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Abstract. The performance of triple stores is one of the major obstacles
for the deployment of semantic technologies in many usage scenarios. In
particular, Semantic Web applications, which use triple stores as persis-
tence backends, trade performance for the advantage of flexibility with
regard to information structuring. In order to get closer to the perfor-
mance of relational database-backed Web applications, we developed an
approach for improving the performance of triple stores by caching query
results and even complete application objects. The selective invalidation
of cache objects, following updates of the underlying knowledge bases,
is based on analysing the graph patterns of cached SPARQL queries in
order to obtain information about what kind of updates will change the
query result. We evaluated our approach by extending the BSBM triple
store benchmark with an update dimension as well as in typical Semantic
Web application scenarios.

1 Introduction

It has been widely acknowledged that the querying performance of triple stores is
a decisive factor for the large-scale deployment of semantic technologies in many
usage scenarios (cf. e.g. [9,4]). In recent years much progress has been made to
improve the performance of triple stores by developing better storage, indexing
and query optimization. However, compared to querying data stored in a fixed
relational database schema, querying a triple store is still usually slower by a
factor of 2-20 (cf. e.g. BSBM results1). This shortcoming is due to the fact that
columns in a relational database are typed and may be indexed more efficiently.
By using a triple store, this efficiency is lost to the flexibility of amending and
reorganizing schema structures easily and quickly.

A circumstance currently not yet taken advantage of by triple stores is that
in typical application scenarios only relatively small parts of a knowledge base
change within a short period of time. The majority of triples remain unchanged.
Hence, most queries will return the same results even after the occurrence of
changes on the knowledge base. In addition, queries are often frequently issued,

1 http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/

L. Aroyo et al. (Eds.): ESWC 2010, Part II, LNCS 6089, pp. 304–318, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://aksw.org
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/


Improving the Performance of Semantic Web Applications 305

for example, when different users access the same information in a Semantic
Web application. We can take advantage of this fact by caching query results,
but also want to ensure that cached query results are selectively invalidated on
knowledge base updates.

An analysis of a query shows what kind of changes of the knowledge base it
will take to return a different result. In the meantime the results of the query
can be temporarily stored for fast access. Our approach is based on examining
SPARQL graph patterns. A query result is cached as long as updated triples
do not match any of the triple patterns comprised by the graph pattern. Once
an updated triple matches any of the triple patterns, the corresponding cache
object is invalidated and will have to be recomputed by the triple store on a
subsequent execution of the query.

Web applications are often composed out of smaller objects whose state de-
pends on the execution of multiple queries. The product description page of
an online shop, for example, is composed of header and footer components, a
product category selection menu, the actual product description and possibly
personal information of the actual user, such as the contents of his/her shopping
cart etc. Traditional Web applications cache application objects or even whole
parts of the generated user interface (i.e. HTML page fragments). The applica-
tion logic then has to take care of invalidating these complex cache objects, for
example, when new products are entered into the system or the user’s shopping
cart changes. We allow the caching and invalidation of more such compound
application objects by associating them with all of the cached query results they
depend on. The compound cache object is then invalidated when any of the
associated query results change.

As a result, Semantic Web applications which frequently issue the same queries
and are updated moderately are significantly accelerated. This improvement
allows Semantic Web applications to get closer to conventional Web applications
based on relational databases with regard to performance. In particular, we make
the following contributions:

– We provide a method for selective invalidation of cached query results on
triple store updates based on an analysis of SPARQL queries.

– We extended the caching of plain query results into a caching of compound
application objects, based on a dependency tacking.

– We implemented the RDF query caching approach as a small proxy layer
which resides between the Semantic Web application and an arbitrary SPAR-
QL/SPARUL endpoint.

– We extended the BSBM triple store benchmark to consider updates and
evaluated our approach with both the synthetic benchmark as well as in a
practical Semantic Web application setting.

