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Abstract
In optical metrological protocols to measure physical quantities, it is, in principle, always beneficial to increase photon
number n to improve measurement precision. However, practical constraints prevent the arbitrary increase of n due to
the imperfections of a practical detector, especially when the detector response is dominated by the saturation effect.
In this work, we show that a modified weak measurement protocol, namely, biased weak measurement significantly
improves the precision of optical metrology in the presence of saturation effect. This method detects an ultra-small
fraction of photons while maintains a considerable amount of metrological information. The biased pre-coupling leads
to an additional reduction of photons in the post-selection and generates an extinction point in the spectrum
distribution, which is extremely sensitive to the estimated parameter and difficult to be saturated. Therefore, the Fisher
information can be persistently enhanced by increasing the photon number. In our magnetic-sensing experiment,
biased weak measurement achieves precision approximately one order of magnitude better than those of previously
used methods. The proposed method can be applied in various optical measurement schemes to remarkably mitigate
the detector saturation effect with low-cost apparatuses.

Introduction
Scientific communities pursue higher precision in the

measurement of various quantities. Quantum metrology
can potentially surpass classical protocols by exploiting
quantum re- sources1–11, e.g., NOON states and squeezed
states12–18. However, these quantum resources are intri-
cate to prepare and control with currently available
techniques19,20. Another solution is to directly increase
the copies of meter state, e.g., the number of photons n in
the measurement of optical phase with an interferometer.
In this case, the signal-to-noise ratio is proportional to

ffiffiffi
n

p
. A main constraint of this method is the detector

saturation effect (DSE) which occurs in various mea-
surement scenarios and eventually damages the precision.
Therefore, how to alleviate DSE and further enhance the
precision is an interesting problem worth investigating.
From a practical point of view, this requires a small
fraction of photons being detected while maintaining
almost the same metrological information as that con-
tained in all incident photons. This requirement seems to
be paradoxical because discarding photons inevitably
leads to loss of information in general.
Standard weak measurement (SWM) is an innovative

method to determine small physical quantities that are
impractical to measure using conventional measurement
(CM)21–25. Especially, for longitudinal optical phase
measurement, the method of measuring the spectrum
shift of a broad-band light beam in SWM has been
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verified to be preferable than CM both in theory26 and
experiment27. Although some theoretical papers argue
that SWM is suboptimal28–30, it is widely acknowledged
that the optimal precision of SWM is comparable with
that of CM, even though only a small fraction of photons
are post- selected for detection31,32. In other words, SWM
simultaneously amplifies profile shift and reduces the
average photon number received by the detector. Based
on this point, Vaidman conjectured that SWM can
effectively alleviate DSE and outperform CM with inci-
dent photon number above the saturation threshold of
detectors33. Recently, several theoretical and experimental
studies have confirmed this advantage of SWM and
proved that SWM offers an improved precision compared
to CM in the presence of DSE34.
In principle, two premises endow us with the ability to

mitigate DSE and attain better precision; namely, fewer
photons are detected and these photons contain more
metrological information than the discarded ones. SWM
satisfies these two premises by increasing the strength of
post-selection, and eventually, an improved precision
can be acquired35. In an ideal case, a stronger post-
selection in SWM necessarily results in a larger factor of
amplification; however, in practice, this simple post-
selection cannot be arbitrarily strong, and SWM can only
alleviate DSE to a limited extent34. By contrast, biased
weak measurement (BWM) employs an additional
reduction of photons in the post-selection by introdu-
cing a pre-coupling, and the remaining photons have
shown to be extremely sensitive to the estimated para-
meter both in theory and experiments36–38. In this work,
we demonstrate that BWM can effectively mitigate DSE
and obtain much higher precision than both CM and
SWM. Briefly speaking, BWM is impervious to DSE
because an extinction point appears in the spectrum
distribution; therefore, the number of detected photons
is greatly reduced. What is more, these photons are
much more sensitive to the estimated parameter than
those detected in CM and SWM. The advantage of
BWM is rigorously cast in terms of FI, and the results
demonstrate that the Fisher information (FI) of BWM
can grow persistently with increasing n. By contrast, the
accessible FI of CM and SWM is much less since DSE
dominates the detector response for a much lower
incident photon number n. The advantages of BWM are
experimentally demonstrated through the sensing of a
static magnetic field, where the highest precision of
BWM exceeds that of SWM by nearly one order of
magnitude, and this superiority is further contrasted
compared to CM. We believe that the proposed method
can shed light on various measurement scenarios suf-
fering from DSE.

