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Abstract
One of the main current challenges in Educational Data Mining and Learning Ana-
lytics is the portability or transferability of predictive models obtained for a par-
ticular course so that they can be applied to other different courses. To handle this 
challenge, one of the foremost problems is the models’ excessive dependence on 
the low-level attributes used to train them, which reduces the models’ portability. 
To solve this issue, the use of high-level attributes with more semantic meaning, 
such as ontologies, may be very useful. Along this line, we propose the utilization of 
an ontology that uses a taxonomy of actions that summarises students’ interactions 
with the Moodle learning management system. We compare the results of this pro-
posed approach against our previous results when we used low-level raw attributes 
obtained directly from Moodle logs. The results indicate that the use of the proposed 
ontology improves the portability of the models in terms of predictive accuracy. The 
main contribution of this paper is to show that the ontological models obtained in 
one source course can be applied to other different target courses with similar usage 
levels without losing prediction accuracy.
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Introduction

In recent decades, one of the main educational milestones is the advent of a 
new form of learning called e-learning (electronic learning), based on the use 
of the internet and technology to support students’ online education. Nowadays, 
this form of learning is becoming particularly important due to the limitations 
defined by the authorities to restrain the spread of pandemics such as the one 
caused by Covid-19. The use of e-learning poses important advantages including 
the enabling of a more flexible temporal and spatial interaction than other forms 
of learning. Besides, vast amounts of learning process data can be collected, 
since it is based on the use of Learning Management Systems (LMS). Moodle 
(Dougiamas & Taylor, 2008) is one of the most used LMS overall, because, 
among other advantages, it is free, open and there is an important community 
of users who support its development. Data recorded by Moodle, in particular 
those that reflect students’ interactions with educational resources, can be of great 
interest and applicability for building student behavior models. To analyze these 
data, approaches such as Educational Data Mining (EDM) and Learning Analyt-
ics (LA) are useful (Romero et al., 2008). In EDM, a field whose purpose is the 
extraction of knowledge from educational data, there are well-defined problems 
that have been addressed by the scientific community, such as the prediction of 
students’ performance (Romero & Ventura, 2013, 2020). Recently, it is more fre-
quent to find works that propose new approaches to analyzing educational data 
for a particular course. However, one of the due challenges is creating models 
for a particular course that can be useful when used in other courses (Baker, 
2019). These are what we call transferable or portable models (Boyer & Veera-
machaneni, 2015).

In our previous work (López-Zambrano et al., 2020), we obtained models gen-
erated from Moodle’s logs data and we studied the degree of portability of the 
models between subjects, grouped by area of knowledge and by the usage level 
of platform resources. We used Moodle’s native raw attributes which, in certain 
combinations of courses, led us to a certain loss in the portability of models since 
these low-level attributes are very dependent on each particular course. To over-
come this limitation from our previous research, in this paper we present a new 
approach based on the use of resources from the semantic web area, in particular, 
ontologies (Fong et  al., 2011; Tang & Fong, 2010). One of the most promising 
lines in this respect, particularly when analyzing logs of students’ interactions 
with the LMS, is the categorization or taxonomy of attributes. In this regard, 
Bloom’s taxonomy plays an important role. Bloom’s taxonomy is a multi-tiered 
model of classifying thinking according to six cognitive levels of complexity 
which in this new version are: Remembering, Understanding, Applying, Analys-
ing, Evaluating and Creating (Forehand, 2005). Based on this idea, some works 
have even defined correspondence between the levels of Bloom’s taxonomy and 
the different actions conducted by students in Moodle (Rollins, 2010). Some 
authors (Cerezo et  al., 2020) proposed a categorization of low-level attributes 
into different higher-level codifications, such as Executing, Planning, Learning, 
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and Reviewing. Precisely, our research aims to evaluate the degree of portability 
of models built by using ontologies of interaction-with-the-platform attributes. 
To do so, we defined an ontology inspired by Bloom’s taxonomy and based on the 
work by Cerezo et  al. (2020), with the purpose of conducting a comprehensive 
study to measure the degree of portability of the models built based on that ontol-
ogy (denoted as ontological models), compared with a previous similar study 
conducted by the authors López-Zambrano et al. (2020) in which we did not use 
ontologies but instead employed low-level Moodle attributes (denoted as non-
ontological models). The models have been built from students’ interactions with 
Moodle logs and the class attribute to predict is binary and represents whether 
or not the student will pass the course (Pass/Fail). In this work, the courses have 
been grouped according to the usage level of Moodle activities/resources. This 
approach has already been used in previous studies with satisfactory results 
(López-Zambrano et  al., 2020). Taking all this into consideration, the global 
objective of this paper is to provide an answer for the research question below:

