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Abstract

In this paper we apply statistical inference techniques to build neural network models

which are able to explain the prices of call options written on the German stock index

DAX. By testing for the explanatory power of several input variables serving as network

inputs, some insight into the pricing process of the option market is obtained. The results

indicate that statistical specification strategies lead to parsimonious networks which have

a superior out-of-sample performance when compared to the Black/Scholes model. We

further validate our results by providing plausible hedge parameters.
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1 Introduction

Most of the theoretical work on option pricing has focused on the idea of creating risk­

free portfolios through dynamic hedging strategies, which should earn the risk-free rate

of interest in the absence of arbitrage oppor;tunities. This line of research follows the

seminal papers of'Black/Scholes (1973) and Merton (1973). The original model of Black

and Scholes has since been refined in several directions. An important one of these is the

derivation of pricing formulae which take into account some empirical characteristics of

financial assets such as non-normal return distributions, stochastic volatilities or stochastic

interest rates. See for example the models of Merton (1973, 1976), Cox/Ross (1976), Geske

(1979), Rubinstein (1983), Hull/White (1987) and Duan (1995). A common feature of all

these models is the assumption of a specific stochastic process driving the price dynamics

pf the underlying securities.

A different approach to option pricing was suggested by Hutchinson/Lo/Poggio (1994)

and Malliaris/Salchenberger (1993). Rather than starting from a price process of the

underlying security and subsequently deriving the corresponding option value, the option

market's pricing mechanism is estimated from observed prices via a neural network. Thus

both the implicit stochastic process of the underlying security and its relation to the option

price are determined from observed data, i.e. from the market opinion. Once the network

model has been estimated it can be used for out-of-sample pricing and the calculation of

hedge parameters.

As option pricing theory typically derives nonlinear relations between an option price

and the variables determining it, a highly flexible statistical model is required to capture

the empirical pricing mechanism. Neural networks are well suited for this purpose due

to their ability to approximate virtually any (measurable) function up to an arbitrary

degree of accuracy, as was shown amongst others in Hornik/Stinchcombe/White (1989).

First empirical results given in Hutchinson/Lo/Poggio (1994) and MaIIiaris/Salchenberger

(1993) for S&P 500 futures options and in Lajbcygier et aI. (1995) for Australian All

Ordinary Share Price Index (SPI) futures options are promising for the network approach,

though further research is needed.

In this study we apply neural networks to price call options on the leading German stock

index, called the Deutscher Aktien Index (DAX). The main difference from previous work,

however, is the use of statistical inference for neural networks as developed by White

(1989a,b).

In this paper we adopt a model selection strategy based on significance tests, as suggested

by Anders/Korn (1996). The application of this strategy leads to a network architecture

which is particularly geared to the data set at hand. Moreover, as the resulting model con­

tains only statistically significant terms, it will be protected against over-parameterization,

and thus the out-of-sample performance of the network should improve.

The usual approach to model specification as used in Hutchinson/Lo/Poggio (1994), La­

jbcygier et al. (1995a) and Malliaris/Salchenberger (1993) is cross-validation. In cross­

validation techniques, the whole data sample is split into a training set and a validation

set. Different networks are estimated from the training set and judged upon their perfor-



mance on the validation set. This leads to a trial and error procedure which is usually

quite time consuming. Moreover, as splitting the data set results in some loss of infor­

mation, the out-of-sample pricing accuracy will in general reduce due to the less precisely

estimated parameters.

By the help of statistical inference one can distinguish which input variables contribute

significantly to the explanation of option prices. As theoretical pricing formulae are

easily nested in a neural network, it is possible to investigate whether the relationships

between each input variable and the observed option prices differ significantly from the

propositions of the theory. The existence of such differences could suggest directions for

further refinements to theoretical pricing models.

