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Abstract 

The poor preclinical and clinical success rates of low molecular weight compounds is partially 

attributable to the inherent trial-and-error nature of pharmaceutical research, which is limited 

largely to retrospective data-driven, rather than prospective prediction-driven workflows 

stemming from: 1) inadequate scientific understanding of structure-activity, structure-property, 

and structure-free energy relationships; 2) disconnects between empirical models derived from in 

vitro equilibrium data (e.g., Hill and Michaelis-Menten models) vis-à-vis the native non-

equilibrium cellular setting (where the pertinent metrics consist of rates, rather than equilibrium 

state distributions); and 3) inadequate understanding of the non-linear dynamic (NLD) basis of 

cellular function and disease. We argue that the limit of understanding of cellular 

function/dysfunction and pharmacology based on empirical principles (observation/inference) has 

been reached, and that further progress depends on understanding these phenomena at the first 

principles theoretical level. Toward that end, we are developing and applying a theory on the 

mechanisms by which: 1) cellular functions are conveyed by dynamic multi-molecular/-ionic 

(multi-flux) systems operating in the NLD regime; 2) cellular dysfunction results from molecular 

dysfunction; 3) molecular structure and function are powered by covalent/non-covalent forms of 

free energy; and 4) cellular dysfunction is corrected pharmacologically. Our theory represents a 

radical departure from the status quo empirical science and reduction to practice thereof, replacing: 

1) the interatomic contact model of structure-free energy and structure-property relationships with 

a solvation free energy model; 2) equilibrium drug-target occupancy models with dynamic models 

accounting for time-dependent drug and target/off-target binding site buildup and decay; and 3) 

linear models of molecular structure-function and multi-molecular/-ionic systems conveying 

cellular function and dysfunction with NLD models that more realistically capture the emergent 
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behaviors of such systems. Here, we apply our theory to COVID Mpro inhibition and overview its 

implications for a holistic, in vivo relevant approach to drug design. 
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Introduction 

Drug discovery is analogous to navigating a multi-dimensional maze with multiple entrances (i.e., 

targets + chemical starting points), few exits (i.e., approved drugs), and many blind alleys in 

between. Successful navigation depends on finding one or more paths to a safe therapeutic index 

(TI) in humans, the overall odds of which (Pd) are determined by the following sets of conditional 

probabilities: 

Pd = P(CTI | T) ∙ P(CTI | CC, L, H) ∙ P(CC | L, H) ∙ P(L | H); and  

P(CTI | CC, L, H) ∙ P(CTI | T)        [1] 

where T is a biomolecular target on the path to efficacy, CTI is a clinical candidate for which a 

safe TI is achieved in clinical testing, CC are clinical candidates on the path to the CTI, L is a lead 

series on the path to the CC, H are hits on the path to L, and P(xn | xn+1, …, xn+m) are the conditional 

probabilities of success at each step of the process (e.g., CC depends on L, which depends on H). 

Pd is low by all accounts,1 which is partially attributable to heavy reliance on trial-and-error 

synthesis and testing workflows guided by poorly predictive experimental and computational 

models for target and off-target potency (structure-activity/structure-free energy), solubility, 

permeability, and pharmacokinetic/ADMET (absorption, distribution, metabolism, elimination, 

and toxicity) properties relevant to the human setting. Scaling the number of successful 

outcomes at the current Pd depends on scaling the number of attempts, whereas improving 

the underlying P(xn | xn+1, …, xn+m) depends on improving the predictiveness of the 

aforementioned models. All scientific disciplines are broadly comprised of empirical and 

theoretical/first principles branches. Empirical science is based on observations of “what”, 

“where”, and “when” (the parts, systems, and behaviors thereof), the “how” and “why” (the 
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mechanisms), which are inferred anecdotally or from statistical correlations with other 

observations that in some cases lead to empirical “laws”. For example, Newton inferred that 

gravity is an invisible attractive force (F) between masses m1 and m2 that is proportional to their 

magnitude and inversely proportional to their distance apart (𝐹 =  𝐺 ∙ 𝑚1 ∙ 𝑚2/𝑟2). Theoretical 

science is based on deductive/logical reasoning that extends beyond observation. For example, 

Einstein deduced that space is a substance that is perturbed unfavorably by masses and partially 

relaxes by pushing them together. Empirical science depends heavily on technology to extend the 

powers of observation, as well as for curating and analyzing the resulting data. Theoretical science 

is based on, and inspired by, empirical data combined with out-of-the-box human thinking. The 

major scientific theories, including special/general relativity, quantum mechanics, the standard 

model of particle physics, and number theory originated from physics and math. Conversely, 

chemistry is a largely empirical science (with the exception of quantum chemistry) that revolves 

around empirical models that are incorrect, inadequate, or right for the wrong reasons when: 

1) Fit to noisy or under-sampled data (noting that weak signals can be extracted from low 

signal-to-noise data using machine learning (ML) or artificial intelligence (AI) as long as 

the signals are present in the data). 

2) Fit using descriptors/parameters that poorly explain the data, often resulting in overfitting 

(i.e., a disproportionate number of descriptors/parameters relative to the size of the dataset). 

3) Fit to data measured in one context and extrapolated to another. 

4) Focused on scalar rather than vector quantities needed to explain multi-dimensional 

phenomena. 
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Inferences and predictions based on empirical models are often poor for the aforementioned 

reasons, but may be correct in one or more contexts (e.g., Newton’s empirical gravitational law 

predicts well except under conditions of extreme gravity, whereas general relativity predicts well 

except in black holes). Empirical science is best suited for observing “what”, “where”, and “when”, 

whereas “how” and “why” are best explained via first principles deduction. Biology is rooted in 

empirical chemistry, and as such, suffers from many of the same limitations when it comes to 

explaining the “how” and “why” of cellular phenomena. In this work, we: 

1) Revisit the “how” and “why” of cellular function conveyed by multi-molecular and multi-

ionic systems, cellular dysfunction conveyed by dysfunctional molecules, and 

pharmacodynamics through the lens of a novel first principles theory called Biodynamics2–

6 that we have been developing, testing, and applying to a wide range of problems over the 

last several years, including COVID Mpro structure-function and inhibition,5 cereblon 

structure-function,7 GPCR structure-function,8 voltage-gated ion channel structure-

function,8 hERG blockade9,10 and cellular arrhythmia6. 

2) Revisit our previous work on COVID Mpro, focusing on the structure-binding free energy 

relationships of the inhibitors nirmatrelvir and an analog thereof (PF-00835231). 

3) Connect the dots between molecular structure-function/dysfunction, drug-target/off-target 

binding, pharmacokinetics (PK), pharmacodynamics (PD), and non-covalent free energy 

within and between the atomic and systems levels, and examine the implications thereof 

for improving Pd based on in vivo relevant drug design. 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.10.31.514572doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.31.514572


Toward a first principles understanding of the “how” and “why” of living 

 cells 

Cells are comprised of molecular and ionic “moving parts” bound together into organized multi-

molecular/ionic systems that rearrange non-randomly and non-linearly over time (commonly 

referred to as non-linear dynamic or “complex” systems).11 In fact, nearly all natural systems 

comprised of three or more moving parts, ranging from subatomic particles to atoms, molecules, 

atmospheres, oceans, stars, solar systems, and the Universe itself behave non-linearly (noting that 

linear systems may be comprised of thousands or more moving parts). All non-linear dynamic 

(NLD) systems are powered by attractive and repulsive forms of energy that are counter-balanced 

within a Goldilocks zone in which both the bound state and rearrangeability are maintained over 

time (e.g., gravity vis-à-vis fusion in the case of stars, gravity vis-à-vis kinetic energy in the case 

of solar systems, and electromagnetic attraction vis-à-vis kinetic energy in the case of atoms and 

covalent bonds). Science, in general, revolves largely around observing, describing, explaining, 

and predicting the configurational states and behaviors of natural NLD systems (many of which 

are strange and seemingly magical). Such systems: 

1) “Synthesize/solve” their overall behaviors (commonly referred to as “emergence”), 

which in all cases, exceed the sum of the behaviors of their constituent parts (where the 

behavior of each part depends on the behavior of the entire system, and the behavior of the 

entire system depends on the behaviors of the parts and their mutual interactions). As such, 

NLD behaviors can only be observed or simulated, but not predicted analytically (i.e., they 

are deterministically unpredictable).  

2) Exhibit chaotic behaviors at perturbation-induced tipping points (e.g., cardiac 

arrhythmias caused by perturbation of the normal dynamic inward-outward ion current 
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balance; ice ages caused by perturbation of the normal dynamic atmospheric-oceanic-geo-

thermal balance; implosions/explosions of stars caused by the loss of dynamic balance 

between gravity and fusion-driven thermal expansion). 

