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ABSTRACT

Linked Data on the Web is either created from structured data sources (such as relational data-

bases), from semi-structured sources (such as Wikipedia), or from unstructured sources (such as 

text). In the latter two cases, the generated Linked Data will likely be noisy and incomplete. In 

this paper, we present two algorithms that exploit statistical distributions of properties and types 

for enhancing the quality of incomplete and noisy Linked Data sets: SDType adds missing type 

statements, and SDValidate identifies faulty statements. Neither of the algorithms uses external 

knowledge, i.e., they operate only on the data itself. We evaluate the algorithms on the DBpedia 

and NELL knowledge bases, showing that they are both accurate as well as scalable. Both algo-

rithms have been used for building the DBpedia 3.9 release: With SDType, 3.4 million missing 

type statements have been added, while using SDValidate,  13,000 erroneous RDF statements 

have been removed from the knowledge base.

Keywords: Data Quality, Type Completion, Error Detection, Noisy Data, Semi-Structured Data, 

DBpedia, NELL

INTRODUCTION

Many of the data sets that are published as Linked Data on the Web (Bizer et al. 2009a) have 

been created from structured sources such as relational databases and are thus  strongly struc-

tured (Bizer and Cyganiak, 2006). In addition, Linked Data is also extracted from semi-struc-

tured sources, such as Wikipedia (Bizer et al. 2009b, Lehmann et al. 2014) or from unstructured 

sources such as free text (Ramakrishnan et al. 2006, Augenstein et al. 2012, Gerber and Ngonga 

Ngomo 2012).

Linked Data which has been extracted from semi- and unstructured sources is likely to con-

tain noise in the form of wrong RDF statements (Dutta et al., 2014). The data is also likely to be 

rather incomplete with respect to its schema. For example, Linked Data sets which have been 

generated from relational databases usually contain type information for each resource since such 

information is present in most databases. This does not hold for data sets that were extracted 

from semi-structured and unstructured sources, where that information may be missing in the 

original  source,  or the information extraction system was not able to extract it.  Furthermore, 

heuristically extracted data sets are more likely to contain a certain level of noise in the form of 

wrong statements.



In order to improve the quality of such noisy and incomplete Linked Data sets, this article  

proposes the  SDType method for adding missing type information to a data set, as well as the 

SDValidate method for identifying possibly wrong statements which were generated by the in-

formation extraction system. Both methods do not use any external knowledge, i.e., they exploit 

solely the data set itself.  The proposed methods rely on statistical  distributions of types  and 

properties, i.e., characteristic distributions of the types of a property's subjects and objects. We 

show that both algorithms have a high accuracy and scale to large knowledge bases such as DB-

pedia and NELL. Both algorithms have been used to improve the quality of the DBpedia 3.9 re-

lease: With SDType, we have added 3.4 million missing type statements, while with SDValidate, 

13,000 wrong statements have been identified and removed.

The rest of the article is structured as follows. We first discuss data quality issues that are par-

ticular to Linked Data sets which have been extracted from semi- and unstructured sources, i.e., 

noisy and incomplete data sets, and describe the two datasets used for evaluation in this article,  

i.e., DBpedia, and a Linked Data version of NELL. Then, we introduce the idea of using statisti -

cal distributions of types and properties for quality improvement,  which underlies both algo-

rithms discussed in this article, and we further define the two the algorithms SDType and SDVal-

idate. For both algorithms, we discuss the evaluation on the two datasets, and describe how they 

have been deployed for the DBpedia release 3.9. We present an implementation of the algorithms 

in a relational database system, and, based on that implementation, discuss their complexity. We 

conclude the paper with a review of related work, a summary, and an outlook on future work.

Parts of the work presented in this article have been published as part of the conference paper 

“Type Inference on Noisy RDF Data” (Paulheim and Bizer, 2013). While that conference paper 

only discusses the SDType algorithm, this article extends the conference paper by introducing 

the complementary SDValidate algorithm including its evaluation, and further evaluates the dif-

ferences between SDType and type inference using classical ontology reasoning. Furthermore, it 

compares the results achieved with both algorithms on an additional dataset, i.e., a Linked Data 

version of NELL.

DATA QUALITY ISSUES WITH NOISY AND INCOMPLETE LINKED DATA SETS

Data quality is not a single measure, but has multiple dimensions. Pipino et al. (2002) list several 

of those dimensions, ranging from accessibility to completeness. In addition, many of those di-

mensions cannot be assessed in a context-free manner, but depend on the task at hand, such as 

relevance. Thus, data quality is generally conceived as “fitness for use” (Wang et al., 1996), i.e.,  

the capability of data to fit the requirements of a specific user given a certain use case.

Linked data sets created from semi-structured or unstructured sources face certain data quality 

problems that are unique to that class of data sets. The first difference is concerned with the com-

pleteness of type information: Due to missing type information in the semi-structured or unstruc-

tured sources or due to errors happening in the information extraction process type information is 

often missing for a relevant part of the described resources.

Although completeness in Linked Data is not a problem from a logic point of view, given the 

formal semantics of RDF (the open world assumption allows for missing knowledge), having 

complete type information is essential for many use cases. For example, a query for all cities lo-



cated in a country will only return useful results if a sufficient number of instances has the type 
dbpedia-owl:City.1

Furthermore,  datasets  created  from semi-structured  or  unstructured  data  sets  may contain 

noise. While relational databases may also contain errors, they are usually factual errors, e.g., a 

wrong capital or population number for a country. In contrast, the noise created in information 

extraction processes often comprises different sorts of errors, such as a building or a person be-

ing defined as the capital of a country.

In this paper, we use two noisy and incomplete datasets. The first one is DBpedia (Bizer et al. 

2009b, Lehmann et al. 2014), the second one is a Linked Data version of NELL (Zimmermann et 

al., 2013).

DBpedia is a large-scale, multilingual, cross-domain knowledge base. It uses data from in-

foboxes in Wikipedia, which are mapped to an ontology in a crowd-sourced process. A number 

of different extractors read and transform the information from the infoboxes, which is provided 

as Linked Open Data. In the past years, DBpedia has become one of the central and most widely 

used datasets in the Linked Open Data cloud (Bizer et al., 2009a). Due to its wide popularity and 

coverage, we use it as an example for looking at data quality in more detail.

For the experiments presented in this article, we used DBpedia version 3.9 (released Septem-

ber 2013). This version of DBpedia2 contains information about 4.0 million things, 3.2 of which 

are assigned one or more types in the DBpedia ontology, as well as other ontologies, such as 

schema.org,3 UMBEL,4 and YAGO (Hoffart et al., 2013). For example, there are 832,000 per-

sons,  639,000 places,  209,000 organizations,  etc.  Furthermore,  DBpedia extracts  information 

from Wikipedia in 119 languages in total.

