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ABSTRACT 

This research aimed to implement and compare the accuracy of different interpolation methods using cross validation 
errors for interpolating the spatial pattern of soil properties. This paper investigates whether the use of kriging, instead 
of traditional interpolation methods, improves the accuracy of prediction of soil properties. To this end, various inter-
polation (kriging) techniques that rely on the spatial correlation between observations to predict attribute values at en-
sampled locations are studied. Geostatistics provides descriptive tools such as semivariograms to characterize the spatial 
pattern of continuous and categorical soil attributes. The maps obtained from Ordinary Kriging, Inverse Distance 
Weighting and splines show clearly that the map from Universal Kriging (UK) is better than the other three interpola-
tion methods. Therefore, UK can be considered as an accurate method for interpolating soil (EC, pH, CaCO3) proper-
ties. 
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1. Introduction 

The soil resource inventory, i.e. a map showing distribu-

tion of soils and its properties accompanied by a soil 

survey report, is the end product of a soil mapping pro-

ject [1]. The paper map, as a product of traditional soil 

mapping, appears to be increasingly irrelevant to many 

users and does not have a market with land managers and 

policy makers at different scales [2]. While the tradi-

tional role of soil survey is diminishing, the need of soil 

information becomes important in terms of sustainable 

land management. There are many policy issues which 

require good soil information and rapid answers, e.g. 

erosion, salinization, organic matter content and heavy 

metal pollution. The question “Do we have enough and 

accurate soil data to contribute to the variety of applica-

tion fields emanating from increasing societal demands?” 

arises. 

Available soil data often fails to provide answers 

needed to manage our environmental resources. A lot of 

soil information and many maps are not being used for 

research because they are not available in digital formats 

[3,4]. Widely used soil models essentially yield empirical 

results due to lack of good basic soil data [5]. This chal-

lenges our scientific pretensions. Updating soil invento-

ries is one of the main fields where new technologies 

should facilitate data sampling and acquisition. New high 

quality soil data is needed to complement existing data-

bases and to provide spatial detail required by the users.  

The Geographic Information System (GIS) is an effec-

tive and worthwhile tool in the estimation of the spatial 

distribution of environmental variables [6,7]. Spatial pre-

diction and surface modeling of soil properties has be-

come a common topic in soil science research [8,9]. The 

spatial distribution patterns of soil properties vary greatly 

depending on soil types, topography, climate, vegetation 

and anthropogenic activities. Surface modeling is a use-

ful tool for soil property interpolation in precision agri-

culture and soil management. However, the effectiveness 

of the application relies on the accuracy of spatial inter-

polation which is used to describe the spatial variability 

of soil properties. The accuracy of the map reflects both 

the suitability of the spatial intensity of the sample col-

lection strategy as well as the method used to predict the 

soil test values of all ensampled locations. It is necessary 

to study the interpolation methods with high accuracy 

and improve interpolation quality for soil properties. 

Interpolation can be undertaken utilizing simple mathe- 

matical models (e.g., inverse distance weighting, trend 

surface analysis and splines and Thiessen polygons), or 

more complex models (e.g., geo-statistical methods, such 

as kriging) [10]. The review of comparative studies of 

interpolation methods applied to soil properties demon-

strates that the selection of method can significantly in-

fluence map accuracy. Ordianary Kriging (OK), Univer-

sal Kriging (UK), Inverse Distance Weighting (IDW) 
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and Radial Basis Function (splines) are four ways to in-

terpolate soil properties. Past applications of these meth-

ods have given a range of results which have not always 

been consistent [11]. The performance of these three es-

timators was studied in soil science literature, but the 

results are not clear-cut. Some authors found that kriging 

methods out performed IDW or Radial Basis Function 

(Splines) [12,13]. However, others showed that kriging 

was not better than the other two methods [14,15].  

The failure to evaluate map accuracy due to the con-

sistency between predicted and observed attribute values 

for any given location within the mapped region is a re-

curring limitation. At present there is no consensus re-

garding best or most robust approaches to map soil prop-

erties. It was known little about performance and accu-

racy of different interpolation methods applied to soil 

properties. The objectives of this study are to, 1) assess 

the feasibility of different spatial interpolation methods 

to predict soil properties; 2) compare the performance 

and accuracy of spatially continuous interpolation of soil 

properties maps; and 3) develop and improve soil infor-

mation systems by improving the prediction accuracy of 

soil properties. The aim is to answer the question: Are 

the traditional soil maps dying or thriving? 