• Can the ontological models obtained in one (source) course be applied in other 
different (target) courses with a similar usage level without losing prediction 
accuracy?

The rest of the paper is organized as follows: Sect. “Background” reviews the lit-
erature related to this research. Section “Materials and methods” describes the data 
and the experiments. Section “Results” includes and discusses the results obtained. 
Finally, Sect. “Conclusions” presents the conclusions and future lines of research.

Background

Achieving generalizable and portable models is still an important challenge in the 
area of EDM, in spite of the important advances made in the last few years (Boyer 
& Veeramachaneni, 2015; Ding et al., 2019; Gašević et al., 2016; Hunt et al., 2017). 
In fact, Baker (2019) has considered what he calls the “Generalizability” or “New 
York City and Marfa” problem as one of the main challenges for the future of EDM, 
which is explained in detail in López-Zambrano et al. (2020).

To address this challenge, the resource of resources from the semantic web seems 
to be a promising line. The semantic web is an extension of the current web in which 
information is provided with a certain meaning, which makes cooperation and port-
ability easier (Dhuria & Chawla, 2014). Fundamental resources from the semantic 
web are the ontologies, because they provide a common understanding of a domain. 
In particular, they may be interesting resources in the e-learning field (Al-Yahya 
et al., 2015).

In this regard, several particular works should be highlighted. In Octaviani et al. 
(2015) they present a tool, called RDB2Onto, for creating ontologies from Moodle 
logs, but this work does not validate the utility of such an ontology. In Castro and 
Alonso (2011) they propose a general architecture for EDM in which there is an 
educational ontology, but they do not define or develop the ontology, only providing 
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a general statement of it as a part of a higher-level architecture. There are even some 
works such as the one presented in Chang et al. (2020) where they utilize data min-
ing techniques (association in this case) to build ontology-driven tutoring models for 
intelligent tutoring systems (this is precisely the opposite process to ours since we 
use the ontology for a further data mining analysis).

These previous works present general approaches. Other more specific works bear 
greater similarity to our study because they define particular ontologies to facilitate 
the EDM process. We found some works where the ontology created is not focused 
on attributes of students’ interaction with the LMS. In Marinho et al. (2010) they 
propose an ontology to model EDM tasks, techniques, and parameters. In Grivoko-
stopoulou et al. (2014) they propose an educational system that utilizes ontologies 
and semantic rules to enhance the quality of educational content (curriculum) and 
the learning activities delivered to each student. In Nouira et al. (2019), they propose 
an ontological model for assessment analytics. And finally; in Dorça et al. (2017), 
they present an approach for the automatic and dynamic analysis of learning object 
repositories in which ontology models the relationships between the attributes and 
learning styles of the learning objects.

Other related works are those that define ontologies to model data of students’ 
interactions with LMS resources. In El-Rady (2020), they propose an ontology 
where the student is the main class from which a series of associations arise that are 
connected to other classes that model the students’ data (education, profile, social 
activities, etc.). That ontology is used as a part of a validation process to predict 
student dropout rates. Other related works are based on the idea of organizing the 
interaction attributes as part of a kind of taxonomy. It is worth highlighting the work 
presented in Cerezo et  al. (2020), where they propose a process mining method 
for a self-regulated learning assessment, and make use of an ontology inspired by 
Bloom’s taxonomy. In Montenegro-Marin et al. (2011), they also propose an ontol-
ogy based on the idea of taxonomy, but not restricted to interaction attributes, as 
they consider many other features, such as the curriculum design, productivity, man-
agement, and so on. However, they do not validate the utility of the ontology.