The paper is structured as follows: We describe the concepts and architecture
of our caching solution in the Sections 2 and 3, while elaborating on the cache
maintenance in Section 4. We also provide a comprehensive evaluation of the
approach based on a synthetic benchmark as well as a real Semantic Web
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applications in Section 5. We conclude and present related as well as future
work in the Sections 6 and 7.

2 Concepts

In this section we describe the theoretical foundation of our approach. It is based
on the SPARQL algebra and we refer to [8,7] for a more detailed description of
the algebraic formalization of SPARQL. We will briefly introduce the formal
SPARQL syntax and semantics and then derive a proposition about the invari-
ance of graph pattern solutions when updates of the underlying RDF dataset do
not match any of the triple patterns used in the graph pattern.

2.1 Syntax and Semantics of SPARQL

The SPARQL query language is based on the definition of the syntactic language
features and a semantic interpretation of these syntactic features by means of
set theoretical operators. We restrict ourselves to the core fragment of SPARQL
over simple RDF (i.e. RDF without RDFS vocabulary and literal rules), which
is sufficient for our purposes.

Syntax. Assume there are pairwise disjoint infinite sets I, B, and L (IRIs, Blank
nodes, and RDF literals, respectively). A triple (v1, v2, v3) ∈ (I ∪ B) × I × (I ∪
B ∪ L) is called an RDF triple. In this tuple, v1 is the subject, v2 the predicate
and v3 the object. We denote the union I ∪ B ∪ L as by T called RDF terms.
Additionally, we assume the existence of an infinite set V of variables which is
disjoint from the above sets. An RDF graph is a set of RDF triples (also called
RDF dataset, or simply a dataset).

A SPARQL graph pattern expression is defined recursively as follows:

1. A tuple from (T ∪V )×(I∪V )×(T ∪V ) is a graph pattern (a triple pattern).
2. If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT

P2), and (P1 UNION P2) are graph patterns.
3. If P is a graph pattern and R is a SPARQL condition, then the expression

(P FILTER R) is a graph pattern.

SPARQL conditions are supposed to evaluate to boolean values. Additionally,
we assume that for (P FILTER R) the condition var(R) ⊆ var(P ) holds, where
var(R) and var(P ) are the sets of variables occurring in R and P respectively.

Semantics. A mapping μ from V to T is a partial function μ : V → T . For a triple
pattern t we denote as by μ(t) the triple obtained by replacing the variables in t
according to μ. The domain of μ, dom(μ), is the subset of V where μ is defined.
Two mappings μ1 and μ2 are compatible when for all x ∈ dom(μ1)∩dom(μ2) we
have μ1(x) = μ2(x), i.e. when μ1∪μ2 is also a mapping. Note that two mappings
with disjoint domains are always compatible and that the empty mapping (i.e.
the mapping with empty domain) μ∅ is compatible with any other mapping. Let
Ω1 and Ω2 be sets of mappings. We define the join of, the union of and the
difference between Ω1 and Ω2 as:
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1. Ω1 �� Ω2 = {μ1 ∪ μ2|μ1 ∈ Ω1, μ2 ∈ Ω2 are compatible mappings},
2. Ω1 ∪ Ω2 = {μ|μ ∈ Ω1 or μ ∈ Ω2},
3. Ω1 \ Ω2 = {μ1 ∈ Ω1| for all μ2 ∈ Ω2, μ1 and μ2 are not compatible}.

Now we can define the semantics of graph pattern expressions by means of a
function [[·]]D, which takes a pattern expression and returns a set of mappings.
As in [7], we assume, for the reason of simplicity, all datasets to be free of
redundancies (i.e. duplicate triples).