3) Respond to perturbations in a non-causal fashion, where causes are effects and effects 

are causes. 

4) Are powered by non-equilibrium free energy flows between high and low states 

(referred to as “sources” and “sinks”, respectively), analogous to the flow of air from high 

to low pressure regions of the atmosphere. The molecular populations of cellular systems 

build and decay via synthesis (sources) and degradation (sinks), as do their non-covalently 

bound states, which are powered within a Goldilocks zone of favorable and unfavorable 

energy contributions consisting principally of thermal, covalent, and desolvation and 

resolvation gains and costs (described below). 

Living cells comprise a unique class of natural NLD systems in that their moving parts consist 

exclusively of micro/nano/pico/femto quantities of diverse ions and low and high molecular weight 

(LMW and HMW) species operating on the microscopic length and time scales (subserving high 

density information storage and fast information processing), versus bulk quantities of molecules 

operating on the geologic length and time scales (e.g., the atmosphere), and heavenly bodies 

operating on the cosmic length and time scales. Cells “solve” their behavior at each instant of time 

via a form of “physical math”, commonly known as “analog computing”, in which the hardware 

(molecules and ions) and software (the NLD state of the system) are one and the same. The normal 

and abnormal behaviors of macromolecular constituents and multi-molecular/multi-ionic systems 

conveying cellular functions cannot be understood or reliably predicted via empirical models based 
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on equilibrium data measured on the isolated parts (equating to tacit linearization of such systems) 

or even intact cultured (typically, immortal) cell lines. Further progress toward this end depends 

on connecting the dots within and between target selection and clinical candidate generation (in 

vitro → native cellular) aimed at increasing P(CTI | T) and P(CTI | CC, L, H). 

Improved predictions of biological behaviors and the effects of drugs thereon depends on first 

principles theoretical understanding of the cellular “playbook” shared by all natural NLD systems, 

including the means by which they are powered by covalent and non-covalent free energy forms 

in the native cellular setting (where non-covalent free energy exists solely in the form of barriers). 

We proposed that such barriers consist principally of molecular desolvation and resolvation 

costs,5,7–10,12–16 which was inspired by the pioneering work of McKay and Kurtzman on the 

microscopic behaviors of solvating water.3 Our work has led to novel insights about the general 

mechanisms by which: 

1) Free energy is transduced into molecular structure and function, including the folding of 

HMW species and non-covalent binding between HMW-LMW and HMW-HMW species. 

2) Cellular functions are conveyed by multi-molecular and multi-ionic systems operating in 

the non-equilibrium/NLD regime. 

The reduction to practice of Biodynamics consists of first principles analyses and simulations of: 

1) Solvation free energy, which we postulate is the principal form of free energy 

powering non-covalent inter- and intramolecular rearrangements,5 versus interatomic 

contacts under the status quo paradigm (noting that improved P(CC | L, H) and P(L | H) 

depends heavily on the correct understanding of structure-free energy relationships). 
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Solvation free energy is qualitatively mirrored by the position-dependent occupancy of 

solvating water on the external surfaces of LMW molecules and the external and 

internal/buried surfaces of HMW molecules (noting that scalar solvation free energies 

cannot be predicted accurately via force-field-based methods, or practically via quantum 

chemical methods). The spatial distribution of solvation free energies across a given solute 

surface relative to bulk solvent (which may be external or internal in the case of folded 

HMW species) depends on the local H-bonding environment of each solvating water (the 

collective properties of which we refer to as the “solvation field”). Solvation fields residing 

at the binding interfaces of cognate partners, including drugs and their respective targets, 

are complementary to varying degrees (i.e., H-bond enriched to H-bond enriched and H-

bond depleted to H-bond depleted). We refer to these regions as “solvophores” and 

“inverse solvophores” (borrowing from the pharmacophore-inverse pharmacophore 

concept) and the collection of solvophores and inverse solvophores across the entire 

endogenous biomolecular space as the “Solvome”.7 We postulated that kon and koff (as well 

as kin and kout in the case of intramolecular rearrangements) are proportional to the 

association/entry and dissociation/exit free energy barriers (denoted as ∆𝐺𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
‡

 and 

∆𝐺𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑖𝑜𝑛
‡

 in the case of intermolecular rearrangements, and ∆𝐺𝑒𝑛𝑡𝑟𝑦
‡

 and ∆𝐺𝑒𝑥𝑖𝑡
‡

 in the 

case of intramolecular rearrangements) contributed principally by the desolvation and 

resolvation costs of the partners and intramolecular rearrangement interfaces (see below).14 

As such, non-covalent inter- and intramolecular rearrangements are governed by separate 

structure-association/entry and structure-dissociation/exit relationships. Contrary to 

popular belief, solvation free energy is comprised of both enthalpic and entropic 

contributions, as follows:3 
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a) The H-bond enthalpy of liquid water per unit effective molecular volume (30 Å3 

per water) is by far the greatest among all liquid solvents and dissolved aqueous 

substances, to the extent that non-covalent solute structure and the dynamic 

properties thereof are powered principally by the minimization of water H-bond 

enthalpy at the maximum possible entropy.3 

b) Entropy losses relative to bulk solvent (taken as zero entropy) occur to varying 

degrees in solvating water in proportion to the degree of ordering required to 

minimize the water-water and water-solute H-bond free energy (commonly referred 

to as entropy-enthalpy compensation). 

2) The normal and abnormal behaviors of mutant and WT proteins in the context of their 

native NLD cellular systems, versus in isolation under the status quo paradigm.4,6 The 

resulting models can, in principle, be used to qualitatively predict efficacious drug-target 

combinations with improved P(CTI | T). NLD behaviors at both the atomic (e.g., multi-

body intra-protein and protein-water interactions during protein folding and binding), and 

multi-molecular system levels that convey cellular functions are implicit to our theory. 

3) Non-covalent binding under non-equilibrium conditions, in which binding sites build and 

decay over time (which we refer to as “binding dynamics”) versus the status quo static 

equilibrium paradigm. As such, cellular functions are governed by rates (i.e., the fastest 

fluxes), rather than the equilibrium distributions of the participating species. 

The objective of lead optimization under the status quo paradigm consists of minimizing drug-

target G, IC50, Kd, or Ki, while maintaining permeability, solubility, and other properties. 

However, the Biodynamics approach is aimed at achieving the Goldilocks zone of balanced drug 
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solvation properties governing drug-target binding (minimal drug and target desolvation costs 

underlying ∆𝐺𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
‡

; maximal drug and target resolvation costs underlying ∆𝐺𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑖𝑜𝑛
‡

), 

membrane permeability (minimal drug and membrane desolvation costs; minimal drug and 

membrane resolvation costs needed to circumvent partitioning), and solubility/solvation free 

energy for the following reasons: 

1) G is defined only for non-equilibrium conditions, whereas ∆𝐺𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
‡  and 

∆𝐺𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
‡

 are defined for equilibrium and non-equilibrium conditions. 

2) Structure is physically linked to the separate ∆𝑮𝒂𝒔𝒔𝒐𝒄𝒊𝒂𝒕𝒊𝒐𝒏
‡

 and ∆𝑮𝒅𝒊𝒔𝒔𝒐𝒄𝒊𝒂𝒕𝒊𝒐𝒏
‡

 

contributions (and ∆𝑮𝒆𝒏𝒕𝒓𝒚
‡

 and ∆𝑮𝒆𝒙𝒊𝒕
‡

 in the case of intramolecular rearrangements) 

rather than G per se, which is merely the difference between these quantities (just as 

taxes are linked to income and expenses rather than bank balances). 

3) Achieving the minimum efficacious drug-target occupancy for dynamic binding sites 

(denoted as eff) at the lowest possible free Cmax (thereby reducing the risk of off-target 

binding, tox, adverse effects, and side effects that degrade P(CTI | CC, L, H)) depends on 

parity between kon and the rate of binding site buildup, and koff and the rate of binding site 

decay.2 

Binding is thus governed by dynamic contributions analogous to a continuous dance between 

the partners and solvating water, in which: 

1) The partners associate at their inherent on-rate (kon ⋅ [free partner i](t) ⋅ [free partner j](t)), 

desolvating their H-bond enriched, bulk-like, and H-bond depleted solvation in the process. 
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2) The partners dissociate at their intrinsic off-rate (koff ⋅ [partner i-partner j](t)), in which 

their external H-bond enriched and bulk-like surface positions and external (and in some 

cases internal) H-bond depleted  surface positions are resolvated in the process. 

