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Whale optimization algorithm (WOA), known as a novel nature-inspired swarm optimization algorithm, demonstrates su-
periority in handling global continuous optimization problems. However, its performance deteriorates when applied to large-scale
complex problems due to rapidly increasing execution time required for huge computational tasks. Based on interactions within
the population, WOA is naturally amenable to parallelism, prompting an effective approach to mitigate the drawbacks of se-
quential WOA. In this paper, field programmable gate array (FPGA) is used as an accelerator, of which the high-level synthesis
utilizes open computing language (OpenCL) as a general programming paradigm for heterogeneous System-on-Chip.With above
platform, a novel parallel framework of WOA named PWOA is presented. *e proposed framework comprises two feasible
parallel models called partial parallel and all-FPGA parallel, respectively. Experiments are conducted by performing WOA on
CPU and PWOA on OpenCL-based FPGA heterogeneous platform, to solve ten well-known benchmark functions. Meanwhile,
other two classic algorithms including particle swarm optimization (PSO) and competitive swarm optimizer (CSO) are adopted
for comparison. Numerical results show that the proposed approach achieves a promising computational performance coupled
with efficient optimization on relatively large-scale complex problems.

1. Introduction

Swarm optimization or evolutionary algorithms have
demonstrated their significance in a wide range of scientific
and practical problems [1–5]. Recent years, more and more
research studies’ focus has been on multiobjective problems
and artificial intelligence [6–9]. Whale optimization algo-
rithm (WOA), a novel swarm intelligence-based meta-
heuristic algorithm, was proposed by Mirjalili and Lewis in
2016 [10]. Inspired by the special hunting behavior of
humpback whales, WOA shows better performance com-
pared with several existing popular methods and has drawn
great research attention. Typically, Abdel-Basset et al. [11]
integratedWOAwith a locals search strategy for tackling the
permutation flow shop scheduling problem. Mafarja and
Mirjalili [12] proposed a hybrid WOA with simulated

annealing for feature extraction. Aljarah et al. [13] intro-
duced WOA-based trainer to train multilayer perceptron
(MLP) neural networks. Moreover, there are also research
bodies trying to tackle other diverse problems using WOA,
such as multiobjective optimization [14–16], image pro-
cessing [17–19], software testing [20], and power system
applications [21, 22].

However, large-scale, multiple constraints and complex
scenarios usually appear in actual engineering optimization
problems, such as job shop scheduling, mixed unit com-
mitment problem, and automatic path planning. Further-
more, high requirements in response speed and real-time
performance need to be satisfied when solving problems
above. In this situation, most optimization algorithms in-
cluding WOA might get stuck in the executing dilemma. As
the scale and complexity of the problem increase, the
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execution time of WOA will increase rapidly, which leads to
time-performance deterioration [23]. With inherent paral-
lelism ofWOA, the abovementioned problem can be tackled
by applying parallel algorithm developed targeting specific
accelerating platforms. In recent years, experts and scholars
have tried to implement various swarm optimization al-
gorithms employing state-of-the-art technologies such as
multicore (message passing interface-MPI, OpenMP), dis-
tributed (MapReduce, Spark), and heterogeneous comput-
ing-based parallel platforms (graphics processing unit-GPU,
FPGA).

Heterogeneous computing refers to using dedicated
hardware devices with different architectures to execute
time-consuming tasks, balancing the computational load of
CPU. GPU is a classical parallel computing device, widely
used in graphics visualization, image/video processing,
scientific computing, deep learning, and so on. Nevertheless,
with the increasing deployment of GPU, energy con-
sumption and heat dissipation have become severe limita-
tions for system extension, as well as brings heavy
environmental pressure to human society [24]. In light of
this, some researchers begin to choose other hardware de-
vices to alleviate pressure caused by GPU. FPGA, a novel
parallel accelerator, possesses powerful parallel computing
capability and flexible programmability, while maintaining
the advantage of low power consumption [25]. Traditional
FPGA design, however, has drawbacks of high development
difficulty and time consumption. Recently, Intel provides a
development kit for software users, making it possible to
deploy OpenCL program on FPGA. Consequently, devel-
opers can rapidly implement FPGA-based heterogeneous
applications through OpenCL API thus reducing the de-
velopment cost and time-to-market.

*is research proposes high-performance parallel WOA
(PWOA), with implementation on FPGA to effectively solve
large-scale and complex optimization problems. More
specifically, the main contributions of this paper are pre-
sented as follows:

(1) A novel heterogeneous parallel framework of WOA
based on OpenCL-based FPGA accelerator.

(2) Two efficient models including partial parallel model
and all-FPGA parallel model, with program flow
design and dataflow analysis.

(3) Several diverse numerical experiments are con-
ducted with ten selected benchmark functions. By
comparing with sequential WOA executing on CPU,
the proposed PWOA based on two parallel models
achieves higher execution performance.

*e rest of this paper is organized as follows: Section 2
represents a substantial literature review on exploration for
parallel optimization algorithms. *e theory of WOA and
OpenCL-based FPGA heterogeneous accelerating platform
is introduced in Section 3. Section 4 describes FPGA
implementation of the proposed PWOAs with two parallel

models and followed by the experimental results and sta-
tistical analysis in Section 5. Finally, conclusions are given in
Section 6.