Definition 1 (Graph pattern evaluation). Let D be an RDF dataset over T ,
t a triple pattern, R a SPARQL condition and P1, P2 graph patterns. Then the
evaluation of a graph pattern over D, denoted as by [[·]]D, is defined recursively
as follows:

1. [[t]]D = {μ|dom(μ) = var(t) and μ(t) ∈ D},
2. [[(P1 AND P2)]]D = [[P1]]D �� [[P2]]D
3. [[(P1 OPT P2)]]D = ([[P1]]D �� [[P2]]D) ∪ ([[P1]]D \ [[P2]]D)
4. [[(P1 UNION P2)]]D = [[P1]]D ∪ [[P2]]D
5. [[(P1 FILTER R)]]D = {μ ∈ [[P1]]D|R(μ) evaluates to boolean true }

Note that we omitted a detailed description of the semantics of filter expressions
for the purpose of brevity here. The elements μ of the result of an evaluation are
also called solutions of the respective graph pattern.

2.2 Graph Pattern Solution Invariance

After we defined the syntax and semantics of SPARQL, we now investigate under
which types of updates the results of SPARQL graph patterns change. This
analysis lays the theoretical foundation for our query result caching framework,
since a certain query result can be cached until an update of the underlying RDF
would affect this particular query result. Speaking intuitively the solution of a
graph pattern stays the same at least until a triple, which matches any of the
triple patterns being part of the graph pattern, is added to or deleted from the
RDF dataset.

Proposition 1 (Graph pattern solution invariance). If Ω is the set of all
solutions for the graph pattern P with respect to a dataset D and for a triple t
there exists no mapping μ from query variables to RDF terms such that t ∈ μ(P ),
then Ω is also the set of all solutions for D+ = D ∪ {t} and D− = D \ {t}.
Proof. We first show (a) that the proposition holds when P is a triple pattern
and then (b) that the evaluation of a graph pattern does not change if the sets
of all solutions for the triple patterns contained in the graph pattern do not
change.

(a) We assume, P is a triple pattern and there is a solution μ of P with
regard to D+. According to the graph pattern evaluation (1) holds μ(P ) ∈
D+. According to our precondition t /∈ μ(P ). Consequently, μ is a solution for
D+ \ {t} = D and hence μ ∈ Ω. The proof for D− proceeds accordingly.
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(b) The evaluation of graph patterns consisting of AND, OPT and UNION
clauses (i.e. points 2-4 in Definition 1) is defined to be composed out of the
solutions of the constituting graph patterns via the join, union and difference
operators. Hence, if the set of solutions for D equals the sets of solutions for D+

(D−) for the constituting graph patterns, so will the set of solutions for their
composition. A similar argument holds for the application of a filter clause (i.e.
point 5 in Definition 1): If [[P1]]D = [[P1]]D+ ([[P1]]D = [[P1]]D−), then the set
of solutions for the filter clause stay the same, i.e. [[(P1 FILTER R)]]D = [[(P1

FILTER R)]]D+ ([[(P1 FILTER R)]]D = [[(P1 FILTER R)]]D−). ��

3 Architecture

In order to employ the invariance of graph pattern solutions for caching, we have
to be aware of all queries as well as of all dataset updates. Hence, we implemented
our approach as a small proxy layer, which resides between the Semantic Web
application and the SPARQL/SPARUL [10] endpoint. All SPARQL queries and
SPARUL updates are routed through this proxy. Once the proxy receives a query,
it checks whether a result for this query is cached in its local store. If that is
the case, the result is directly delivered to the client without accessing the triple
store. If the query was not previously stored and is not excluded from caching
by user-supplied rules, the query is routed to the triple store and, before results
are returned to the client, these are stored in the cache’s local result store.

We developed two implementations of the SPARQL cache: Firstly, we in-
tegrated the cache as a component into the Erfurt API2 - a middleware for
Semantic Web applications used as foundation for OntoWiki [5]. As a second
implementation, we developed a stand alone version in Java, which can be used
in conjunction with arbitrary Semantic Web applications and SPARQL end-
points. Both implementations are evaluated and compared in Section 5.

4 Cache Population and Maintenance

Other than conventional Web application caching approaches, we have to ac-
comodate two requirements: (1) we want to invalidate cache objects not only
based on a unique identifier or predefined timespans, but selectively on updates
of the triple store. (2) In addition to simple query results, we want to store more
complex application objects which are composed out of the results of multiple
queries.