2. Theoretical Background 

The regionalized variable theory [16] has been applied 

successfully to soil property interpolation for nearly 30 

years [17-19]. The theory provides a convenient sum-

mary of soil variability (in the form of a semi-variogram) 

and an interpolation technique which is termed kriging 

[17,20]. To accurately characterize soil properties, more 

samples not fewer may be required, especially when grid 

or other systematic soil sampling strategies are used. At 

least 100 samples might be needed to obtain a reliable 

variogram that correctly describes spatial structure [21].  

Ordinary Kriging (OK), Universal Kriging (UK), IDW 

and splines are four methods for interpolating soil prop-

erties. UK [16] has been the commonly used method to 

accommodate the trend or the changing drift, as it is 

sometimes known, in a soil variable. UK is a combina-

tion of the standard model of multiple-linear regression 

and the geostatistical method of OK [22], which is also 

analogous to combine soil-forming factors (known as 

CLORPT methods) with univariate kriging using the 

geographical coordinates as determining the drift. IDW 

[13,15] and Splines [23] are also commonly used classi-

cal interpolation methods to analyze the spatial variabil-

ity of soil properties. Both kriging (OK and UK) and 

IDW estimate values at ensampled locations based on 

measurements from the surrounding locations with cer-

tain weights assigned to each of the measurements [12]. 

The IDW interpolator assumes that each input point has a 

local influence that diminishes with distance [13]. IDW 

does not allow assumptions required for the data [24]. To 

predict a value for any unmeasured location, IDW will 

use the measured values surrounding the prediction loca-

tion. Those measured values closest to the prediction 

location will have more influence (weight) on the pre-

dicted value than those farther away, hence the name 

inverse distance weighted. Although IDW is easier and 

quicker to implement than kriging, it does not have the 

statistical advantages of kriging [23]. Splines consist of 

polynomials, which describe pieces of a line or surface, 

and they are fitted together so that they join smoothly 

[25]. Splines produce good results with gently varying 

surfaces, and thus are often not appropriate when there 

are large changes in the surface values within a short 

horizontal distance [26]. A surface does not usually fit 

the formulation of the spline surface theoretically, which 

leads to considerable interpolation error [27].  

3. Materials and Methods 

3.1. Study Area, Samples, and Analyses 

The study area (30˚37'23.26'' - 30˚37'00.78''N, 

32˚16'06.38'' - 32˚15'18.44''E), covering 50 Hectare, is 

located in the Ismailia province, Egypt (Figure 1). The 

study area was covered by 146 sampling sites. The aver-

age distance between soil sampling locations is approxi-

mately 50 m. The sampling sites were designed to cover 

evenly the whole area and to include different soil types, 

and different land use types. Soil samples were air-dried 

and passed through a 2 mm sieve. Soil EC was measured 

in a 1:1 soil/water suspension with the EC meter method 

[28]. Soil pH was measured in a 1:2.5 soil/water suspen-

sion with the pH meter method [29]. CaCO3 was esti-

mated by the manometer method using Collin’s calcime-

ter [30]. Topsoil (in the plow 0 - 30 cm) pH, EC and 

CaCO3 of the 146 samples was used to compare the per-

formance of different interpolators. 

3.2. Geostatistical Methods for Interpolating Soil 
Properties  

OK, UK, IDW and Splines are four methods for interpo-

lating soil properties. IDW interpolation explicitly im-

plements the assumption that things that are close to one 

another are more alike than those that are farther apart. 

The optimal power value is determined by minimizing 

the root mean square prediction error (RMSPE). 

A Geostatistical Analyst tries several different powers 

for IDW to identify the power that produces the mini-

mum RMSPE. Splines methods are a series of exact in-

terpolation techniques; that is, the surface must go 

through each measured sample value. When comparing 

Splines to the IDW method, another exact interpolator,    
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Figure 1. Location map of the study area. 

 

IDW will never predict values above the maximum 

measured value or below the minimum measured value. 

However, the Splines can predict these values. Splines 

are used for calculating smooth surfaces from a large 

number of data points. The functions produce good re-

sults for gently varying surfaces such as elevation.  

OK is one of the most basic kriging methods [31]. OK 

assumes the model: Z(s) = μ + ε(s). Where Z(s) is the 

main variable of interest, and ε(s) are random errors. OK 

assumes stationarity of the mean and considers μ to be a 

constant, but unknown, value. Nonstationary conditions 

are taken into account by restricting the domain of sta-

tionarity to a local neighbourhood and moving it across 

the study area. UK assumes the model: Z(s) = μ(s) + ε(s). 

