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ABSTRACT Cardiovascular disease is a substantial cause of mortality and morbidity in the world. In clinical

data analytics, it is a great challenge to predict heart disease survivor. Data mining transforms huge amounts

of raw data generated by the health industry into useful information that can help in making informed

decisions. Various studies proved that significant features play a key role in improving performance of

machine learning models. This study analyzes the heart failure survivors from the dataset of 299 patients

admitted in hospital. The aim is to find significant features and effective data mining techniques that can

boost the accuracy of cardiovascular patient’s survivor prediction. To predict patient’s survival, this study

employs nine classification models: Decision Tree (DT), Adaptive boosting classifier (AdaBoost), Logistic

Regression (LR), Stochastic Gradient classifier (SGD), Random Forest (RF), Gradient Boosting classifier

(GBM), Extra Tree Classifier (ETC), Gaussian Naive Bayes classifier (G-NB) and Support Vector Machine

(SVM). The imbalance class problem is handled by Synthetic Minority Oversampling Technique (SMOTE).

Furthermore, machine learning models are trained on the highest ranked features selected by RF. The results

are compared with those provided by machine learning algorithms using full set of features. Experimental

results demonstrate that ETC outperforms other models and achieves 0.9262 accuracy value with SMOTE

in prediction of heart patient’s survival.

INDEX TERMS Data mining, heart disease classification, machine learning, cardiovascular disease, feature

selection, SMOTE.

I. INTRODUCTION

According to WHO, Heart Diseases are a leading cause of

death worldwide [1]. It is quite difficult to identify the cardio-

vascular disease (CVD) because of some contributory factors

which contribute to CVD like high blood pressure, choles-

terol level, diabetics, abnormal pulse rate, and many other

factors [2]. Sometimes CVD symptomsmay vary for different

genders. For example, a male patient is more likely to have

The associate editor coordinating the review of this manuscript and

approving it for publication was Ramesh Babu N .

chest pain while a female patient has some other symptoms

with chest pain like chest discomfort: such as nausea, extreme

fatigue, and shortness of breath [3]. Researchers have been

exploring a wide range of techniques to predict heart diseases

but the disease prediction at an early stage is not very efficient

due to many factors,including but not limited to complexity,

execution time, and accuracy of the approach [4]. As such,

proper treatment and diagnosis can save many lives [5].

One American dies every 36 seconds due to CVD [6].

More than .665 million people die due to heart disease which

1 in every 4 deaths [7]. Cardiovascular disease costs a lot
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to the US healthcare system. In the years 2014 and 2015,

it cost about $219 billion per year in terms of healthcare

services, medicine, and lost productivity due to death [8].

Early diagnosis can also help to prevent heart failure which

can lead to the death of a person. Angiography is considered

as the most precise and accurate method for the prediction of

cardiac artery disease (CAD) [9], but it is very costly which

makes it less accessible to low-income families.

A number of factors such as blood pressure, cholesterol,

creatine, etc., affect heart health, so it makes it difficult to

diagnose. The authors in [10] analyzed different factors that

cause heart disease and identified controllable factors such

as alcohol usage, smoking, diabetics, high cholesterol, and

limited physical activity. In the modern era, electronic health

records (EHRs) are also helpful for clinical and research

purposes [11]. The physical examination might have some

errors and in the case of heart disease, these minor errors

can cost a life in the future. Machine learning-based expert

systems effectively diagnose CVD and as a result death ratio

is reduced [12].

Data mining plays an immense role in extracting useful

information from big data. It is widely used in almost every

field of life like medicine, engineering, business, and educa-

tion. Data mining is used to explore the data to extract the hid-

den crucial decision making information from the collection

of the past repository for future. A variety ofmachine learning

algorithms have been used to understand the complexity and

non-linear interaction between different factors by decreasing

the error in prediction and factual outcomes [13]. Due to

ever increasing medical data, we need to leverage on machine

learning algorithms to assist medical healthcare professionals

in analyzing data and making accurate and precise diagnostic

decisions. In medical data mining, different classification

algorithms are used to predict the CVD in patients and death

predictions due to the heart attack [14].

Ahmad et al. [15] released a dataset consisting of medical

records of heart patients having heart failure previously col-

lected at Institute of Cardiology and Allied hospital Faisal-

abad, Pakistan. Authors predicted mortality rate by applying

Cox regression. They also highlighted the patterns of survival

using Kaplan-Meier Plots. It is notable that the have made

the dataset publicly available for the scientific community.