In oder to accomodate these requirements, the cache object store is im-
plemented based on a relational database. The ER diagram is visualized in
Figure 1. Query results are stored in a serialized form in the cache_query_result
table. Optionally, they are associated to surrounding cache objects stored in
the cache_object table. Query results are firstly associated with RDF mod-
els the query is accessing and secondly, for fast invalidation, the triple pat-
terns comprised by the graph patterns of the query are stored in the table
2 http://aksw.org/Projects/Erfurt

http://aksw.org/Projects/Erfurt
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Fig. 1. ER diagram of the cache’s relational object store

cache_query_triple. Variables in the triple patterns are represented as NULL
values in this table.

4.1 Storing and Loading of Query Results

The general operation of our SPARQL cache is visualized in Figure 2. Once
our SPARQL caching proxy receives a query, it computes the queries MD5
hash to determine quickly whether the query has already been cached or has
to be (re-)executed. If the query result has not yet been stored in the cache, the
SPARQL query is parsed and handed over to the original SPARQL endpoint.
The returned result is stored together with the parsed query adhering to the
cache schema. Currently, we use a relational database and in-memory backends
to store cache objects.

Fig. 2. Querying a SPARQL endpoint and storing the result using the query cache

Listing 1.1 shows an example query containing three triple patterns. Table 1
shows the rows which are added to the cache_query_rt and
cache_query_triple tables. Since multiple queries might contain the same
triple patterns, we store triple patterns only once and associate them with the
queries (cf. Figure 1).
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1 PREFIX aksw: <http://aksw.org/people#>
2 PREFIX rdfs: <http://www.w3.org /2000/01/rdf- schema#>
3 SELECT ?classUri ? classLabel FROM <http://aksw.org/people#>
4 WHERE { ?classUri rdfs: subClassOf aksw:People .
5 ?classUri aksw:sort ?sort .
6 OPTIONAL { ?classUri rdfs:label ? classLabel } }

Listing 1.1. Example SPARQL query

Table 1. Extracted triple pattern from SPARQL query

cache query rt

qid tid

1 1
1 2
1 3

cache query triple

tid subject predicate object

1 NULL rdfs:subClassOf aksw:People

2 NULL aksw:sort NULL

3 NULL rdfs:label NULL

4.2 Storing and Loading of Application Objects

In addition to caching query results, our cache implementation offers to cache
arbitrary application objects. For this, the cache implementation offers two func-
tions cacheStart($key) and cacheStop($key,$cacheObject). When the first
function is called, the cache checks whether a cache object for $key exists and, if
existent, returns this object. If a cache object is not available for the respective
$key, an entry in the cache object store is created (table cache_object in Fig-
ure 1) and all subsequent SPARQL queries are associated with this cache object
until the function cacheStop is called and the respective cache object content
is stored.

4.3 Cache Maintenance

The graph pattern solution invariance as derived in Section 2 allows us to inval-
idate cache objects on triple store updates selectively, assuming that all updates
(i.e. insertions or deletions of triples) are routed through the SPARQL query
cache proxy. When a certain triple is inserted (or deleted) according to Proposi-
tion 1, we have to invalidate all SPARQL queries which contain a triple pattern
matching the inserted (or deleted) triple. In addition, we invalidate all compound
cache objects, which depend on one or more of the invalidated SPARQL query
results.

Please note that the invalidation removes stored query results, but keeps the
stored query structure and statistics (e.g. hit count, inv count) intact so that a
subsequent execution of the query can reuse this information.