Results
Framework of CM, SMW, BWM
In the following discussion, we take �h ¼ 1. Without loss

of generality, we consider a scheme to measure a small
optical delay τ ¼ ϕ

cp0
, which introduces an additional

optical phase ϕ between two orthogonal polarization
components j0> and j1> for the photons with momentum
and speed. The photon momentum is p0 ¼ 2π

λ0
¼ ω0

c , where
λ0 (ω0) denotes the central wavelength (frequency) of
incident light. Theoretically, the coupling strength k= cτ
can be estimated by the interaction between the system
(which is initialized to jφi> ¼ 1ffiffi

2
p ðj0>þ j1>Þ) and the

meter (which is initialized to
R
dpjψ pð Þ> and is assumed to

have a Gaussian profile with mean value p0 and variance
ðΔpÞ2) where the Hamiltonian is H ¼ kδðt � t0ÞÂP̂, in
which Â ¼ 0><0j j � j1><1j is the system operator, and
P̂ is the momentum operator of the photon.
The CM, SWM, and BWM schemes to measure τ are

diagrammed in Fig. 1. For CM, the system-meter coupling
can be described by the unitary transformation U ¼
e�ikÂP̂ and the final joint state is given as follows:

jψ > joint ¼
Z

dp eipk 0>þ e�ipk
�� ��1>� �jψ pð Þ> ð1Þ

where p is the eigenvalue of P̂. Then the system is
projected on a certain basis that leads to an appreciable
selection probability, e.g., 1ffiffi

2
p ð 0>� ij j1>Þ, which leads to

an unnormalized redistribution of p to be

DðpÞCM ¼ sin2
π

4
þ pk

� �
<ψ pð Þj jψ pð Þ> j2 ð2Þ

and the shift of the mean value of p when kp0 � 1 is
calculated as

δpCM ¼ 2kðΔpÞ2cosðkp0Þ
sin 2kp0ð Þ þ e2k2ðΔpÞ

2 ’ 2k Δpð Þ2 ð3Þ

For SWM, a normal post-selection into jφ> f ¼
1ffiffi
2

p ðe�i ϵ 0>� eiϵj j1>Þ is made on the system, and the dis-
tribution of p in this post-selected meter state is given as:

DðpÞSWM ¼ sin2 pk þ ϵð Þj<ψ pð Þjψ pð Þ> j2 ð4Þ

when τ, ϵ≪ 1, the value of k can be estimated through the
shift of the mean value of p, which can be calculated as
follows:

δpSWM ¼ 2kðΔpÞ2cotϵ ’ 2k Δpð Þ2
ϵ

ð5Þ
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which is amplified by a factor of cotϵ compared to the
shift in CM. The price for this amplification is post-
selecting the photons with probability Oðϵ2Þ.
As shown in Fig. 1c for the BWM procedures, here, the

main difference from SWM is an additional step to bias
the meter before the coupling that encodes the parameter.
Specifically, a predetermined delay β

c is introduced
between the two components of the system observable
with β satisfying p0βþ ϵ ¼ mπ (m is an integer), and the
corresponding distribution of p of the post-selected meter
state is given as:

DðpÞBWM ¼ sin2ðp k þ βð Þ þ ϵÞj<ψ pð Þjψ pð Þ>j2 ð6Þ

It is evident that when k= 0, an extinction point
appears for p= p0, as shown in Fig. 1b. It has been sug-
gested that the position of this extinction point is extre-
mely sensitive to k31; i.e., even very small k yields a
perceptible shift of this extinction point. The mean value
shift of p for m= 0 in BWM is calculated as follows:

δpSWM ’ 2kðp0Þ2
ϵ

ð7Þ

Since p0 is usually larger than its uncertainty Δp by at
least one order of magnitude for a visible laser beam, and

according to Eqs. (5) and (7), the mean value shift in
BWM scheme is much larger than that in SWM. Corre-
spondingly, this pre-coupling leads to an additional
reduction of photons in the post-selection, which cannot
be achieved by decreasing ϵ, and the post-selection
probability is OððΔpϵ=p0Þ2Þ.
The CM method is equivalent to an interferometer, in

which two outcomes are obtained through a projective
measurement, and approximately half of the photons are
detected for each outcome26. Normally, τ can be esti-
mated by simply summing up the photon number change
over all the components of p of each outcome. As
opposed to CM, SWM postselects a small fraction of
photons, and the spectrum shift of SWM is amplified by

the weak value Aω ¼ <φf Aj jφi>
<φf jφi>

¼ icotϵ.

