooth functions (Poggio & Girosi, 1989), (b) their "centers" are 
interpretable as "prototypes" , and (c) they can be learned very quickly, because the 
center locations (xa) can be determined by unsupervised learning algorithms and 

the weights (ca ) can be computed by pseudo-inverse methods (Moody and Darken, 
1989). 

Although the application of unsupervised methods to learn the center locations 
does yield very efficient training, there is some evidence that the generalization 
performance of RBF networks is inferior to sigmoid networks. Moody and Darken 
(1989), for example, report that their RBF network must receive 10 times more 
training data than a standard sigmoidal network in order to attain comparable 
generalization performance on the Mackey-Glass time-series task. 

There are several plausible explanations for this performance gap. First, in sigmoid 
networks, all parameters are determined by supervised learning, whereas in RBF 
networks, typically only the learning of the output weights has been supervised. 

Second, the use of Euclidean distance to compute Ilx - Xa II assumes that all input 
features are equally important. In many applications, this assumption is known to 
be false, so this could yield poor results. 

The purpose of this paper is twofold. First, we carefully tested the performance 
of RBF networks on the well-known NETtaik task (Sejnowski & Rosenberg, 1987) 
and compared it to the performance of a wide variety of algorithms that we have 

previously tested on this task (Dietterich, Hild, & Bakiri, 1990). The results confirm 
that there is a substantial gap between RBF generalization and other methods. 

Second, we evaluated the benefits of employing supervised learning to learn (a) 
the center locations X a , (b) weights Wi for a weighted distance metric, and (c) 
variances a; for each center. The results show that supervised learning of the 
center locations and weights improves performance, while supervised learning of 
the variances or of combinations of center locations, variances, and weights did 
not. The best performance was obtained by supervised learning of only the center 
locations (and the output weights, of course). 

In the remainder of the paper we first describe our testing methodology and review 
the NETtaik domain. Then, we present results of our comparison ofRBF with other 
methods. Finally, we describe the performance obtained from supervised learning 
of weights, variances, and center locations. 

2 Methodology 

All of the learning algorithms described in this paper have several parameters (such 
as the number of centers and the criterion for stopping training) that must be spec­
ified by the user. To set these parameters in a principled fashion, we employed the 
cross-validation methodology described by Lang, Hinton & Waibel (1990). First, as 
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usual, we randomly partitioned our dataset into a training set and a test set. Then, 
we further divided the training set into a subtraining set and a cross-validation set. 
Alternative values for the user-specified parameters were then tried while training 

on the subtraining set and testing on the cross-validation set. The best-performing 
parameter values were then employed to train a network on the full training set. The 
generalization performance of the resulting network is then measured on the test 

set. Using this methodology, no information from the test set is used to determine 
any parameters during training. 

We explored the following parameters: (a) the number of hidden units (centers) 
N, (b) the method for choosing the initial locations of the centers, (c) the variance 
(j2 (when it was not subject to supervised learning), and (d) (whenever supervised 

training was involved) the stopping squared error per example. We tried N = 
50, 100, 150, 200, and 250; (j2 = 1, 2, 4, 5, 10, 20, and 50; and three different 
initialization procedures: 

(a) Use a subset of the training examples, 

(b) Use an unsupervised version of the IB2 algorithm of Aha, Kibler & Albert 
(1991), and 

(c) Apply k-means clustering, starting with the centers from (a). 

For all methods, we applied the pseudo-inverse technique of Penrose (1955) followed 
by Gaussian elimination to set the output weights. 

To perform supervised learning of center locations, feature weights, and variances, 
we applied conjugate-gradient optimization. We modified the conjugate-gradient 
implementation of backpropagation supplied by Barnard & Cole (1989). 