We illustrate the process with the addition of the following triple:

(G,S,P,O) = (http :// aksw.org/people#,aksw:Student ,rdfs:subClassOf ,aksw:Person)
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The following SQL query is subsequently used to invalidate query results:

1 UPDATE cache_query_result SET result=NULL WHERE ( qid IN (
2 SELECT DISTINCT (qid) FROM cache_query_rt JOIN cache_query_triple
3 ON cache_query_rt.tid = cache_query_triple.tid
4 WHERE ( (
5 ( subject = ’aksw:student ’ OR subject IS NULL ) AND
6 ( predicate = ’rdfs:subClassOf ’ OR predicate IS NULL ) AND
7 ( object = ’aksw:Person ’ OR object IS NULL )
8 ) ) ) AND qid IN (
9 SELECT DISTINCT (qid) FROM cache_query_rm JOIN cache_query_model

10 ON cache_query_rm.mid = cache_query_model.mid
11 WHERE ( cache_query_model.modelIri = ’http://aksw.org/people#’ OR
12 cache_query_model.modelIri IS NULL ) ) )

5 Evaluation

We measured the impact of our caching solution on the querying performance
in two scenarios. First we employed the Berlin SPARQL Benchmark (BSBM,
[4]) to demonstrate the cache’s abilities by using a well-known test procedure.
The second evaluation scenario measures the performance improvements for the
Semantic Web application Vakantieland.

All benchmarking was done on a machine with the following configuration:
Intel Core 2 Duo (P8400: 2x2.276GHz), 2x2GB of RAM, 160GB SATA HD
(7,200rpm), Ubuntu 9.04 32 bit, Java 1.6, PHP 5.2.10, OpenLink Virtuoso 5.09
(NumberOfBuffers=300000, MaxDirtyBuffers=50000).

5.1 Berlin SPARQL Benchmark

The Berlin SPARQL Benchmark (BSBM) is based on an e-commerce use case,
simulating an end-user search for products, vendors and reviews. The resulting
SPARQL queries are grouped into mixes, each one consisting of 25 queries. The
queries are derived from twelve different types and are instantiated by replac-
ing parameters with concrete, randomized values. The QueryMixes per Hour
(QMpH) assessment then states how many of these query mixes a certain triples
store is able to execute per hour.

While in the original benchmark the probability for selecting a specific pa-
rameter is equal for each parameter, we chose to have the parameters selected
according to the Pareto distribution, since this reflects practical use cases better
and enables us to measure the performance gain of our caching solution in such
scenarios. The probability density function can be described by (cf. [15]):

P (x) =
aba

xa+1

The parameter a defines the shape, whereas b defines the minimum value. Ap-
plied to the benchmark scenario, this implies that we have a number of products
or offers that are queried more often than others. In our benchmark adoption
we varied the parameter a in order to see how well the caching implementation
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Table 2. Distribution of the parameter in dependency to the choice of a

Distr. parameter linear a=0.1 a=0.3 a=0.5 a=1.0 a=2.0 a=4.0

Unique queries 11718 6205 4147 2953 1694 624 142
Res. distribution 50.5/49.5 64/36 72/28 78/22 84/16 88/12 90/10

adopts to a wider or narrower spectrum of repeated queries. For the Pareto prin-
ciple (commonly known also as the 80/20 rule of thumb), Table 2 shows how the
choice of a broadens the distribution of the parameter (based on a benchmark
with 10 million triples and 12,500 queries).

For example, using a linear distribution for creating 12,500 requests results in
the generation of 11,718 unique queries, which represents a very limited number
of repeated queries (i.e. 782). As for the other extreme of a = 4 a total of
only 142 unique queries is generated and 90% percent of the 12,500 requests are
executed with just the 10% of the unique queries, resulting in a very high level
of repetition. Querying was parallelized by using 5 threads totaling 500 query
mixes, which is similar to the original BSBM benchmark. For our benchmark
adoption we used the Stochastic Simulation in Java library 3 to generate random
numbers adhering to the Pareto distribution.

While the Java implementation of the cache was benchmarked as a SPARQL
endpoint we also wanted to determine the performance impact on Web applica-
tions. Hence, for the Erfurt implementation time was measured by using JMeter4.
The query duration was then transformed into QueryMixes per Hour (QMpH)
for better comparability.

