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Abstract 
 
A new approach for enhancing the process-variation 
tolerance of digital circuits is described. We extend recent 
advances in statistical timing analysis into an optimization 
framework. Our objective is to reduce the performance 
variance of a technology-mapped circuit where delays 
across elements are represented by random variables which 
capture the manufacturing variations. We introduce the 
notion of statistical critical paths, which account for both 
means and variances of performance variation. An 
optimization engine is used to size gates with a goal of 
reducing the timing variance along the statistical critical 
paths.  We apply a pair of nested statistical analysis 
methods deploying a slower more accurate approach for 
tracking statistical critical paths and a fast engine for 
evaluation of gate size assignments. We derive a new 
approximation for the max operation on random variables 
which is deployed for the faster inner engine. Circuit 
optimization is carried out using a gain-based algorithm 
that terminates when constraints are satisfied or no further 
improvements can be made. We show optimization results 
that demonstrate an average of 72% reduction in 
performance variation at the expense of average 20% 
increase in design area. 
 
 
1. Introduction 
 

1 Recent advances in VLSI have continued to shrink 
device geometries at a steady rate in accordance with 
Moore’s Law. However, this advancement has also been 
accompanied by increasing variations in the performance of 
fabricated circuits. Numerous factors have contributed to this 
trend including clock PLL jitter, noise, PV model 
inaccuracies, and manufacturing variations. Nevertheless, it 
is often desirable to manufacture ASICs on advanced 
technology nodes due to substantial increase in available 
device count, reduction in power consumption, higher yields 
and lower costs due to the larger 300mm wafers.  

Researchers have recently focused on statistical analysis 

approaches in an attempt to grapple with these sources of 
performance variations. Statistical timing analysis models 
delay arcs as random variables and propagate timing 
constraints using probability distribution functions (pdfs). 
While a substantial focus has gone into the analysis aspect of 
this problem[1,2], recent research into statistical 
optimization of circuits has been surprisingly diminutive. 
Circuit optimization was done in [3] by using LANCELOT 
[4] but had severe limitation on circuit size and used 
unrealistic delay models. A concept of criticality of gates 
was used in [5] but did not address the variance of the timing 
path delays. A transistor level approach was presented in [6]. 
Several yield-specific techniques were presented in [7].  

In this paper we present a unique approach that identifies 
worst negative statistical slack (WNSS) paths analogous to 
traditional worst negative slack (WNS) paths. Our method 
also provides flexibility for optimization objective function 
by assigning weights that enable user-driven tradeoffs 
between mean and variance of circuit performance.  

The remainder of this paper is organized as follows: 
• We present background on proposed research 
• We formulate the problem of performance variability 

reduction in presence of statistical delays 
• We derive a method for tracing the worst negative 

statistical slack (WNSS) path in a circuit  
• We derive and demonstrate efficacy of a new 

approximation for quick calculation of the mean and 
variance of the maximum of random variables 

• We present a robust gain-based sizing approach that 
handles a weighted sum of means and variances of 
delays  

• Experimental results are presented and analyzed 
 
2. Related work 
 
2.1 Gate sizing 

 
Gate sizing has been studied extensively in the literature. 

It is typically performed after technology mapping during 
logic synthesis and repeated throughout the design process. 
The aim of gate sizing is to assign sizes to gates in a circuit 
such that a performance objective function is satisfied.  
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  where Although sizing approaches relying on convex 
assumptions or analytical delay models have been proposed, 
more recent approaches tend to tackle the problem using 
greedy heuristics. According to [8], accurate delay models 
make gate sizing a non-linear, non-convex, constrained, 
discrete optimization problem. Most greedy gate sizing 
algorithms share several common elements [8, 9, 10, 11]. 
The critical path, sometimes referred to as the Worst 
Negative Slack (WNS) path, is usually targeted for 
optimization. We note that the WNS path can change as the 
optimization proceeds so the path being evaluated for 
resizing must be updated regularly during sizing iterations. 
The algorithms can be run in a constrained mode where 
delay for example is optimized first then area is recovered as 
far as possible without violating a delay constraint.  
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We note that the random variable  characterizes 
the mean and variance of the entire circuit. It should be 
highlighted that a circuit may have multiple outputs with 
close mean delays but different variances. In this case, all 
such outputs will contribute to the overall variance  of 
the circuit’s performance. Alternatively, an output with the 
highest variance may have a much smaller mean than other 
outputs and reducing its variance will have minimal effect 
on overall variance of the circuit’s performance. Any 
algorithm that attempts to alter must account for both 
means and variances of delays simultaneously. 
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2.2 Statistical static timing analysis 
 