Compared to SWM, BWM applies a pre-coupling
procedure, which introduces an extinction effect and
gives a further amplified mean value shift of p. From the
above discussions, it can be concluded that among these
three schemes, BWM acquires the largest meter shift
and detects the fewest photons. As a result, as shown in
Fig. 1, when a sufficiently large number of incident
photons induces a flattening distribution on the detector
array for CM and SWM schemes, the response of the
detectors in BWM is maintained in the dynamic range of
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Fig. 1 Diagram of CM, SWM, and BWM schemes. The procedures to implement CM, SWM, and BWM are shown in a–c, respectively. All these three
methods start from a system initialization, and all involve a coupling between the system and meter. In CM, a projective measurement is made on the
system and the coupling strength can be estimated from the change in photon counting for each pixel. In SWM, a post-selection is applied to

amplify the shift of the mean value of observable P̂. This post-selection makes SWM more robust to DSE compared with CM; however, the detector
array eventually saturates for these two methods when too many photons are received. In BWM, an additional pre-coupling is introduced before the
coupling; consequently, the post-selection discards more photons than SWM and leads to an extinction point for the distribution of p, which enables
the detector array to work below the threshold for a much larger photon number. Furthermore, the position of this extinction point is extremely
sensitive to the coupling strength. Therefore, BWM is more robust to DSE and eventually attains better precision than those of CM and SWM
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the detectors. Therefore, one can expect that BWM is
more robust against DSE and will eventually outperform
CM and SWM, and we give firm evidence for this
advantage with both numerical calculation and experi-
mental demonstration.

Theoretical analysis
In this subsection, the advantage of BWM to mitigate

DSE is verified by calculating the FI in a specific mea-
surement scenario, which provides a lower bound for the
uncertainty of the estimation of a parameter39. The value
of FI is calculated by summing up the FI obtained for each
component of p. Consider the specific experiment scheme
shown in Fig. 2, which is proposed to sense the magnetic
induction strength B. The Hamiltonian H ¼ kδ t � t0ð ÞÂP̂
couples the system and the meter with strength
k ¼ VBl=p0, where V and l are the Verdet constant and
length of the Faraday crystal, respectively, Â ¼ jR><Rj �
jL><Lj is the system operator, jR> (|jL>) is the right(left)
circularly polarized component of light and P̂ is the
momentum operator of photons. Therefore, B can be
determined by studying the distribution of p (as suggested
in Eqs. (4) and (6)).
Note that Δp � p0 and the light propagates along a

single direction; thus, we can measure the distribution of
p using a spectrometer based on the relation p ¼ 2π

λ . To be
specific, the light is dispersed on the grating, and the
photons with momentum pj are received by the jth pixel
of the detector array, which is a complementary metal-
oxide semiconductor (CMOS) in our experiment. The
distribution of p is recorded as a frame by reading the
number of excited electrons on each pixel.
The value of FI can be calculated by summing up the FI

of all the pixels on the CMOS, and the FI of the jth pixel
can be obtained from the probability of exciting kj elec-
trons. When the total number of incident photon is n, kj

can be calculated as follows:

P kjjB
� � ¼ X

Nj

Rs kjjNj
� �

PðNjjnj Bð Þ; σ jðBÞÞ ð8Þ
here, PðNjjnj Bð Þ; σ j Bð ÞÞ is the Gaussian distribution with
average photon number nj Bð Þ ¼ n

R
j dpDðpÞSWMðBWMÞ

and standard deviation σ jðBÞ determined by analyzing
the recorded frames for estimation. Note that
DðpÞSWMðBWMÞ is related to B through k ¼ VBl=p0; thus,
the average photon number on each pixel is determined
by B. Rs kjjNj