The remainder of this paper is organized as follows: Section 2 shortly reviews some import­

ant results about statistical inference in neural networks and describes our architecture

selection strategy. In section 3 we introduce the option pricing models which are compa­

red in this study. As a reference point we start with the Black/Scholes model and then

consider pure neural networks chosen solely on statistical grounds. As a last specification

we nest the Black/Scholes model in a neural network. This allows us to test whether

single input variables influence the option price in addition to the contribution of the

theoretical model. Section 4 describes our data set while section 5 provides the empirical

results. We compare the out-of-sample pricing accuracy of different models and the be­

haviour of hedge parameters such as the option's delta and gamma, which are important

for risk management. The results are summarized in section 6.

2 Neural Network Models

Neural networks are a new, very flexible class of statistical models. Unfortunately, the

term 'neural network' is not uniquely defined. Instead, it is comprised of many different

network types. Since it is our goal to extract an alternative option pricing formula from

market observations, we focus on those neural networks which are applicable to nonlinear

regression problems, such as

y = F(X) +c:, (1 )

where y is the dependent variable and where the columns of X = [xo, Xl, •.• ,XI] are the

independent variables. The variable Xo is defined to be constant and set to Xo == 1, while

c: stands for an iid error term with E[c:c:1 = uf, E[c:] = 0 and E[c:IX] = O.

The neural network literature knows basically two different types of regression networks,

the so-called multilayer perceptron (MLP) and the so-called radial basis function (RBF)

network. Although both network types have the universal approximation capabilityl and

are therefore well suited to modelling option prices, here we deal exclusively with the

MLP type of neural networks.

1Compare e.g. Poggio/Girosi (1990) for RBF-networks and Hornik/Stinchcombe/White (1989) for MLP­

networks.
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Figure 1: A multilayer perceptron neural network.

The network used in our study is a single hidden layer feedforward neural net, with a

linear output unit as shown in figure 1. The output of this network is generated by the

function:

(2)

with network weights w = ((3',,')'. The scalars I and H denote the number of input and

hidden units in the net and g(.) is a nonlinear transfer function attached to each hidden

unit. Usually g(.) is either the logistic function or the tangens hyperbolicus function.

Apart from a monotonic transformation these transfer functions are identical. Due to its

symmetry around the origin and its easily computable derivatives we prefer to use the

tanh-function.

In contrast to Hutchinson/Lo/Poggio (1994) we focus exclusively on MLP-networks for

two reasons. Firstly, it has been proven (Hornik/Stinchcombe/White, 1990) that feed­

forward networks with as little as one hidden layer and a linear output unit are able to

approximate not only the unknown function, but simultaneously its unknown derivatives

up to an arbitrary degree of accuracy. This characteristic is substantial since the partial

derivatives of a pricing formula are needed for the hedging of option positions, a subject

of similar importance as the pricing itself. Furthermore, the computation of the partial

network derivatives provides a check as to whether the estimated network pricing formula

is consistent with some basic theoretical results. 2

Secondly, compared to the RBF-network, the MLP-network allows for the application of

standard inference techniques known from parametric statistics. An application of such

2For example, the call option price should be a monotonically increasing function of the stock price.
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techniques may be possible for RBF-networ.ks as well. However, to our knowledge no

work has as yet been published on this subject.

Statistical inference in MLP-networks was developed by White (1989a,b). He showed

that - if the parameters of a neural network are identified - they can be consistently

estimated by maximum likelihood methods. Moreover, the parameter estimates of a

network are asymptotically normally distributed. This knowledge in principle allows the

application of standard asymptotic hypotheses tests, such as Wald-tests or LM-tests.

However, as neural networks in general do not encompass the unknown functions but

only approximate them, they are inherently misspecified models. The theory of statistical

inference techniques for misspecified models is again based upon the work of White (1982,

1994). He proved that the application of standard asymptotic tests is valid even if the

model is misspecified. One has though to take into account the misspecification when the

covariance matrix ~ C of the estimated parameters is computed. The estimated parame­

ters ware asymptotically normally distributed around an optimum parameter vector w*,

which corresponds to the best projection of the misspecified model onto the true model

F. In summary these results can be stated as

vT· (w - w*) '" N(O, C), (3)

where T is the number of observations. Due to the theory of misspecified models the

covariance matrix of the parameters becomes ~ C = ~A-IBA-l. The matrices A and B

are defined as A::::: E[\7 2 Lt] and B ::::: E[\7 Lt \7 L~] where \7 denotes the gradient and Lt
the log-likelihood contribution of the t-th observation.