3) Water exchanges to/from bulk solvent and solvation incur: 

a) Entropic gains and losses resulting respectively from water transfer to/from 

solvation to bulk solvent. 

b) Enthalpic losses due to desolvation of H-bond enriched positions (partially offset 

by drug-target H-bond enthalpic gains) and gains due to resolvation of H-bond 

enriched positions (partially offset by drug-target H-bond enthalpic losses). 

c) Enthalpic gains due to desolvation of H-bond depleted positions and losses from 

resolvation of H-bond depleted positions. 

Materials and methods 

We used molecular dynamics simulations and WATMD to predict the positions and qualitative 

magnitudes of H-bond enriched, depleted, and bulk-like solvation on the external and internal 

surfaces of COVID Mpro (previous work5) and the external surfaces of the Mpro inhibitors 

nirmatrelvir and PF-00835231 (current work). Since WATMD calculations are focused on water 

exchanges rather than solute rearrangements, we refer to these simulations as “solvation dynamics 

(SD) simulations” (noting that predicted solute rearrangements are highly unreliable due to the 

overestimation of interatomic contact energies and underestimation of solvation free energy by 

force-field-based methods). Our overall method is fully described in references 5, 7, and 10 and 

briefly summarized here: 
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1) Nirmatrelvir (PF-07321332)17 and PF-0083523118 were extracted from their crystallized 

Mpro-bound structures (PDB code = 7SI917 and 6XHM,18 respectively). 

2) The inhibitors were simulated in their fully restrained conformations using AMBER 2019,20 

PMEMD CUDA (GAFF and ff99sb force-fields) for 100 nanoseconds (ns) in a box of 

explicit TIP3P water molecules. 

3) The fully unrestrained monomeric Mpro structure (PDB code = 2QCY21) was simulated in 

the same manner using AMBER 16.  

4) The time-averaged hydrogen (H) and oxygen (O) occupancies within a stationary three-

dimensional grid comprised of 1 Å3 voxels in which each solute structure was embedded 

were calculated over the last 40,000 frames (10 ns) of the trajectory using WATMD 

V93,16,22 (noting that the solvation fully converges within 100 ns). 

5) The high and low occupancy voxel data was normalized to the bulk-like solvating water 

(i.e., the mean of the distribution) on a solute-by-solute basis, so as to achieve self-

consistency (WATMD calculations can be considered as first principles for this reason). 

The high occupancy voxels were then scaled to the largest voxel in the entire dataset. 

6) The voxels were assigned to bulk-like, H-bond enriched, and H-bond depleted solvation 

states (noting that the results in all cases are distributed in a Gaussian fashion, the specific 

properties of which vary among solutes), as follows: 

a) Bulk and bulk-like voxels reside at the mean of the distribution, where the H and 

O positions in the same voxel are fully uncorrelated (corresponding to no 

orientational preference of the occupying water molecule). 
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b) H-bond depleted voxels reside in the extreme left tail of the distribution (where 

Gbulk  Gsolvation). 

c) H-bond enriched voxels reside in the extreme right tail of the distribution (where 

Gbulk  Gsolvation). 

7) Water occupancies are underestimated in voxels that are transiently occupied by mobile 

solute atoms that compete with water exchanges. This problem is circumvented as follows: 

a) LMW solutes are simulated with full restraints (ideally in their crystallized bound 

conformations). 

b) HMW solutes that undergo large rearrangements are simulated with light restraints 

(noting that water exchanges to/from tight spaces are slowed by restrained solute 

motions, resulting in artificially magnified voxel sizes). 

c) HMW solutes that undergo small, localized rearrangements (e.g., the -hairpin in 

COVID Mpro) are simulated without restraints, and each of the mobile region(s) are 

separately aligned across all of the frames during the WATMD calculations (and 

are therefore stationary relative to the voxel grid). 

8) Overlays between the structures and predicted voxel occupancy data were visualized using 

PyMol 2.0 (Schrodinger, LLC), with the occupied voxels denoted by spheres, the sizes of 

which are proportional to the predicted H and O occupancies, and the colors of which 

denote the preference for O (red), H (blue), and neither (white). 
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In our previous work, we studied the catalytic cycle and solvation properties of COVID Mpro vis-

à-vis a set of published inhibitors based on the aforementioned principles.5 We deduced that: 

1) Mpro binds to substrates and inhibitors in its monomeric form. 

2) The catalytic site is activated by substrate binding, followed by dimerization. 

3) Turnover is followed by product dissociation, deactivation, and dimer dissociation. 

 In this work, we predict the solvation properties of two published Mpro inhibitors and compare the 

complementarity thereof to that of the catalytic pocket. 

Results 

In our previous work, we used WATMD calculations to characterize the inverse solvophore of 

monomeric COVID Mpro (PDB code = 2QCY) and its complementarity to the distribution of polar 

and non-polar groups on nirmatrelvir extracted from the dimeric Mpro complex (PDB code = 7SI9) 

and an analog thereof (PF-0083521) extracted from the dimeric Mpro complex (PDB code = 

6XHM) (Figure 1) (noting that our LMW WATMD capability was unavailable at that time). 
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Figure 1. 2D structures and experimental data for the COVID Mpro inhibitors PF-07321332 

(nirmatrelvir) and a crystallized analog thereof (PF-00835231).18,23 The inhibitor side chains are 

labeled S1-S4. Oxygen and nitrogen atoms are numbered consecutively in the N- to C-terminal 

direction. 

Both PF-07321332 and PF-0083521 react covalently with the catalytic cysteine of Mpro, resulting 

in accumulation of the covalent complex over time. The kon of each inhibitor depends on the quality 

of mutual intermolecular H-bond replacements for H-bond enriched water expelled during 

association (noting that energetically conserved replacements need not be spatially conserved). 

The rate of occupancy accumulation depends on the slower of the on-rate or covalent reaction rate 

relative to the off-rate (noting that efficacy depends on equal or faster buildup of the inhibitor-

bound state compared with the rate of Mpro-mediated polyprotein cleavage). It is reasonable to 

assume that the resolvation costs of the catalytic site and native substrates are calibrated for 

achieving k-1 ≲ kcat (where k-1 is the substrate dissociation rate constant), whereas non-covalent 

inhibitors with smaller footprints that desolvate less H-bond depleted solvation than the native 

substrates likely exhibit koff > k-1. It is likewise reasonable to assume that the H-bond enriched 

solvation in the catalytic site is organized for optimal replacement by the maximum common 

solvophore among all of the endogenous Mpro substrates in the polyprotein (Figure 2). The H-bond 

enriched and depleted solvation in the catalytic site is highly complementary to that of PF-

07321332 and PF-0083521 (described below). However, the actual kon, the pre-reacted non-

covalent koff, and the post-reacted koff cannot be quantitatively ascertained in the absence of 

measured kinetics data. 

A 
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Figure 2. (A) Stereo view of the inverse solvophore of the apo monomeric mutant form of Mpro 

(PDB code = 2QCY) overlaid on an Mpro substrate extracted from PDB code = 2Q6G5. Low and 

high occupancy voxels are shown as color-coded spheres, as explained in Materials and methods 

(B) Same as A, except showing the solvent accessible surface of the substrate. All voxels contained 

within the substrate surface are expelled during association (noting that water is trapped within the 

northwestern region of the binding interface, and also exists in the southern region of the substrate-

bound protein). 
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The solvophores of PF-0083521 (Figures 3A and 3B) and PF-07321332 (Figures 3C and 3D) share 

both similarities and differences in accordance with their unique shapes and polar/non-polar 

compositions and spatial distributions. Low occupancy/H-bond depleted voxels are distributed 

around the non-polar regions of both inhibitors, and high occupancy/H-bond enriched voxels are 

distributed as follows (referenced to the numbering shown in Figure 1): 

PF-0083521: Clusters of high occupancy voxels are concentrated around HN2 (ultra-high 

occupancy), HN3, HN4, and both of the oxygen lone pair positions of C=O2. High 

occupancy voxels are distributed in a chain-like fashion within a surface groove containing 

C=O2 and HN3 bounded by the warhead and S2 moieties. Low-cost desolvation of this 

inhibitor depends on the quality of H-bond replacements for each solvating water by 

appropriate Mpro H-bond partner(s). Low-cost desolvation of Mpro likewise depends on the 

quality of H-bond replacements for each solvating water in the catalytic site by appropriate 

inhibitor H-bond partner(s). 