� �
is the probability of generating kj electrons

when the jth pixel receives exactly Nj photons, and the
concrete expression gives a quantitative description of the
response model of CMOS (see “Materials and methods”
for details).
The calculated FI against n is shown in Fig. 3a, in which

we set m= 5 and B= 0.028T to be consistent with those
applied in experiment. As can be seen, the FI of CM firstly
reaches its maximum when n is ~5 × 106 since the DSE
dominates the response for some of the pixels. At this
stage, each pixel responds in the dynamic range for SWM
and BWM, and the elicited FI grows with increasing n.
When n increases to 108, SWM loses its advantage
because DSE begins to undermine the performance of
SWM, and the FI decreases gradually. When n exceeds
109, nearly all the pixels saturate in SWM, and the dis-
tribution carries negligible information about B. Conse-
quently, the elicited FI in SWM drops to zero rapidly, as
shown in Fig. 3a. As expected, BWM behaves robustly to
DSE, and the FI grows consistently with increasing n. The
primary limitation factors for this positive correlation
between FI and n are the finite extinction ratio and pixel
size in a practical experiment, which cause a small portion
of photons to shine on the extinction point. Conse-
quently, for BWM the extinction point eventually satu-
rates for very large n, and the FI decays after reaching its

BPBS PCP

HWP1 HWP2

QWP
Coil1 Coil2

FC Polarizer
Grating

Lens

Ti:sapphire

CMOS

DC

Fig. 2 Experimental setup to sense static magnetic field with CM, SWM, and BWM schemes. A pulsed laser centering at λ0= 796 nm is
horizontally polarized (jH>) after passing through a polarized beam splitter and then rotated to be 45° diagonal polarized (jH þ V>) by a half-wave
plate (HWP). The phase compensation plate introduces a biased phase between the jH> and jV> components, which are transformed to jR> and jL>
after passing through HWP and the quarter-wave plate (QWP). A Faraday crystal (FC) placed between two electric coils introduces a relative phase
between jR> and jL> that is proportional to the magnetic induction strength B. Both projective measurement in CM and post-selecting in SWM and
BWM are implemented using a polarizer. By dispersing the beam with a grating, both the change of photon numbers and spectrum redistribution
are recorded by a CMOS, and B can be determined from the corresponding spectrum shift
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maximum value, as shown in Fig. 3a. Nevertheless, the
maximal FI of BWM is larger than those of CM and SWM
by nearly three and two orders of magnitude, respectively.
For a comprehensive comparison between BWM and
SWM, further calculations are made for some small
values of ϵ with m = 0 and B ¼ 1:3 ´ 10�7T as shown in
Fig. 3b. Theoretically, the post-selection probability of
SWM can be quadratically reduced by decreasing the
value of ϵ, and DSE can thus be effectively suppressed to
acquire a better precision. However, BWM still exhibits a
significant advantage in the achievable precision even for
very small ϵ.

Experimental results
The advantage of BWM to mitigate DSE is demonstrated

with the setup shown in Fig. 2. The static magnetic field
produced by two electric coils is sensed through CM,
SWM, and BWM schemes, and the change in the magnetic
field can cause a spectral redistribution; thus, a more dis-
tinct redistribution results in greater measurement sensi-
tivity. Figure 4a–c shows the normalized spectral
distribution before and after applying the magnetic field for
CM, SWM, and BWM, respectively. Note that the spec-
trum change in both CM and SWM is too subtle to be
observed, and the spectrum change in BWM is trans-
formed to a new pattern with perceptible distinguishability.
These results indicate that BWM realizes a higher meter
shift in measurement, as predicted by Eqs. (3), (5), and (7).
The robustness to DSE can be revealed through the elec-
tron number distribution of CMOS for varying n, as shown
in Fig. 4d–f for CM, SWM, and BWM, respectively. In CM,
the pixels begin to saturate for 4.8 × 106 photons and
completely saturate for 108 photons. In SWM, saturation
begins when n= 107 and the profile completely flattens for
n = 109 photons. Because of the ultra-sensitive extinction

point in BWM, the electron number distribution of CMOS
is not saturated up to 1010 photons and consistently pro-
vides a considerable amount of FI.
By recording 6000 frames of electron number dis-