Considering all the previous works, and to the best of the authors’ knowledge, 
our work presented in this paper is the first that analyses the power of ontologies as 
a resource that makes the portability of EDM models easier and, in particular, it is 
also the only one for that purpose which is based on data from the students’ interac-
tions with the LMS. Furthermore, it is the first research that depicts a comparative 
study against a previous non-ontological similar approach, with the purpose of dem-
onstrating the performance improvement obtained when using ontologies. Both of 
these innovative aspects are the core contributions of this paper.

Materials and methods

In this section, we describe both the data used and the preprocessing tasks we 
applied to them in order to transform the raw data gathered from the Moodle logs to 
the high-level attributes of the proposed ontology. We also describe the experimen-
tation that we carried out in order to address our research question.
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Data and preprocessing

We have used the log data of 1840 Cordoba University students from 16 different 
courses taught by the Computer Science Department. Table  1 summarises these 
courses. For each course, it shows the subject or name of the course (Subject), our 
own identification Code, name of the Degree, Year in the degree/curriculum, num-
ber of students (#Users), and the level of Moodle Usage (Low, Medium or High). 
To accomplish the ethical and privacy issues about using these data, we have used 
informed consent with all the instructors and we have also anonymized all informa-
tion about students (Pardo & Siemens, 2014).

We divided or grouped our 16 different courses (see Table  1) into three usage 
levels of Moodle activities in courses (see Table 2). Moodle provides us resources 
(text and web page, link to files or websites, and label) and different types of activi-
ties (assignments, chat, choice, database, forum, glossary, lesson, quiz, survey, wiki, 
workshop, etc.). We have defined three levels of usage by the number of activities 
used in the course:

Table 1  Information of all subjects

Subject Code Degree Year #Users Moodle usage

Introduction to programming (group 1) IP1 Computer 1 144 Medium
Introduction to programming (group 2) IP2 Computer 1 145 High
Programming methodology (group 1) PM1 Computer 1 114 Medium
Programming methodology (group 2) PM2 Computer 1 119 High
Professional computer tools PCT Computer 1 124 Medium
Databases DB Computer 2 58 Medium
Human computer interfaces HCI Computer 2 260 High
Information systems InS Computer 2 188 Medium
Software engineering SE Computer 2 58 Medium
Interactive systems IS Computer 3 84 High
Requirement engineering RE Computer 3 36 Medium
Software design and construction SDC Computer 3 50 Medium
Introduction to computer science ICS1 Electrical engineering 1 100 Low
Introduction to computer science ICS2 Electronic engineering 1 198 High
Introduction to computer science ICS3 Civil engineering 1 85 Low
Introduction to computer science ICS4 Mining engineering 1 77 Low

Table 2  List of groups by 
Moodle usage

No Group No. of 
sub-
jects

1 High 5
2 Medium 8
3 Low 3
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• Low level The course only has one or no activity.
• Medium level The course has two different types of activities.
• High level The course has three or more different types of activities.

Moodle provides a wide range of activities such as Assignments, Databases, 
Chats, Choice, Questionnaires, Quiz, Surveys, Forums, Glossaries, Lessons, 
SCORM packages, Workshops, Wikis, etc.). The most frequent activities in our 
courses are Assignments, Forums, and Quizzes. So, normally low-level courses only 
use one of these three activities, medium level two of them, and high level three 
or more activities. Table 2 shows the number of courses in each group grouped by 
usage level.

We also propose our ontology for defining 5 high-level attributes starting from 58 
low-level attributes or actions provided by Moodle logs (see Table 3).