PF-07321332: Clusters of high occupancy voxels are concentrated around HN1, HN2, and 

HN3 (with similar occupancy magnitudes at HN1 and HN2), together with both of the 

oxygen lone pair positions of C=O2. High occupancy voxels are distributed in  a chain-like 

fashion within a surface groove containing HN2 (explained in reference 7). Desolvation of 

the high occupancy voxels at HN1 and HN2 is especially costly. Low-cost desolvation 

likewise depends on the aforementioned criteria. 
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Figure 3. Stereo views of the structures and solvent accessible surfaces of the Mpro inhibitors PF-

0083521 and PF-07321332 overlaid on their respective LMW solvophores calculated with 

WATMD (voxel annotations explained in Materials and methods). The inhibitor structures were 

extracted from the inhibitor bound Mpro crystal structures (see text), the warheads were manually 

restored to their pre-reacted states in preparation for the SD simulations, and the conformations 

were restrained in their crystallized conformations. (A) The solvent-facing side of PF-0083521 

(tan sticks and transparent surface color-coded by atom type) with the reacted warhead on the right. 

(B) Same as A, except the pocket-facing side of PF-0083521 with the reacted warhead on the left. 

(C) The solvent-facing side of PF-07321332 (green sticks and transparent surface color-coded by 

atom type) with the reacted warhead on the right. (B) Same as C, except the pocket-facing side of 

PF-07321332 with the reacted warhead on the left. 

The high potencies of both PF-0083521 and PF-07321332 are consistent with good overall packing 

within the Mpro-inhibitor interfaces (Figure 4) and high bidirectional complementarity between 

polar groups and high occupancy/H-bond enriched voxels of Mpro and PF-0083521 (Figure 5) and 

Mpro and PF-07321332 (Figure 6). However, mismatches between the CF3 group of PF-07321332, 
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high occupancy voxels in the P4 region, and suboptimal packing in the P2 region of Mpro (Figure 

5A) may contribute to the ~10-fold lower potency of this inhibitor (which is offset by its 

substantially higher bioavailability (Figure 1)). 
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Figure 4. (A) Stereo view of the packing between apo monomeric Mpro (2QCY) and PF-07321332 

(voxel annotations described in Materials and methods). All voxels contained within the substrate 

surface are expelled during association. (B) Same as A, except for PF-0083521 extracted from 

6XHM. (C) Same as B, except showing the comparatively poor packing in the P2 pocket region 

occupied by trapped water. 
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Figure 5. (A) Stereo view of PF-0083521 extracted from 6XHM overlaid on the inverse solvophore 

of apo monomeric Mpro (PDB code = 2QCY), showing protein-inhibitor H-bond replacements for 

the six high occupancy/H-bond enriched Mpro voxel clusters circled in magenta, orange, blue, 

green, lime green, and yellow (voxel annotations explained in Materials and methods). Protein-

inhibitor water H-bond replacements are shown as green dotted lines (noting that the H-bond 

between His163 and S1 lactam oxygen is hidden by the voxels within the lime green circle). The 

H-bond between Gln189 and HN2 replaces the high occupancy inhibitor voxels shown in C. We 

postulate that viral resistance to PF-0083521 is likely achievable via mutation of Gln189 to amino 

acids that are incapable of desolvating the HN2 position of the inhibitor (noting that large voxels 

are fortuitously absent in PF-07321332). (B) Same as A, except showing the solvent accessible 

surface of PF-0083521. All Mpro voxels within the bounds of this surface are desolvated. (C) Front 

stereo view of apo monomeric Mpro overlaid on the solvophore of PF-0083521, showing the 

protein-inhibitor water H-bond replacements for the four high occupancy voxels circled in red and 

magenta. The protein-inhibitor H-bonds are shown as green dotted lines. The large voxel at HN2 

is replaced by Gln189 (cutaway view). (D) Same as C, except viewed from the rear, showing the 

protein-inhibitor water H-bond replacements for the chain of high occupancy voxels proximal to 

HN3 (yellow circle). (E) Same as D, except showing the solvent accessible surface of Mpro. All 

the inhibitor voxels within the bounds of this surface are desolvated. 
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Figure 6. (A) Stereo view of PF-07321332 overlaid on the inverse solvophore of apo monomeric 

mutant Mpro, showing the protein-inhibitor H-bond replacements for the five high occupancy/H-

bond enriched Mpro voxel clusters circled in, orange, blue, green, lime green, and yellow (voxel 

annotations explained in Materials and methods). Slowed kon is expected due to the mismatch 
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between the inhibitor CF3 group and the high occupancy voxel cluster enclosed in the red rectangle. 

The protein-inhibitor H-bond water replacements are shown as yellow dotted lines. (B) Same as 

A, except showing the solvent accessible surface of PF-07321332. All the Mpro voxels within the 

bounds of this surface are desolvated. (C) Stereo view of apo monomeric Mpro overlaid on the 

solvophore of PF-07321332, showing the protein-inhibitor water H-bond replacements for the 

three high occupancy voxels circled in orange, green, and blue. (D) Same as C, except showing 

the solvent accessible surface of Mpro. All the inhibitor voxels within the bounds of this surface 

are desolvated. 

Discussion 

In our previous work, we deduced the putative catalytic mechanism of COVID Mpro (which 

resembles that of caspase-2) and proposed a symbolic mathematical model based on equations 2 

(see below).5 In this work, we qualitatively deduced that nirmatrelvir and an analog thereof exhibit 

fast kon and slow koff to/from the Mpro catalytic site based on the high predicted complementarity 

between the inverse solvophore of Mpro and the inhibitor solvophores. In the following sections, 

we discuss the general implications of Biodynamics for in vivo relevant drug design. 

The implications of non-equilibrium NLD behavior for medicinal chemistry, 

computational chemistry, and data science 

In our previous work, we postulated that cellular function is predicated on the notion of “physical 

math” (commonly known as analog computing), the “physical equations” of which are comprised 

of temporospatial changes in the concentrations or number densities of molecular species and the 

covalent and non-covalent intra- and/or intermolecular states thereof (which we refer to as 

“fluxes”).4,7 Cellular functions (equating to emergent behaviors) are conveyed by specific sets of 
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fluxes and static species (e.g., static CDK levels and dynamic cyclin levels) that are coupled 

together into systems via transient non-covalent binding and persistent enzyme-catalyzed covalent 

reactions (e.g., phosphorylation, ubiquitylation) (Figure 7A). As mentioned above, the NLD 

behavior of such systems is holistic in that the behaviors of each flux (including drug 

pharmacokinetics (PK) and drug-target pharmacodynamics (PD)) depend on the behaviors 

of the system and vice versa, and as such cannot be properly studied piecemeal or at 

equilibrium. Fluxes build and decay exponentially, and are therefore subject to runaway behavior 

(i.e., over- and under-shooting). We postulate that such behavior is circumvented via dynamic 

counterbalancing between flux-anti-flux pairs (“Yins” and “Yangs”),3,4 in which Yang buildups 

are “phased” relative to their corresponding Yins by “clocks” (with the intervening steps in the 

pathway serving as “ticks”) (Figure 7B). We further postulate that many cellular diseases result 

from over- or undershooting functional flux levels due to mutation-induced Yin-Yang imbalances. 

A 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.10.31.514572doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.31.514572


B 

 

Figure 7. (A) Cellular functions are conveyed by systems comprised of multiple coupled molecular 

(and in some cases ionic) fluxes operating in the NLD regime. Each flux undergoes one or more 

non-covalent intra- and/or intermolecular and typically one or more covalent state transitions (e.g., 

phosphorylation, ubiquitylation). Fluxes build and decay exponentially in time via 

synthesis/degradation or covalent activation/deactivation. (B) Each flux (“Yin”) is 

counterbalanced by an anti-flux (“Yang”) so as to circumvent runaway exponential behavior. Yin-

Yang phasing is governed by “clocks” that drive Yang buildups downstream of their respective 