tribution for each value of n, maximum likelihood esti-
mation (MLE) is utilized to estimate B. Briefly speaking,
one estimation of B is given by MLE using v= 300 frames
that are uniformly and randomly selected from 6000
frames recorded by CMOS. By repeating the MLE 100
times, we take the standard deviation of these 100 esti-
mates as the precision ΔB (see “Materials and methods”
for details). Figure 5 shows the precisions of CM, SWM,
and BWM schemes with varying n. For a fixed value of n,
the photon numbers participating in the system-meter
coupling are identical for these three schemes. Eventually,
almost half the incident photons are detected in CM for
each outcome of the system, while in SWM and BWM
only a small proportion of the photons are post-selected
and thus detected. Although the post-selection parameter
(the setting of polarizer) is the same for both BWM and
SWM, much fewer photons are detected in BWM than
that in SWM, since the system-meter joint states are
different for these two schemes due to the pre-coupling in
BWM. Consequently, for n � 107, BWM achieves a better
precision than those of SWM and CM, and this advantage
remains until the detector saturates in BWM.
Concerning the precision change with increasing n,

when n is around 106, and, as predicted, the precisions for
all schemes improve with increasing n. When n approa-
ches 5:9 ´ 106, the precision of CM reaches its minimum
value 2:2 ´ 10�4T and then increases since DSE occurs.
SWM scheme reaches its best precision 3:63 ´ 10�5T
when n ¼ 9:7 ´ 107, and then degrades gradually; further
increasing n will cause all pixels saturate for SWM; thus,
the precision degrades rapidly, the MLE cannot converge

n
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CM

a
108
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)
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106 107 108 109 1010 1011

n
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b
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Fig. 3 FI against total incident photon number n to sense a static magnetic field. a By varying the incident photon number, the amount of
elicited classical FI is calculated when the extinction ratio and post-selection strength ϵ are set to 90,000 and 0.2, respectively. Compared to SWM and
CW, BWM demonstrates excellent ability to subdue DSE and allows much more FI to be obtained. b For three values of ϵ, the FI is calculated for SWM
and BWM protocols with infinite extinction ratio. For each value of ϵ, BWM detects much fewer photons than SWM, and the achievable FI significantly
outperforms that of SWM
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and fails to give a reasonable estimate of B. By contrast,
the precision for BWM continues to be enhanced with
increasing n until 5:08 ´ 1010, and the best precision
4:05 ´ 10�6T is obtained. Through SWM, the precision is
improved by � 6:1 times compared to that of CM, and
BWM further expands this superiority and achieves the
best precision outperforming that of SWM by nearly one
order of magnitude. The theoretical precision is calcu-
lated from the FI in Fig. 3a, and the resulting lines exhibit
a trend that is similar to the experimental results with
close values.

Discussion
Intuitively, by decreasing ϵ, the post-selection prob-

ability in SWM can be infinitely minimized to produce an
arbitrarily large weak value; therefore, it seems that DSE
can be circumvented by SWM. Unfortunately, realistic
optical elements can only achieve a limited ϵ on this
normal post-selection and the surviving photons maintain
a single peak structure, as shown in Fig. 1b. By introdu-
cing the pre-coupling, the number of photons surviving
the post-selection is further reduced, and the spectrum is
specially modified to generate an ultra-sensitive extinction
point, which provides considerable FI even for very large

n

BWM
SWM
CM

ΔB
 (

T
)

10–3

10–4

10–5

10–6

106 107 108 109 1010 1011

Fig. 5 Precision of magnetic sensing for CM, SWM, and BWM
schemes. The precision ΔB obtained using CM, SWM, and BWM
schemes are plotted versus the incident photon number n. CM and
SWM achieve their best precisions of 2.2 × 10−4T and 3.63 × 10−5T
with 5.9 × 106 and 9:7 ´ 107 photons, respectively. Afterward, the
precisions degrade since DSE occurs. Because of the extinction effect,
the precision of BWM keeps to be improved up to 5:08 ´ 1010 photons
and the best precision is 4:05 ´ 10�6T . The theoretical precisions
calculated from the FI for CM, SWM, and BWM schemes are shown as
the solid lines in the same color with their respective experimental
results
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sensitive extinction point, which is difficult to saturate even for 1010 photons
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incident photon numbers. Therefore, the advantage of
BWM remains for very small values of ϵ (i.e., strong post-
selection), which is clearly indicated by the theoretical
calculation shown in Fig. 3b. Although stronger post-
selection leads to more FI (better precision) in SWM, the
FI of BWM protocol significantly exceeds that of SWM
for each value of ϵ.
This advantage is also well confirmed by our experi-