While offering a broad coverage, DBpedia is by no means free of errors. There are various 

sources  of  those  errors,  ranging  from factual  errors  in  Wikipedia  over  wrongly  used  Wiki 

markup (e.g., using wrong types of infoboxes) to bugs and limitations in the DBpedia data ex-

traction code, e.g., in dealing with many degrees of freedom for encoding numbers in Wikipedia 

(Wienand and Paulheim, 2014). 

Wikipedia itself may contain factual errors, as well as noise (e.g., a statement that a soccer 

player's team is the country Germany, while the statement's object should be the German national 

soccer team, not the country). Weaver et al. (2006) estimate the fraction of wrong statements to 

be 2.8%.5

1 The following namespace conventions are used throughout this paper: dbpedia=http://dbpedia.org/resource/,  

dbpedia-owl=http://dbpedia.org/ontology/, yago=http://dbpedia.org/class/yago/,  

foaf=http://xmlns.com/foaf/0.1/Person, owl=http://www.w3.org/2002/07/owl#,  

rdfs=http://www.w3.org/2000/01/rdf-schema#

2 Unless otherwise indicated, all statements about the DBpedia knowledge base refer to version 3.9.

3 http://www.schema.org/

4 http://www.umbel.org/

5 Since the authors estimate the correctness of all links in a Wikipedia page, not only links in infoboxes, not ev -

ery error would result in a wrong statement in DBpedia. However, the fraction can be seen as a rough estimate  

of the information quality in DBpedia.



In previous work (Paulheim and Bizer 2013), we have performed the analysis of another qual-

ity dimension in DBpedia, i.e., completeness. While it is difficult, if not impossible, to make a 

statement of the overall completeness of DBpedia (and Wikipedia), we have attempted an ap-

proximation of the completeness with respect to one particular type of information in DBpedia, 

i.e., direct types. We have estimated the number of missing type statements in DBpedia to at 

least 2.7 million.

By design, DBpedia cannot contain any information that is not contained in Wikipedia. While 

providing an ontology with the data in theory allows for reasoning to infer missing information, 

classical ontology reasoning often fails on DBpedia, since the A-box data (i.e., the facts about 

single instances) is too noisy. We have shown that even in a knowledge base where 99.9% of the 

facts  are correct,  ontology reasoning can lead  to  completely skewed and nonsensical  results 

(Paulheim and Bizer, 2013). Thus, classical ontology reasoning, although one of the main prom-

ises and selling points of the Semantic Web, is not a remedy to that problem. 

NELL (Never ending language learning) is a system that, based on a small set of examples 

and seed patterns, learns language patterns and instantiations for relations. For example, the sen-

tence Bavaria Munich keeper Manuel Neuer talks about his future ambitions contains an instan-

tiation of the relation  plays_for_team  with the subject  Manuel Neuer and the object  Bavaria 

Munich, as well as the pattern Y keeper X, which is an indicator for such instantiations. NELL 

aims at learning both new patterns as well as new instances in an iterative process, using a web 

crawl as its base corpus. In each iteration, the patterns and instantiations with the highest confi-

dence are added to the knowledge base, after checking for consistency using an ontology (Carl-

son et al., 2010).

For our purposes, we use a linked data version of NELL, which represents facts extracted by 

NELL in RDF, together with a rich OWL ontology (Zimmermann et al., 2013).6 The version 

used in this paper contains 262,000 locations, 195,000 organizations, 176,000 persons, etc.

In contrast to DBpedia, there is not too much work on the data quality of NELL. In the origi-

nal publications, the authors state a precision of at most 90% in the extracted statements (e.g 

Carlson et al, 2010). Although we do not know the number of missing type statements, we have 

observed that the fraction of instances that do not have any type is similar to DBpedia, and the 

class hierarchies have a comparable complexity (see below). Thus, we assume that the problem 

of missing types is of comparable severity in both datasets.

With respect to correctness, there are differences. DBpedia is extracted from the Wikipedia 

infoboxes without checking consistency or plausibility constraints. In contrast, NELL is designed 

in a rather defensive way that only promotes patterns and facts with high confidence values, and 

exploits some basic reasoning to avoid the inclusion of wrong facts (Carlson et al., 2010). Thus, 

there is already some implicit quality control in the NELL dataset, and we expect a lower num-

ber of errors. In our evaluation,  we will discuss how these quality aspects influence our ap-

proach.

In our experiments,  we have observed one frequent source of errors,  i.e.,  the handling of 

homonymy, which is obviously hard for NELL, and hence, homonymous resources often merged 

into one resource. One such example identified by SDValidate is concrete as a building material, 

and the Thomas Bernhard novel Concrete, which are both represented by the same resource.

6 We use version 08m.690 of the dataset, accessed on March 29th, 2014



Table 1 depicts some basic characteristics of the datasets. First of all, it can be observed that  

both datasets have a decent fraction of untyped instances. This makes them good candidates for 

applying methods for automatic type completion. Furthermore, by construction, both datasets are 

likely to contain noise, thus, we also expect them to benefit from automatic error correction.

DBpedia NELL

Number of instances 3,600,638 1,475,390

Number of type assertions 13,225,156 5,688,414

Number of relation assertions 10,645,207 81,527

Number of distinct classes 359 270

Number of distinct properties 1775 548

Average depth of class hierarchy 2.4 3.9

Fraction of untyped instances 19.9% 20.8%

Average number of types per typed instance 5.6 4.9

Average number of instances per class 38,003 21,547

Average number of ingoing properties per instance 8.5 2.7

Average number of outgoing properties per instance 8.8 1.7

Table 1: Statistics about the datasets used for the evaluation

STATISTICAL DISTRIBUTIONS OF PROPERTIES AND TYPES

Both algorithms discussed in this article, i.e.,  SDType  and  SDValidate, use statistical distribu-

tions of statements connecting pairs of A-box resources, and of  rdf:type statements. In par-

ticular, for each property, we determine the number of instances of a certain type appearing in 

the property's subject and object position. The resulting distributions characterize the property.

Table 2 shows an example distribution of the DBpedia property dbpedia-owl:location. 

The table reads as follows: given the set of triples that have the predicate  dbpedia-owl:lo-

cation, 100% of the subjects are of type  owl:Thing, 69.8% of the subjects are of type  db-

pedia-owl:Place, and so on. For the objects, 88.6% are of type  owl:Thing, 87.6% are of 

type dbpedia-owl:Place, and so on.

A noteworthy observation is that not all objects are of type owl:Thing. This is due to the 

fact that types in DBpedia (including owl:Thing) are only generated if an infobox is present. 

While there is an infobox on the page from which the subject was created (otherwise, the state-

ment would not exist at all), not all objects are generated from pages having an infobox. Thus, 

the number is lower.

The distribution of a property can be used for several purposes. The basic idea of the SDType 

algorithm is that when observing a certain property in the predicate position of a statement, we 

can infer the types of the statement's subject and object with certain probabilities. Furthermore, if 



there is a large deviation between actual types of the subject and/or object and the apriori proba-

bilities given by the distribution, we can mark the statement as possibly wrong – that is the basic 

idea of the SDValidate algorithm.