Impact of Distribution. This scenario demonstrates the impact of the query
distribution on the performance. We tested various dataset sizes, ranging from
1 million to 25 million with various distributions. The results are summarized in
Figure 3.

As expected, we found that the distribution of the queries has a high impact on
performance. Performance can benefit enormously when using the cache with a
high level of query repetition. For a > 2 performance is nearly independent of the
store size, since most of the queries can be answered from the cache. Applications
with a lower number of repeating queries may not benefit as much, in the Erfurt
implementation, for broader distributions with a ≤ 0.3 the SPARQL cache is
not (yet) able to improve performance. For scenarios with larger datasets (≥ 10
million triples) and a moderate query repetition (1.0 ≥ a ≥ 0.3), performance
improvements between 12% and 151% are possible.

The second parameter evaluated here is the store size, which, together with
the distribution, defines the point at which an application benefits from using a
cache. For the Erfurt implementation using a store with 1 million triples, caching
offers improved performance starting at a = 1, whereas a larger store with 25
million triples profits much earlier, i.e. already from a = 0.3 onwards.

3 http://www.iro.umontreal.ca/~simardr/ssj/
4 http://jakarta.apache.org/jmeter/

http://www.iro.umontreal.ca/~simardr/ssj/
http://jakarta.apache.org/jmeter/
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Fig. 3. Impact of distribution parameter on query performance

Most notably regarding the Java implementation is that, when accessed di-
rectly via SPARQL, Virtuoso shows similar performance gains with increasing
query repetition in the 1 million triples scenario. With greater store size this
effect diminishes. For larger store sizes, however, even for relatively low values of
a performance gains can be noted, which can be attributed to the light overhead
the cache imposes on queries. With no query repetition the cache generates an
overhead of just 8% up to 25% in the worst case.

Impact of Updates. Since cache objects will become stale, when the under-
lying dataset changes, we extended BSBM to support the modification of the
queried graph. We removed a number of triples from the original graph in or-
der to load them later, during querying, into the graph. This was implemented
by adding inserts into some query mixes, with each insert containing 5 to 8
statements. Thus, we can show how the invalidation of cache objects and the
subsequently required re-issuing of the query affects the performance. We com-
pared the impact of different update frequencies with and without caching for
the 5 (Erfurt) and 10 (Java) million triples dataset and with the query distri-
bution parameter a = 1 (Erfurt) and a = 0.3 (Java). The update frequency is
determined by the rate of query mixes containing an insert statement.

The results, as depicted in Figure 4, first contain a reference value without
inserts, where the cache enabled version executes 60% more QMpH. For the Er-
furt cache this advantage is slightly affected by an insert included in every 100th

query mix, reducing the performance gain to 48%. With an insert included in
every 10th query mix, the performance gain drops to 33%. Including an insert in
every query mix and thus every 25th query being an insert statement, reduces
performance by 9% compared to the direct use of Virtuoso. For the Java imple-
mentation we measured slightly different results. The effect on performance due
to the update queries is here stronger, the performance gain drops to 17%, 6%
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Fig. 4. Impact of update frequency on query performance

and 5%, but does not fall below the values of the same queries without cache.
We attribute this behavior to the different cache integration approach.

While the figures presented here show that update frequency and the result-
ing cache maintenance affect the performance, most Web applications update
frequencies are rather at the lower end of the tested values and will thus still
significantly benefit from caching. Likewise, with larger datasets the positive
impact of caching will be even more noticeable.