Yins, with the intervening steps equating to “ticks”.4 

Non-covalent binding between fluxes i and j or flux i and static species j and enzymatic turnover 

are physical processes (“molecular differential equations” (MDEs)), the symbolic forms of which  

include the following: 

d[bound state](t)/dt = on-rate – off-rate      [2a] 
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d[bound state](t)/dt = kon ∙ [free flux i](t) ∙ [free flux j](t) − koff ∙ [bound state](t) [2b] 

d[product](t)/dt = k1 ∙ [free enzyme flux i](t) ∙ [free substrate flux j](t) − k-1 ∙ [enzyme-

substrate](t) − kcat ∙ [enzyme-substrate](t)      [2c] 

d[bound state](t)/dt = kon ∙ [free species i] ∙ [free flux j](t) − koff ∙ [bound state](t) [2d] 

where d[bound state](t)/dt denotes the difference between the on- and off-rates (equation 2a), 

equating to the rate of buildup or decay of the bound state of a cognate flux pair (equations 2b-2c) 

or a flux and its static cognate partner (equation 2d). d[bound state](t)/dt builds when on-rate > 

off-rate, decays when off-rate > on-rate, and remains constant when on-rate = off-rate (noting that 

the net decay rate is determined, in part, by re-binding, as reflected in the on-rate). Equation 2d 

contrasts with the equilibrium free concentration-occupancy relationship given by the Hill 

equation: 

bound fraction = [free species]/([free species] + Kd)     [3] 

In the special case of drug-target binding: 

d[drug-target](t)/dt = kon ∙ [free drug in the target compartment](t) ∙ [free target binding 

site](t) − koff ∙ [drug-target](t)        [4] 

where d[free target binding site](t)/dt may vary from 0 (constant levels) to >> 0, case-by-case, and 

kon determines the amount of free drug that can be “absorbed” by the target per unit time (where 

the binding site is overflowed by excess free drug).2,4 In our previous work, we showed that: 
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1) Equation 4 converges to equation 3 when parity is maintained between kon and koff and the 

rates of binding site buildup (denoted ki) and decay (denoted k-i), respectively, which we 

refer to as “kinetically tuned binding” (Figure 8A). 

2) Equation 4 is less than equation 3 and drug-target occupancy lags the dynamic free target 

concentration at all time points when kon and koff are mistuned to ki and k-i, respectively (in 

proportion to the degree of mistuning) (Figure 8B). 

Caveat 1: Kinetic mistuning results in disconnects between the true versus expected minimum 

efficacious exposure in vivo, requiring dose escalation in the clinic to identify the true efficacious 

exposure (thereby eroding the safety margin, TI, and P(CTI | CC, L, H)). 
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Figure 8. Hypothetical simulated target and drug-target buildup/decay curves for a given ki, k-i, 

kon, and koff.
2 The bound and free drug concentrations are represented by the solid and dotted 

tracings, respectively. (A) The kinetically tuned scenario in which kon and koff maintain parity with 

ki and k-i, respectively. Steady state occupancy = 50% of [free target](t) is achieved at all time 

points when [free drug] = Kd, and any given occupancy is achieved in multiples of Kd. (B) The 

kinetically mistuned scenario in which parity between kon and ki and/or koff and k-i is not achieved. 

In this scenario, non-steady state occupancy < steady state occupancy occurs at each time point, 

where [drug-target](t) buildup lags [free target](t) buildup. The expected minimum eff in humans 

is underestimated in such cases, the true level of which is only achievable via dose escalation 

during clinical testing. In the worst case scenario, binding is mistuned to the therapeutic target 

and tuned to one or more off-targets by happenstance. 
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Cellular dysfunction (alteration of one or more “analog cellular programs”) putatively results from 

imbalances in one or more Yin-Yang pairs due to mutation-induced loss or gain of Yin, Yang, or 

clock molecular function (translating to over- or undershooting in the afflicted pathway(s)). 

Pharmacological intervention is putatively aimed at restoring the normal Yin-Yang balance (the 

pharmacodynamic response) by inhibiting or activating the dysfunctional target or other targets. 

Drug-target binding, in turn, depends on [free drug in target compartment](t) and [free target 

binding site](t), the former of which depends for oral drugs on the NLD balance between drug 

absorption (the source), clearance/metabolism (the permanent sink), and the fraction bound to a 

wide range of transient sinks, including off-target(s), membranes, plasma proteins, and lysosomes 

(Figure 9A), and the latter of which depends on the NLD balance between the target and overall 

system (noting that the same paradigm applies to off-target binding and the toxicodynamic 

responses thereto). Steady state free drug levels may be achieved, depending on the relative rates 

of the above processes vis-à-vis the dosing frequency. 

The total free drug concentration in an in vivo system is given by: 

d[total free drug]/dt = rate of absorption – rate of association + rate of dissociation – rate 

of clearance          [5] 

where, for the sake of simplicity, the association and dissociation terms represent the aggregate of 

all endogenous species to which the drug binds. The direction of drug flow through the system is 

determined by the in-rates to the various compartments and on-rates to the various endogenous 

species within. The higher drug concentrations outside the central and peripheral compartments 

during the absorption phase drive inward flows to the peripheral compartments (i.e., where the in-

rates exceed the out-rates) (Figures 9B and 9C), which reverses during the clearance phase (i.e., 
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where the out-rates exceed the in-rates) (Figures 9B and 9D). Lags in this process are introduced 

by slow off-rates from one or more transient sinks (including drug-target in some cases). 
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Figure 9. Drugs (cyan triangles) flow to and from the gut, central, and peripheral compartments 

along their concentration gradients in a highly non-linear source → sink fashion. (A) Hypothetical 

single oral dose PK curve, in which a drug is absorbed from the gut, followed by first-pass 

metabolism, distribution of the remaining fraction into the peripheral compartments, and binding 

to a wide range of intra- and extracellular species (including plasma proteins). All of these 
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processes operate concurrently, with faster absorption than distribution in the absorption (pre-

Cmax) phase, faster distribution than clearance in the distribution (early post-Cmax) phase, and faster 

clearance than distribution in the clearance (late post-Cmax) phase (resulting in reversal of drug 

flow back to the central compartment). (B) All source → sink processes (including transient 

distribution to/from peripheral compartments and binding, as well as permanent metabolic sinks) 

are bidirectional, with the fastest direction at a given time predominating (noting that lags in this 

process are introduced by slow off-rates from transient sinks). (C) The rates of drug entry into the 

central and peripheral compartments (red and blue arrows, respectively) are governed by the in-

rate/out-rate balance to/from each compartment, where in-rate exceeds out-rate during the 

absorption phase. The fraction of drug bound to the various endogenous species residing within 

each compartment builds when the partner-specific on-rate exceeds the off-rate. (D) The rates of 

drug exit from the central and peripheral compartments (red and blue arrows, respectively) are 

governed by the out-rate/in-rate balance to/from each compartment, where the out-rate exceeds the 

in-rate during the clearance phase. The fraction of drug bound to its various endogenous partners 

decays when the partner-specific off-rate exceeds the on-rate. 

The total free drug concentration in the central compartment, representing the fraction of total drug 

available for distribution, binding, and clearance, is given by: 

d[total free drug in central]/dt = rate of absorption – rate of plasma protein association + 

rate of plasma protein dissociation – rate of distribution  – rate of clearance [6] 

noting that the extremely high plasma protein (PP) concentration (~500-700 M24) results in fast 

drug-PP on-rates: 
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d[drug-PP]/dt = kon ∙ [free drug in central](t) ∙ (700e-6 – [bound PP](t)) −  

koff ∙ [drug-PP](t)         [7] 

The free drug concentration in the extra-cellular compartment is given by: 

d[free extracellular drug]/dt ≈ d[free drug in central]/dt    [8] 

The free drug concentration in the intra-cellular target compartment is given by: 

d[free drug in target compartment] = rate of inward permeation – rate of association + rate  

of dissociation – rate of outward permeation      [9] 

where the rate of inward permeation depends on [free extracellular drug](t), together with the rates 

of membrane entry and exit, and the rate of outward permeation depends on [free drug in target 

compartment](t), together with the rates of membrane entry and exit (noting that slow membrane 

exit in either direction results in membrane accumulation/partitioning). 

The optimal PK-PD and PK-TD scenarios may now be described as follows (under the tacit 

assumption that PD is governed directly by the time-dependent drug-bound target fraction, and TD 

is governed directly by the time-dependent drug-bound fraction of the most toxic off-target): 

1) Kinetically tuned drug-target binding, resulting in the minimum eff at the lowest possible 

free Cmax. 

2) Kinetically mistuned drug-off-target binding, resulting in minimum off-target occupancy 

at the therapeutic free Cmax. 

3) Slow drug-PP kon/fast koff, such that [drug-PP](t) << rate of drug distribution. 
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4) [total free drug](t) > rate of clearance. 

5) Clearance of the drug-target complex (-[drug-target](t)) < the rate needed to achieve the 

minimum eff. 

6) n ∙ Kd < [free drug in target compartment](t), where n ∙ Kd is the minimum efficacious 

exposure in the kinetically tuned binding scenario (e.g., 19 ∙ Kd → 95% drug-target 

occupancy). [free drug in target compartment](t) necessarily overshoots and decays back 

to the minimum efficacious exposure during the dosing interval (Figure 10A). Inter-dose 

troughs in [drug-target](t) result when [free drug in target compartment](t) decays to << n 

∙ Kd. 