Type Subject (%) Object(%)

owl:Thing 100.0 88.6

dbpedia-owl:Place 69.8 87.6

dbpedia-owl:PopulatedPlace 0.0 84.7

dbpedia-owl:ArchitecturalStructure 50.7 0.0

dbpedia-owl:Settlement 0.0 50.6

dbpedia-owl:Building 34.0 0.0

dbpedia-owl:Organization 29.1 0.0

dbpedia-owl:City 0.0 24.2

... ... ...

Table 2: Distribution of subject and object types for the property dbpedia-owl:location. 

The percentages of the types of subjects and objects do not sum up to 100% because each re-

source can have multiple types, so that the sum is larger than 100%.

In addition to the distributions per statement, we also use the apriori distributions of each 

type, i.e., the percentage of resources that have a certain type. These apriori probabilities can be 

used to assess the value of a certain property in deriving information from a statement using that 

property.  If  the distribution of a property is  close to the apriori  distribution,  the information 

gained from the statement is less valuable.

THE SDTYPE ALGORITHM FOR TYPE COMPLETION

As discussed above, type information is useful, as well as often incomplete. The SDType algo-

rithm is designed to use information about statistical distributions for assigning types to untyped 

resources, and thus to increase the completeness of rdf:type statements in the knowledge base.

Approach of SDType

SDType uses properties that connect two resources as indicators for their types, i.e., it is a link-

based object classification approach (Getoor and Diehl, 2005). The basic idea is to use each in-

going and outgoing properties of a a resource as an indicator for that resource's type. For each 

property, we use the statistical distribution (hence the name SDType) of types in the subject and 

object position of the property for predicting  the instance's  types.  SDType can be seen as a 

weighted voting approach, where each property can cast a vote on its object's types, using the 

statistical distribution to weigh its votes.

Consider, for example, the distribution shown in Table 2. Given that we observe a triple like
:x dbpedia-owl:location :y ,



we can assign the following probabilities:

P(:x a dbpedia-owl:Place) = 0.698, P(:y a dbpedia-owl:Place)= 0.876, etc.

More formally, the basic building blocks of SDType are conditional probabilities measuring 

how  likely  a  type  t  is,  given  a  resource  with  a  certain  property  prop,  expressed  as

P (t |(∃ prop .T )) , where prop may be an ingoing or an outgoing property (with usually different 

probabilities) These conditional probabilities are the probabilities that a resource with a certain 

(ingoing or outgoing) property have a given type, as shown in Table 2. If multiple statements 

with the same property exist, the respective conditional probabilities are taken into account mul-

tiple times.

These conditional probabilities are obtained directly from the statistical distributions shown 

above. Furthermore, each property is assigned a certain weight wprop, which reflects its predictive 

power. Since that predictive power may be different for predicting types in the subject and in the 

object position, the weights are different in both cases, i.e., in the example above, there are two 

weights wdbpedia-owl:location and  wdbpedia-owl:location-1.

The motivation of using weights for properties to avoid problems with skewed knowledge 

bases, i.e., knowledge bases in which the extension of some types are several orders of magni-

tude larger than that of others. In such cases, using only statistical distributions without any cor-

rection can lead to false type predictions, which are biased towards the majority types. This is a  

problem in particular with general purpose properties, such as  rdfs:label or  owl:sameAs, 

which are more or less equally distributed in the overall knowledge base.

To avoid those problems, we define property weights wp, which measure the deviation of the 

property's distribution to the apriori distribution of all types in the knowledge base. The stronger 

this deviation, the higher we assess the property's predictive power. Formally, wprop is defined as

w
prop
:= ∑

all types t

( P (t )−P (t |(∃ prop .T )))
2

To compute the weights, both the statistical distributions per property as well as the apriori 

probabilities P(t) are used. Note that as discussed above, we define individual weights for p and 

p-1, i.e., different weights are used for predicting the types, depending on whether the resource is 

used in the predicate's subject or object position.

Using the conditional probabilities and the property weights, we implement a weighted voting 

approach, where for each property, a vote for the types in the property's statistical distribution is 

cast, assigning a likelihood to each type. The overall predicted type distribution for a resource is 

then given by the weighted sum of all likelihoods. Thus, we define the confidence that a resource 

r has the type t as

∑
all properties prop of r

P (t (r ) |(∃ prop .T ) (r )) ,

with the normalization factor ν defined as

ν :=
1

∑
all properties prop of r

w
prop

.

In those formulas, “all properties prop of r” includes properties of all statements that have r in 

the subject or the object position. As discussed above, subject and object position properties are 

handled separately.



When implementing the approach, a confidence threshold t is applied, i.e., all type statements 

with a confidence larger than t are assumed to be correct.

Looking at the weights in DBpedia, for example, we can observe that the maximum weight is 

given  to  properties  that  only  appear  with  one  type,  such  as  dbpedia-owl:maximum-

BoatLength, which is only used for the type  dbpedia-owl:Canal. On the other end of the 

spectrum,  there are properties  such as  foaf:name,  which,  in  DBpedia,  is  used for persons, 

companies, cities, events, etc.

To illustrate the effect of weights, we consider the following example:
x dbpedia-owl:location y . 

x foaf:name z, 

and an apriori probability of dbpedia-owl:Person and dbpedia-owl:Place of 0.21 and 

0.16, respectively. With those numbers and distributions such as in table 1, the confidences of 

types for x without property weights (i.e., setting all weights wp to 1 in the definition) would be 

0.14 for dbpedia-owl:Person, and 0.6 for dbpedia-owl:Place.

When using weights, the numbers are different. In the above examples, the weights for db-

pedia-owl:location-1 and  foaf:name-1 are  0.77  and  0.17,  respectively.  Using  these 

weights,  the confidence scores are 0.05 for  dbpedia-owl:Person and 0.78 for  dbpedia-

owl:Place. This shows that the weights help reducing the influence of general purpose proper-

ties and thus assigning more sensible scores to the types that are found by SDType, and in the 

end lead to a  reduction of wrong results originating from skewed datasets.7

Evaluation of SDType

We have performed two evaluations of SDType on each dataset. The first evaluation uses in-

stances that already have types assigned, taking that type information as a gold standard. We ran-

domly sampled three datasets, each containing 10,000 instances, and tried to reconstruct their 

types. The three datasets were sampled to contain instances with at least one, at least 10, and at 

least 25 ingoing properties. For the experiment with DBpedia, we used the mapping-based prop-

erties and the infobox types dataset, the latter not only containing types from the DBpedia on-

tology, but also from UMBEL and schema.org.

In a second experiment, we attempt to assign types to non-typed instances. For that experi-

ment, we sampled 100 random untyped instances from each dataset, and manually inspected the 

types generated. To make this inspection easier on the NELL dataset, we restricted ourselves to 

instances that have links to Wikipedia pages (for DBpedia instances, the Wikipedia page is al-

ways given implicitly). For that second experiment, we report precision as well the number of 

types that can be generated.