2. Related Work

Swarm optimization algorithms including WOA encounter
challenges that the optimization performance decreases due
to extensive computational cost when solving problems with
high-dimension and complex mathematical model. To
overcome these challenges, researchers have designed par-
allel swarm algorithms with implementation on various
platforms. In recent years, distributed and parallel particle
swarm optimization (PSO) has been implemented. Some
studies [26–30] applied GPU to parallelize PSO, putting
forward diverse parallel strategies. Hajewski and Oliveira
[31] developed fast cache-aware parallel PSO relying on
OpenMP. Ant colony optimization (ACO) [32] and artificial
bee colony (ABC) [33] were also parallelized by GPU.
Concerning brain storm optimization (BSO), Jin and Qin
[34] presented GPU-based manner whilst Ma et al. [35]
proposed parallelized BSO algorithm based on Spark
framework for association rule mining. Similar works in
[36, 37] used GPU and FPGA to accelerate genetic algorithm
(GA). What deserves attention is that Garcia et al. [38]
achieved parallel implementation and comparison of
teaching-learning based optimization (TLBO) and Jaya on
many-core GPU. As for WOA, Khalil et al. [39] proposed a
simple and robust distributed WOA using Hadoop Map-
Reduce, reaching a promising speedup.

It can be concluded that there are several typical kinds of
parallel techniques including OpenMP, MapReduce, Spark,
and heterogeneous architecture based on dedicated accel-
erators, such as GPU and FPGA. GPU becomes popular for
general-purpose parallel computing as developing parallel
swarm intelligence algorithms via GPU has successfully
gained remarkable performance improvement [40]. Re-
cently, FPGA is gradually applied to heterogeneous com-
puting and algorithms accelerating based on OpenCL, which
benefits from its high-parallelism, better energy efficiency,
and flexible programmability [41–44]. *e experiments
conducted by [45] showed that swarm algorithms on FPGAs
achieved a better speedup than that on GPUs and multicore
CPUs. Nevertheless, designing a near-optimal accelerator is
not an easy task. Implementing CPU-oriented codes on
FPGA rarely increases the performance and even reduces the
performance compared to CPU. *erefore, it requires not
only the digital design expertise but also software skills to
form appropriate OpenCL codes [46].

Few research works have been investigated on FPGA
implementation of swarm optimization algorithms, espe-
cially WOA. Our prior work [47] explored WOA based on
partial parallel scheme and deployed it on the FPGA het-
erogeneous platform. *en, empirical results using classic
benchmarks proved the consequential advance of the
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proposed methology in execution performance and con-
vergence speed. In this paper, motivated by the previous
studies, a novel PWOA scenario with two parallel models
encompassed is further exploited via FPGA. Meanwhile,
more diverse benchmarks are used to verify the effectiveness
of PWOA based on FPGA parallel framework and its
computational performance for large-scale complex
problems.

3. Whale Optimization Algorithm and
Acceleration Platform

3.1. BasicWOAAlgorithm. *eWOA algorithm constitutes
two main phases, exploitation and exploration, through
emulating shrinking encircling, bubble-net attacking, and
searching for preys. *e following subsections explain in
detail the mathematical models of each phase.

3.1.1. Exploitation Phase (Encircling and Bubble-Net
Attacking). To hunt preys, humpback whales first recognize
the location of preys and encircle them. *e mathematical
model of shrinking encircling is represented by the following
equations:

D � C · X∗(t) − X(t)
∣∣∣∣∣

∣∣∣∣∣, (1)

X(t+1) � X
∗
(t) − A ·D, (2)

where X is the position vector, X∗ represents the position of
the best solution obtained so far, t indicates the current
number of iteration, | | denotes the absolute operation, and ·
means an element-by-element multiplication. A and C are
two parameters, which are calculated as follows:

A � 2a · r − a, (3)

C � 2 · r, (4)

where a is linearly decreasing from 2 to 0 through iterations
(in both exploitation and exploration phases) and r is a
random number in [0, 1]. *e value of a is calculated by
a � 2 − t(2/MaxIter), and MaxIter is the maximum number
of iterations.

Another method used in the exploitation phase is spiral
updating position, which in coordination with aforemen-
tioned shrinking encircling constitutes the bubble-net
attacking strategy of humpback whales. *e mathematical
equations are as follows:

D′ � X
∗
(t) − X(t)

∣∣∣∣∣
∣∣∣∣∣, (5)

X(t+1) � D′ · e
bl · cos(2πl) + X

∗
(t), (6)

where b is a constant for determining the shape of the
logarithmic spiral and l is a random number in [−1, 1].
Shrinking encircling and spiral updating position are used
simultaneously during exploitation phase.*emathematical
model is as follows:

X(t+1) �
X
∗
(t) − A ·D, p< 0.5,

D′ · ebl · cos( 2πl ) + X
∗
(t), p≥ 0.5,


 (7)

where p is a random value in [−1, 1] which stands for a
probability of 50% to choose either the shrinking encircling
method or the spiral-shaped mechanism to update the
position of whales during optimization process.