3 The NETtalk Domain 

We tested all networks on the NETtaik task (Sejnowski & Rosenberg, 1987), in 
which the goal is to learn to pronounce English words by studying a dictionary of 
correct pronunciations. We replicated the formulation of Sejnowski & Rosenberg in 
which the task is to learn to map each individual letter in a word to a phoneme and 
a stress. 

Two disjoint sets of 1000 words were drawn at random from the NETtaik dictionary 
of 20,002 words (made available by Sejnowski and Rosenberg): one for training 
and one for testing. The training set was further subdivided into an 800-word 
sub training set and a 200-word cross-validation set. 

To encode the words in the dictionary, we replicated the encoding of Sejnowski 
& Rosenberg (1987): Each input vector encodes a 7-letter window centered on the 
letter to be pronounced. Letters beyond the ends of the word are encoded as blanks. 
Each letter is locally encoded as a 29-bit string (26 bits for each letter, 1 bit for 
comma, space, and period) with exactly one bit on. This gives 203 input bits, seven 
of which are 1 while all others are O. 

Each phoneme and stress pair was encoded using the 26-bit distributed code devel­
oped by Sejnowski & Rosenberg in which the bit positions correspond to distinctive 
features of the phonemes and stresses (e.g., voiced/unvoiced, stop, etc.). 
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4 RBF Performance on the NETtaik Task 

We began by testing RBF on the NETtalk task. Cross-validation training deter­
mined that peak RBF generalization was obtained with N = 250 (the number of 
centers), (12 = 5 (constant for all centers), and the locations of the centers computed 
by k-means clustering. Table 1 shows the performance of RBF on the lOOO-word 
test set in comparison with several other algorithms: nearest neighbor, the decision 
tree algorithm ID3 (Quinlan, 1986), sigmoid networks trained via backpropagation 
(160 hidden units, cross-validation training, learning rate 0.25, momentum 0.9), 
Wolpert's (1990) HERBIE algorithm (with weights set via mutual information), 
and ID3 with error-correcting output codes (ECC, Dietterich & Bakiri, 1991). 

Table 1: Generalization performance on the NETtalk task. 

% correct Jl000-word test seQ 
Algorithm Word Letter Phoneme Stress 

Nearest neighbor 3.3 53.1 61.1 74.0 

RBF 3.7 57.0***** 65.6***** 80.3***** 

ID3 9.6***** 65.6***** 78.7***** 77.2***** 

Back propagation 13.6** 70.6***** 80.8**** 81.3***** 

Wolpert 15.0 72.2* 82.6***** 80.2 
ID3 + 127-bit ECC 20.0*** 73.7* 85.6***** 81.1 
PrIor row dIfferent, p < .05* .01** .005*** .002**** .001***** 

Performance is shown at several levels of aggregation. The "stress" column indicates 
the percentage of stress assignments correctly classified. The "phoneme" column 

shows the percentage of phonemes correctly assigned. A "letter" is correct if the 
phoneme and stress are correctly assigned, and a "word" is correct if all letters in 
the word are correctly classified. Also shown are the results of a two-tailed test for 
the difference of two proportions, which was conducted for each row and the row 
preceding it in the table. 

From this table, it is clear that RBF is performing substantially below virtually all 
of the algorithms except nearest neighbor. There is certainly room for supervised 
learning of RBF parameters to improve on this. 

5 Supervised Learning of Additional RBF Parameters 

In this section, we present our supervised learning experiments. In each case, we 
report only the cross-validation performance. Finally, we take the best supervised 
learning configuration, as determined by these cross-validation scores, train it on 
the entire training set and evaluate it on the test set. 

5.1 Weighted Feature Norm and Centers With Adjustable Widths 

The first form of supervised learning that we tested was the learning of a weighted 
norm. In the NETtaik domain, it is obvious that the various input features are not 
equally important . In particular, the features describing the letter at the center of 
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the 7-letter window-the letter to be pronounced-are much more important than 
the features describing the other letters, which are only present to provide context . 
One way to capture the importance of different features is through a weighted 
norm: 

Ilx - xall! = L Wi(Xi - xad 2 . 

i 

We employed supervised training to obtain the weights Wi. We call this configu­
ration RBFFW. On the cross-validation set, RBFFW correctly classified 62.4% of 
the letters (N=200, (j2 = 5, center locations determined by k-means clustering) . 