In both experiments, we use only ingoing properties to predict types. Since types and outgo-

ing properties are generated in the same process in DBpedia (i.e., using mappings from the in-

fobox to the DBpedia ontology), using outgoing properties for type prediction would oversim-

plify the problem in the first experiment. In the second experiment, we only consider untyped in-

7
 The  actual  numbers  for  DBpedia  are:  P(dbpedia-owl:Person|foaf:name-1)  =  0.273941,  P(dbpedia-owl:Place|

foaf:name-1)  = 0.314562,  P(dbpedia-owl:Person|dbpedia-owl:location-1)  = 0.000236836,  P(dbpedia-owl:Place|dbpe-

dia-owl:location-1) = 0.876949.



stances – those instances mostly do not have infoboxes and hence no outgoing properties. In or-

der to make the results comparable, we applied the same restriction on the NELL dataset.

Figures 1 and 2 show the results of SDType for the first experiment. For DBpedia, it can be 

observed that SDType works sufficiently well on the overall dataset (i.e., instances that have at 

least one ingoing property), achieving an F-measure of 88.5%, the results are slightly better on 

instances that have at least 10 or 25 ingoing properties, with an F-measure of 88.9% and 89.9%, 

respectively (in each of the three cases, the optimal confidence threshold is t=0.34). The differ-

ences show more significantly in the precision@95% (i.e. the precision that can be achieved at 

95% recall),  which is 0.69 (min. one property),  0.75 (min. ten properties), and 0.82 (min. 25 

properties), respectively. The observations are similar on the NELL dataset, with a maximum F-

measure of 93.2% (min.  one property,  at  a confidence threshold of t=0.26), 94.2% (min.  10 

properties, at a confidence threshold of t=0.27), and 95.7% (min. 25 properties, at a confidence 

threshold of 0.35), and a precision@95% of 0.88 (min. one property), 0.92 (min. ten properties), 

and 0.96 (min. 25 properties).

These numbers indicate that instances with more ingoing properties can be typed more accu-

rately. Using the average of the predicted type vectors for all ingoing properties, the influence of 

single wrong statements is reduced if more properties are present.

To contrast SDType with ontology reasoning, which is a standard method for inferring types 

on RDF data, we have run the reasoner Pellet (Sirin et al., 2007) on the same datasets. For typing 

an instance with Pellet, we load the T-box of the ontology, add all statements which involve the 

resource at hand, and let Pellet determine the types. The comparison of that reasoning approach 

with SDType is shown in Figures 3 and 4.

It can be observed that both for DBpedia and for NELL, SDType outperforms the standard 

reasoning approach, both in terms of recall and precision, in most cases. On the DBpedia dataset, 

the precision of the reasoning approach drops with more ingoing statements, while the precision 

of SDType remains stable and even slightly rises, at an overall higher level of recall. The reason 

is that the reasoning approach accumulates errors from single wrong statements, while SDType 

reduces the influence of single wrong statements as the number of statements increases. On the 

NELL dataset, the picture for the standard reasoning approach is a bit different. Here the preci-

sion drops with a larger amount of ingoing properties. The likely explanation is the consistency 

checking in NELL, which leads to removal of much noise. The remaining statements are very 

likely to be correct, which also eases the reasoning on them. By using ontology-based consis-

tency checking, resources involved in more statements have undergone more consistency checks 

are thus easier to type for a reasoner.

In our second experiment, we have analyzed how well SDType is suitable for adding type in-

formation to untyped resources. The results for various thresholds are depicted in Figures 5 and 

6. It can be observed that on the DBpedia dataset, 4.4 types per instance can be generated with a 

precision of 0.99, and 5.4 types with a precision of 0.95 at a threshold of 0.4. The results on the 

NELL dataset are similar, with the precision dropping slightly faster. The bulge at a threshold of 

0.5 is caused by errors made on only two instances, for which SDType made wrong predictions 

at a high confidence level, and thus not significant.



Figure 1: Results of SDType, using typed instances in DBpedia as a gold standard.
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Figure 2: Results of SDType on NELL, using typed instances in NELL as a gold standard.
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Deployment in DBpedia

From the second experiment, we have observed that for achieving an overall precision of 0.95 

and 0.99 on untyped instances on DBpedia, we have to set a threshold on the confidence level of 

0.4 and 0.6, respectively.  With those thresholds, we can generate a total of 3.4 million and 2.2 

million type statements in DBpedia, respectively, as depicted in Table 3. With the higher thresh-

old  guaranteeing  higher  precision,  more  general  types  such  as  dbpedia-owl:Person  are 

generated,  while  more  specific  types  such  as  dbpedia-owl:Athlete or  dbpedia-

owl:Artist, are rarely found. In most cases, the generated types are consistent, i.e., an artist is 

also a person, and, since the types in the DBpedia ontology are fully materialized, all super-types  

are automatically included in the prediction. In contrast, contradicting predictions (e.g.,  dbpe-

dia-owl:Organization and dbpedia-owl:Person for the same instance) are rather rare, 

but since there are only few statements about disjointness in the DBpedia ontology (see below), 

those cases are hard to detect automatically. 

We have added the dataset that results from applying a confidence threshold of t=0.4 to the 

DBpedia 3.9 release. The dataset adds another 3.4 million type statements to the 15.9 million that 

already exist in the knowledge base, and hence increases the number of type statements by 21%. 

For example, we have identified 293,000 additional persons (an increase of 35%), 115,000 addi-

tional places (an increase of 18%), and 120,000 additional organizations (an increase of 57%).

Threshold 0.4 0.6

Estimated Precision 0.95 0.99

Newly typed instances 626,662 510,838

Total type statements 3,402,539 2,228,647

Avg. types per instance 5.4 4.4

Distinct classes 159 130

Main types:

Person 292,398 (46.7%) 191,490 (37.5%)

Organization 119,123 (19.0%) 67,872 (13.3%)

Place 114,093 (18.2%) 99,437 (19.5%)

Work 37,176 (5.9%) 33,007 (6.5%)

Table 3: Results of SDType for assigning types to untyped instances in DBpedia 3.9. Besides ba-

sic measures, the table reports the number of type statements found for large classes, and the rel-

ative number of all newly typed instances that belong to those classes.

THE SDVALIDATE ALGORITHM FOR ERROR DETECTION

While SDType uses statistical distributions for predicting types, the basic idea of the SDValidate 

algorithm is to use the statistical distributions to assess the correctness of statements which relate 

two resources.8 SDValidate assigns a confidence score to each statement which reflects the devi-

8 Statements whose object is not an entity, but a literal (e.g., a number) are not handled by SDValidate.



ation of the types predicted by the statement from the statement's object's actual types set in the 

knowledge base.