3.1.2. Exploration Phase (Searching for Preys). In addition to
exploitation phase, a stochastic searching technique is also
adopted to enhance the exploration in WOA. Unlike ex-
ploitation, a random whale Xrand is selected from swarm to
navigate the search space, so as to find a better optimal
solution (prey) than the existing one. *is phase can effi-
ciently prevent the algorithm from falling into local optima
stagnation. Subsequently, based on the parameter A, a de-
cision is made on which mechanism to be used for updating
the position of whales. Exploration is done if |A|≥ 1,
meanwhile if |A|< 1. *e optimization process is mathe-
matically described as follows:

D � C · Xrand − X(t)
∣∣∣∣ ∣∣∣∣, (8)

X(t+1) � Xrand − A ·D, (9)

where Xrand is a random position of the whale chosen from
the current population and C is calculated by equation (4).

Algorithm 1 presents the pseudocode of WOA. At the
beginning of the algorithm, an initial random population is
generated, and each individual gets evaluated by fitness
function and X∗ is the current best solution. *en, the al-
gorithm is repeatedly executed until the stop condition is
satisfied. At each iteration, search agents update their po-
sition according to either a random chosen individual when
|A|≥ 1, or the optimal solution obtained so far when |A|< 1.
Depending on p, the WOA algorithm decides on whether
using circular or spiral movement.

3.2. OpenCL-Based FPGA Heterogeneous
Computing Platform

3.2.1. OpenCL and FPGA. OpenCL, maintained by Khronos
Group, is an open standard for general-purpose parallel
computing [48]. Various hardware devices, such as CPU,
FPGA, GPU, and DSP, are supported for implementing
highly efficient and parallel algorithms across heterogeneous
computing platform. Additionally, OpenCL specifies a
C99-based programming API for convenience of software
developers. A typical OpenCL program consists of host and
kernel sections.

FPGA is a configurable integrated circuit that can be
repeatedly reconfigured to perform a huge number of logic
functions. It generally includes programmable core logics,
hierarchical reconfigurable interconnects, I/O elements,
memory blocks, and DSPs. With these substantial logical
resources, FPGA achieves an increased programming flexi-
bility compared to application-specific integrated circuits

Complexity 3



(ASICs). However, traditional development flow on FPGA
heavily relies on register transfer level (RTL) descriptions such
as Verilog and very high speed integrated circuit hardware
description language (VHDL), which incurs high develop-
ment and verification cost. To address this problem, FPGA
vendors such as Intel and  ilinx released OpenCL-based
development flow which eases software developers to design
FPGA-based applications, making this process more efficient.

3.2.2. Intel FPGA SDK for OpenCL. *e Intel FPGA SDK for
OpenCL [49] entitles developers to create high-level FPGA
implementation with OpenCL. *is SDK generates a het-
erogeneous computing environment where OpenCL kernels
are compiled by Altera Offline Compiler (AOC) for pro-
gramming FPGA at runtime. In this paradigm, Intel achieves
design optimization while hiding low-level hardware details
of FPGA. Subsequently, FPGA has gradually been applied to
a wide range of fields such as image and video processing
[42, 50], deep learning [51–53], and intelligent optimization
algorithm [46].

OpenCL-based FPGA logic framework is illustrated in
Figure 1 where several modules are specifically explained as
follows:

(1 )Kernel pipeline: the core module of entire frame-
work, which is an implementation of specific func-
tions. *e kernel code is compiled by AOC offline
compiler and will be synthesized into highly parallel
optimized logic circuit referring to the internal ar-
chitecture of FPGA.

(2 )Processor: a host processor, typically CPU, used to
control programs running on FPGA device.

(3 )DDR: off-chip memory, including global and con-
stant memory in the OpenCL memory model. Intel
Cyclone V FPGA device used in this context has a
DDR3 with a capacity of 1GB. By default, the con-
stant cache size is 16KB and can be modified in
accordance with practical requirements.

(4 )PCI-e: high-speed data exchanging interface, re-
sponsible for transporting data and instruction be-
tween host and device.

(5 )On-chip memory: internal memory of FPGA device,
equivalent to local and private memory in the
OpenCL memory model. With small capacity but
high speed, it is mainly used for storing input and
output temporary data, reducing the number of ac-
cesses to global memory. *us, we may take advan-
tage of on-chip memory to improve the efficiency of
OpenCL program.

(6 )Local memory interconnect: a bridge between exe-
cuting unit and memory.

(7 )External memory controller and PHY: a controller
which is in charge of controlling data sending and
receiving via DDR.

4. Parallel Whale Optimization Algorithm
Based on FPGA

With the descriptions and definitions above, the framework
ofWOA can be summarized as shown in the left flowchart in
Figure 2. Note, meanwhile, that the right flowchart is a
simplified framework of WOA which is mainly composed of
initialization, swarm updating, fitness calculation, and
swarm evaluation. Similar to other swarm optimization

1 Generate initial population Xi(i � 1, 2, . . . , n)
2 Evaluate the fitness of each search agent
3 X∗ � the best search agent
4 while(t<MaxIter)do
5 for each search agent do
6 Update a, A, C, l and p
7 if(p< 0.5)then
8 if(|A|< 1)then
9 Update the position of the current search agent by equation (2)
10 else if(|A|≥ 1)then
11 Select a random search agent (Xrand)
12 Update the position of the current search agent by equation (9)
13 end if

14 else if(p≥ 0.5)then
15 Update the position of the current search agent by equation (6)
16 end if

17 end for

18 Amend search agents which go beyond the search space
19 Calculate the fitness of each search agent
20 Replace X∗ with a better solution (if found)
21 t � t + 1
22 end while

23 returnX∗

ALGORITHM 1:
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algorithms, WOA unavoidably suffers from this drawback of
time-consuming operations such as updating swarm and
calculating fitness, which greatly limits its execution speed
[45]. *anks to natural parallelism, the components utilized
to implement swarm updating and fitness calculation in
WOA can be executed concurrently. Within swarm
updating phase, the positions of searching whales are
updated separately by corresponding moving mechanism,
more biologically simulating a real hunting process. For the
remaining two phases, the initialization keeps primary
ideology in this work for it has little effect on computational
performance, whereas the evaluation is synchronous and
cannot be paralleled.