Unfortunately, we are left with the problem that the parameters of a neural network

are not always identified, due to mutual dependencies between them. In such a case

the parameters are no longer normally distributed and inference is cumbersome. To see

the identification problem, consider equation (2). For instance, if a parameter f3h equals

zero, the corresponding weights ,hi can take any value without influencing the network's

output, and are thus not identified. This situation occurs whenever the network is over­

parameterized in the sense that irrelevant hidden units exist.

Two techniques have been proposed in the literature to circumvent the identificati­

on problem. One was developed by White (1989c) and its properties investigated by

Lee/White/Granger (1993). The other was devised by Terasvirta/Lin/Granger (1993)

and compared to the former. With these techniques we are able to perform an LM-test

on whether or not an additional hidden unit is irrelevant.

White (1989c) suggests drawing the ,-weights of the additional hidden unit from a

random distribution. This amounts to a random choice of the parameters in ,­

space. The subsequent test is carried out conditional to the random values of ,.

Terasvirta/Lin/Granger (1993) propose the application of a third order taylor expansion

to the additional hidden unit which equally leads to an avoidance of the identification

problem.
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In order to specify a network architecture we have to choose both the relevant input

variables and the appropriate number of hidden units, i.e. the complexity of the func­

tional form. For this purpose, we apply one of the model selection strategies sug­

gested by Anders/Korn (1996) which is based on the techniques of White (1989c)or

Terasvirta/Lin/Granger (1993).

In the process of network architecture selection we have to ensure the identification of our

model whenever inference techniques are used. Consequently, the strategy cannot adopt

a top down approach which starts with a large (and probably over-parameterized) neural

net. To obtain statistically valid results, the strategy begins with the smallest model

possible and successively adds more complexity.

The strategy runs as follows: in the first step, all I input variables are combined with one

hidden unit and the relevance of the hidden unit is tested by the LM-test procedures of

- White (1989b) or Terasvirta/Lin/Granger (1993). If the hidden unit is not relevant the

procedure stops. If the unit is relevant, it is included in the model and the identification

of the extended network follows. This allows the application of standard Wald-tests to

decide the significance of each input unit connection. Only the significant connections

remain in the model. In the next step the significant input units are connected with a

second hidden unit and the whole procedure is repeated. The procedure stops if no further

hidden unit shows relevance.

Since this model selection strategy is built upon inference techniques the resulting'network

leaves us with some insight into the statistical significance of the inputs fed into the

network. In the simplest case, inputs which have no connection to hidden units show no

relevance in explaining the observed call option prices.

3 Option Pricing Models

In this study we use the Black/Scholes model (1973) as a reference point. Although

several extensions and refinements of this model exist,3 which might give superior results

for specific data sets, we believe that the basic model is still the most relevant in practice

due to its simple closed-form solution and its robustness.

The derivation of the Black/Scholes model (BS) relies on the following assumptions: Asset

prices follow a geometric Brownian motion; mean returns and volatilities are constant over

time; interest rates are both constant over time and equal for all maturities; trading occurs

continuously on frictionless markets and no arbitage opportunities exist. From these

premises Black and Scholes derived the following formula for the price of a European call

option written on a non-dividend paying stock:

(4)

where

3See e.g. Hull (1993), Chapter 17.
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d
1

== In(f) + (r + (J2/2)(T - t)

( J ~
(5)

(6)

S _ Price of the underlying stock

X _ Strike price of the option

(J _ Volatility of the continuously compounded stock returns

r _ Continuously compounded interest rate

T - t _ Time to maturity of the option contract

and N(x) is the cumulative distribution function of the standard normal distribution.