Subsequently, Zahid et al. [16] explored the same dataset

and proposed two different gender-based models to predict

mortality. Afterwards, Chicco and Jurman [17] predicted per-

formance of machine learning using only two features of

the same dataset. Even though aforementioned researchers

showed interesting results by applying standard statistical

techniques, such methods are inefficient for large-scale data-

sets leaving room for other machine learning algorithms.

This motivated our attempts to help healthcare profes-

sionals by developing machine learning techniques in the

diagnosis of CVD patients’ survival. We employed nine

machine learning models: Decision Tree (DT) [18], Adap-

tive Boosting model (AdaBoost) [19], Logistic Regres-

sion (LR) [20], Stochastic Gradient Descent (SGD) [21],

Random Forest (RF) [22], Gradient Boosting classifier

(GBM) [23], Extra Tree Classifier (ETC) [24], Gaussian

Naive Bayes (G-NB) [25] and Support Vector Machine

(SVM) [26]. Synthetic Minority Oversampling Technique

(SMOTE) is applied to handle class-imbalance problem. This

study contributes to the literature in the following areas:

• Designed an effective decision support system that can

effectively diagnose the survival of heart failure patients.

• Performance of tree-based, regression-based, and

statistical-based models is compared using SMOTE

technique in predicting survival of heart patients.

• To investigate the major risk factors, significant features

are identified from the dataset that also affect the perfor-

mance of the machine learning algorithm.
The rest of the paper organised as follows: Section II

describes the heart related work that gives a brief description

of related literature. Section III describes the dataset, pre-

processing and visualisation of data to find the hidden pattern

that is present in the dataset. It also describes the different

algorithms used in this research. Section IV describes the

discussion and analysis of the result. Conclusion and future

work is presented in section V.

II. RELATED WORK

Data mining with the help of machine learning is very useful

for solving different kinds of problems. In medical data min-

ing, healthcare data is difficult to be manually handled as it

has vast data sources. Advancement in artificial intelligence

also inducted precise and accurate systems for the medical

application while dealing with sensitive medical data [27].

Heart disease is a leading cause of death even in developed

areas [28]. Machine learning models have been widely used

in identifying risks at early stages of heart disease. Smoking,

age, diabetes and hypertension are considered as risk factors

for heart disease [29].

Muthukaruppan and Er [30] proposed a Particle Swarm

Optimization (PSO)-based fuzzy expert system for the detec-

tion of CVD. Rules were extracted from the decision tree

and then converted into fuzzy rules. They have achieved

93.27% accuracy by the fuzzy expert system. In their work,

a small number of rules were extracted on the small-size

dataset. Alizadehsani et al. [31] applied an ensemble-based

learning approach. In their research, they used the dataset

which was obtained from the Rajaie Cardiovascular Med-

ical and Research Centre and comprises of 303 instances.

Authors used the begging C45 ensemble learning approach

for CVD prediction. They have achieved 68.96% accuracy for

diagnosis of stenosis in the Right Coronary Artery (RCA),

61.46% accuracy in Left Circumflex (LCX), and 79.54%

accuracy in Left Anterior Descending (LAD). Another group

of researchers improved the results by applying the SVM

model and achieved 80.50% accuracy for RCA, 86.14% accu-

racy for LAD and 83.17% accuracy for LCX [32].

Manogaran et al. [33] employed Multiple Kernel Learn-

ing (MKL) with Adaptive Neuro-Fuzzy Inference System

(ANFIS) for the diagnosis of heart disease using the KEGG
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metabolic reaction network dataset and achieved robust

results. In [34], Manogaran et al. studied different kinds of

heart diseases. They proposed an ensemble learning frame-

work of different neural network models and a method of

aggregating random under-sampling. To enhance the per-

formance of the classification algorithms they used pre-

processing steps with feature selection. They used different

kinds of unidirectional and bidirectional neural networks

models and the result proved that the ensemble classifiers

with BiGRU or BiLSTM with a CNN model outperformed.

Tama et al. [35] proposed the two-tier ensemble model in

which some classifiers are exploited as base classifiers of

another ensemble. The proposed stacked architecture is built

by blending the class labels prediction of Gradient Boosting

Machine (GBM), Random Forest (RF), and Extreme Gradi-

ent Boosting (XGBoost). Their proposed detection model is

evaluated on four different kinds of datasets. They also used

particle swarm optimization-based feature selection tech-

niques. Their proposed model performed better with respect

to the 10-fold cross-validation. Authors only considered the

stacking of tree-based models. Other regression-based and

statistical-based could be tested to improve model results.