Where μ(s) is some deterministic function. It is not con-

stant, but it varies smoothly within the local neighbor-

hood, representing a local trend. The trend μ(s) is recal-

culated within each local neighbourhood.  

These four methods were employed to compare their 

performances for interpolating soil properties. We com-

pared different parameters for kriging, IDW as well as 

Splines, and then decided the best parameters for each 

technique with the smallest root mean squared error 

(RMSE) statistic, obtained from an independent valida-

tion data set. In kriging, spherical, exponential, and 

Gaussian models were fitted using the variogram. The 

variogram is characterized by three major properties: the 

nugget effect, the sill and the range. The nugget effect is 

a discontinuity of the variogram which expresses both 

the variability at a scale smaller than the sampling inter-

val and non-spatial variation. The nugget effect cannot be 

removed by close sampling, but only by repeated meas-
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urements [32]. The range is the lag distance where the 

variance approaches an asymptotic maximum, the sill. It 

expresses the distance beyond which samples are uncor-

related. Once the variogram is known, the value of an 

attribute at any point in a mapping unit can be predicted 

from the available data points using kriging. Kriging 

gives the standard deviation of the prediction error as 

well. This standard deviation depends only on the vario-

gram, the number of data and the spatial configuration 

with which these are taken [33] and can hence be used to 

determine the required number of data. 

Geostatistical analyses were performed using the Geo-

statistical analyst extension available in ESRI ArcMap v 

9.3 [34]. 

3.3. Validation 

To validate a predictive model and choose appropriate 

algorithm, Cross-Validation (CV) which is a statistical 

method, has been used [35]. CV or so-called “leave-one- 

out” technique and validation with an independent data 

set are used for comparing the interpolation methods. CV 

involves eliminating each observation in turn, estimating 

the value at its site from the remaining observations and 

comparing the predicted value with the measured value 

[36]. This procedure is a rapid, inexpensive approach for 

comparing predicted and measured values [37]. Unfor-

tunately, it has limitations in many cases. For kriging 

estimators, it retains the same variogram, and to be true 

cross validation the variogram should be recomputed and 

fitted afresh when each observation is removed [20]. 

These shortcomings can be avoided by using an inde-

pendent data set for validation [20,37,38]. Validation 

with an independent data set, which is a superior and 

more dependable method, directly estimates the spatial 

uncertainty, as validation points are located randomly 

throughout the field [20,37]. However, when the sample 

size is small, not enough and separate data are available 

for modelling and validation [39]. Consequently, a modi-

fied jackknifing technique was adopted to resample the 

base sample data 20 times for the purpose of assessing 

the performance of the four methods [39]. The resam-

pling size each time was 20 samples for validation and 

126 samples for interpolation in this study.  

Three indices were calculated from the measured and 

interpolated values at each validation sample site for 

each test data set. The mean error (ME), the mean abso-

lute error (MAE) and the root mean square error (RMSE) 

are determined from the measured values. The ME is a 

measure of the bias of the interpolation which should be 

close to zero for unbiased methods, and the MAE as well 

as RMSE are accuracy measures of the interpolation 

which should be as small as possible for accurate inter-

polation [40]. The ME, MAE and RMSE were estimated 

for each resampled validation sets, and respectively the 

averages of the MEs, MAEs and RMSEs of the 20 vali-

dation sets were used to determine the performance of 

each interpolator. 

4. Results and Analyses 

4.1. Exploratory Statistics for Soil Properties  

Summary statistics and the frequency distributions of soil 

properties are shown as a histogram in Figure 2. The 

histograms show a unimodel shape. The positive and 

small value of skewness (0.5) close to zero and kurtosis 

values (2.6 - 3.1) close to 3.0 indicate that the data devi-

ated from a normal distribution [41]. Only in the case of 

CaCO3, does the analysis indicate that the data do not 

deviate from a normal distribution.  

4.2. Comparison of the Interpolated Maps by the 
Four Techniques 

The patterns of soil properties distribution produced by 

different interpolators using 126 points are shown in 

Figures 3 and 4. In the maps from the four techniques, 

IDW interpolation produces many Bull’s eyes on the soil 

surface. On the contrary, Splines have a serious oscilla-

tion problem which makes the minimum output (3.99) 

lower and the maximum output (6.75) higher than those 

of other techniques. The OK map shows rather gradual 

transitions with low levels of detail. Owing to its smooth-

ing effect, the maximum value (6.00) is the lowest and 

the minimum value (4.53) is the highest in the four tech-

niques.  