Approach of SDValidate

SDValidate follows a three step approach for identifying  incorrect  statements.  The first  step 

computes the  relative predicate frequency (RPF)  for each statement, which describes the fre-

quency of a predicate/object combination. All statements which have a low RPF are selected for 

further inspection. The rationale behind that approach is that statements with a frequent predi-

cate/object combination are more likely to be correct than a small number of “outlying” state-

ments with an infrequent predicate/object combination. The RPF of a statement  s is defined as 

the probability that a statement sharing the object with s also shares the relation with s:

RPF ( s):=P ( pred |obj)=
|statements with pred ( s)∧obj (s)|

|statements with obj (s )|
For example, the DBpedia resource dbpedia:Germany has around 38,000 ingoing statements. 

Among those, there is the statement
dbpedia:CORSIKA dbpedia-owl:author dbpedia:Germany .

Since this is the only ingoing statement to dbpedia:Germany with the property dbpedia-

owl:author, the RPF of that property (w.r.t.  dbpedia:Germany) would be 0.000026. If we 

filter by a significance level of 0.05 or 0.01, this statement would be selected in the first step.

The second step uses the statistical distributions of properties and types to assign a score to 

each of the selected statements. For each property, there is a prediction vector, assigning proba-

bilities to the predicate's subject and object. The SDValidate algorithm compares these vectors to 

the respective resources' actual types. The cosine similarity of the two vectors is used as a confi-

dence score for the statement.

As discussed above, the type information of a statement's object are more likely to be error-

prone than those of a statement's subject when applying heuristic methods for dataset creation. 

Thus, we constrain the algorithm to compare the predicate's type distribution for the object posi-

tion with a statement's object's types.

Given a statement s with predicate prop and object o, we define the confidence in the state-

ment being true as

conf (s) :=
∑

all types t

p (t | prop−1)⋅d (t,o)

√ ∑
all types t

p( t | prop−1)2⋅√ ∑
all types  t

d (t,o)2
,

where d(t,o) denotes whether resource o has type t, i.e.,

d (t,o ):={1if o has type t

0otherwise }
In the third step, we apply a threshold τ above which statements are regarded to be true. State-

ments with a confidence below that threshold are marked as being potentially wrong. In the ex-

ample above, the actual types for dbpedia:Germany comprise types such as Place and Coun-

try,  while the predicted types given the property  dbpedia-owl:author include Person and 



Writer.  Thus, the cosine similarity of both vectors is rather low at 0.1059,  and the statement 

would be discarded given a higher threshold.

Evaluation of SDValidate

For evaluating SDValidate,  we have run the algorithm on random subsets of DBpedia state-

ments, and evaluated the precision manually by inspecting the statements marked as wrong by 

SDValidate. Evaluating recall, on the other hand, would be much more time consuming, since it 

requires manual inspection of all the statements in the test set, not only those marked wrong by 

our approach. Therefore, we do not report recall.

We evaluate three different values for p for the statement selection step by relative predicate 

frequency: s≤1.0 (which corresponds to selecting all statements for inspection), as well as s≤0.05 

and s≤0.01, for selecting only the statements whose predicate is not used by a significant subset 

of the statements. To conduct these evaluations, we used three test sets. For the case of s≤1.0, we 

randomly sampled 10,000 resources in DBpedia. For the test sets of s≤0.05 and s≤0.01, we ran-

domly sampled 10,000 resources with 20 and 100 ingoing properties, respectively, to make sure 

that it is possible to select any statements in the first step. We then ordered the results by confi-

dence in ascending order, and inspected the top results from the list.

The results of SDValidate on the DBpedia dataset are depicted in Figure 7. It can be observed 

that the application without a pre-selection provides results that lack sufficient precision. The 

reason is that while SDType uses the average of several statements and thus provides results 

based on a larger number of statements, SDValidate takes fewer information into account for rat-

ing the confidence of a statement, and hence requires additional indicators. The evaluation with a 

pre-selection at significance levels of 0.05 and 0.01 provides a different picture. It can be ob-

served that in both cases, a precision above 0.9 (0.92 for significance level of 0.01, 0.93 for 0.05) 

can be achieved.

On the NELL dataset, the results are much worse, as shown in Figure 8. Here, a maximum 

precision of only 0.69 can be reached with prefiltering by a significance threshold of 0.01. When 

comparing the curves with the results achieved on DBpedia, it is evident that no statements are 

marked with very low confidence scores, i.e., scores below 0.05. This hints at the fact that the 

NELL dataset is already pre-checked for consistency, as discussed above, i.e., most of the obvi-

ous errors have already been removed. However, at lower thresholds, we are still able to discover 

wrong statements, but at the price of more false negatives.

Since both datasets come with ontologies that include disjointness statements, ontology rea-

soning can be used for checking the validity of statements by reasoning (see section "Related 

Work"). In order to use reasoning as a baseline, we loaded the respective ontologies into the Pel-

let reasoner (Sirin et al., 2007), added the statement to check together with its subject's and ob-

ject's type statements, and had Pellet validate the consistency of the resulting model. However, 

that approach did not find any wrong statements for both datasets. 

The reason why reasoning does not work as an alternative to SDValidate are different for both 

datasets: On the DBpedia dataset, the reason is probably the very low number of disjointness ax-

ioms (there are only 17 such axioms between very high-level classes). For the NELL dataset,  

reasoning is also employed for consistency checking when compiling the dataset, so that no addi-

9 It is not 0 because both vectors share the common type owl:Thing.



tional conflicts can be detected with reasoning afterwards. That said, it is remarkable that SDVal-

idate is capable of identifying additional errors on the NELL dataset, which are not found by 

classic ontology reasoning.

In order to obtain an impression of the types of errors identified by SDValidate, we performed 

an additional analysis of the errors. For DBpedia, we can track the Wikipedia page from which 

each statement was extracted. This allows for a detailed error analysis. We classified the errors 

identified on the DBpedia dataset into the following categories: 

 Links in longer texts. This type of error occurs when the infobox entry from which the 

statement is extracted contains a text expression which is not linked as a whole, but only 

a  part  of  which  is  linked.  An  example  is  the  statement
dbpedia:Claire_Marshall dbpedia-owl:education dbpedia:Devon .

Here, Devon is a county in England and not an educational institution. The corresponding 

infobox entry in Wikipedia says “Blundell's School, Devon”, where “Blundell's School” 

is linked to the page about the school, and “Devon” is linked to the county. The DBpedia 

extraction framework creates two statements out of this, one with the school as its object 

(which is correct), one with the county (which is not in line with the expected object type  

of an educational institution). SDValidate is capable of identifying the wrong one out of 

the two and eliminates it, while keeping the correct object.

 Wrong  links  in  Wikipedia  itself.  A  typical  example  is  the  statement

dbpedia:Dallas_Kruse dbpedia-owl:instrument dbpedia:Rhodes .

This reflects the exact link given in the Wikipedia infobox, however, dbpedia:Rhodes 

is  the  concept  which  denotes  the  Greek  island  named  Rhodes,  while  the  correct 

Wikipedia article to be linked from the infobox would be Rhodes_piano.