Melillo et al. [36] proposed an automatic classifier for the

patients with high risk which separates them from the low-

risk patients. In their study classification and regression tree

(CART) performed better with 93.3% sensitivity and 63.5%

specificity. They analyzed only 12 low-risk patients and 34

high-risk patients. A bigger dataset needs to be explored to

test the effectiveness of their proposed approach.

Guidi et al. [37] scrutinized the clinical support system

(CDSS) for the analysis of heart failure. They used different

machine learning classifiers in their research and compared

their performance. With 87.6% accuracy, random forest, and

CART performed best.

Parthiban and Srivatsa [38] research focused on the patient

who had heart issues with diabetes. They used different kinds

of predictive features such as blood pressure, blood sugar, and

age. They achieved 94.60% accuracy by the SVM classifier.

Dataset was imbalanced and the authors did not use any

approach to handle this problem. Al Rahhal et al. [39] utilized

a deep neural network (DNN) model for the classification of

ECG signals to study the top set of features.They allowed

expert interaction at each iteration during training which can

cause biases.

Shah et al. [40] proposed a system to study different

conditions that can affect the heart and primary factors for

the deaths. Different supervised machine learning algorithms

were used such asDecision Tree (DT), Naïve Bayes (NB), RF,

and KNN. Out of 76 attributes, only 14 attributes were used

because the accurate and efficient system with less number

of attributes is their research goal. Out of four supervised

machine learning classifiers KNN outperformed. Ensemble

approaches could be applied to improve the classification

results. Mohan et al. [41] proposed a hybrid model for heart

disease prediction. Authors also proposed a novel feature

TABLE 1. Dataset specifications.

selection method to improve training of Machine Learning

models and achieved 88% accuracy. More feature engineer-

ing techniques and machine learning models could be ana-

lyzed to improve performance. Geweid and Abdallah [42]

designed an optimized and improved SVM model using

ECG-signals for heart disease identification. More advanced

machine learning models with the combination of signal

processing applications need to be explored.

A comprehensive literature survey showed that existing

approaches performed well in the prediction of heart disease

on different datasets. However, different optimization tech-

niques have been used to improve several measures such as

accuracy, precision, and recall. In this research, the main goal

is to highlight a comparison of different machine learning

techniques to select the most suitable method for heart dis-

ease survival prediction. To the best of our knowledge, it is

the first attempt to analyze all features of the dataset [15]

using machine learning models in predicting heart patient’s

survival.

III. MATERIALS AND METHODS

A. DATASET DESCRIPTION

In this research, the Heart-failure-clinical-records-dataset

[15] is derived from the UCI machine learning repository

[43]. The dataset contains the medical records of 299 patients

who had heart problems, collecting during the follow-up

period where every patient profile has 13 clinical features.

Out of 299 records, 194 are men, and 105 are women. The

ages of all the patients are above 40 years. In target class, 1

is for deceased and 0 is for alive. All 299 patients who had

left ventricular systolic dysfunction and had heart failure in

the past were in the class III or IV of NYHA. The overview

of the data set is given in the Table. 1.
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FIGURE 1. Important features by RF classifier.

B. FEATURE IMPORTANCE

Data visualization assist with explaining the hidden pat-

terns that present inside the dataset. It helps to qualitatively

get more information about the dataset by visualizing the

attributes characteristics. RF was used to employ feature

ranking. Figure 1 shows the feature importance predicted

by the RF. RF clearly identifies Time, Creatinine, Ejection

fraction, Age, Platelets, CPK and Sodium as themost relevant

features.

C. CLASSIFIERS

Classification, a supervised machine learning model is uti-

lized for predicting the result from the data. This work

proposes a technique for the prediction of heart disease

using classification methods, and to improve the classifica-

tion accuracy using an ensemble of classifiers. The data has

been divided into a training set and a test set, and individual

classifiers are trained using a train set. The efficiency of the

classifiers is tested with the test data. The details of several

machine learning classifiers is discussed in Table 2.

D. SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE

(SMOTE)

SMOTE technique is an oversampling method and has been

widely used to deal with class imbalanced data in medicine

[44]. SMOTE increases the number of data instances by

generating random synthetic data of minority class from its

nearest neighbours using Euclidean distance. New instances

become similar to the original data because they are generated

on the basis of original features [45]. SMOTE is not the

best option in dealing with high-dimensional data as it can

create additional noise. In this study, new training dataset is

generated using SMOTE technique. SMOTE increased data

samples from 97 instances to 300 instances for each class.