*is section will propose parallel WOA based on FPGA
heterogeneous computing platform. In order to reach effi-
cient acceleration, some compute-intensive tasks of WOA
need to be transferred to FPGA side for parallel execution
whilst CPU performs the remaining tasks. *e parallel
model can be divided into partial parallel and all-FPGA
parallel by assigning different tasks to CPU and FPGA.
Below is the PWOA implementation, which is described in
two aspects: program flow design and dataflow analysis.

4.1. Initialization. Initialization mainly prepares basic data
needed during the whole phase of WOA, including gener-
ating random numbers and initial population. *is process
is carried out at the beginning stage of WOA and executed
only once. On top of this, C/C++ dedicated library for
random number generation is applied as OpenCL does not

support native random number generator. In this paper, a
generic methodology, putting computational task of ini-
tialization at CPU side, is adopted into these two proposed
parallel models, so as to take full use of computational
horsepower from CPU.

Random number generation is a crucial component for
WOA. On the one hand, the initial population is composed of
whales with a random position. What needs to be ensured is
that the value of the random position must be within the
range of decision variable according to specific objective
functions. On the other hand, there are several random
numbers used as coefficients (a, A, C, l, and p) for updating
the position of whale, which plays a significant role in op-
timization performance. Besides, these coefficients appear in
each iteration, meaning that data transportation between
FPGA and CPU also appears in each iteration. It will become
a bottleneck for the running speed of PWOA due to frequent
data transportation between FPGA and CPU. To alleviate this
drawback, all random numbers required as well as the initial
population are generated at CPU side and then sent to FPGA
side once via OpenCL global memory. *e proposed ap-
proach can substantially reduce the time overhead of PWOA.

4.2. Partial Parallel Model-Based PWOA

4.2.1. Program Flow Design. *e partial parallel model exe-
cutes several algorithmic sections in parallel involving the so-
called master-slaves model. *e partial parallel model-based
PWOA (PWOA-PPM) on FPGA is presented in Figure 3.

FPGA

Local memory interconnect Local memory interconnect

Global memory interconnect

External memory
controller & PHY

DDR

On-chip
memory

On-chip
memory

Kernel
pipeline

Kernel
pipeline

External memory
controller & PHY

Processor (CPU)

Figure 1: Architecture of heterogeneous platform with CPU and FPGA.

Complexity 5



Host Program Flow. In terms of host program running on
CPU, it undertakes the initialization of PWOA and transfers
basic data related to kernel side via OpenCL global memory.
Due to the restriction of synchronization, swarm evaluation
is put on CPU for sequential executing in this model. After
that, host program maintains the basic framework of WOA
where it allocates tasks to FPGA, reads computation results
from FPGA, and evaluates swarm in each iteration. *e
evaluation result is also sent to FPGA when host program
enqueues task commands which drive kernel function to be
executed on FPGA. Such task allocation can make better use
of the processing power of CPU but correspondingly cause
supernumerary communication overhead between CPU and
FPGA.

Kernel Program Flow. FPGA device is used to deploy kernel
program and accelerate it. Host offloads computationally
intensive tasks onto FPGA for parallel computing. Based on

the OpenCL programming model, the parallel parts of the
algorithm are mapped to kernel function to be executed by
threads (or work items) independently [40, 45]. In the
proposed model, a fine-grained strategy is adopted, where
each thread takes charge of an individual, calculating fit-
ness and updating position. According to the coefficients
(A and p), each thread (individual) performs different
mechanisms simultaneously: shrinking encircling, spiral
updating, or stochastic searching. Once kernel program
finishes executing, the final results are written back to
global memory.

4.2.2. Dataflow Analysis between Host and Kernel. In the
proposed implementation, the dataflow between host and
kernel mostly depends on global memory bandwidth. At
host side, the memory buffers are created and the data used
are mapped to these buffers, which will be further sent to the

Initialization

Start

Update swarm

Calculate fitness

Evaluate swarm

End

Y

N

Start

For each whale

End

N

Y

Y

N

Y

N

Simplified

Initialize the whales 
population and extract 

the best one

Update a, A, C, l, p

p < 0.5

|A| < 1

Update the current
whale by equation (6)

Update the current
whale by equation (2)

Update the current 
whale by equation (9)

Amend whales which go
beyond the search space

Calculate the fitness
of each whale

Update the optima if
there is a better solution

Meet the
termination

criteria

Meet the
termination

criteria

Figure 2: Framework of the WOA algorithm.
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global memory of kernel via PCI-e. At kernel side, each
thread works as a basic processing element, reads data from
global memory and complete kernel function. As illustrated
in Figure 4, the data set contains positions and fitnesses of all
search agents, the global optima X∗, and coefficients
(a, A, C, l and p). One block in the “positions” memory
block and “fitnesses” memory block represents multi-
dimension position information and fitness value of one
whale individual, respectively. In the “coefficients” memory
block, all coefficients required for a whale during the whole
iterations are stored in one block, whereas the “optima”
memory block just holds the position of the global best
whale.