The sampling interval (Lag) should be less than half of 

the range of the raw semivariogram as a rule of thumb 

[42]. The ratio of nugget to sill variances, expressed as 

percentage, can be regarded as a criterion to classify the 

Spatial Dependency (Sp.D) of soil parameters. If the ra-

tio is less than 0.25, the variance has strong spatial de-

pendency and if the ratio ranges between 0.25 - 0.75, the 

variance has moderate spatial dependency [43,44]. The 

Sp.D of soil parameters from Table 1 shows that the 

nugget/sill ratio ranges from 0.242 (OK-Circular) to 

0.216 (UK-Exponential) for EC. For pH, the nugget/sill 

ratio ranges from 0.265 (OK-Spherical) to 0.096 (UK- 

Exponential). However, the nugget/sill ratio ranges from 

0.030 (OK-Exponential) to 0.168 (UK-Tetraspherical) 

for CaCO3. These results indicate that the Exponential 

model for UK is the best semivariogram model to show 

the strong spatial dependency for the salinity variable. 

4.3. Validation Results: Comparison of  
Interpolation Performance 

Before the final surface is produced for practical use, the 

CV should be employed to e amine how well the surface  x  
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Table 1. The sampling interval (Lag), nugget, sill and spatial dependency (Sp.D) of the different interpolated methods for soil 

properties. 

Range (m) Sp.D Sill Partial Sill Nugget Soil Properties Model Methods 

150 0.242 5.276 4.000 1.276 EC 

200 0.682 0.211 0.067 0.144 pH 

150 0.123 2.525 2.214 0.311 CaCO3 

Circular 

150 0.548 2.336 1.055 1.281 EC 

200 0.265 0.487 0.358 0.129 pH 

150 0.127 2.365 2.064 0.301 CaCO3 

Spherical 

150 0.567 2.248 0.974 1.274 EC 

200 0.719 0.199 0.056 0.143 pH 

150 0.281 2.143 1.540 0.603 CaCO3 

Pentaspherical 

150 0.534 2.238 1.042 1.196 EC 

200 0.639 0.202 0.073 0.129 pH 

150 0.030 2.251 2.184 0.067 CaCO3 

Exponential 

150 0.542 2.612 1.195 1.417 EC 

200 0.735 0.215 0.057 0.158 pH 

150 0.206 2.914 2.314 0.600 CaCO3 

Gaussian 

OK 

200 0.541 2.522 1.157 1.365 EC 

108 0.118 0.178 0.157 0.021 pH 

110 0.353 1.943 1.257 0.686 CaCO3 

Circular 

200 0.568 2.392 1.033 1.359 EC 

108 0.220 0.177 0.138 0.039 pH 

110 0.374 1.803 1.129 0.674 CaCO3 

Spherical 

200 0.599 2.249 0.902 1.347 EC 

108 0.682 0.176 0.056 0.120 pH 

110 0.168 3.604 3.000 0.604 CaCO3 

Pentaspherical 
Tetraspherical 

(CaCO3) 

200 0.216 5.100 4.000 1.100 EC 

108 0.096 0.178 0.161 0.017 pH 

110 0.332 1.659 1.109 0.550 CaCO3 

Exponential 

200 0.552 2.677 1.199 1.478 EC 

108 0.230 0.178 0.137 0.041 pH 

110 0.413 2.026 1.190 0.836 CaCO3 

Gaussian 

UK 
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CaCO3 

Figure 2. Histograms and QQPlot for soil properties (EC, pH, CaCO3). 

 

model predicts an unknown value. The CV tool uses sta-

tistical measures to assess the surface models perform-

ance. It compares measured values with predicted ones 

derived from the surface model. The statistical measures 

predict the accuracy of the surface model and its predic-

tion map. Figure 5 provides a graphical comparison be-

tween measured and predicted values. Ideally, the pre-

dicted values should be the same as the measured ones. 

In reality, data points would scatter along this line due to 

natural variations and uncertainties. The prediction error 

is used to describe the difference between the prediction 

and the actual measured value.  

Figure 5 shows that since Root-mean-square tandard-

ized Prediction Errors for UK with spherical semiva-

riogram are close to 1.0, this indicates that its prediction 

accuracies have almost comparable accuracies [45].  

Considering the performance of UK in comparison 

with other techniques indicates a considerable improve-

ment in prediction of soil properties. 