5.2 Benchmarking the Semantic Web Application Vakantieland

We evaluated the performance of the SPARQL query and application object
caching with the Semantic Web application Vakantieland5. Vakantieland pub-
lishes comprehensive information about 20,000 touristic points-of-interest (POI)
in the Netherlands such as textual descriptions, location information and open-
ing hours. The information is stored in a knowledge base containing almost 2
million triples and is structured using approximately 1,250 properties as well as
400 classes. Vakantieland was designed according to the model/view/controller
principle and uses the Erfurt API as middleware. Almost all of the information
presented in Vakantieland is retrieved using SPARQL. Figure 5 marks areas of
the Vakantieland user interface, which are significantly facilitated by the cache.
Area 1 and 2 contain different category trees. The first is modelled hierarchically
using owl:class and rdfs:subClassOf. The second category tree represents ad-
ministrative areas of the Netherlands, containing provinces, districts and cities.
For rendering both hierarchies, recursively executed SPARQL queries are used.
The remaining two areas (numbered 3 and 4 in Figure 5) provide a collection
of POIs (3) and a pagination for navigating over them (4). POIs are presented
depending on given filter criteria. These criteria can be free text search, a class
or a spatial-area selection, a map-bounding box or a combination of these. Ev-
ery POI description, which can also be visited on a separate details page, con-
sists of properties arranged in a property hierarchy using rdfs:subPropertyOf.
These property hierarchies are also obtained using a set of recursively executed
SPARQL queries, whose performance was substantially improved by the cache.
For automatically benchmarking the behaviour of Vakantieland in combination
5 Currently available at: http://staging.vakantieland.nl

http://staging.vakantieland.nl
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Fig. 5. Vakantieland GUI with marked UI components

with the cache, we defined the following usage scenarios. In every usage scenario
we simulated the usage of the pagination, as depicted in Figure 5 (area 4), 200
times with different offsets.

– Usage Scenario A No selected filter criteria; no updates.
– Usage Scenario B Selected spatial-area filter; updating the rdfs:label of

the selected spatial filter after every 25th request),
– Usage Scenario C Selected class filter; adding a new point-of-interest after

every 25th request (rdf:type relation of the new resource is identical to the
selected category filter),

– Usage Scenario D Selected tourism category filter; updating the
rdfs:label of the selected category after every 25th request),

The results of these use cases are presented in Table 3 and show that the cache
proxy implementation improves performance substantially. The application is
accelerated between factor 5 (in scenario C) and factor 13 (in scenario A). For
improving the performance of SPARQL queries, which filter information by geo-
coordinates or search terms, we generated the additional index P, G, S, O on
the table RDF QUAD in Virtuoso6. Due to the use of this index, such SPARQL
queries can be executed five times faster. Other tested indexes do not measurably
improve request times.

6 Related Work

To the best of our knowledge only few approaches exist aiming at improving
query performance of RDF stores by means of query caching. We consequently
also examine the use of caching in relational, DB-based Web applications and
examine how they relate to our solution.
6 Described at http://docs.openlinksw.com/virtuoso/rdfperformancetuning.html

http://docs.openlinksw.com/virtuoso/rdfperformancetuning.html
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Table 3. Benchmark results of application Vakantieland

Benchmark Sceanrio A Sceanrio B Sceanrio C Sceanrio D

Cache disabled pt
c

≈ 5480ms
� 428

≈ 5262ms
� 297

≈ 3967ms
� 344

≈ 3992ms
� 344

Warm-Up
with enabled QC

pt
qch
qci

≈ 3561ms
� 358

≈ 3432ms
� 249
≈ 0,32

≈ 3043ms
� 286
≈ 1,16

≈ 3042ms
� 286
≈ 0,24

Hot Run
with enabled QC

pt
qch
qci

≈ 2048ms
� 420

≈ 2550ms
� 289
≈ 0,32

≈ 2152ms
� 335
≈ 1,12

≈ 1901ms
� 336
≈ 0,24

Warm-Up
with enabled QC and OC

pt
qch
qci

≈ 4152ms
� 162

≈ 2783ms
� 48
≈ 0,32

≈ 3019ms
� 91
≈ 1,11

≈ 3088ms
� 91
≈ 0,24

Hot Run
with enabled QC and OC

pt
qch
qci

≈ 403ms
� 6

≈ 477ms
� 8
≈ 0,32

≈ 686ms
� 5
≈ 1,12

≈ 434ms
� 6
≈ 0,24

QC:Query Cache; OC:Object Cache;
pt:process time per request ; c:query count per request ;

qch:query cache hits per request ; qci:query cache invalidation per request

Caching in Web Applications. Caching, which, in contrast to database repli-
cation, relies on intercepting queries, is distinguished in [13] into two different
approaches: Content-Aware Caching (CAC) and Content-Blind Caching (CBC).