As depicted in Table 3, our ontology generalizes the 58 raw/low-level events pro-
vided by the Moodle logs into only five attributes or high-level categories. The first 
category references all the actions about consulting resources (LEARNING/READ-
ING/VIEWING), the second groups the students’ communication events (COM-
MUNICATING), the third deals with the students’ work (WORKING/DOING), the 
fourth is about students’ evaluation (EXAMINING/EVALUATING) and the last is 
about the students’ general ENGAGEMENT in the course. The first four attributes 
of our ontology are a number (from 0 to 100) that is the percentage of events of each 
type that each student has done in Moodle. The last attribute is the most general and 
is also a number (between 0 and 100) obtained from the total number of interac-
tions/events and the number of days connected.

Finally, we have created two different datasets or data files: one with the original 
previously-described numerical data, and the other discretizing the attributes in two 
labels (HIGH and LOW) by using the equal width discretization method.

In both cases, we added a new attribute or class to predict at the end of our 5 
attributes. This class is the final mark obtained by the students in the course, which 
is the value to predict in a classification task. The final mark (value between 0 and 
10) has been discretized into two values or labels: FAIL if the student’s final mark is 
lower than 5 or PASS if the students’ final mark is higher than 5.

Methodology for experimentation

The methodology used in our experimentation consisted of these steps (see Fig. 1):

• Firstly, we downloaded and preprocessed the Moodle log in order to obtain both 
the numerical and discretized datasets for each course. We used a specific Java 
tool that we developed for doing this specific transformation task (López-Zam-
brano et al., 2020).

• Secondly, we executed the well-known J48 classification algorithm provided by 
the WEKA data mining environment for each one of the previous numerical and 
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categorical datasets of 16 subjects or different courses. In this step, we obtained 
one prediction model for each course.

• Then, we grouped our 16 subjects/courses into 3 groups depending on their level 
of usage of Moodle activities (see Table 1).

• Next, we repeated the next two actions. We selected each prediction model 
obtained in one course one by one and we applied it to testing the datasets of all 
the other courses in the same group. We repeated this process with all the models 
and with all the datasets for each group.

• Finally, we obtained the values of the two evaluation metrics that we used (the 
area under the ROC Curve and AUC loss) when applying the prediction model 
for one course/subject over the other datasets in the same group. And we com-
pared the results obtained when using the original raw low-level

Results

The results of these three groups are set out below (summarised in Table 3). Two 
experiments were conducted for each group, applying the J48 algorithm with bal-
anced numerical and discretized datasets. These experiments consisted of having a 
first set of experiments for which high-level datasets were constructed (ontology) 
and a second experiment with datasets built with low-level attributes.

For each experiment (within the same group), we conducted an analysis of the 
best AUC obtained and the lowest error rate, or loss of portability, of the model. 

Fig. 1  Methodology used in our experimentation
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Thus, the results consist of two tables. At the top, a matrix is shown with the results 
of the AUC metric, obtained from the list of the general model for each subject 
(rows), compared to the average AUC for the individual datasets from each period 
for a subject (columns). The values of the main diagonal represent the testing of the 
general model for subjects over their own datasets, where this value is the reference 
AUC value (highest value), with regard to the AUCs from the other subjects. The 
second matrix (bottom) displays the difference between the highest AUC (reference) 
by row, with regard to each individual AUC. These values tell us how much preci-
sion is lost in the AUC when this model is tested with other subjects (portability), 
aiming to highlight the lowest values, as they indicate the lowest error rate or loss in 
the process of model portability or transferability.

Group of courses with high‑level usage

For the high-level group, we can see in Table 4 that of the two tests, the best general 
results (averages) are in the datasets with ontology, revealing that the AUC average 
for numerical datasets is 0.62 and the average for discretized datasets is 0.61, higher 
than their equivalents in the tests without ontology. While there is only a small dif-
ference, the loss rate or difference in transferability does denote a greater difference, 
and within the same test group, the difference between numerical and discretized 
datasets is highly significant, where the tests with discretized data are much better.