To compare the performance of the interpolators, we 

calculated the mean error (ME) and the root mean square 

error (RMSE) of 20 validation sets as shown in Table 2. 

Table 2 shows that ME, which is a measure of the bias of 

the interpolation, is close to zero (0.0030, 0.0008 for EC 

and 0.0004, 0.0005 for pH by UK and OK). These data 

indicate that they are unbiased in interpolating the soil 

properties values. OK achieves slightly better ME 

(0.0230), comparing with UK (0.0400) for CaCO3. How- 

ever, RMSEs which are accuracy measures of the inter-

polation should be close to 1 for accurate interpolation. 

Table 2 shows that RMSEs have small dispersion around 

the mean value for the UK and OK techniques.  

Figure 6 shows other criteria of comparison using the 

Plot of the Quantiles (QQPlot). This indicates the quan-

tiles of the difference between the predicted and meas-

ured values divided by the estimated kriging standard 

errors and corresponding quantiles from a standard nor-

mal distribution. If the errors of the predictions from 

their true values are normally distributed, the points 

should lie roughly along the dashed line [41].  

The mean errors of the variables are close to zero for 

all the interpolation methods (Table 2). This indicates 

the unbiaseness of the methods. The differences between 

the OK and UK methods are very small. However there 

are more important differences among mean square errors 

(Table 2). The mean square errors given in Table 2 pre-

sent the prediction performance of the four methods. The 

prediction performance is much wider than the differ-

ences in mean errors. This is because in calculating the 

mean errors the negative and positive bias of prediction   
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IDW-pH 

IDW-EC 

IDW-CaCO3 

Splines-EC 

Splines-pH 

Splines-CaCO3 

(a)

(b)  

Figure 3. Interpolated maps of soil EC, pH, CaCO3 by (a) IDW; and (b) Splines. 
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Ordinary kriging-EC 

Ordinary kriging-pH 

Ordinary kriging-CaCO3 

Universal kriging-EC 

Universal kriging-pH 

Universal kriging-CaCO3 

(a)

(b)  

Figure 4. Interpolated maps of soil EC, pH, CaCO3 by (a) Ordainary Kriging; and (b) Universal Kriging. 
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EC 

  
pH 

  
CaCO3 

Figure 5. The cross validation comparison of the EC, pH, and CaCO3 map by different interpolated methods. 
 

tends to cancel each other. 

Clearly based on Table 2 and Figures 5 and 6, uni-

versal kriging is ranked the first least mean rank and its 

standard deviation of ranks is generally superior to other 

classical methods. IDW is the third accurate method with 

the third largest standard deviation of ranks, whereas 

Splines have the largest mean rank with the highest 

standard deviation of ranks.  

The results from the Figure 6 indicate that the best 

model for predicting soil properties is UK with exponen-

tial semivariogram, which was used to obtain the final 

soil properties maps of the st died area (Figure 7). It is  u 
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(a)                                                           (a) 

   
(b)                                                           (b) 

   
(c)                                                           (c) 

   
(d)                                                           (d) 

OK                                                          UK 

Figure 6. QQPlot for OK and UK with semivariogram (a) Circular; (b) Spherical; (c) Exponential; and (d) Gaussain. 
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Table 2. The means of MEs and RMSEs of 20 validation 

sets for Kriging, IDW and Splines. 
The digital soil mapping outlined in this paper was 

conducted at very large map scales (over small areas). 

Digital soil mapping research has been most successful at 

the field scale because many of the soil-forming factors 

(climate, organisms, parent material and time) are held 

constant. These results lead to the future research to as-

sess if the methodology applied in this study to map EC, 

pH, and CaCO3 still worked for mapping highly accurate 

spatial distribution of other soil properties (e.g. heavy 

metals). The aim is to answer the question: What is the 

risk assessment of soil threats e.g. heavy metals for sus-

tainable soil resources? 

RMSE ME Soil Properties 
Interpolation  

Methods 

1.200 0.0400 CaCO3 

1.005 0.0004 pH 

0.910 0.0030 EC 

Universal Kriging 

1.190 0.0230 CaCO3 

1.001 0.0005 pH 

0.984 0.0008 EC 

Ordinary Kriging 

1.590 0.1130 CaCO3 

0.510 0.0060 pH 

0.872 0.0280 EC 

Splines 

1.650 0.1650 CaCO3 

0.510 0.0050 pH 

0.868 0.0290 EC 

IDW 
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