Content-Aware Caching (CAC) systems create upon intercepted queries new
Partially Materialized Views (PMVs). This approach is, for example, imple-
mented by DBproxy [3] or MTCache [6]. Whenever a query is executed, the
CAC system checks whether the query is entailed by previously cached content
and in case it is, the result is computed upon that or the query is forwarded
to the database server. By proposing a query federation system, DBCache [2] is
further able to relay non-cached parts of a query to the main database.

Content-Blind Caching (CBC) systems, in contrast, are not aware of the struc-
ture of the cached data. As demonstrated in GlobeCBC [12], storing only the
result and meta-information can be an efficient approach, especially in scenarios
with a high query repetition, as costs associated with the subsumption checks
can be avoided. Our caching approach can, therefore, be considered to be a CBC
system, as the query results are opaque to the cache and are not modified. The
systems introduced here rely for cache maintenance and invalidation on database
replication mechanisms which notify the caches on updates. While our invalida-
tion mechanism is triggered by intercepted SPARUL queries, integrating this
mechamism into data base replication is a possiblity for future work.

Caching for Semantic Web Applications. In [16] a write-through cache holding
triples with commonly used subjects is described. Furthermore, property tables



Improving the Performance of Semantic Web Applications 317

as a storage scheme for RDF is introduced, similar to the idea of a vertical parti-
tioning of an RDF store [1]. Used for frequently reoccurring query patterns, this
concept can be transferred into creating an RDF Content-Aware Cache. With
an intelligent materialization algorithm, the proliferation of tables, as discussed
in [11], should be avoidable.

For caching in client-server or peer-to-peer and distributed database environ-
ments, query containment algorithms are developed to reuse a query result by
subsuming a distinct query. In [14] this approach is applied to RDF stores. It
is based on the notion of similarity of RDF queries determined by the costs of
transform the results of a previous query into the result for the actual one. The
paper discusses the problem of subsumption for RDF queries, presents a cost
model and derives a similarity measure for RDF queries based on the cost model
and the notion of graph edit distance. The author further sees the strong need
to develop strategies for building and maintaining the cache, i.e. changes in the
stored information have to invalidate parts of the cached results, as is the main
contribution of our approach.

7 Conclusions and Future Work

We presented a novel approach for caching the results of querying triple stores
and compound application objects containing such queries. The approach is
based on the observation that large parts of a knowledge base usually do not
change over time and hence only a small part of the query results are affected by
updates to the knowledge base. By identifying the affected query results we are
able to selectively invalidate cache objects on updates of the knowledge base such
that the cache never contains outdated cache objects. We were able to show that
our approach outperforms cacheless triple stores in realistic usage scenarios by
more than factor 10. Only in scenarios with small knowledge bases (<1M triple)
or very infrequent query repetition our cache adds some overhead. Currently
our implementation is only loosely coupled with the underlying triple store. By
tighter integrating the cache with the triple store even higher performance gains
will be possible.

Future Work. We consider this work as an initial step towards closing the per-
formance gap between relational database and triple store based applications.
In order to further exploit the possibilities of caching we aim at looking how the
results of a cached query can be reused in a content aware way for answering
subsequent queries. In particular, the evaluation of SPARQL filter conditions is
a promising candidate for further speed improvements.

Most triple stores are meanwhile equipped with support for light-weight in-
ferencing. While our caching strategy will work well with forward-chaining rea-
soning approaches (the inferencing of new triples can be simply considered as
updates) it still remains to explore how it can be combined with backward chain-
ing inferencing. Another promising direction of future work in the context of the
emerging Linked Data Web is how our caching approach can be employed for
the acceleration of distributed and federated queries.
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