7) Dosing interval/quantity is commensurate with conditions 3-5. 

8) [total free drug](t) < upper safe limit (allowing for dose escalation due to overdose or drug-

drug-interactions (DDIs)) (Figure 10B). 
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B 

 

Figure 10. (A) Hypothetical multi-dose plasma PK curve, in which the free drug exposure builds 

to and overshoots the minimum eff (topping out at the Cmax), followed by decay to the sub-

efficacious level (bottoming out at the Cmin). The duration of action per dose (t) is governed by 

the degree to which the minimum eff is overshot (represented by the area under the occupancy 

curve (AUC)). The minimum eff is achieved at the lowest possible free Cmax in cases of kinetically 

tuned binding. (B) Occupancy of a set of hypothetical off-targets i, j, and k as a function of the 

free plasma drug concentration ranging from the minimum efficacious exposure to the free Cmax, 

where the 𝐾𝑑
𝑥 are the off-target binding constants (assuming the worst-case scenario of kinetically 

tuned off-target binding), n · 𝐾𝑑
𝑥 = Cmax in multiples of 𝐾𝑑

𝑥, and m · 𝐾𝑑
𝑘 = the toxic free drug 

concentration for off-target k in multiples of 𝐾𝑑
𝑘. 
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The mutual effects of drugs on in vivo systems (i.e., PD) and in vivo systems on drugs (i.e., PK) 

is well appreciated in pharmaceutical science. The need for tight integration in PK-PD models 

(perhaps more than is commonly recognized) follows from the overtly NLD relationship among 

the underlying behaviors shown in Figure 9. Nevertheless, PK, potency, and efficacy are routinely 

characterized separately and later reassembled into PK-PD models, representing tacit linearization 

of these highly non-linear contributions. Equilibrium relationships between free drug 

concentration and occupancy are widely assumed in such models (equation 3), despite the known 

time dependence of the total drug concentration and possible time dependence of the targeted 

binding site concentration (in which case, kinetically mistuned drug-target binding resulting in 

reduced P(CC | L, H) and P(CTI | CC, L, H) is conceivable) (Figure 11). This practice may result 

in drug failures when the minimum efficacious equilibrium occupancy in vitro exceeds the 

minimum steady state eff in vivo. Furthermore, lead optimization is hampered by poor 

understanding of structure-ADME, structure-target binding, and structure-off-target binding 

relationships that may likewise contribute drug failures. 
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Figure 11. Kinetically mistuned drug-target binding results in a higher-than-expected minimum 

efficacious drug exposure in the target compartment under in vivo compared with in vitro 

conditions (in proportion to the gap between the rate of drug or target/binding site buildup and 

kon), necessitating higher in vivo drug exposures to achieve the minimum eff.
2 

The implications of the proposed solvation free energy model for medicinal 

chemistry, computational chemistry, and data science 

Binding sites are classically viewed as molecular surfaces capable of forming complementary 

interatomic contacts with cognate partners, and non-covalent intra- and intermolecular free 

energies are widely assumed to originate principally from interatomic contacts partitioned into van 

der Waals, electrostatic, H-bond, -, -cation, hydrophobic, hydrophilic, and lipophilic 

contributions (the basis of force-fields, docking scoring functions, and molecular descriptors used 

in a wide variety of empirical/QSAR models). This hypothesis is predicated on the assumption 

that free energy contributions are largely the same in the gas and solid phases as under aqueous 

conditions. However, interatomic contact free energy contributions are far weaker than 

water-water and water-solute H-bonds under aqueous conditions based on the following 

considerations: 

1) The steep distance dependence of van der Waals and electrostatic enthalpy (1/r6 and 1/r2, 

respectively), together with screening of electrostatic interactions by intervening water 

(reflected in the large dielectric constant of water), resulting in near zero enthalpic 

contributions at distances greater than the Debye length (how complementary contacts co-

localize therefore becomes a chicken-egg problem). 
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2) The magnitude of van der Waals enthalpy summed over numerous contacts in LMW and 

HMW molecules is negligible relative to the H-bond enthalpy of liquid water. 

3) Intra- and inter-solute H-bond and electrostatic enthalpy gains are offset to varying degrees 

by the high desolvation costs of polar and charged partners (a zero sum game at best). 

4) -, -cation, and halogen bonds are far weaker than water H-bonds, and under aqueous 

conditions, may be confused with the effects of cationic groups that enrich the H-bond 

enthalpy of their solvating water, versus aromatic rings and halogen groups that deplete it 

(noting that although halogens are highly electronegative, they do not share their electrons). 

Furthermore, enthalpic gains from -cation contacts are likewise offset by the high cation 

desolvation cost. 

5) The existence of hydrophobic (polar-non-polar), hydrophilic (polar-polar), and lipophilic 

(i.e., non-polar-non-polar) free energy contributions is strongly questioned by the lower 

enthalpies of water-methane compared with methane-methane interactions (which are 

significantly higher than that of water-water interactions) calculated using ab initio 

quantum mechanics.3 

Conversely, water H-bond enthalpy is extremely large and water is highly sensitive to H-bond 

losses and gains in the presence of solutes, as follows:3–5,7,14,22,25 

1) The non-polar regions of LMW and HMW solutes are solvated by high energy H-bond 

depleted water (relative to bulk solvent), the amount, magnitude, and spatial distribution 

of which are determined by the chemical structures and monomer sequences of LMW and 

HMW solutes, respectively. 
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2) H-bond depleted solvation is maximally present in the initial dissolved state at t = 0 and is 

partially or fully expelled to bulk solvent over time via intra- and intermolecular 

rearrangements (binding, folding) to or toward the equilibrium distribution at fixed and 

variable concentrations, respectively (Figure 12). 

3) Residual H-bond depleted solvation that cannot be auto-desolvated in cis is invariably 

present to one degree or another in post-rearranged solute states, as follows: 

a) At non-polar regions of external surfaces, including binding sites and 

rearrangement interfaces. 

b) In the case of HMW solutes, within internal sub-surface cavities from which 

exchanges with bulk solvent are either slowed/impeded or abolished in the absence 

of surface openings. 

4)  Further intra- and/or intermolecular rearrangements initiated by perturbations are powered 

principally by the desolvation of residual H-bond depleted solvation (e.g., the introduction 

of a binding partner; change in membrane potential in the case of ion channels).5,7,8 

5) Allosteric/remote effects are powered by the indirect concerted desolvation of internal 

solvation during binding partner association. Induced-fit effects are powered by the indirect 

concerted desolvation of internal and/or external H-bond depleted solvation located 

proximal to the binding interface. 

6) kon (the intermolecular association rate constant) and kin (the intramolecular entry rate 

constant) are largely proportional to the mutual desolvation costs of the binding partners 

and rearrangement interface, respectively.14 Desolvation costs, in turn, are proportional to 
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the H-bond free energy of H-bond enriched solvating water (denoted as Gsolv) expelled 

from the inter- or intramolecular interface relative to bulk solvent (denoted as Gbulk), where 

Gbulk − Gsolv > 0. The lower the Gsolv of this water, the higher the desolvation cost. 

7) Intra- and intermolecular rearrangements (including the opening of so-called cryptic 

pockets) leading to the de novo generation of H-bond depleted solvation (relative to the 

original state) are slowed in proportion to the magnitude of the solvation free energy loss 

(i.e., the association or entry barrier is increased by such solvation). 

8) koff (the intermolecular dissociation rate constant) and kout (the rate of exit from a given 

intramolecular state) are proportional to the mutual resolvation costs of the binding partners 

and rearrangement interface, respectively.14 Resolvation costs, in turn, are proportional to 

the H-bond free energy (relative to bulk solvent) of solvating water returning to H-bond 

depleted positions of the interface, where Gsolv − Gbulk > 0. The higher the Gsolv of this 

water, the higher the resolvation cost. 
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Figure 12. The introduction of HMW and LMW solutes to aqueous conditions (at t = 0) results in 

the generation of H-bond depleted surface solvation, the amount, magnitude, and distribution of 

which mirrors the non-polar surface composition. The minimum free energy states correspond to 

those in which the H-bond depleted solvation has been maximally auto-desolvated via 

intramolecular rearrangement/folding and/or H-bond enriched solvation has been gained in the 

rearranged state. However, total auto-desolvation of such solvation results in non-rearrangeability 

of the populated states. 