 Wrong  infobox  key.  One  example  is  the  statement

dbpedia:The_Great_Cat  dbpedia-owl:occupation  dbpedia:Neo-classi-

cal_metal .

Here, the infobox key “genre” should have been used instead of “occupation”.

 Links  with  hashtags.   One  example  is  the  statement

dbpedia:Michael_Sim  dbpedia-owl:award  dbpedia:PGA_Tour_of_Aus-

tralasia .

This  statement  is  extracted  from  an  infobox  object  actually  being 
http://en.wikipedia.org/wiki/PGA_Tour_of_Australasia#Order_of_

Merit_winners, which refers to an award. During the extraction, the URL fragment is 

removed, which leads to a statement making less sense.

The source of the remaining identified errors is either unknown, or they represent false negatives, 

i.e., statements identified as wrong which are actually correct.

The distribution of errors across the different categories is depicted in Figure 9. The largest 

portion of errors is produced in cases where the infobox entry from which the statement is ex-

tracted contains a text expression which is not linked as a whole, but only a part of which is 

linked. This is in line with the findings by Zaveri et al. (2013), who report that the majority of ac-

curacy problems in DBpedia goes back to objects being incorrectly or incompletely extracted. In 

particular, it is noteworthy that Zaveri et al. claim that detecting this type of error cannot be au-

tomatized, while SDValidate is a heuristic algorithm which automatically detects at least a cer-



tain portion of such errors. The second major source of errors are wrong links in Wikipedia itself. 

Curiously, this source of errors is not in the list of common errors listed by Zaveri et al.

The NELL dataset does not provide provenance information on statement-level as facts are 

not extracted from a single source, but the result of patterns learned from different sources. This 

makes it hard to pinpoint the exact reason for a wrong statement. However, as discussed above, 

one frequent source of errors is the presence of homonymous resources, which are obviously 

hard to distinguish for NELL, and are hence often merged into one resource. Examples identified 

by SDValidate include MS being the abbreviation for Microsoft as well as for multiple sclerosis, 

the American football team Atlanta Falcons and the animal falcon, concrete as a building mate-

rial and the Thomas Bernhard novel Concrete, etc. In particular the latter case (names of novels 

also denoting other things) is found quite frequently in the NELL dataset.

Deployment in DBpedia

In our experiments on the DBpedia dataset, we found that filtering by a significance level of 0.05 

and 0.01 yields comparable precision, but the number of statements that are validated is signifi-

cantly different: at a significance level of 0.05, 563,657 statements are validated, at 0.01, it is 

only 144,043. Hence, we decided to apply filtering by significance at a level of 0.05, and used a 



final threshold of 0.15, which was optimal for our sample w.r.t. maximizing precision, as dis-

cussed above.

When applying the algorithm to the DBpedia knowledge base, we aimed at minimizing the 

number of false negatives, i.e., the number of correct statements being removed from the knowl-

edge base. To that end, we manually examined a sample of the output of SDValidate. Upon that 

examination, we found that only five different properties were responsible for 75% of the false 

negatives.  These  properties  are:  dbpedia-owl:knownFor,  dbpedia-owl:product, 

dbpedia-owl:nonFictionSubject,  dbpedia-owl:programmeFormat,  and 

skos-core:subject. It is obvious that these are properties that are very unspecific about 

their  object (for example,  people, places, or events can be the non-fiction subject of a book, 

among many other classes of things). In other words, properties whose objects tend to take a 

large number of types are problematic, unlike properties whose objects usually only take a small 

number of types. To account for that difference and avoid such false negatives automatically, we 

added an additional filter using the Gini index of a property with respect to its types, i.e.,



gini ( p):=∑
typest

(P (t |p))
2

Note that unlike the standard use of the Gini index, values larger than 1 are possible here, 

since the probabilities of types do not add up to 1 because an instance can have multiple types.  

Nevertheless, the index provides a good indicator about the “pureness” of a property. 

From looking at the “suspicious” properties, we decided to eliminate all identified statements 

whose predicate has a gini index below 0.15. After that filtering step, 10,120 statements (i.e., 

roughly half of the statements identified by SDValidate) were removed from the mapping-based 

properties file10, which means that approximately 0,1% of the statements are removed because it 

is likely that they are wrong.

IMPLEMENTATION AND COMPLEXITY OF THE ALGORITHMS

Both SDType and SDValidate can be implemented in a relational database system (for our ex-

periments, we have used MySQL). The algorithms start by importing two files containing the 

triples to validate, separated into type statements (types) and statements with non-literal objects 

which are not rdf:type statements (relations).

10 For the DBpedia 3.9 release, we used a manual filtering instead of automatic filtering by Gini index, which in  

the end removed around 13,000 statements in total.

Figure 9: Analysis of sources of errors found by SDValidate on DBpedia. The diagram shows  

the percentage of the different error sources.
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From these input tables, we subsequently compute the basic statistics, as well as the final ta-

bles containing the additional type statements (for SDType) and the identified wrong statements 

(for SDValidate). The following pseudocode illustrates the process:

// data preparation

input: table types (resource,type)

input: table relations (subject,predicate,object)

table type_count (type, count)

← pass over types, count occurrences of each type

table predicate_count(predicate, count)

← pass over relations, count occurrences of each predicate

table type_apriori_probability (type, probability)

 ← pass over type_count, divide each by number of resources

table resource_predicate_frequency (resource, predicate, frequency)

← pass over relations, count pairs of resource and predicate (both 

subject and object)

table predicate_type_probability (predicate, type, probability)

← pass over types  resource_predicate_frequency  ⋈ ⋈

predicate_count, 

count occurrences of type and relation, divided by occurences of the

   predicate

table predicate_weight (predicate, weight)

← pass over predicate_type_probability ⋈ type_apriori_probability,

sum up squared difference of type probability given the predicate 

      and apriori probability

// materialize types (SDType)

table inferred_types (resource, type, score)

← pass over resource_predicate_frequency 

     ⋈ predicate_type_probability ⋈ predicate_weight, 

    sum up count*probability*weight divided by sum(weight) 

    for each resource

// find wrong statements (SDValidate)

table statements_to_check (subject, predicate, object)

← pass over relations  ⋈ resource_predicate_frequency,

  collect all statements that have a predicate frequency below the 

     significance level



table scored_statements (subject, predicate, object, score)

← pass over statements_to_check ⋈ types, statements_to_check 

      ⋈ predicate_type_probability

compute cosine similarity between actual and probable types for

      each resource

Given that T denotes the number of types, P denotes the number of properties, R denotes the 

number of resources, and S is the total number of statements, the sizes of the tables used in the 

algorithm have the following upper bounds:

type_count T

predicate_count P

type_apriori_probability T

resource_predicate_frequency S

predicate_type_probability PT

predicate_weight P

inferred_types RT

statements_to_check S

scored_statements S

types ⋈ resource_predicate_frequency ⋈ predicate_count ST

type_predicate_probability ⋈ type_apriori_probability PT

resource_predicate_frequency ⋈ predicate_type_probability ⋈ predicate_weight SPT

relations ⋈ resource_predicate_frequency S²

statements_to_check ⋈ types ST

statements_to_check ⋈ predicate_type_probability SPT



Given these upper bounds, the largest tables to pass over for SDType have the maximum size 

SPT (since R<S), while SDValidate needs to pass over a table of size S². As there are no loops in 

the algorithm, these are also the upper bound for the algorithms' runtime and memory complex-

ity.