Following equation (4) the call option price C depends on five variables, namely the stock

price S, the strike price X, the volatility (J, the interest rate r and the time to maturity

(T - t) of the contract. It was shown by Merton (1973, theorem 9) that the option price

is linear homogeneous of order one in X and S for every 'rational' pricing model, if the

return distribution of the underlying stock does not depend on the stock price level. As

this condition is valid for the Black/Scholes model, the number of input variables can be

reduced to four by treating C/ X as a function of S/X, (J, rand (T-t). The corresponding

pricing formula becomes:

(7)

Our second option pricing formula relies exclusively on an estimated neural network (NN).

The formula takes the form given in equation (8):

CNN(t) H. (A . S A A A)-X = I:: Ph . 9 "thO + "thl • X + "th2 • r + "th3 • (T - t) + "tM . (J ,
h=l

(8)

where ffi and i' are the parameter values estimated from a regression of the observed

prices on the neural network. As input units we choose the same fouf variables as those

contained in the reduced Black/Scholes model, though stock prices are added in a second

step to test for level effects. The model is estimated by least squares and the network

architecture results from the selection strategy outlined in section 2.

In a third pricing formula the Black/Scholes model is nested in a neural network (BS+NN).

This leads to the following pricing equation (9):

6



It is an advantage of the nested model that those parts of the pricing mechanism which

are already explained by the theoretical formula need not be approximated by the net­

work. When the Black/Scholes model already provides reasonable results the network

can concentrate on the differences between theoretical and observed prices. If estimation

errors are reduced, the out-of-sample accuracy of the pricing formula should improve.

A pressing question is which variables should enter the network part of pricing equations

(8) and (9). This problem has not been addressed in previous work as it deserves the

application of statistical inference. In this study, we test for both the significance of single

input variables and the number of necessary hidden units, i.e. the degree of additional

functional complexity needed to improve the Black/Scholes model.

An important task in practice is the hedging of option positions. 4 The chosen pricing mo­

del provides important information about the appropriate strategies. Of primary interest

are the hedging parameters or 'greek' letters resulting from the pricing model. They are

defined as follows:

where delta ( ~ ) and theta (8) are the partial derivatives of the option price with respect to

changes in the stock price and the time to maturity, while gamma (f) gives the sensitivity

of delta with respect to changes in the stock price. We calculate hedge parameters in order

to further validate our models.

4 The Dataset

In our study, we used transaction data on call options issued on the leading German

stock index, called DAX. The index is comprised of 30 major German stocks, selected

with respect to market capitilization, turnover, and early availability of opening prices.

The DAX is a capital-weighted performance index which is adjusted for stock splits,

dividend markdowns5
, and capital changes. It is calculated by the minute during trading

hours at an a c c u r a c ~ of 0.01 index points.

In August 1991, th~ DAX option was introduced at the German Futures and Options

Exchange (DTB). Since then it has developed into the most liquid option traded on the

DTB.6 The value of an option contract is the current index level multiplied by 10 German

Marks (DM). Option prices are quoted in points where each point represents DM 10,- of

contract value. The tick size is 0.1 points which corresponds to a tick value of DM 1,-.

The option's exercise prices have fixed increments of 25 index points, e.g. 2050, 2075,

2100. For each contract month there are at least five option series: two in-the-money, one

4For a discussion of this topic see Hull (1993), Chapter 13.

sIn contrast to other indices, the adjustment for dividends is a particular feature of the DAX.

6The trading volume of DAX options is greater than that of all 20 DTB-traded stock options together.
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at-the-money, and two out-of-the-money. If the DAX falls below (rises above) the average

of the second- and third-lowest (highest) exercise price, option series with new exercise

prices are introduced. At all times, there are options with five different expiration months

available. The maximum time to maturity of an option contract is nine months.

Since the adjustment for dividends is carried out by reinvesting the total amount of

dividend payments into the dividend-paying stock, a stock's value in the DAX portfolio

remains unchanged. Consequently, the dividend payments of the 30 DAX-shares need

not be considered for the calculation of option prices. Furthermore, as the DAX option is

of European style, the standard Black/Scholes model provides a suitable pricing formula.

Our data set contains intraday time-stamped data on DAX call options traded on the

DTB from January 1992 to the end of 1994.7 Since this data set consists of more than

half a million transaction data records, it had to be restricted.