This is a 4.7 percentage point improvement over standard RBF, which on the cross­
validation set classifies only 57.7% of the letters correctly (N=250, (j2 = 5, center 
locations determined by k-means clustering). 

Moody & Darken (1989) suggested heuristics to set the variance of each center. 
They employed the inverse of the mean Euclidean distance from each center to its 
P-nearest neighbors to determine the variance. However, they found that in most 
cases a global value for all variances worked best . We replicated this experiment for 
P = 1 and P = 4, and we compared this to just setting the variances to a global value 
((j2 = 5) optimized by cross-validation. The performance on the cross-validation 
set was 53.6% (for P=l), 53.8% (for P=4) , and 57.7% (for the global value). 

In addition to these heuristic methods, we also tried supervised learning of the 

variances alone (which we call RBFu). On the cross-validation set, it classifies 
57.4% of the letters correctly, as compared with 57.7% for standard RBF. 

Hence, in all of our experiments, a single global value for (j2 gives better results 
than any of the techniques for setting separate values for each center. Other re­
searchers have obtained experimental results in other domains showing the useful­

ness of nonuniform variances. Hence, we must conclude that, while RBF u did not 
perform well in the NETtaik domain, it may be valuable in other domains. 

5.2 Learning Center Locations (Generalized Radial Basis Functions) 

Poggio and Girosi (1989) suggest using gradient descent methods to implement 
supervised learning of the center locations, a method that they call generalized 
radial basis functions (GRBF). We implemented and tested this approach . On the 
cross-validation set, GRBF correctly classifies 72.2% ofthe letters (N = 200, (j2 = 4, 
centers initialized to a subset of training data) as compared to 57.7% for standard 
RBF. This is a remarkable 14.5 percentage-point improvement. 

We also tested GRBF with previously learned feature weights (GRBFFW) and in 
combination with learning variances (G RBF u ). The performance of both of these 
methods was inferior to GRBF. For GRBFFW, gradient search on the center lo­
cations failed to significantly improved performance of RBF FW networks (RBF FW 

62.4% vs. GRBFFw 62.8%, RBFFw 54.5% vs. GRBFFW 57.9%). This shows that 
through the use of a non-Euclidian, fixed metric found by RBFFW the gradient 
search of GRBFFw is getting caught in a local minimum. One explanation for this 

is that feature weights and adjustable centers are. two alternative ways of achieving 
the same effect-namely, of making some features more important than others. Re­
dundancy can easily create local minima. To understand this explanation, consider 
the plots in Figure 1. Figure l(A) shows the weights of the input features as they 
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Figure 1: (A) displays the weights of input features as learned by RBFFW. In 
(B) the mean square-distance between centers (separate for each dimension) from 
a GRBF network (N = 100, 0-2 = 4) is shown. 

were learned by RBF FW . Features with weights near zero have no influence in 
the distance calculation when a new test example is classified. Figure l(B) shows 
the mean squared distance between every center and every other center (computed 
separately for each input feature). Low values for the mean squared distance on 

feature i indicate that most centers have very similar values on feature i . Hence, 
this feature can play no role in determining which centers are activated by a new 
test example. In both plots, the features at the center of the window are clearly 
the most important. Therefore, it appears that GRBF is able to capture the in­
formation about the relative importance of features without the need for feature 
weights. 

To explore the effect of learning the variances and center locations simultaneously, 
we introduced a scale factor to allow us to adjust the relative magnitudes of the 
gradients. We then varied this scale factor under cross validation. Generally, the 
larger we set the scale factor (to increase the gradient of the variance terms) the 
worse the performance became. As with GRBF FW, we see that difficulties in 
gradient descent training are preventing us from finding a global minimum (or even 
re-discovering known local minima). 