Practically, the whole deployed process on the DBpedia dataset (including both SDType and 

SDValidate) ran in less than six hours on a 2.4 GHz linux machine with 2 GB Ram, with the data 

stored in a MySQL database, using appropriate index structures on the intermediate tables.

RELATED WORK

We organize the review of related work in two subsections, which correspond to the tasks ad-

dressed by SDType and SDValidate:  the first  subsection compares approaches for predicting 

(missing) types, while the second subsection discusses approaches for detecting false statements. 

Since many of the related approaches have also been evaluated on the DBpedia dataset, a direct  

comparison is possible in those cases.  

Approaches for Type Prediction

Type prediction can be seen as a special case of inductive inference on the Semantic Web, where 

the goal is to infer all type statements for a given instance. The problems of inference on noisy 

data in the Semantic Web has been identified, e.g., by Polleres et al. (2010), and Ji et al. (2011). 

While general-purpose reasoning on noisy data is still actively researched, there have been solu-

tions proposed for the specific problem of type inference for (general or particular) RDF datasets 

in the recent past, using strategies such as machine learning, statistical methods, and exploitation 

of external knowledge such as links to other data sources or textual information.

One of the first  approaches to type classification in relational  data has been discussed by 

Neville and Jensen (2000). The authors train a machine learning model on instances that already 

have a type, and apply it to the untyped instances in an iterative manner. The authors report an 

accuracy of 0.81, treating type completion as a single-class problem (i.e., each instance is as-

signed exactly one type).

The approach we examined in Paulheim (2012) assumes that for many instances, there are 

some, but not all types. Association rule mining is employed to find common co-occurence pat-

terns between types, and apply them to the knowledge base. We have shown that this approach 

can lead to add approximately 3 additional types to an average instance at a precision of 85.6% 

on the DBpedia dataset with all types (including the YAGO types).

An approach close to the one presented in this paper is ProSWIP, which uses properties of re-

sources to assign types. The authors evaluate their approach on a subset of the Billion Triples  

Challenge dataset, and report an F-measure of up to 0.39 for movies, 0.90 for music items, and 

0.13 for books. However, since the evaluation set is different, the results cannot be directly com-

pared.

Aprosio et al. (2013) introduce an approach which first exploits cross-language links between 

DBpedia in different languages to increase coverage, e.g., if an instance has a type in one lan-

guage version and does not have one in another language version. Then, they use nearest neigh-

bor classification based on different features, such as templates, categories, and bag of words of 



the corresponding Wikipedia article. On existing type information in DBpedia, the authors report 

a recall of 0.48, a precision of 0.91, and an F-measure of 0.63.

The Tipalo system (Gangemi et al., 2012) leverages the natural language descriptions of DB-

pedia resources to infer types, exploiting the fact that most abstracts in Wikipedia follow similar 

patterns (e.g., “Rammstein is a Neue Deutsche Härte band from Berlin, Germany”). Those de-

scriptions are parsed and mapped to the WordNet and DOLCE ontologies in order to find appro-

priate types. The authors report an overall recall of 0.74, a precision of 0.76, and an F-measure of 

0.75, evaluated against a manually created gold standard.

Giovanni et al. (2012) exploit types of resources derived from linked resources, where links 

between Wikipedia pages are used to find linked resources.  As DBpedia only exploits  links 

within Wikipedia infoboxes, this means that Giovanni et al. use more links than we do. For each 

resource, they use the classes of related resources as features, and use k nearest neighbors for 

predicting types based on those features. The authors report a recall of 0.86, a precision of 0.52, 

and hence an F-measure of 0.65, on DBpedia.

Sleeman and Finin (2013) try to predict the type of instances, given the attributes of that in-

stance. They use a labeled training set for training an approach for type prediction, in contrast to 

SDType, which is directly working on the target data without the need for a labeled gold stan-

dard. They evaluate their approach on three example classes (Person, Place, and Organization) 

on Freebase, reporting an F-measure near 1.0 for places, while the F-measure for persons and or-

ganizations is around 0.6.

Pohl (2012) addresses a slightly different problem, i.e., the mapping DBpedia resources to the 

category system of OpenCyc.  They use different indicators – infoboxes, textual descriptions, 

Wikipedia categories and instance-level links to OpenCyc – and apply an a posteriori consis-

tency check using Cyc's own consistency checking mechanism. The authors report a recall of 

0.78, a precision of 0.93, and hence an F-measure of 0.85.

Oren et al. (2007) use a similar approach as ours, i.e., inspecting statistical distributions of 

properties and types, but on a slightly different problem setting: they try to predict possible prop-

erties for resources based on co-occurrence of properties. They report an F-measure of 0.85 at 

linear runtime complexity.  However, the approach cannot be used for fully automatic quality 

enhancement, as it only predicts the existence of a property, but not the predicate's object.

The approaches discussed above, except for our approach published in Paulheim (2012), are 

using specific features of DBpedia. In contrast, SDType is agnostic to the dataset and can be ap-

plied to any RDF knowledge base. Furthermore, none of the approaches discussed above reaches 

the quality level of SDType (i.e., an F-measure of 88.5% on the DBpedia dataset).

With respect to DBpedia, it is further noteworthy that SDType is also capable of typing re-

sources derived from Wikipedia pages with very sparse information (i.e., no infoboxes, no cate-

gories,  etc.)  –  as  an  extreme  case,  we  are  also  capable  of  typing  instances  derived  from 

Wikipedia red links (i.e., instances for which no Wikipedia page exists at all) only by using in-

formation from the ingoing properties.11

11 Red links appear in Wikipedia if link is created in a Wiki page, which points to another Wiki page which does  

not (yet) exist, but which the author believes will be created in the future (upon creation, the red link will turn  

into a normal,  functioning link – see  http://en.wikipedia.org/wiki/Wikipedia:Red_link). If a red link is con-

tained in a Wikipedia infobox, a DBpedia resource is created for that link, which has no corresponding page in  

Wikipedia.

http://en.wikipedia.org/wiki/Wikipedia:Red_link


Approaches for Detecting Wrong Statements

The problem of automatically detecting errors in knowledge bases has been acknowledged to be 

hard. While ontology reasoning is capable of detecting conflicts in a knowledge base, this re-

quires a rich ontology which allows for such detection, e.g., contains statements about the dis-

jointness of classes. Since the DBpedia ontology does not have that level of expressiveness, it 

would have to be enriched first, e.g., by means of ontology learning (Völker and Niepert, 2011). 