The focus on use of statistical approaches in timing 
analysis is relatively new. Pioneering works in this field 
appeared in [12, 13, 14]. However, in the past few years 
statistical techniques for timing analysis of circuits have 
received tremendous focus with representative works 
including [15, 16, 17]. Static timing analysis relies on two 
operations for propagating timing through a network, sum 
and max. Performing these calculations on pdfs is more 
expensive computationally than their counterparts in the 
deterministic case. Moreover, the correlation between two 
pdfs needs be taken into account for accurate calculations. 

Fig. 1 gives a plot of at different optimization 
points. The original line represents a pdf obtained by 
optimizing a circuit with a goal of minimizing the mean of 
the longest delay in the circuit. Such a circuit will typically 
exhibit the widest spread in performance due to high usage 
of smaller devices which exhibit more manufacturing 
variability. Depending on target application of circuit, such a 
performance variance around the center can represent 
undesirable uncertainty that should be minimized. In [18], 
reduction of uncertainty was shown to be a key strategy for 
designing leading edge industrial designs.  Decreasing 
variance can increase the overall yield of a design. An 
example of this is optimization 1 in Fig. 1 which yields more 
functional units at period T relative to the original design. 
However, our technique is quite general and is not limited to 
yield maximization. Decreasing performance variance is also 
desirable on several other accounts even if it means relaxing 
the original timing targets. For example, circuits on the 
original curve to the left of “X” in Fig. 1 below will exhibit 
undesirable variance in power consumption due to both 
dynamic and leakage power variations. These variations in 
turn contribute uncertainties in thermal dissipation and 
reliability verification. The effects of such performance 
variations can adversely product qualification and 
time-to-market. In such instances, the 2

ORV

nd optimization point 
shown below becomes desirable due to better tolerance to 
manufacturing variations. Our research is aimed at providing 
designers with a statistically aware gate sizing methodology 
that allows arbitrary tradeoffs between mean and variance 
of . ORV

 

3. Problem formulation and motivation 
 

The starting point for our problem is a technology 
mapped digital circuit. Without loss of generality, this paper 
focuses on combinational circuits. We ignore interconnect 
delay though accounting for them can be readily 
accommodated. In fact, we postulate that our algorithm can 
help overcome the inherent interconnect uncertainty during 
pre-layout convergence by treating interconnect delays as 
random variables.  

Our method uses discrete probability distribution 
functions (pdfs) throughout. A discrete pdf for random 
variable X  is defined as one or more points 
where . The mean and variance of a 
discrete random variable are given by 

)(( xXPf =)x =

( )
( ) ( iXiX

iiX

xfx

xfx
22 ∑

∑
−=

=

µσ

µ

)
 

We assume that every gate delay in the circuit is 
represented by a normally distributed random variable which 
is consistent with the literature. Arrival times are propagated 
throughout the circuit as pdfs. We define the unconstrained 
timing variance minimization problem for a circuit as  

 
2
OMinimize σ  



4.2 FULLSSTA 

 

 
Original

Optimization 1

Optimization 2

Our full statistical analysis engine is based on [15]. This 
approach discretizes pdfs at a user controlled sampling rate. 
We used 10-15 samples per pdf as a reasonable tradeoff 
between accuracy and speed. The operations sum and max 
are performed on discrete pdfs using shifting, scaling, and 
min/max reduction. In addition to propagating pdfs, we also 
calculate the mean and variance at every node and store 
these values for use in the fast timing engine (FASSTA). 
This component in our algorithm can be updated as needed 
to track the latest emerging research in statistical timing 
analysis and represents the outer loop for our iterations. 
 