The total non-covalent binding free energy can be derived as follows: 

Gbinding = Ginteratomic solute contacts + (Gsolute H-bond +  Gdesolvation)   [10] 

where Gbinding is the total free energy gain, Ginteratomic solute contacts is the interatomic contact free 

energy contribution, Gdesolvation is the water transfer free energy contribution, and Gsolute H-bond is 

the intra- or inter-solute H-bond free energy contribution.  Ginteratomic solute contacts can be neglected 

to a first approximation, since (Gsolute H-bond +  Gdesolvation) >> Ginteratomic solute contacts:
3 

Gbinding ≅ Gsolute H-bond + Gdesolvation      [11a] 

Gbinding ≅ (Gsolute H-bond + GH-bond enriched desolvation) + GH-bond depleted desolvation  [11b] 

where: 

a) Ginteratomic solute contacts and Gsolute H-bond are always < 0. 

b) GH-bond enriched desolvation is always > 0. 

c) Gsolute H-bond + GH-bond enriched desolvation → 0 as Gsolute H-bond → GH-bond enriched desolvation. 
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d) Gbinding → GH-bond depleted desolvation (given perfect replacement of the H-bonds of 

desolvated H-bond enriched solvation). 

Caveat 2: Interpretation of structure-activity relationships (the currency of medicinal chemistry) 

in terms of interatomic contact free energy contributions, the prediction of non-covalent free 

energy and structure-free energy relationships using force-field based approaches (e.g., molecular 

dynamics, free energy perturbation, conformational searching, energy minimization), and data 

modeling approaches (e.g., quantitative structure-activity relationship (QSAR) analysis, 

docking/scoring, pharmacophore analysis) are subject to grossly overestimated solute and grossly 

underestimated solvation contributions. 

Equation 11b can be expressed as: 

Gbinding ≅ ∆𝐺𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
‡

 − ∆𝐺𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
‡

      [12] 

where ∆𝐺𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
‡

 and ∆𝐺𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
‡

 are the free energy barriers for entry and exit to/from an 

intermolecular state, respectively. Structure kinetics relationships can therefore be explained on 

the following basis (contrary to the classical structure-free energy interpretation): 

1) The non-covalent entry free energy barrier magnitude equates to the net desolvation cost, 

consisting of the H-bond free energy lost in transferring H-bond enriched solvation to bulk 

solvent, offset by the free energy gained via intra- or inter-solute H-bond formation 

(typically > 0 and rarely < 0). As such, the populated non-covalent states are those entered 

the fastest, rather than those stabilized by intra- or inter-solute H-bonds and electrostatic 

contacts (as is widely assumed). The most frequently visited states are those in which 

the lowest desolvation cost of H-bond enriched solvation (denoted as “gatekeeper 
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solvation”) is incurred during entry. A simple rule of thumb is that H-bonds observed in 

folded HMW species and complexes reflect the allowed positions of polar groups during 

folding or binding (i.e., where H-bond enriched solvation existed prior to folding or 

binding), whereas non-polar contacts reflect H-bond depleted positions that were 

desolvated during folding or binding. 

2) The magnitude of the exit free energy barrier equates to the total resolvation cost at H-bond 

depleted positions incurred during decay of a given non-covalent intra- or intermolecular 

state. Non-covalent states are kinetically stabilized principally by this contribution, which 

may be augmented by -stacking interactions in fully dehydrated environments. As such, 

the most persistent states are those whose resolvation costs incurred at H-bond 

depleted solvation positions in the exited/dissociated state are the highest (denoted as 

“sticky solvation”). Such solvation necessarily resides within a Goldilocks zone in which: 

a) Anti-solubilizing and destabilizing effects are balanced against low energy 

gatekeeper solvation. 

b) Non-specific intra- and intermolecular rearrangements that expel H-bond depleted 

solvation are minimized. 

c) Rate-determining steps (lags) due to slow off-rates of endogenous species are 

minimized. 

3) Non-covalent states build and decay over time, wherein buildup exceeds decay in the net 

buildup phase (i.e., on-rate is increasing relative to off-rate) and decay exceeds buildup in 

the net decay phase (i.e., on-rate is slowing relative to off-rate) (Figure 9B, bottom). 
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Overview of Biodynamics-guided drug design 

Improving Pd depends on a first principles approach to drug design, in which solubility, 

permeability, drug-target binding kinetics, and drug-off-target binding kinetics are addressed 

holistically according to the predicted distributions of H-bond enriched and depleted solvation of 

hit and lead compounds, target and off-target binding sites, and membrane surfaces (Figure 13) 

(ultimately aimed at “reverse-engineering” predicted inverse solvophores into LMW compounds 

capable of achieving optimal PK-PD relationships in humans). All such behaviors are considered 

in terms of their individual (i.e., ∆𝐺𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
‡

 and ∆𝐺𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
‡

), rather than aggregated free 

energy (i.e., G ) contributions, consisting principally of the desolvation and resolvation costs 

incurred during rearrangements (where higher desolvation costs equate to lower solvation free 

energy and proportionately higher solubility at the expense of higher maximum ∆𝐺𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
‡

). 

 

Figure 13. Solubility, permeability, and non-covalent intra- and intermolecular free energy barriers 

are governed principally by solvation free energy contributed by water-solute and water-water H-

bond free energy contributions, which are spatially distributed over the solvent accessible surfaces 

of solutes. Of particular interest are regions of H-bond enriched and depleted solvation (relative to 
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bulk solvent) versus energetically neutral bulk-like solvation. Solubility (excluding dissolution) is 

a complex function of the relative proportions, magnitudes, and spatial distributions of H-bond 

enriched and depleted solvation at polar and non-polar solute surfaces, respectively (enhanced by 

the former and diminished by the latter). Solvation free energy, in turn, depends on the local H-

bonding environment at each solute surface position (governed by local chemical composition and 

surface shape/curvature7). ∆𝐺𝑒𝑛𝑡𝑟𝑦
‡

 and ∆𝐺𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
‡

 are proportional to the total desolvation cost 

of H-bond enriched solvation during entry or association, respectively, and ∆𝐺𝑒𝑥𝑖𝑡
‡

 and 

∆𝐺𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
‡

 are proportional to the total resolvation cost at H-bond depleted positions during 

exit or dissociation. The maximum ∆𝑮𝒆𝒏𝒕𝒓𝒚
‡

 or ∆𝑮𝒂𝒔𝒔𝒐𝒄𝒊𝒂𝒕𝒊𝒐𝒏
‡

 increases with increasing 

solubility and total desolvation cost (replacing the H-bonds of H-bond enriched solvation 

needed to speed kon becomes increasingly challenging), and the maximum ∆𝑮𝒆𝒙𝒊𝒕
‡

 

∆𝑮𝒅𝒊𝒔𝒔𝒐𝒄𝒊𝒂𝒕𝒊𝒐𝒏
‡

 increases with decreasing solubility and total resolvation cost. Permeability is 

governed by ∆𝐺𝑒𝑛𝑡𝑟𝑦
‡

 and ∆𝐺𝑒𝑥𝑖𝑡
‡

 to/from phospholipid membranes, respectively. The skewed 

distribution of H-bond enriched and depleted solvation of amphipathic (phospholipid-like) solutes 

promotes membrane partitioning rather than permeation. The Lipinski Rule of 5 (reflecting the 

polar/non-polar composition)26 equates to the Goldilocks zone of H-bond enriched and depleted 

solvation governing optimal solubility, target binding, and permeability. 

According to our theory, the minimum free energy conformational states of LMW species are 

those tipped toward excess H-bond enriched versus H-bond depleted solvation (particularly 

trapped or impeded internal H-bond depleted solvation). The most populated sterically accessible 

conformational states of a given species under non-equilibrium conditions are those whose rates 

of entry (𝑘𝑖𝑛
𝑖 ) are fastest, and rates of exit (𝑘𝑜𝑢𝑡

𝑖 ) are slowest, versus those corresponding to free 
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energy minima at equilibrium. The fastest 𝑘𝑖𝑛
𝑖 s are those exhibiting the lowest desolvation costs 

(i.e., in which H-bond enriched solvation is replaced by intra-solute H-bonds during entry or in 

which such solvation is altogether absent). The slowest 𝑘𝑜𝑢𝑡
𝑖 s are those exhibiting the highest 

resolvation costs (i.e., those in which large amounts of H-bond depleted solvation are expelled 

during entry). The actual conformational distributions of LMW species in solution may be 

considerably wider than those suggested by force-field-based calculations in which favorable 

enthalpic contributions are overestimated and entropic gains realized over wider distributions are 

underestimated. The preferred conformations are likely those in which the overall solvation free 

energy and electronic energy in the case of unsaturated or covalently rearrangeable moieties (e.g., 

tautomers) is minimized, as follows: 

1) Extended conformations of highly polar compounds in which the polar groups are 

maximally solvated. 