For the empirical investigation we chose the-most recent one year period, covering the

whole of 1994. Within each trading day we selected all transactions that took place

between 11:00 a.m. and 11:30 a.m. Each transaction record contains the option price (C),

the exercise price (X) and the time to maturity (T - t).

In order to remove uninformative and non-representative option records we employed ex­

clusion criteria similar to those of Rubinstein (1985), Sheikh (1991), Resnick/Sheikh/Song

( 1 9 ~ 3 ) and Xu/Taylor (1994):

1. The call option is traded at less than 10 points.8

2. The option has less than 15 days to maturity.

3. The lower boundary condition for the value of European call options is violated:

4. The option is deep-in- or deep-out-of-the-money: i < 0.85 or i > 1.15.

Despite the tick size of 0.1 points, a preliminary analysis of the data showed that there

is a tendency for options to be traded at integer values. This leads to high percentage

deviations between observed and theoretical prices when the option value is very low.

Thus, criterion 1 excludes options with low prices. Criterion 2 is used to eliminate options

with a short time to maturity, as these options have only a small time-value and the integer

pricing behaviour leads to severe deviations when calculating theoretical option prices.

The third criterion excludes options whose prices are not consistent with a no-arbitrage

condition which is binding for all European-style options independent of a specific option

pricing mode1.9 With criterion 4, deep-in-the-money and deep-out-of-the-money options

are excluded, as these options are traded roughly at their intrinsic value and have almost

7The data set was provided by the Deutsche Borse AG, Frankfurt/Main.

8The value of 10 points leads to an exclusion of options which are traded at a price of less then 5% of

the average DAX in 1994. .

9See Hull (1993), page 156.
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no informational content. Furthermore, the trading volume is very low for these options.

Our resulting data set consists of 13,676 observations.

To obtain a theoretical price according to the Black/Scholes formula, we had to tie our

option prices to an appropriate level of the DAX (5), the riskfree interest rate (r) and

the return volatility (0-). In this respect, every transaction was linked with the current

intraday DAX index level. lO This means 'that each transaction between say 11:20 and

11:21 was combined with the DAX index level of 11:20.u

Our interest rate data consist of averaged daily bid and ask interbank rates for overnight,

one month, three month, six month and twelve month money.12 In order to calculate an

adequate interest rate which matches the time to maturity for each option, we linearly

interpolated the neighbouring interest rates and transformed the resulting values into

compounded rates.

As an estimate of the volatility ((T) we calculated the historical 30-day-volatility using

(T = s· .J252, (10)

where s is the standard deviation of the returns for the close-to-close DAX levels of the

most recent 30 days. We chose the 30-day-volatility since it showed the highest similarity

to the German volatility index VDAX. 13 The factor 252 corresponds to the number of

trading days in 1994.

5 Results

5.1 Optimal Network Architectures

We will now present the network architectures which arose from our specification strategies

outlined in section 2. Model selection and estimation were carried out on a subsample

consisting of the observations in the first nine months of 1994, a total of 10,848 data

records. The remaining 2,828 observations - corresponding to the last three months

of 1994 - were held back in order to evaluate the out-of-sample performance of the

competing models. During the selection process all tests were run on a 5% significance

level. For estimation purposes, we scaled our data to a mean of zero and a variance of

one and then rescaled them for comparison of the different models.

Figure 2 shows the r e s u l t i ~ g architecture of a pure network model as it was defined in

equation (8). This architecture results independently of which additional hidden unit

LM-test was applied, the one of White (1989c) or the one of Tedisvirta/Lin/Granger

(1993). The network <;:onsists of threehidden units, of which none is fully connected.

laThe DAX data also stem from the Deutsche Borse AG, Frankfurt a.M.

llSince the DAX is calculated every minute, but updated only when there are changes in the level, we

used the last published value before the transaction took place.

12The data was supplied by the Deutsche Finanzdatenbank, Mannheim.

13The VDAX is a volatility index which represents the average implied volatility of the DAX options.

9



We further provide network weights and pseudo14 i-values, the latter in brackets. As

oJ;le would expect from theory, all input variables significantly contribute to the pricing

mechanism.