4.3 FASSTA                           X            T 
 Figure 1. Circuit Output Delay PDF 

Statistical analysis methods such as FULLSSTA are 
expensive and impractical for use alone in an optimization 
setting.  This section presents new approximations for fast 
statistical static timing analysis (FASSTA). This allows us to 
quickly evaluate costs of new gate assignments in subcircuits 
in the body of the optimization algorithm. The two 
operations needed in static timing analysis are sum and max. 
The FASSTA engine relies on the point values for means and 
variances of delays calculated in FULLSSTA rather than the 
complete discrete pdf representations.  

 
4. Proposed approach 
 

We studied several deterministic sizing techniques to 
evaluate their fitness as a basis for statistical sizing. Our 
preference for accurate gate delay models steered us away 
from methods [19,20,21], which require convex analytical 
expressions for gate delays. Such models not adequately 
capture the nonlinearities in current and foreseeable DSM 
technologies where manufacturing variations are prevalent. 
Our proposed approach is shown in Fig. 2. It builds on the 
deterministic algorithms presented in [8,11]. We show next 
how we deal with new challenges that arise when timing 
constraints are represented by random variables. 

We start with two normally distributed independent 
random variables A and B with expected values Aµ and 

Bµ  and with variances and respectively. Let 
random variable C be the sum of A and B. The mean and 
variance of C are given by: 

2
Aσ 2

Bσ
 

4.1 Pseudo code 
 222, BACBAC σσσµµµ +=+=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Overview of StatisticalGreedy 

Algorithm StatisticalGreedy 
  repeat {  
    FULLSSTA 
    Trace critical (WNSS) path 
    foreach g  (gates on WNSS){ ∈
          extract subcircuit S around g 
          SBestCost = Cost(S) 
          GCurrentSize = CurrentSize(g) 
          GBestSize      = GCurrentSize 
          foreach I ∈  (sizes of g) { 
                g in S I ←
                SNewcost = Cost(S) 
                If(Snewcost < SBestCost) { 
                      GBestSize=I 
                      SBestCost=SNewCost 
                } 
          } 
          If(GBestSize <> GCurrentSize) 
              g.nextSize  GBestSize ←
      } 
     Resize scheduled gates 
    } Until constraints met or no further improvement 
Procedure Cost(Subcircuit S) 
  Perform FASSTA on S 
  Return ObjectiveFunction(S)         

To calculate the max, we shall expand on the formulation 
in [22]. We use the following notation: 
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The variance of max(A,B) is given by 
2
12),max( υυ −=BAVar                  (3) 

These formulae cannot be evaluated directly because the 
integrals do not have analytical expressions and are 



expensive to compute.  We show next how they can be 
avoided altogether. We reformulate the integral: 
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where erf denotes the error function. To calculate the 
error function, we use the following quadratic approximation 
[23] which is accurate to two decimal places 
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We also note that the error function is odd: 
)()( xerfxerf −=−  

These formulae give us a quick method to approximate the 
error function for any value. We substitute this 
approximation in (1) and (2). We note that if 
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then 
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 Our justification for taking the partial derivatives with 
respect to the means of the delays is that the variances have a 
random component not under our direct control.  

and we have 
  22
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we get 
  2

),max(),max( , BBABBA VarMean σµ ≈≈
We observed that in the vast majority cases, one of (5) or 

(6) would apply obviating need for any calculation for max, 
while in other cases the approximations above provide quick 
estimates. These formulae assume independence of random 
variables which does not always hold. However, this 
approach emphasizes speed while retaining a reasonable 
degree of accuracy for small subcircuits. We stress that this 
approach is only used for the inner loop of the optimizations, 
while the outer loop relies on the more accurate discrete pdfs 
manipulation approach that can track correlations due to 
reconvergent paths using Principal Component Analysis [17] 
or other methods as long as runtime is managed appropriately. 

     
4.4 Statistical critical path identification 

As was pointed out in section 2.1, circuit optimization 

engines typically focus their effort on the critical or WNS 
path to improve the performance of the circuit. This section 
describes how we extend this concept to trace the Worst 
Negative Statistical Slack (WNSS) path in a circuit. 