E. EVALUATION MATRICES

There are some performance evaluation methods for the

machine learning models. The blend of different eval-

uation tools is expected to endorse the development

of analytical research [46]. In this research, four basic

FIGURE 2. Flowchart of proposed heart failure patient’s survival
prediction framework.

metrics (accuracy, precision, recall, F-Score) will be

examined for the difference in machine learning-based

algorithms.

Confusionmatrix [47] helps us to calculate all fourmetrics.

The elements of the confusion matrix are true positive (TP),

true negative (TN), false positive (FP) and false negative

(FN). If data is related to the medical false negative is the
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TABLE 2. Machine learning models.

TABLE 3. Performance evaluation measures.

most critical prediction. The measures of the performance are

given in Table 3.

IV. ANALYSIS AND DISCUSSION OF RESULTS

In this section, experimental design and results of all exper-

iments for heart patients’ survival prediction are discussed.

Firstly, we present the results with full set of features fol-

lowed by the results with the significant set of features. The

dataset, containing 13 features about body features, clinical

features and lifestyle features. Some of these features are

binary such as anaemia, diabetes, blood pressure, smoking

and Gender. Death event feature is taken as a target class in

binary classification task which tells if a patient is survived

or died before 130 days of follow up period. Specification of

the dataset is presented in Table 1. SMOTE is applied to make

dataset balanced. Machine learning models have been trained

on the balanced dataset and evaluated on accuracy, precision,

recall and F-Score. Flowchart of the proposed methodology

is presented in Figure 2.

A. EXPERIMENTAL DESIGN

Supervised machine learning models have been conducted

in order to analyze the performance of the models. Data

has been split into the train set and test set as 70:30 ratio.

This ratio is practiced in several literature’s for classification

tasks and help to avoid overfitting [48]. Performances of the

machine learning classifiers are tested using different per-

formance evaluation metrics. All the experiments have been

conducted in a python environment using different libraries

on an 2 GB Dell PowerEdge T430 graphical processing

unit on 2x Intel Xeon 8 Cores running at 2.4Ghz machine

which is equipped with 32 GB DDR4 Random Access

Memory (RAM).
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FIGURE 3. Performance of classifiers on full set of features.

B. EXPERIMENTAL RESULTS ON FULL SET OF FEATURES

A comparative analysis of supervised machine learning clas-

sifiers has been performed on full set of features of heart-

failure-clinical-record-dataset. Some classifiers showed good

results on evaluation metrics while some showed poor perfor-

mance. This work has applied tree-based, regression based,

and statistical-based models for the prediction of heart fail-

ure survival. Tree-based ensemble models include DT, RF

and ETC. Tree-based boosting models AdaBoost and GBM.

Regression-based include LR and SGD. and Statistical-based

include G-NB and SVM. Table 4 presents the performance

evaluation of machine learning models on full set of fea-

tures. As per the results in Table 4, the LR classifier has

achieved good results with 0.8556 accuracy, 0.85 precision,

0.86 recall and 0.85 F-Score. SVM and G-NB were second

good classifiers with 0.8667 accuracy and 0.86 F-Score. RF, a

tree-based classifier, outperformed among all nine classifiers

using all features and obtained 0.8889 accuracy 0.89 value for

precision, recall and F-Score.

The worst classifier was SGD for heart failure survival

prediction with 0.6667 accuracy, 0.62 precision, 0.67 recall

and 0.63 F-Score. Performance comparison of all models is

presented in Figure 3.

C. EXPERIMENTAL RESULTS WITH SMOTE

SMOTE is a powerful solution to the class imbalance problem

and have shown robust results in various domains. SMOTE

algorithm adds synthetic data to the minority class to make

a balanced dataset. Table 5 shows the result of machine

learning classifiers using SMOTE technique on all 13 fea-

tures of heart-failure-record dataset. From Table 5, it is

clear that performance of tree-based classifiers significantly

improve with the SMOTE in all evaluation matrices. Per-

formance of DT improved from 0.79 accuracy to 0.8278

TABLE 4. Classification result of all machine learning models using all
features without SMOTE.

accuracy with SMOTE. AdaBoost showed good performance

and obtained 0.8852 accuracy, 0.89 precision, 0.89 recall and

0.89 F-Score with balanced dataset. Similarly RF achieved

0.9180 with accuracy and 0.82 F-Score and improved results

with SMOTE. ETC with full features and SMOTE showed

10% improvement in results as compared to those results

achieved without applying SMOTE. ETC achieved highest

results with 0.9262 accuracy, 0.93 precision, 0.93 recall and

0.93 F-Score. Boosting algorithm build trees by reducing

errors from previously built weak learners. Up-sampling of

the similar data does not show any impact in improving

of results [49]. That is the reason that GBM did not show

any improvement with SMOTE. Performance evaluation of

machine learning models with SMOTE has been shown in

Figure 4.