Con
-0.68

(-53.38)

SIX.
0.34

(52.36)

0.11

(15.74)

T-t
0.24

(36.68)

Con ( ~ . 1 8 0 2 )

SIX.
0.35

(48.23)

0/ ~ CIX.
-0.13

(-22.08)

(J 0.03
(15.88)

Con 1.45

(66.88)

0.02

(6.33)

T-t
0.52

(43.49)

Figure 2: Optimal network architecture with four input variables and

three hidden units (NN43). The numbers are the estimated weight values

with corresponding t-values in brackets.

It is interesting to note, that the network model selected by statistical t e s t ~ is markedly

more parsimonious than the ones of Hutchinson/Lo/Poggio (1994) and Lajbcygier et

al. (1995), who chose four to ten fully connected hidden units. In particular, our network

architectures were not restricted to be fully connected, since the selection strategy tests

for both the significance of the hidden units and the significance of single input variables.

An important question is whether further input variables improve the pricing accuracy

significantly. As mentioned in section 3 the index level S should have no explanatory

power if the index's return distribution is independent of its level.

14The term "pseudo" accounts for the fact that the t-values do not actually obey a t-distribution. Inference

relies on the asymptotic normality of the network weights.
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Nonetheless some structure can be found. As shown in figures 3 and 4 there exists a

negative relation between S and the pricing errors of both the Black/Scholes model and

our first neural network model (NN43).

2300220021002000

0.01

0.02....---_--- ---,

-0.01

-0.02 +---__---+-----+------l
1900

....
~
z 0.00

~

230022002100

0.02,--------;------- --,

::: ~ ..~

·Jr ,j;.

_1'·.+.•
0.01

-0.01

-0.02 +----..----..__---.------l
1900 \ 2000

~
10 0.00

~ ..

s

Figure 3: Pricing error of the Black/Scholes

model plotted against the index level S.

Figure 4: Pricing error of the Network

NN43 plotted against the index level S.

When S is considered as a further input variable, the selection strategy chooses the

network shown in figure 5. 15 The index level turns out to have significant connections

with two hidden units. Otherwise the architecture is very similar to that of figure 2.

An explanation for the significance of S is difficult to provide, though the observed relation

may indicate that expectations concerning the trend or the volatility of the stock market

are influenced by "relatively" high or low index levels, resulting in some risk premium in

the option prices. In any case, further research is needed into this subject, in particular

into the question as to whether the same level effect can be found for other option markets

and different time periods.

The third pricing model, introduced in section 3 is the Black/Scholes model nested in a

neural network. The speCification of the network part provides information on which input

variables can improve the explanation of observed prices in addition to the theoretical

formula. Although in the first step of our specification strategy the LM-tests showed a

significant hidden unit, the optimization algorithm did not converge when all five inputs

(S/ X, r, T - t, q, S) were included. Thus we tested each of the input variables separately

and excluded those which showed little or no significance. The resulting network is shown

in figure 6. It contains one hidden unit and the three variables r, q and S. A second

hidden unit was not accepted by the model selection strategy.

HiNote that the model selection strategy again led to identical specifications independent of which LM­

test we applied.

11



SIX

T-t

(J

S

SIX

T-t

T-t

(J

S

0.44
(27.02)

0.08

(28.56)

0.26
(23.04)

0.02
(13.96)

0.44

(57.21)

-0.03
(-5.46)

0.08
(14209)

0.65
(40.93)

-0.04
(-15.01)

0.01
(6.31)

1-------.1 / ---+ 0 CIX

Figure 5: Optimal network architecture with S as an additional input

variable (NN53).