Consider a circuit consisting of 6 gates such as the one 
shown in Fig. 3. The first number in the parenthesis 
represents the statistical mean of delay for that arc while the 
second one represents the standard variation. We wish to 
determine the critical path with the biggest contribution to 
the variance at the output of node X. We note that, unlike the 
deterministic case, one cannot simply pick the input with the 
higher mean or variance to determine which input is most 
responsible for the variance at the output. This is due to the 
non-linearity of the statistical max operation where all inputs 
contribute to the output max. 

We proceed to solve this problem by considering the 
sensitivity of the variance at the output of a node with 
respect to the inputs as follows. Starting from a given gate, 
we compare its inputs pair-wise. If either of (5) or (6) are 
satisfied, then we pick the input with the higher mean as 
clearly having the dominant influence on the output of this 
gate. If neither of these equations is satisfied, we compare 

A

BAVar
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B
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One approach to obtaining these sensitivities is to 
differentiate (3) directly. We found the resultant expressions 
to be complex and would require expensive floating-point 
computations. Instead, we chose to use an approximation for 
differentiation as follows. Rewriting 
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We use a forward finite-difference formula to 

approximate the partial derivative:  
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for small h.  
 
 
 
 
 
 
 
 
 
 
 

  
 

 
 
 
 
 
 
Figure 3. Tracing worst negative statistical
slack (WNSS) path. Numbers in parenthesis
are ( ∂,µ ) of arrival time. The shaded nodes
indicate the WNSS using our method. 
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We used values for h of the order of 1% of the mean. It 
should be noted that µ and σ  along a given path are 
correlated and one cannot expect to change one value 
without the other being impacted. The change in Aσ that 

can result out of altering Aµ  is indicated by g. We also 
note that it is impossible in general to determine g accurately 
as the relationship between µ and σ along a given path 
is governed by a combination of gate performance variations 
inversely proportional to their dimensions as well 
unsystematic random variations that are unpredictable. For 
purposes of ranking inputs, the following linear 
approximation linking these two was found to be adequate: 
 

g µσ ∆≈∆≈ c  
 
We used values for c equal to those assumed to relate 

mean delay through a gate to its variance.    
 

4.5 Subcircuit extraction and ranking 
 
For every gate being evaluated for resizing, our algorithm 

extracts a subcircuit around this gate based on a 
user-controlled depth. We have found that using two levels 
of transitive fanins and fanouts is sufficiently accurate 
without being too costly to evaluate.  For every available 
size for this gate, we use FASSTA to calculate mean and 
variance of delay at the outputs of this subcircuit. In order to 
rank the the relative merits of gate sizing in this subcircuit 
quickly, we use the following cost function. For all outputs 
of the subcircuit O1..On, we calculate a weighted sum of 
mean and standard variation: 
   Cost(Oi) = iµ +                          (7) iλσ
where λ  is a user-specified weight multiplier that ranks 
relative importance of minimizing standard variation against 
mean of delay. By choosing higher values for λ , the user 
can place more emphasis on variance reduction. We provide 
more analysis on effect of varying λ  in the conclusions 
section at the end of the paper. The cost of the subcircuit is 
given by the maximum of Cost(Oi) across all outputs. We 
then pick the gate size that minimizes subcircuit cost across 
all gate sizes for candidate gate. 
 
5. Experimental results 

 
The proposed approach was implemented in Java and run 

on an Intel PC running at 2.53 GHz. We tested the algorithm 
on various circuits from the ISCAS benchmarks and various 
sized ALU circuits.  The circuits were first synthesized using 
Design Compiler [24] using an industrial 90nm lookup-table 
based standard cell library with 6-8 sizes per gate type. In line 
with other researchers, we added variations to the gate delays 
based on [25,26]. Two variations components were added to 
the gate delays: one proportional to delay through gate and 

another random source corresponding to unsystematic 
manufacturing variations.  