If we focus on the tests with the best results, we can see that the best value for 
the AUC metric (0.675) is in the ICS2 subject obtained with discretized data and 
tested with the subject HCI. This is not concordant with the general average of the 
AUCs, whose highest value is for the numerical sets (0.62), with a tiny difference of 
one one-hundredth. However, it is concordant with the fact that the best rate of loss 
or difference is with the discretized data (0.10). We can also see that the generalized 
model obtained with the aforesaid subject (ICS2) has very good results, which is 
proven in the general averages (row) in both tests (with and without ontology).

With regard to the model that obtained the best average in the precision loss rate, 
we can see in Fig. 2, the decision tree, defining the attribute COMMUNICATING 
(from the five ontology attributes—Table 1) as the attribute with the highest increase 
in information, which would define the prediction for a student passing the course.

Group of courses with medium‑level usage

For the medium-level group, we can see in Table 5 that of the two tests, the best 
general results (averages) are in the dataset tests with ontology, revealing that the 
AUC average for numerical datasets is 0.60 and the average for discretized data-
sets is 0.59, higher than their equivalents in the tests without ontology. There is a 
small difference, although the loss rate or difference in transferability does denote a 
greater difference, and within the same test group, the difference between numerical 
and discretized datasets is highly significant, where the tests with discretized data 
are much better.
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If we focus on the tests with the best results, we see that the best value for the 
AUC metric (0.718) is for the subject SDC, obtained with numerical data and tested 
with the subject RE, which is concordant with the general AUC average, whose 
highest value is in the numerical tests (0.60), with is a small difference of one one-
hundredth. However, it is not concordant with the fact that the best loss or difference 
rate is for discretized data (0.18). We also see that in the generalized model within 
the tests with discretized data, the subject PM1 has a good result in the general aver-
age for the loss rate (row) in the tests without ontology, although in the tests with 
ontology (employing a generalized model of high-level attributes), there are also 
good results in the IP1 and INS subjects, which share the same value of 0.13, six 
one-hundredths more, but still within the ideal value for good transferability of the 
model.

With regard to the subjects with the best average loss rate, Fig. 3 shows that the 
decision tree defines the attributes LEARNING/READING/VIEWING and COM-
MUNICATING (from the five ontology results—Table 1) as the attributes with the 
greatest gain in information, defining that if there is a high level of LEARNING/
READING/VIEWING, the student will pass or, conversely, if it is low, but with a 
high level of interaction in COMMUNICATING, the student will also pass.

Concerning the decision tree shown in Fig. 4, it defines the attributes LEARN-
ING/READING/VIEWING, COMMUNICATING, WORKING/DOING and 
EVALUATING/EXAMINING (from the five ontology attributes—Table 1) as the 
attributes with the greatest increase in information, once again defining that if there 
is a high level of LEARNING/READING/VIEWING, the student will pass or, con-
versely, if it is low, but with a high level of interaction in COMMUNICATING, 
the student will also pass. If the COMMUNICATING level is low, but the level of 
WORKING/DOING is high, then the student would pass, but if it is not high, then 
the student will only pass if the EVALUATING/EXAMINING level is high.

Group of courses with low‑level usage

For the low-level group, we can see in Table 6 that of the two tests, the best gen-
eral results (averages) are in the dataset tests with ontology, revealing that the AUC 
averages for numerical datasets is 0.63 and the average for discretized datasets is 
0.61, higher than their equivalents in the tests without ontology. There is a small dif-
ference, although the loss rate or difference in transferability does denote a greater 
difference, and within the same test group, the difference between numerical and 
discretized datasets is highly significant, where the tests with discretized data are 
much better.