4.3. All-FPGA Parallel Model Based PWOA

4.3.1. Program Flow Design. In the all-FPGA parallel model,
most constituent parts of WOA, except for initialization, are
ported to FPGA. *e All-FPGA parallel model-based
PWOA (PWOA-AFPM) is designed as shown in Figure 5.

Host Program Flow. At host side (CPU), similar to the
previous partial parallel model, host program undertakes the
initialization of WOA and the basic data related are off-
loaded onto kernel side via OpenCL global memory.
However, it no longer controls the basic framework of WOA
in this parallel model, making a relatively low workload for
CPU while a greater computation overhead for FPGA. After
completing the above two operations, the host program
enqueues task commands to start the kernel program of
FPGA and finally reads results from global memory. A

dramatic advantage of this design, in comparison with
partial parallel model, is minimal communication overhead
between CPU and FPGA.

Kernel Program Flow. Within this model, kernel program
running on FPGA becomes more complex than the previous
model. In addition to receiving data and writing results back
to global memory, the evolutionary framework, which
contains swarm updating, fitness calculation, and swarm
evaluation, is controlled by the kernel. Similarly, the fine-
grained model is also applied to make multiple threads
executing kernel function in parallel. Nevertheless, cares
should be taken when evaluating swarm because all threads
share one global optimal solution. To ensure the accuracy of
the algorithm, we define memory consistency across threads
with respect to memory fences [54, 55]. As depicted in
Figure 5, the process in red dotted line is performed as
synchronizer, where not only do all threads reach a syn-
chronized state before this process, but also using a better
solution obtained by any thread to substitute for the global
optimal solution is an atomic operation as well. In this way,
all threads can be executed in order, therefore guarantees the
evaluation results.

4.3.2. Dataflow Analysis between Host and Kernel. In this
model, the dataflow between host and kernel involves global
memory and on-chip memory (local memory), which is
presented in Figure 6. *e same as the previous model,
positions and coefficients are transmitted via global mem-
ory. To transmit the final result from the kernel to host, it
also requires global memory to store this variable. *erefore,
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Figure 3: Framework of the partial parallel model-based PWOA (PWOA-PPM).
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amemory buffer is created by host program at the beginning,
requesting a global memory space for the global optima X∗.
Usage of on-chip memory from FPGA is a noticeable
variation of dataflow between this model and the prior
model illustrated in Figure 4.*is is because most operations
of WOA are executed by FPGA, and it is a rational strategy
to utilize on-chip memory comprised of local memory and

private memory. Besides, this kind of memory can be di-
rectly and efficiently requested during the process of exe-
cuting kernel. *us, the intermediate results, such as optima
and the fitness of all individuals, are stored into local
memory. Furthermore, a more efficient synchronous eval-
uation process also benefits from the dataset in local
memory.
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5. Numerical Experiment and Analysis

5.1. Experimental Setup. *e experimental platform con-
tains two main hardware devices: CPU and FPGA. For CPU
platform, Intel Core i5-8250 CPU with 16GB RAM is used,
while for FPGA platform, Intel FPGA Cyclone VGT with
1GB DDR3 and 64MB SDRAM is used. *e entire devel-
opment environment is based on Ubuntu 14.04 LTS and
Intel FPGA SDK for OpenCL 17.1 version.

In this paper, ten general benchmark functions [56],
listed in Table 1, are used to make performance comparisons
between serial WOA (CPU implementation) and two par-
allel models based PWOA (FPGA implementation). Among
these benchmark functions,f1 ∼ f5 are unimodal functions
while f6 ∼ f10 are multimodal functions.

Concerning other parameters in the canonical WOA
algorithm, coefficient b in the spiral-updating model is held
constant during the whole evaluation process and set to be 1.0.
Dimensions including 64D, 128D, 256D, and 512D are set
for the optimization test, and the population size of WOA is
dynamically set to be twice the size of the dimension. To verify
the performance of the proposed PWOAs, other two ca-
nonical algorithms, PSO [57] and competitive swarm opti-
mizer (CSO) [58], are selected for comparison. Additionally,
for each implementation with a specific dimension setting, 30
independent runs are executed and the average performance
is considered. For each independent run, the maximum
number of fitness evaluations (FEs) is set to 1000 ×D, where
D is the search dimension of the test functions.

5.2. Optimization Result and Running Time on Benchmark
Functions. By using threeWOAswith different schemes and
two state-of-the-art algorithms to optimize 10 benchmark
functions, experimental data can be obtained as listed in
Table 2–5, where mean and time refer to the average values
of optimization result and running time for 30 runs.