Table 1 shows the results of our optimization.  The ratio 
of σ to µ obtained by optimizing for mean delay is shown 
in the first column entitled original. We then ran our 
algorithm at various values for λ (7).  Results are shown for 
optimization under two different values for λ , 3 and 9. We 
observed that increasing λ any further could not yield 
further reduction in variance in general though the highest 
value for λ was different for different circuits. This is due to 
the unsystematic variations whose effects cannot be 
eliminated. Fig. 4 below shows a plot of µ against σ for 

various values of λ for circuit C432.  
Several observations can be made from these results. Our 

algorithm consistently reduces the standard variation while 
increasing mean delay and area. This behavior is expected 
since our algorithm favors bigger gate sizes that reduce the 
variance of delay across them. The algorithm’s focus on 
minimizing variance also causes it to upsize gates near the 
outputs to reduce the overall variance at circuit’s output. This 
is done even if that path does not have the highest mean delay 
which is in contrast to a worst mean-delay optimizer which 
would not upsize such gates. This increases overall delay due 
to higher loading slowing predecessor gates. 

Another important observation is that the number of gates 
along a timing path is inversely proportional to the variance 
along that path and the ability to optimize it away. Paths with 
a shorter number of gates tend to be more susceptible to 
variations. The smaller ALU circuits exhibit significant 
variations as a percentage of their mean. Our algorithm can  
reduce this variation substantially but at a higher increase in 
area. On the other hand, circuit C6288 which is a 16x16 bit 
multiplier has the longest depth of any of the circuits in the 
table. We note that it has the lowest improvement due to its 
already low σ to µ ratio. 
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Fig. 4: Normalized Mean-Std deviation Plot for C432
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Table 1. Results of our approach on ISCAS Benchmarks
  
Circuit Original 3=λ  9=λ  
Name Gates 

µ
σ  µ∆  σ∆  

µ
σ  A∆  Run 

Time 
(Minutes) 

µ∆  σ∆  
µ

σ

 

A∆  Run 
Time 
(Minutes) 

alu1 234 0.124 +4 % -54 % 0.055 +16 % 1.5 +6 % -80 % 0.023 +24 % 1.6 
alu2 161 0.147 +3 % -71 % 0.041 +14 % 1.3 +4 % -86 % 0.020 +29 % 1.4 
alu3 215 0.127 +7 % -61 % 0.046 +16 % 1.5 +9 % -75 % 0.029 +25 % 1.7 
c432 203 0.093 +2 % -58 % 0.038 +11 % 1.6 +4 % -75 % 0.022 +21 % 1.7 
c499 381 0.077 +5 % -63 % 0.027 +13 % 1.5 +8 % - 76 % 0.017 +21 % 1.8 
c880 301 0.092 +4 % -57 % 0.038 +17 % 1.5 +5 % -79 % 0.018 +23 % 1.7 
c1355 378 0.081 +5 %  -63 % 0.057 +13 % 1.7 +7 % -71 % 0.022 +19 % 1.9 
c1908 563 0.076 +3 % -44 % 0.041 +7 % 3.7 +4 % -71 % 0.021 +16 % 3.8 
c2670 820 0.068 +2 % -42 % 0.039 +11 % 9.8 +7 % -76 % 0.015 +18 % 9.1 
c3540 1245 0.062 +4 % -56 % 0.026 +12 % 14.7 +8 % -70 % 0.017 +21 % 13.1 
c5315 2318 0.043 +2 % -36 % 0.027 +12 % 36 +7 % - 68 % 0.013 +15 % 34 
c6288 2980 0.021 +1 % -28 % 0.015 +5 % 44 +2 % - 47 % 0.011 +9 % 41 
c7552 2763 0.043 +2 % -50 % 0.021 +11 % 31 +4 % - 66 % 0.014 +17 % 33 

 
6. Concluding Remarks 
 
We introduced a new concept of a worst negative statistical 
slack path and derived a procedure for tracing and 
optimizing such paths. In the process, we also derived a new 
approximation for the max operation on random variables 
for use in circuit optimization. Our approach allows us to 
steer the optimization process towards different 
mean-variance goals. The significance of this work is that it 
can be used during design cycle to increase tolerance for the 
effects of manufacturing variations by trading off circuit 
delay and area requirements for reduced timing variance 
with user controlled weights. We demonstrated fidelity of 
our approach on ISCAS benchmarks with consistent 
variance reduction in exchange for moderate increases in 
area and low increases in mean delays. 
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