Fig. 2  The best model for the 
high-level group with discre-
tized dataset—subject ICS2
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Table 5  AUC results and loss of transferability (difference) with J48—medium-level group

Course With ontology

IP1 PM1 DB SDC PCT RE SE InS Avg

AUC (numerical datasets)
IP1 0.835 0.567 0.589 0.552 0.508 0.589 0.620 0.582 0.61
PM1 0.519 0.821 0.540 0.520 0.530 0.510 0.550 0.567 0.57
DB 0.670 0.623 0.980 0.590 0.571 0.566 0.521 0.640 0.65
SDC 0.502 0.596 0.516 0.788 0.469 0.718 0.549 0.504 0.58
PCT 0.633 0.621 0.611 0.610 0.911 0.641 0.572 0.670 0.66
RE 0.494 0.519 0.497 0.643 0.476 0.869 0.527 0.512 0.57
SE 0.540 0.510 0.520 0.560 0.530 0.511 0.962 0.523 0.58
InS 0.608 0.580 0.591 0.563 0.508 0.560 0.562 0.815 0.60

Avg mean 0.60
AUC loss (numerical datasets)
IP1 – 0.267 0.246 0.283 0.327 0.246 0.215 0.253 0.26
PM1 0.302 – 0.281 0.301 0.291 0.311 0.271 0.254 0.29
DB 0.310 0.357 – 0.390 0.409 0.414 0.459 0.340 0.38
SDC 0.286 0.192 0.272 – 0.319 0.070 0.239 0.284 0.24
PCT 0.278 0.290 0.300 0.301 – 0.270 0.339 0.241 0.29
RE 0.375 0.350 0.372 0.226 0.393 – 0.342 0.357 0.34
SE 0.422 0.452 0.442 0.402 0.432 0.451 – 0.439 0.43
InS 0.207 0.235 0.224 0.252 0.307 0.255 0.253 – 0.25

Avg mean 0.31
AUC (discretized datasets)
IP1 0.772 0.637 0.621 0.601 0.688 0.643 0.643 0.652 0.66
PM1 0.634 0.763 0.532 0.604 0.562 0.510 0.521 0.602 0.59
DB 0.612 0.583 0.775 0.555 0.616 0.567 0.543 0.551 0.60
SDC 0.474 0.562 0.628 0.696 0.505 0.590 0.480 0.551 0.56
PCT 0.592 0.564 0.577 0.582 0.812 0.567 0.581 0.582 0.61
RE 0.589 0.591 0.520 0.583 0.572 0.801 0.563 0.571 0.60
SE 0.527 0.562 0.550 0.588 0.504 0.614 0.694 0.548 0.57
InS 0.648 0.635 0.549 0.640 0.471 0.369 0.529 0.677 0.56

Avg mean 0.59
AUC loss (discretized datasets)
IP1 – 0.135 0.151 0.172 0.084 0.129 0.129 0.120 0.13
PM1 0.129 – 0.231 0.159 0.201 0.253 0.242 0.162 0.20
DB 0.163 0.192 – 0.220 0.159 0.208 0.232 0.224 0.20
SDC 0.222 0.134 0.068 – 0.191 0.107 0.216 0.145 0.15
PCT 0.220 0.248 0.235 0.230 – 0.245 0.231 0.230 0.23
RE 0.212 0.210 0.281 0.218 0.229 – 0.238 0.230 0.23
SE 0.167 0.132 0.144 0.107 0.190 0.080 – 0.146 0.14
InS 0.029 0.042 0.128 0.038 0.206 0.309 0.148 – 0.13

Avg mean 0.18
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Table 5  (continued)

Course Without ontology

IP1 PM1 DB SDC PCT RE SE InS Avg

AUC (numerical datasets)
IP1 0.938 0.588 0.542 0.545 0.610 0.493 0.579 0.523 0.60
PM1 0.496 0.689 0.589 0.478 0.567 0.624 0.484 0.486 0.55
DB 0.495 0.491 0.976 0.535 0.457 0.670 0.581 0.517 0.59
SDC 0.492 0.518 0.467 0.809 0.504 0.558 0.496 0.456 0.54
PCT 0.459 0.496 0.337 0.585 0.891 0.612 0.382 0.492 0.53
RE 0.439 0.524 0.329 0.553 0.579 0.956 0.473 0.577 0.55
SE 0.526 0.581 0.611 0.559 0.486 0.614 0.964 0.494 0.60
InS 0.484 0.495 0.671 0.583 0.486 0.610 0.533 0.704 0.57