ment, in which BWM achieves precision that surpasses
that of SWM by nearly one order of magnitude. Although
our experiment demonstrates a magnetic-sensing sce-
nario by measuring the spectrum, the proposed method is
applicable to various optical measurement tasks because
the extinction effect can occur in both frequency and time
domains. In summary, our results pave the way to cir-
cumvent the limitation of DSE and realize higher preci-
sion in a low-cost manner, which explores the regime
where current proposals fail in the presence of DSE.

Materials and methods
Response model of CMOS
We primarily considered three effects in the response

model RsðkjjNjÞ. The first is the dark noise of CMOS. In
our experiment, by taking 6000 frames without any inci-
dent light, we find that the distribution of dark noise
satisfies the normal distribution PdðkdÞ � Nðkd0; σdÞ,
where kd0 ¼ 94:16 and σd ¼ 2:03. The second effect is
that the distribution of electrons excited by photons also
satisfies a normal distribution PQ kjjNj

� � � NðηNj; σNjÞ,
where η ¼ 31:3% is the quantum efficiency of the CMOS
and ln σNj ¼ 0:5908 lnNj � 1:9986. Thus, the electron
distribution RðkjjNjÞ is given by the convolution of the
dark noise distribution and the electron distribution
excited by photons:

R kjjNj
� � ¼ Xkd¼140

kd¼58

PQ kj � ddjNj
� �

PdðddÞ ð9Þ

here, we only take the sum over kd from 58 to 140 because
the marginal probability of dark noise beyond this range is
negligible. The third effect we must consider is the
saturation effect. In our experiment, we set the saturation
threshold to ks ¼ 1200. The overall response model is
given as follows:

Rs kjjNj
� � ¼ f xð Þ ¼

R kjjNj
� �

; kj<1200

1�P
kj < 1200

R kjjNj
� �

; kj ¼ 1200

0; kj > 1200

8><
>:

ð10Þ

In the saturation model, the saturation threshold is set to
an artificial value of 1200 because the CMOS response

becomes chaotic when the registered electron is above 1200
and cannot be described by a valid response model, which is
required for the FI calculation and the use of MLE.
With the probabilities of the readout electron numbers

on each pixel, FI is calculated as follows:

FI ¼
X
j

X
kj

ð∂PðkjjBÞB Þ2
PðkjjBÞ ð11Þ

Several experimental parameters must be determined to
calculate FI. Here, the wavelength of the laser is centered
at λ0 ¼ 796 nm with ~12 nm full width at half maximum,
and p0 is set to be 2π

796 nm
�1. Note that the Verdet constant

V is approximately a constant in this 12 nm bandwidth,
and it is measured as 70:35 rad � T�1 �m�1 for the utilized
1-cm-long FC. In addition, the dispersion relation must be
calibrated because it determines nj. In this experiment,
the dispersion relation is measured by determining the
central wavelength of photons received by the jth pixel.
To find this relation, we insert an etalon right before the
grating and the wavelengths of the transmission peaks are
measured by a fiber spectrometer. Knowing the wave-
length of each peak which imposes on the jth pixel of the
CMOS, we can find the relation between the wavelength λ
and pixel number j is λ ¼ 0:007331jþ 789:5. The spectral
profile <ψ pð Þj jψ pð Þ>j2 is measured by the CMOS working
in the dynamic range.

Maximum likelihood estimation
We employ a bootstrap method to obtain ΔB. We

randomly select 300 frames from the 6000 taken frames.
These 300 frames are used to obtain an estimate of B
using the MLE method. To implement MLE, we must first
define the loss function as follows:

L Bð Þ ¼
Y300
i¼1

Y1920
j¼1

Rs kijjNj
� �

PðNjjnij Bð Þ; σ ijðBÞÞ ð12Þ

where j is the pixel number in a row on the CMOS and i is
the frame number, and σ ijðBÞ is estimated as the standard
deviation of electron counts of the 300 recorded frames.
Here, the value of B is identified by maximizing this loss
function. We repeat this process 100 times, and finally, we
obtain 100 estimates of B and take the standard deviation
as ΔB.
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