Based on numerical values given in above tables, it can be
noticed that WOA and PWOAs constructed by two parallel
models (PWOA-PPM and PWOA-AFPM) present higher
problem solving efficacy than CSO and PSO when optimizing
all benchmark functions with several dimensions. As for
mean results of all the 10 test cases, WOA and the proposed
PWOAs obtain more accurate values, compared with other
two algorithms. When optimizing f1, f2, f4, f8, and f10,
the results of WOA and PWOAs maintain a tiny gap with
optimal values (0). *e proposed algorithms, particularly, can
converge to a theoretical optimal value (fmin � 0) for f7 and
f9 at any scale. CSO can get more reliable solutions for f1,
f2, f8, and f9, which, however, are still lower than the
proposed algorithms in accuracy. Relatively speaking, PSO
hardly converges to an accurate value for most benchmarks.
*e comparison between WOA and PWOAs shows that the
proposed parallel framework based on FPGA heterogeneous
platform for WOA maintains intrinsic outstanding global
convergence. On top of that, with the increasing of both
dimension and population size, the performance of the
proposed algorithms are improved for most benchmark
functions except for f3, f5, and f8, which indicates that
dimension setting affects optimization performance to some
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…
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Figure 6: Dataflow of PWOA-AFPM between host and kernel.
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extent. Generally speaking, benchmarking results of WOA,
PWOAs, CSO, and PSO prove the effectiveness of two parallel
WOAs proposed in this work.

Concerning running time, two perspectives of function
type and scale settings are considered. From the perspective
of function type, since multimodal functions (f6 ∼ f10)
generally have higher arithmetic complexity than unimodal

functions (f1 ∼ f5) [27, 40], there is an obvious time gap
existed between unimodal and multimodal functions opti-
mized by all algorithms in tables. For classic algorithms,
WOA and PSO have relatively close running time, especially
for unimodal functions. *is is because the two algorithms
essentially have similar structure and complexity. CSO, on
the contrary, maintains faster performance than WOA and

Table 1: Benchmark functions.

Func. Expression Range fmin

f1 f(x) � ∑Di�1 x2i [−100, 100]D 0
f2 f(x) � ∑Di�1 |xi| +∏D

i�1 |xi| [−10, 10]D 0
f3 f(x) � ∑Di�1 (∑ij�1 xj)2 [−100, 100]D 0
f4 f(x) � max

1≤i≤D
|xi| [−100, 100]D 0

f5 f(x) � ∑D−1i�1 [100(xi+1 − x2i )
2 + (xi − 1)2] [−30, 30]D 0

f6 f(x) � ∑Di�1 −xi sin(
���
|xi|
√

) [−500, 500]D −418.983 ×D

f7 f(x) � ∑Di�1[x2i − 10 cos(2πxi) + 10] [−5.12, 5.12]D 0

f8 f(x) � −20e− 0.02
���������������������
D−1∑D

i�1 − e
D−1∑D

i�1 cos(2πxi )+20+e

√
[−32, 32]D 0

f9 f(x) � ∑Di�1 (x2i /4000) −∏D
i�1 cos(xi/

�
i

√
) + 1 [−600, 600]D 0

f10

f(x) � (π/D) 10 sin(πy1) + ∑D−1i�1 (yi − 1)
2[1 + 10 sin2(πyi+1)] + (yD − 1)2{ } +∑Di�1 u(xi, 10, 100, 4)

[−50, 50]D 0
yi � 1 + (xi + 1/4)

u(xi, a, k,m ) �
k(xi − a)

m, xi > a,
0, −a<xi < a,
k(−xi − a)

m, xi < − a.




Table 2: Comparison between the proposed algorithms and the state-of-the-art algorithms (64D).

Func.
PWOA-PPM PWOA-AFPM WOA CSO PSO

Mean Time (s) Mean Time (s) Mean Time (s) Mean Time (s) Mean Time (s)

f1 2.32E − 105 0.1625 2.73E− 104 0.1009 1.98E− 103 0.2905 9.28E− 07 0.1715 7.52E− 07 0.2689
f2 3.71E− 62 0.1621 2.69E− 61 0.0868 6.50E− 61 0.3027 5.57E− 04 0.1746 8.98E + 01 0.2741
f3 6.36E + 02 0.1612 3.47E + 02 0.1028 2.67E + 03 0.2859 8.75E + 03 0.1711 1.76E + 04 0.2513
f4 9.16E− 16 0.1589 1.04E− 16 0.9639 6.91E− 17 0.2903 1.50E + 01 0.1598 3.42E + 01 0.2842
f5 2.73E− 01 0.1747 2.53E− 01 0.1054 1.72E − 01 0.2918 1.70E + 02 0.1803 3.22E + 02 0.2892
f6 −2.65E + 04 0.2068 −2.63E + 04 0.1223 −4.14E + 03 0.6707 −2.19E + 04 0.2945 −1.78E + 04 0.4320
f7 0 0.2123 0 0.1139 0 0.5681 6.57E + 01 0.2711 1.84E + 02 0.3750
f8 2.04E− 15 0.1978 2.40E− 15 0.1098 3.41E− 15 0.5659 1.60E− 04 0.2610 3.23E + 00 0.3799
f9 0 0.2016 0 0.1076 0 0.6759 2.30E− 03 0.2927 2.11E− 02 0.4254
f10 4.39E− 10 0.1685 3.93E− 10 0.0945 1.35E− 10 0.8494 6.37E− 02 0.3409 5.52E + 00 0.6659

Table 3: Comparison between the proposed algorithms and the state-of-the-art algorithms (128D).