2) Conformations in which the H-bonds of H-bond enriched solvating water have been 

optimally replaced by intramolecular H-bonds (the rates of formation of which depend on 

the quality of the replacements vis-à-vis the desolvated H-bond enriched water). Such 

conformations are transient. 

3) Folded conformations of larger solutes, in which H-bond depleted solvation has been 

maximally desolvated. The persistence of such conformations is proportional to the 

resolvation cost incurred upon exiting.  

Desolvation and resolvation costs are likewise considered in terms of their individual (vectorial) 

contributions at the internal and external surface positions of HMW solutes and the external 

surface positions of LMW solutes, versus conventional measured and calculated scalar quantities 
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under the status quo paradigm (e.g., binding constants, binding free energy, solubility, 

permeability, logP) (Figure 14). 

 

Figure 14. The high occupancy voxels of the Mpro inhibitor PF-0083521 calculated using WATMD 

(see below) overlaid on the solvent accessible surface of the compound (showing the front and rear 

faces). The total desolvation cost (i.e., -(the total solvation free energy)), which is proportional to 

logP is proportional to the qualitative sum of the desolvation costs at each voxel position, which 

in turn, are proportional to the voxel radii (reflecting the time-averaged water occupancy relative 

to bulk solvent). LogP serves as a benchmark of the overall voxel radii-desolvation free energy 

relationship (noting that the spatial distribution of the individual contributions to the desolvation 

and solvation free energies is more useful than scalar logP values for the purpose of drug design). 

Furthermore, target sequence → drug approaches are precluded by the inherently non-

linear nature of drug discovery/design resulting from the mutual interdependence of drug 

properties and behaviors (Figure 15). 
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Figure 15. Left: a linear relationship among the major drug behaviors/properties is tacitly assumed 

under the status quo lead optimization paradigm. Predicted properties are optimized in a step-wise 

fashion, beginning with chemical starting points (hits) that “spiral” into predicted drugs via cycles 

of trial-and-error synthesis and testing. Right: in reality, such relationships are highly non-linear 

due to their mutual interdependence, such that optimization of one behavior may result in 

deoptimization of one or more others. 

Based on our theory, lead optimization is ideally aimed at: 

1) Minimizing the need for dose escalation during clinical testing (which erodes the safety 

margin and TI) by tuning kon and koff to the rates of target (or target binding site) buildup 

and decay, respectively,2 such that the minimum efficacious eff in humans is achieved at 

the lowest possible free Cmax. Covalent reactions can be used to slow koff when the amount 

of H-bond depleted solvation is insufficient to achieve the minimum efficacious eff (noting 

that the covalent complexes of fluxes accumulate to their equilibrium levels over time). 
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2) Achieving the Goldilocks zone of solubility, permeability, and drug-target and drug-off-

target binding, in which the overall desolvation costs are sufficiently low (reflected in 

higher logP). Optimal solvation properties correspond to: 

a) The Goldilocks zone of solubility and desolvation costs incurred during drug-

target and drug-membrane association (Figure 16). Poorly soluble compounds 

dissolved in DMSO stock solutions (frequently used in assays) necessarily revert 

to their aqueous solubilization level and may distribute between solubilized (the 

bioavailable fraction), suspended, and precipitated fractions. 

b) Sufficient polar groups optimally positioned for low-cost desolvation of the polar 

phospholipid groups at membrane surfaces and target binding site regions solvated 

by H-bond enriched water (avoiding mismatches between non-polar drug groups 

and H-bond enriched solvation within the binding site). 

c) Sufficient non-polar groups optimally positioned for desolvating H-bond depleted 

regions of the target binding site (avoiding mismatches between polar drug groups 

and H-bond depleted solvation within the binding site). 

d) The gain of H-bond enriched solvation but not H-bond depleted or trapped/impeded 

solvation in the bound state (which respectively slows koff and slows kon and speeds 

koff). 

e) The lack of basic groups frequently used to solubilize poorly soluble 

compounds. The solvation of such compounds is distributed asymmetrically 

between H-bond enriched solvation of the basic group and H-bond depleted 
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solvation of the remaining scaffold (translating to amphipathicity/quasi-

amphipathicity). Excess H-bond depleted relative to enriched solvation (the direct 

cause of poor solubility) can result in non-specific binding, membrane partitioning 

(i.e., high volume of distribution). Basic amines can further result in high levels of 

lysosomal trapping27 and ion channel blockade. 

f) The lowest possible molecular weight distributed between polar and non-polar 

groups required for matching H-bond enriched solvation on membrane and target 

binding site surfaces and depleted solvation on target binding site surfaces, 

respectively (the Goldilocks zone of chemical composition). This principle is 

captured in qualitative scalar form by the Lipinski rule of 5.26 

 

 

Figure 16. Maximal solubility depends on uniformly distributed H-bond enriched solvation across 

solute surfaces, which scales downward as the ratio of H-bond enriched/depleted solvation and 

absolute free energy magnitudes thereof decrease. The asymmetric distributions of H-bond 

enriched and depleted solvation in amphipathic molecules are exaggerated by acid groups and 
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basic amines. Precipitation occurs at a high threshold ratio of H-bond depleted to enriched 

solvation, whereas suspensions occur at a lower threshold ratio. 

Activity cliffs (abrupt changes in potency due to small chemical changes) are due to significant 

kon slowing, significant koff speeding, or both. Slowed kon relative to the reference analog is 

symptomatic of the loss of  H-bond free energy among the partners due to: 

1) Suboptimal H-bond replacement of H-bond enriched solvation of the modified analog 

and/or binding site relative to the reference analog, stemming from altered geometry and/or 

chemical composition of the offending R-group (translating to increased desolvation cost). 

2) The generation of additional H-bond depleted solvation in the bound state of the modified 

analog compared with the reference, which destabilizes the bound state of the modified 

analog relative to the reference (translating to both slowed kon and sped koff). 

Sped koff is symptomatic of the loss of H-bond free energy among the partners (i.e., decreased 

resolvation cost) due to: 

1) Reduced desolvation of H-bond depleted solvation of the modified analog and/or the 

binding site caused by spatial mismatching between the offending R-group and binding 

site relative to the reference. 

2) The loss of additional H-bond enriched solvation generated in the bound state by the 

reference but not the modified analog, which destabilizes the bound state of the modified 

analog relative to the reference (manifesting as both slowed kon and sped koff). 
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Conclusion 

Failure to achieve a TI during clinical testing in suitable patient populations stems from incorrectly 

predicted therapeutic effects of drug-target occupancy, structure-free energy relationships 

governing exposure-target occupancy (PK-PD) relationships, and/or overlapping minimum 

efficacious and toxic exposure levels in humans due in some cases to kinetically mistuned drug-

target binding. ML and AI are generally useful for capturing weak signals in noisy datasets (e.g., 

protein sequence-tertiary/quaternary structure relationships in Alphafold2), but do not compensate 

for disconnects between dependent and independent variables (e.g., measured drug-target binding 

data and interatomic contact based molecular descriptors) and between disconnected contexts (e.g., 

equilibrium conditions in vitro versus non-equilibrium conditions in the native cellular setting). 

Predictions based on first principles theoretical understanding (the rules of the game) are far more 

likely to improve preclinical and clinical outcomes than empirical data models generated via ML, 

AI, or other means. Such models may help inspire, but not directly lead to first principles insights 

(e.g., quantum mechanics was not deduced from the Bohr atom; general relativity was not deduced 

from Newton’s empirical gravitational principle). Biodynamics-guided drug design is concerned 

with the non-equilibrium solvation free energy contributions to solubility, permeability, kinetically 

tuned target binding kinetics, and kinetically mistuned off-target binding kinetics, which are 

necessarily optimized toward the Goldilocks zone in parallel  (i.e., not too H-bond depleted and 

not too H-bond enriched) due to their non-linear relationship, in contrast to the status quo approach 

to drug discovery, in which these processes are optimized sequentially based on trial-and-error 

chemical synthesis guided by intuition/experience and empirical models derived from equilibrium 

data. Improving preclinical and clinical success rates depends to a large degree on shifting the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.10.31.514572doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.31.514572


paradigm from a trial-and-error, process-driven technology/chemistry-centric workflow to one 

guided by scientific principles that are better aligned with the native cellular setting. 
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