From this model we can draw the following conclusion. The Black/Scholes model matches

the functional relationship between the call price and S/ X as well as (T - t) up to

very small deviations. This seems reasonable, as these inputs are readily available when

calculating call prices. Thus, much of the deviation between observed and Black/Scholes

prices seems to stem from a wrong assessment of the remaining variables rand (7 •

BSIX

.....----.1/ -+ 0 CIX

Figure 6: Optimal architecture of a network nesting the Black/Scholes

model (BS+NN31).
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5.2 Pricing Accuracy

To compare observed prices16 with those obtained from the different models, the following

measures of fit were computed:

R2 = E;=I[(C/X)t - (C/XW
E;=I[(C/X)t - (C/X)]2

T

RMSE = ~ L[(C/X)t - (C/X)t]2
1=1

1 T ___

ME = T L[(C/X)t - (C/X)t]
t=1

T

MAE = ~ L I(C/X)t - (C/X)tl
t=1

T ---
MAPE = ~ ~ I(C/X)t - (C/X)tl

T ~ \(C/X)tl

The measures aim to highlight different aspects of the pricing accuracy. While the R2

provides a measure of correlation between observed and fitted option prices, the mean

error (ME) indicates a pricing bias. The root mean squared error (RMSE) and the mean

absolute error (MAE) give absolute measures of price discrepancy while the mean absolute

percentage error (MAPE) judges the price differences relative to the price level. Table

1 shows the performance measures for both the estimation period January to September

1994 and the out-of-sample evaluation period October to December 1994.

Table 1 yields some general results. Firstly, all neural network models possess a better

pricing accuracy in-sample than for the out-of-sample period. However, this can not be

explained by overfitting as the same result holds for the Black/Scholes model as well. On

the contrary, the superior performance of the neural network models, in-sample as well,as

out-of-sample, indicate the quality of the statistical model selection approach. Secondly,

the mean error is in general quite small. As none of the values is significantly different

from zero, the models show no pricing bias.

16The prices refer to C IX. the call price divided by the corresponding strike price.
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For two of the four models we obtain a clear ranking. Black/Scholes prices are in general

the least accurate as they show the highest RMSE, MAE, MAPE and the lowest R2 for

both periods. The values obtained from the five input neural network (NN53) on the

other hand, are closest to the observed prices with regard to all perfor,mance measures.

in-sample RMSE ME MAE MAPE R2

BS: 0.0040 0.0025 0.0031 0.1764 0.9661

NN43: 0.0021 0.0000 0.0017 0.1096 0.9901

NN53: 0.0016 0.0000 0.0012 0.0754 0.9948

BS+NN31: 0.0020 0.0000 0.0015 0.1011 0.9912

out-of-sampIe, RMSE ME MAE MAPE R2

BS: 0.0049 0.0023 0.0037 0.2200 0.9302

NN43: 0.0025 0.0012 0.0018 0.1154 0.9823

NN53: 0.0022 0.0002 0.0018 0.1217 0.9853

BS+NN31: 0.0028 0.0000 0.0021 0.1493 0.9774

Table 1: Performance measures of competing models.

It is an interesting question why the combined network showed a worse performance than

the pure network models. In our view, this may stem from effects in the variables S/ X

and (T - t) such as the smile-effect or the volatility-skewY These effects are present

in our data, but apparently not strong enough to require a further hidden unit in the

combined network. In the more complex network structures, however, they might be

implicitely modelled.

Nevertheless, all network models clearly dominate the Black/Scholes results. As this is

true to the same extent for both time periods, the estimated relations seem to be stable

over time. When looking at the magnitude of the improvement over the Black/Scholes

model, the gain through the neural networks is considerable, for example the MAPE

reduces from 22% to 12% for the best network.

5.3 Hedge Parameters

As option pricing models are frequently used to calculate hedge parameters, it is necessary

to check whether the parameters obtained from the neural networks are reliable insofar

as they follow certain patterns suggested by theory. The hedge parameters delta ( ~ ) ,

gamma (f) and theta (8) of the neural network model (NN43) are shown in the figures 7

to 9. 18 For the computation of the derivatives, the volatility and interest rate were kept

constant at u = 15% and r = 5%.

According to Cox/Rubinstein (1985) the value of a call is an increasing convex function

of the stock price. Although this is not enforced by arbitrage, it is "true as an empirical

17The smile-effect is for example described in Tompkins (1994), pages 153-172 and the volatility-skew

in Natenberg (1994), pages 405-418.