Func.
PWOA-PPM PWOA-AFPM WOA CSO PSO

Mean Time (s) Mean Time (s) Mean Time (s) Mean Time (s) Mean Time (s)

f1 8.37E− 111 0.2614 2.52E− 110 0.2781 1.21E− 110 1.1735 4.79E− 07 0.6871 1.08E− 01 1.0877
f2 3.26E − 64 0.2588 4.51E− 63 0.2761 1.71E− 62 1.1620 4.80E− 04 0.6495 4.05E + 02 1.1288
f3 2.40E + 03 0.2584 1.68E + 03 0.2817 2.45E− 03 1.1284 4.30E + 04 0.6805 9.83E + 04 1.3444
f4 1.46E − 18 0.2540 2.67E− 17 0.2693 1.70E− 17 1.1045 3.79E + 01 0.6723 5.37E + 01 1.1271
f5 4.36E− 01 0.2760 9.40E− 01 0.2584 7.56E − 02 1.1548 4.51E + 02 0.7085 7.63E + 02 1.1259
f6 −5.33E + 04 0.3525 −5.35E + 04 0.3318 −6.37E + 03 2.6482 −4.02E + 04 1.1221 V3.23E + 04 1.9468
f7 0 0.3321 0 0.2641 0 2.21 1.26E + 02 1.0309 4.43E + 02 1.7101
f8 4.58E− 15 0.3020 2.22E-15 0.2798 2.81E− 15 2.2070 8.17E− 04 1.0271 7.93E + 00 1.6865
f9 0 0.3193 0 0.2733 0 2.6825 1.11E− 02 1.0924 2.85E− 01 1.8733
f10 3.37E− 10 0.2695 2.69E− 11 0.3795 2.01E− 11 3.3434 4.35E− 01 1.3632 2.31E + 01 2.5813
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PSO, where the simple and low-complexity algorithmic
structures of CSO play an important part. In terms of PWOA-
PPM and PWOA-AFPM, different scales of the problem have
little impact on the execution time of these two algorithms.
Regarding the problem scale, the running time of all three
algorithms is affected by benchmark dimension and pop-
ulation size without exception. CanonicalWOA is sensitive to
problem scale, and different scale settings will cause a large
gap in running time. For PWOA-PPM, the difference in
execution time for functions with 64D and 128D is minimal
but shows a trend of rapid growth for the scale of 256D and
512D. On the contrary, the performance of PWOA-PPM is
relatively stable. As the scale increases, it demonstrates a slow
growth of running time for PWOA-PPM.

In brief, the proposed PWOA-PPM and PWOA-AFPM
are executed more stable than WOA, which benefits from
the hardware-accelerated performance of FPGA due to
built-in dedicated arithmetic units and modular design of
the pipeline.

5.3. Speedup Analysis. In this section, speedup is calculated
based on the running time of different problem scales, given
as follows:

Speedup � TWOA
TPWOA

, (10)

where TWOA and TPWOA denote the running time of serial
WOA and FPGA implementation of parallel WOA,
respectively.

Speedup produced by PWOAs for settling various
benchmark functions is shown in Figure 7 and analyzed as
follows. Note that PWOAs have a certain degree of ex-
ecution improvement and the speedup in both PWOA-
PPM and PWOA-AFPM in multimodal functions is better
than that in unimodal functions with all problem scales.
From Figure 7(a), for both unimodal and multimodal
functions, the greater the dimension of search space be-
comes, the higher the speedup ratio WOA-PPM obtains.
Moreover, WOA-PPM can hold noticeable acceleration
when solving the most complex f10, and the maximum
speedup reaches around 18x with dimension � 512D. As
for WOA-AFPM, it has been found in Figure 7(b) that
WOA-AFPM exhibits unstable computational perfor-
mance, where the speedup for all functions decreases in
case of 256D while it manifests relatively better accel-
eration in the cases of 128D and 512D. In addition, the
speedup ratio obtained by WOA-AFPM for optimizing
f10, contrary to WOA-PPM, shows a slight downward
trend, as the problem scale increases. *e maximum
speedup produced by PWOA-AFPM can be up to 10x
(solving f9 with dimension � 512D).

Four bar graphs, depicted in Figure 8, are used here to
intuitively make comparisons for the speedup between
PWOA-PPM and PWOA-AFPM with different problem
scales. In cases of small scale including 64D and 128D, the
speedup of PWOA-PPM is not as good as PWOA-AFPM,
especially when solving all functions in case of 64D and
f5 ∼ f9 in case of 128D. Note, however, that the running
efficiency of PWOA-PPM steadily rises as the scale

Table 4: Comparison between the proposed algorithms and the state-of-the-art algorithms (256D).

Func.
PWOA-PPM PWOA-AFPM WOA CSO PSO

Mean Time (s) Mean Time (s) Mean Time (s) Mean Time (s) Mean Time (s)