Avg mean 0.57
AUC loss (numerical datasets)
IP1 – 0.350 0.396 0.393 0.328 0.446 0.359 0.415 0.38
PM1 0.193 – 0.100 0.211 0.122 0.065 0.205 0.203 0.16
DB 0.481 0.485 – 0.441 0.519 0.307 0.395 0.459 0.44
SDC 0.317 0.291 0.342 – 0.305 0.252 0.313 0.353 0.31
PCT 0.432 0.395 0.554 0.306 – 0.279 0.509 0.399 0.41
RE 0.517 0.432 0.627 0.403 0.377 – 0.483 0.379 0.46
SE 0.438 0.383 0.353 0.405 0.478 0.351 – 0.470 0.41
InS 0.221 0.209 0.033 0.121 0.218 0.094 0.171 – 0.15

Avg mean 0.34
AUC (discretized datasets)
IP1 0.811 0.441 0.496 0.535 0.500 0.500 0.414 0.510 0.53
PM1 0.476 0.585 0.458 0.550 0.515 0.564 0.512 0.559 0.53
DB 0.551 0.500 0.652 0.551 0.476 0.500 0.510 0.499 0.53
SDC 0.532 0.593 0.430 0.924 0.531 0.610 0.484 0.622 0.59
PCT 0.494 0.500 0.447 0.567 0.712 0.553 0.470 0.551 0.54
RE 0.568 0.543 0.529 0.614 0.508 0.756 0.545 0.569 0.58
SE 0.487 0.500 0.500 0.375 0.473 0.431 0.718 0.451 0.49
InS 0.526 0.500 0.429 0.625 0.528 0.454 0.500 0.761 0.54

Avg mean 0.54
AUC loss (discretized datasets)
IP1 – 0.370 0.315 0.277 0.311 0.311 0.397 0.301 0.33
PM1 0.108 – 0.127 0.035 0.070 0.021 0.073 0.025 0.07
DB 0.101 0.152 – 0.101 0.176 0.152 0.142 0.153 0.14
SDC 0.392 0.331 0.494 – 0.393 0.314 0.440 0.302 0.38
PCT 0.218 0.212 0.265 0.145 – 0.159 0.242 0.161 0.20
RE 0.188 0.213 0.227 0.142 0.248 – 0.211 0.187 0.20
SE 0.231 0.218 0.218 0.343 0.245 0.287 – 0.267 0.26
InS 0.235 0.261 0.332 0.136 0.233 0.307 0.261 – 0.25

Avg mean 0.23
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If we now focus on the tests with the best results, we can see that the best value 
for the AUC metric (0.683) is in the ICS1 subject obtained with discretized data and 
tested with the subject ICS4. This is not concordant with the general average of the 
AUCs whose highest value is for the numerical sets (0.63), with a small difference 
of two one-hundredths. However, it is concordant with the fact that the best rate of 
loss or difference is with the discretized data (0.13). We can also observe that the 
generalized model obtained with the aforesaid subject (ICS1) has very good results, 
which is proven in the general averages (row) for the matrix of discretized data with 
ontology. The value is 0.07, which is below the ideal for determining a good transfer 
of the model, in this case for a general model with high-level attributes.

With regard to the subject with the best average loss rate, we can see in Fig. 5, the 
decision tree, defining the attribute COMMUNICATING (from the five attributes of 
ontology—Table 1) as the attribute with the highest increase in information, which 
would define the predictability for a student passing the course.

Conclusions

This paper aims to improve the portability or transferability of predictive models 
of students’ performance by using an ontology that uses a taxonomy of actions on 
students’ interactions with the Moodle learning management system. We compare 
the results of this new proposed approach against our previous results when we used 
low-level raw attributes directly obtained from Moodle logs. The results obtained 

Fig. 3  Best model for the 
medium-level group with discre-
tized dataset—subject IP1

Fig. 4  Best model for the 
medium-level group with discre-
tized dataset—subject InS
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show that the use of the proposed ontology significantly improves the portability 
of the models in terms of their predictive accuracy. So, the answer to our initial 
research question is yes, the ontological models obtained in one source course can 
be applied to other different target courses with similar usage levels without losing 
prediction accuracy.