It can be clearly observed that performance of regression-

based (LR and SGD) models and statistical-based (G-NB and

SVM) models have been decreased with SMOTE. SMOTE

performed well with tree-based classifiers for the predic-

tion of heart patient’s survival. Accuracy comparison of the

classifiers with SMOTE and without SMOTE is presented

in Figure 5.
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FIGURE 4. Performance of classifiers on full set of features with SMOTE.

TABLE 5. Classification results of all machine learning models using all
features with SMOTE.

D. EXPERIMENTAL RESULTS ON IMPORTANT FEATURES

SELECTED BY RF

In this experiment important features selected by RF are

investigated by machine learning classifiers with SMOTE

technique. First classifiers were trained and tested by remov-

ing least important features identified by RF. Performance of

the classifiers were pretty good by removing last four features

that are: Anaemia, Diabetes, Gender, and Smoking. Further

removal of features started a decrease in performance. Accu-

racy results by removing four least important features are

presented in Table 6. The accuracy result of LR showed 1%

improvement with 9 significant features and achieved 0.8442

accuracy. GBM showed significant improvement using 9 sig-

nificant features and showed 4% improvement in accuracy

result and achieved 0.8852 accuracy. Performance compari-

son of full-set of features with 9 significant features identified

by RF is presented in Figure 6.

E. IMPACT OF SIGNIFICANT FEATURES

Experimental results demonstrated that supervised machine

learning models can efficiently predict heart failure patients

TABLE 6. Accuracy of all machine learning models using nine significant
features with SMOTE.

survival. Tree-based algorithms showed good performance on

imbalanced and balanced dataset with SMOTE technique. RF

clearly identified Time, Creatinine, Ejection fraction, Age,

Platelets, CPK and Sodium as significant features as shown in

Figure 1. Results showed that tree-based algorithms outper-

formed using nine features identified by RF using SMOTE

technique. This aspect is useful in patient care as doctors can

predict patient’s survival by just analyzing nine significant

features.

ETC outperformed other models with 0.9262 accuracy

using nine significant features with SMOTE technique for the

prediction of heart patient’s survival. ETC selects a random

subset of features like RF for node splitting. It is different

from RF in a way that it makes trees from complete data

samples by selecting cut points for nodes randomly. While

RF selects the cut point for the node using local samples.

Trees of training set labels can be made independent by

setting the value of k as 1 [50]. RF produces constant approx-

imation whereas ETC produces multi-linear approximation.

Such additional randomization in the ensemble smoothed the

decision boundaries and also a reason for better performance
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FIGURE 5. Accuracy comparison of classifiers with SMOTE and without SMOTE.

FIGURE 6. Accuracy comparison of classifiers with SMOTE using full-set of features and 9 features
identified by RF.

than RF. [51] also showed that ET outperformed RF in terms

of accuracy.

V. CONCLUSION

Processing raw health data of heart information using

machine learning algorithms will help in saving the lives

of heart patients. By analyzing factors contributing to heart

failure, mortality rate can be controlled by adopting pre-

ventive measures. In this study, an effective and efficient

machine learning based technique is suggested for the predic-

tion of heart patients’ survival. Machine learning techniques

include LR, AdaBoost,RF, GBM, G-NB and SVM. SMOTE

is applied to deal class imbalance problem. Furthermore,

RF employed feature ranking. According to RF, most

significant features are: Time, Creatinine, Ejection fraction,

Age, Platelets, CPK and Sodium. Performance of machine

learning models are compared on a full set of features and

selected features from Heart-failure-clinical-records-dataset.

Thus experimental results proved that tree-based with feature

selection are highly effective in achieving highest accuracy.

SMOTE technique significantly improved performance of

tree-based classifiers in predicting heart patient’s survival.

ETC with SMOTE showed highest result in all evaluation

measures and achieved 0.9262 accuracy, 0.93 precision, 0.93

recall and 0.93 F-Score.

This work has the potential to improve the health care

system, and become a useful tool for health care providers in

predicting survival of heart failure. It will also help physicians

in understanding that if a patient of heart failure will survive,

they can focus on major risk factors. The future work of

this research can be performed with multiple combinations

of machine learning models to benefit from their advantages
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combined. To improve the performance of machine learning

models, better feature selection techniques can be devised. In

this case, meta-heuristics can be used due to NP-hard nature

of feature selection problems.
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