18Note that the derivatives were taken with respect to the normalized index value SIX.
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fact n
.19 Consequently, delta and gamma must always be positive, whereas delta should

also be non-decreasing and only take values less than or equal to one.

As shown in figure 7 the delta-values fulfill these conditions for a large range of S/ X

values. An exception are deep-in-the-money options (S/ X > 1.10), where the deltas

decrease with growing S/ X. As gamma is the sensitivity of delta to changes in the stock

price, it takes negative values in this region.

Figure 7: Network Della Figure 8: Network Gamma

T-t

SIX

Figure 9: Network Theta

0.00

-0.05

2000

1500 -E
8
!!

1000 ''is
]
E

"z

Figure 10: Distribution of records

In order to investigate whether this inconsistency comes from the data or from the network

being unable to reproduce the derivatives appropriately, we estimated networks of similar

complexity to model NN43 with simulated Black/Scholes prices. 2o As a result we obtained

I·See Cox/Rubinstein(1985). page 156f.

20We used 21,150 Black/Scholes prices uniformly covering the area from SIX = 0.85, r = 0%, a = 5%,

(T - t) = 0 to SIX = 1.15, r = 10%, a = 35%, (T - t) = 0.75.
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hedge parameters similar to those of the Black/Scholes model that met all conditions

mentioned above.

A plausible explanation for the delta- and gamma-deviations is provided by the distri­

bution of our data with respect to S/ X. Deep-in-the-money options are thinly traded

even if time-to-maturity is short. Our data set thus contains very few observations in this

region, which can be seen in figure 10. As the most liquid options are those at-the-money

with a short time-to-maturity they weigh heavily when the networks are fitted. 21

The theta must always be negative, since the value of an option decreases with diminishing

time-to-maturity while keeping the other variables constant. Figure 9 confirms this for the

thetas of the neural network model. Due to their high time value, at-the-money options

correctly show the most negative thetas for the range of different maturities. 22

In summary the hedge parameters of the network model follow the patterns suggested by

theory, which provides a further check for the validity of the network approach. The per­

formance of actual hedging strategies based on neural network hedge parameters, however,

needs to be investigated in further research.

6 Summary and Conclusions

This paper shows that statistical inference techniques can successfully be applied to im­

prove the pricing of options via neural networks. Networks are fitted to the normalized

prices C/ X of call options written on the German stock index DAX. We adopt a network

model selection strategy that is based on significance tests developed by White (1989b,c)

and Teriisvirta/Lin/Granger (1993). This strategy leads to rather parsimonious networks

which consist of only three hidden units that are not fully connected. Though all of the

considered input variables SIX, r, (7 and (T - t) show statistical significance.

Our statistical approach allows one to test for additional input variables in the network.

It turns out that the index level S has some additional explanatory power. As this

finding can not be explained by traditional pricing models, further research is needed. In

particular, it has to be investigated whether similar level effects are found in other data

sets and what kind of economic explanation may stand behind it.

The estimated networks show a higher pricing accuracy with respect to the performance

measures R2
, RMSE, MAE and MAPE than the theoretical JI:lodel of Black and Scholes

both in-sample and out-of-sample. This result indicates that restriction to significant

hidden units and input connections helps both to avoid overfitting and to approximate

stable functional relationships. Fitting a network to the residuals of the Black/Scholes

model leads to additional significant contributions of r, (7 and S, which increase the pricing

accuracy, though no further improvement to the pure network models is achieved.

As a final observation, the hedge parameters estimated from the networks turn out to

be consistent with theory. This is promising for the performance of hedging strategies,

2
1The same effect can be observed in Hutchinson/Lo/Poggio (1994), figure 4, page 865 and figure 5,

page 867, where the authors also obtained a decreasing delta for high S/X values.

22Deep in-the-money options with short time-to-maturity are again an exception.
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whose evaluation is a topic for future research. In summary the results are encouraging.

In our view, the use of statistical methods for model specification and inference in neural

networks is to be highly recommended when the aim of analysis is both to obtain an

accurate description of the data and to learn about the underlying economic processes.
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