One of the limitations of this work is the specific attributes/variables used in our 
proposed ontology.

For example, it is also important to discuss if the “number of total interactions” 
are truly showing engagement when learning using LMS. The number of actions 

Table 6  AUC results and loss of transferability (difference) with J48—low-level group

Course With ontology

ICS1 ICS3 ICS4 Avg ICS1 ICS3 ICS4 Avg

AUC (numerical datasets) AUC (discretized datasets)
ICS1 0.860 0.592 0.500 0.65 0.722 0.615 0.683 0.67
ICS3 0.506 0.820 0.560 0.63 0.512 0.750 0.565 0.61
ICS4 0.510 0.531 0.832 0.62 0.500 0.500 0.600 0.53

Avg mean 0.63 Avg mean 0.61
AUC loss (numerical datasets) AUC loss (discretized datasets)

ICS1 – 0.268 0.360 0.31 – 0.107 0.039 0.0
ICS3 0.314 – 0.260 0.29 0.239 – 0.186 0.21
ICS4 0.322 0.301 – 0.31 0.100 0.100 – 0.10

Avg mean 0.30 Avg mean 0.13

Course Without ontology

ICS1 ICS3 ICS4 Avg ICS1 ICS3 ICS4 Avg

AUC (numerical datasets) AUC (discretized datasets)
ICS1 0.917 0.491 0.404 0.60 0.761 0.470 0.591 0.61
ICS3 0.554 0.938 0.527 0.67 0.375 0.707 0.502 0.53
ICS4 0.414 0.495 0.771 0.56 0.410 0.460 0.682 0.52

Avg mean 0.61 Avg mean 0.55
AUC loss (numerical datasets) AUC loss (discretized datasets)

ICS1 – 0.426 0.513 0.47 – 0.291 0.170 0.23
ICS3 0.384 – 0.411 0.40 0.333 – 0.205 0.27
ICS4 0.357 0.277 – 0.32 0.273 0.222 – 0.25

Avg mean 0.39 Avg mean 0.25

Fig. 5  Best model for the low-
level group with discretized 
dataset—subject ICS1
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includes the behavior of supposed relevant activity in the LMS and were are assum-
ing that all of these actions could indicate that the student is properly involved in his 
learning process. As traditionally happens with study time, however, this variable by 
itself is very tricky. It may seem that the more time those students spend studying, 
the better grades they should receive, but it is not that simple; it mainly depends on 
the quality of the study time, and something similar could be occurring with the rel-
evant actions; more activity in the LMS does not assure better results (Cerezo et al., 
2016).

Regarding the application of the results obtained in this work and the potential 
for using them within other domains; it is important to notice that currently there 
is an increasing interest in the generalization and portability of prediction models 
and specifically with Moodle LMS (Monllao-Olive et  al., 2019). In this line, our 
proposal can be applied not only to Learning Management Systems as Moodle but 
also to other different domains or data sources such as Intelligent Tutoring Systems 
(ITSs), Massive Online Open Courses (MOOCs), Traditional face-to-face educa-
tional environments, Blended Learning and Multimodal Learning environments, and 
so on.

Finally, as a future study, we are currently working on:

• Using a higher number of courses with much more data/students from different 
areas/domains, not only engineering and computer science, but also fields such 
as science, biology, medicine, philosophy, and literature, in order to generalize 
the good results that we obtained in this study.

• Discovering predictive models that can be portable/transferable as soon as pos-
sible in the early stages of the course. This means we would not have to wait until 
the end of the course to have all Moodle usage data available, and the obtained 
models could be used as general early warning prediction models for different 
similar courses (Romero & Ventura, 2019).
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