5.3 Summary 

Based on the results of this section as summarized in Table 2, we chose GRBF as 
the best supervised learning configuration and applied it to the entire 1000-word 

training set (with testing on the 1000-word test set). We also combined it with a 
63-bit error-correcting output code to see if this would improve its performance, 
since error-correcting output codes have been shown to boost the performance of 
backpropagation and ID3. The final comparison results are shown in Table 3. The 
results show that GRBF is superior to RBF at all levels of aggregation. Further­
more, GRBF is statistically indistinguishable from the best method that we have 
tested to date (103 with 127-bit error-correcting output code), except on phonemes 
where it is detectably inferior and on stresses where it is detect ably superior. GRBF 
with error-correcting output codes is statistically indistinguishable from 103 with 
error-correcting output codes. 
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Table 2: Percent of letters 
correctly classified on the 
200-word cross-validation 
data set. 

% Letters 
Method Correct 

RBF 57.7 
RBFFW 62.4 
RBFq 57.4 
GRBF 72.2 
GRBFFW 62.8 
GRBF q 67.5 

Table 3: Generalization performance 
on the NETtaik task. 

% correct (lOOO-word test set) 

Algorithm Word Letter Phoneme Stress 
RBF 3.7 57.0 65.6 80.3 

GRBF 19.8** 73.8*** 84.1*** 82.4** 

ID3 + 
127-bit ECC 20.0 73.7 85.6* 81.1* 

GRBF + 
63-bit ECC 19.2 74.6 85.3 82.2 

PrIor row different ,p < .05* .002** .001*** 

The near-identical performance of GRBF and the error-correcting code method 
and the fact that the use of error correcting output codes does not improve GRBF's 
performance significantly, suggests that the "bias" of GRBF (i.e., its implicit as­
sumptions about the unknown function being learned) is particularly appropriate 
for the NETtaik task. This conjecture follows from the observation that error­
correcting output codes provide a way of recovering from improper bias (such as 
the bias of ID3 in this task). This is somewhat surprising, since the mathematical 
justification for GRBF is based on the smoothness of the unknown function, which 
is certainly violated in classification tasks. 

6 Conclusions 

Radial basis function networks have many properties that make them attractive in 
comparison to networks of sigmoid units. However, our tests of RBF learning (un­
supervised learning of center locations, supervised learning of output-layer weights) 
in the NETtaik domain found that RBF networks did not generalize nearly as well 
as sigmoid networks. This is consistent with results reported in other domains. 

However, by employing supervised learning of the center locations as well as the 
output weights, the GRBF method is able to substantially exceed the generalization 
performance of sigmoid networks. Indeed, GRBF matches the performance of the 
best known method for the NETtaik task: ID3 with error-correcting output codes, 
which, however, is approximately 50 times faster to train. 

We found that supervised learning of feature weights (alone) could also improve the 
performance of RBF networks, although not nearly as much as learning the center 
locations. Surprisingly, we found that supervised learning of the variances of the 
Gaussians located at each center hurt generalization performance. Also, combined 
supervised learning of center locations and feature weights did not perform as well 
as supervised learning of center locations alone. The training process is becoming 
stuck in local minima. For GRBFFW, we presented data suggesting that feature 
weights are redundant and that they could be introducing local minima as a result. 

Our implementation of GRBF, while efficient, still gives training times comparable 
to those required for backpropagation training of sigmoid networks. Hence, an 
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important open problem is to develop more efficient methods for supervised learning 
of center locations. 

While the results in this paper apply only to the NETtaik domain, the markedly 
superior performance of GRBF over RBF suggests that in new applications of RBF 
networks, it is important to consider supervised learning of center locations in order 
to obtain the best generalization performance. 
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