f1 3.47E − 118 0.6760 5.40E− 118 1.7067 4.72E− 118 4.4267 2.01E− 06 2.6118 7.82E + 02 4.3250
f2 3.54E − 65 0.7065 7.52E− 65 1.6059 5.59E− 65 4.5381 8.65E− 04 2.7718 8.64E + 02 4.5422
f3 8.89E + 02 0.6839 3.15E + 03 1.6452 2.87E + 03 4.4668 1.62E + 05 2.8792 4.13E + 05 4.5937
f4 7.75E− 21 0.6947 2.20E − 21 1.7199 1.04E− 20 4.3673 3.46E + 01 2.6202 6.84E + 01 4.5842
f5 3.81E + 00 0.7995 2.40E− 01 1.6395 8.51E− 02 4.5709 7.68E + 02 2.6535 2.0E + 05 4.9438
f6 −1.05E + 05 1.0876 −1.07E + 05 1.5272 −9.01E + 03 10.5611 −7.45E + 04 4.6981 −5.63E + 04 7.1954
f7 0 1.1013 0 1.6448 0 8.7863 1.93E + 02 4.1165 9.30E + 02 6.0118
f8 1.06E − 15 0.9937 2.98E− 15 1.6502 3.06E− 15 8.7506 8.34E− 04 4.0297 1.36E + 01 6.0041
f9 0 1.0277 0 1.6496 0 10.6604 1.31E− 03 4.3609 1.14E + 01 8.1001
f10 2.34E− 11 0.8478 3.04E − 12 1.6143 6.36E− 12 13.3073 5.20E− 01 5.2544 8.13E + 01 9.5807

Table 5: Comparison between the proposed algorithms and the state-of-the-art algorithms (512D).

Func.
PWOA-PPM PWOA-AFPM WOA CSO PSO

Mean Time (s) Mean Time (s) Mean Time (s) Mean Time (s) Mean Time (s)

f1 6.50E − 123 2.5753 9.92E− 123 4.5841 1.38E− 122 17.6789 1.14E− 04 10.2368 8.32E + 04 18.1490
f2 1.91E− 68 2.5890 4.37E− 68 4.8587 9.88E− 68 18.0246 1.34E− 01 10.8658 1.74E + 03 19.0045
f3 1.73E + 04 2.4585 5.70E + 03 4.6452 2.65E + 03 17.8125 1.38E + 08 10.4507 1.54E + 06 18.5338
f4 8.08E− 23 2.5920 1.08E− 22 4.8721 4.79E− 22 17.4709 3.86E + 01 10.0652 9.81E + 01 18.7573
f5 1.31E+ 00 2.8612 5.06E + 00 3.8336 7.35E + 00 18.2380 1.11E + 03 10.8096 1.00E + 08 18.8939
f6 −2.14E + 05 3.1862 −2.17E+ 05 5.9001 −1.43E + 04 42.3103 −1.17E + 05 19.2030 −9.31E + 04 30.1889
f7 0 3.0358 0 3.9192 0 35.2929 2.79E + 03 17.0799 2.81E + 03 29.1872
f8 6.13E− 16 2.9920 3.29E− 15 5.6349 2.70E− 15 34.9978 4.36E− 03 15.6751 1.72E + 01 28.9203
f9 0 3.0299 0 4.3163 0 42.7160 5.22E− 04 18.2628 7.59E + 02 29.9871
f10 3.53E− 12 2.9357 1.09E − 12 7.4716 5.49E− 12 51.1879 3.34E− 01 21.4533 9.64E + 06 34.8555
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Figure 7: Speedup of PWOA-PPM and PWOA-AFPM w.r.t benchmark functions.
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Figure 8: Continued.

12 Complexity



increases. In case of 256D, the speedup of WOA-PPM for
all unimodal functions and f10 is twice greater or more
than that of WOA-AFPM. *is value of speedup gap be-
tween WOA-PPM and WOA-AFPM further increases
from twice to 2.5 times when solving f10 in case of 512D.
In a few words, WOA-PPM has more advantages in solving
medium-scale and large-scale problems, while WOA-
AFPM has better computational performance in small-
scale problems.

It can be seen from above experimental analysis that
PWOAs with two models have held discrepant influence on
acceleration, which are mainly caused by the different
frameworks instructing the implementation of PWOA-PPM
and PWOA-AFPM on FPGA heterogeneous platform. For
PWOA-PPM, it utilizes a partial parallel model and a certain
amount of extra overhead that frequent communication
between CPU and FPGA becomes a bottleneck leading to
worse performance in case of small-scale. Unlike PWOA-
PPM, PWOA-AFPM transfers most work of WOA to FPGA
side for execution. Additionally, synchronous operation
using memory fence requires more hardware to implement
and might degrades kernel performance at FPGA side [55].
*is, in turn, makes PWOA-AFPM become more inefficient
with the increment of benchmark complexity and problem
scale.

6. Conclusion

Demonstrating its excellence in global optimization,
WOA has drawn significant research interests in the last
few years. An unavoidable reality is that performance
degradation takes places in WOA when facing large-scale
complex optimization problems. Many proposals exist to
address this issue, most of which, however, are based on
classic algorithms such as genetic algorithm and particle
swarm optimization, while very few literature studies
about parallel WOA can be found. Based on FPGA

accelerator, this study proposes two well-designed par-
allel models to implement parallel PWOA using the
OpenCL framework with a demonstration on Intel
heterogeneous platform. Finally, the performances of
two parallel models based on PWOA (PWOA-PPM and
PWOA-AFPM) have been evaluated using 10 benchmark
functions.

For future work, it is essential to apply this algorithm to
real engineering problems to verify the practical benefits.
Besides, more different types of devices such as GPU and
DSP need to be investigated, to build a multidevice het-
erogeneous platform. *is platform will be an efficient co-
operative running environment where a high-computational
task can be decomposed into several parts and then assigned
to different devices. *erefore, the proposed parallel scheme
has potential for real applications.
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