Töpper et al. (2012) have evaluated the approach of first enriching the DBpedia ontology with 

additional domain and range restrictions, as well as class disjointness axioms, and then using the 

enhanced ontology for error detection. They report that they are able to identify around 60,000 

inconsistent statements,  however, they come to the conclusion that in most cases the identified 

statement itself is actually correct, whereas the ontology should be altered. Lehmann and Büh-

mann (2010) discuss a similar approach, but do not provide quantitative results.

Other approaches use external knowledge to validate statements, either from experts or from 

external data sources. Acosta et al. (2013) have discussed the use of crowd-sourcing, using plat-

forms such as Amazon Mechanical Turk which pay users for micro-tasks, e.g., the validation of a 

statement. Furthermore, they used a custom platform which organized the validation of state-

ments as a competion.  Their evaluation concentrates on three error classes, i.e.,  wrong literal 

values, wrong literal datatypes, and wrong interlinks to other datasets. For the three tasks, they 

report a maximum precision (across both approaches) of 0.90, 0.83, and 0.94, respectively. Wait-

elonis et al. (2011) use games with a purpose to evaluate DBpedia and spot inconcistencies. They 

report that in 4,051 statements  used in the game,  265 inconsistencies  have been detected by 

users, 121 out of which were actually inconsistencies. This leads to a precision of only 0.46, 

which makes that approach only partially suitable for increasing data quality, at least without ex-

pert reviewing.

While the precision achieved by Acosta et al. (2013) is impressing, the problem with crowd-

sourcing approaches is their scalability.  The authors report that on Amazon Mechanical Turk, 

1,073 statements could be validated within four days. This means that the whole DBpedia knowl-

edge base would take more than 3,000 years to validate using that approach. Even the reduced 

number of statements evaluated by SDValidate after the pre-selection step, i.e., 563,657 state-

ments, would still take almost six years.

Approaches based on statistical distributions have also been used on literal-valued, in particu-

lar on numeric properties. Outlier detection methods such as interquantile range and kernel den-

sity estimation can be used to find numeric values that do not fall into the typical range of a 

property (Chandula et al., 2009). In Wienand and Paulheim (2014), we use a fully automatic ap-

proach that combines clustering of resources by their type and various outlier detection methods, 

achieving a precision of 89%. In Paulheim (2014), we have shown that outlier detection can also 

be applied to identifying wrong dataset interlinks.

External knowledge is used, e.g., by DeFacto (Lehmann et al., 2012). The authors have build 

a pattern library of lexical forms for properties frequently used in DBpedia. Using those lexical 

patterns, DeFacto runs search engine requests for natural language representations of DBpedia 

statements. Their approach reaches a precision and an F-measure of 0.88. West et al. (2014) fol-

low a similar approach, but automatically learn the search engine queries for each property.



When contrasting these approaches to SDValidate, we can observe that there are to the best of 

our knowledge no evaluated approaches that detect wrong statements (with resources, not literals 

in the object position) without using external knowledge or crowdsourcing. Furthermore, it is re-

markable that the precision of our approach can keep up with crowd-sourcing approaches and 

DeFacto, both of which use external knowledge or social intelligence to solve the task.

CONCLUSION AND FUTURE WORK

This article has discussed two algorithms for improving the quality of RDF knowledge bases, 

which rely on statistical distributions of properties and types: SDType assigns types to instances, 

and SDValidate assesses the correctness of statements. Both algorithms use purely the knowl-

edge base itself, i.e., they neither rely on human interaction nor on external knowledge sources.

Evaluations on DBpedia and a Linked Data version of NELL have shown that both algorithms 

work with high accuracy and scale to large datasets. SDType has been shown to outperform all 

other existing approaches for type prediction in DBpedia, while there are only few approaches 

that are directly comparable to SDValidate. It is, however, noteworthy that the precision of SD-

Validate can keep up with approaches that use external knowledge from other sources or human 

intelligence to identify errors in DBpedia.

Both SDType and SDValidate have been applied for creating the DBpedia 3.9 release. With 

SDType, 3.4 million missing type statements have been added, and with SDValidate, 13,000 er-

roneous statements have been removed from the knowledge base.

So far, we have concentrated on the English DBpedia. While both approaches can be easily 

transferred to other languages as well,  it  would be particularly interesting to use information 

from multiple languages, both for computing more stable distributions, as well as for gathering 

additional evidence for predicted types and identified errors.

Our detailed analysis of SDValidate on the DBpedia dataset has shown that around one quar-

ter of the identified wrong statements are due to wrong links in Wikipedia, e.g., linking to the is-

land Rhodes instead of the Rhodes piano. Future extensions of our approach might even try to re-

place such statements with the most likely alternative, e.g., by searching for alternatives with a 

service such as DBpedia Lookup,12 using the original object's label as input. In the above exam-

ple, this search would yield both the island as well as the piano. Comparing the found objects' 

type vectors to the property's  distribution,  a replacement can be generated.  With such an ap-

proach, we could not only remove, but also repair wrong statements. On the NELL dataset, we 

have observed that a main problem identified by SDValidate is homonymous resources wrongly 

fused into one resource. Here, it would be interesting to extend the approach in a way that it is 

capable of automatically detecting and splitting resources denoting homonymous resources.

Furthermore, SDValidate has pointed us at a number of cases where the DBpedia extraction 

framework has problems in extracting a correct object. While at the moment, we have identified 

those manually, clustering the identified wrong statements for automatically detecting errors in 

the DBpedia mapping framework would be an interesting research item for future work.

If statistical distributions are computed for two interlinked datasets, it would also be possible 

to use the mechanisms proposed in this paper for validating RDF links between datasets. For 

example, the analysis by Zaveri et al. (2013) has revealed that around 19% of the links from DB-

12 http://lookup.dbpedia.org/



pedia to Freebase are incorrect. Computing distributions not only for DBpedia, but also for Free-

base may help to reveal such interlinking errors.

REFERENCES

Maribel Acosta, Amrapali Zaveri, Elena Simperl, Dimitris Kontokostas, Sören Auer, and Jens 

Lehmann: Crowdsourcing Linked Data Quality Assessment. In: 12th International Semantic Web 

Conference, 2013.

Alessio Palmero Aprosio,  Claudio Giuliano, and Alberto Lavelli.  Automatic  Expansion of 

DBpedia Exploiting Wikipedia Cross-language Information. In: 10th Extended Semantic Web 

Conference (ESWC 2013), 2013.

Isabelle Augenstein, Sebastian Padó, and Sebastian Rudolph: LODifier: Generating Linked 

Data from Unstructured Text. In: Extended Semantic Web Conference, 2012.

Christian Bizer and Richard Cyganiak: D2R Server – Publishing Relational Databases on the 

Semantic Web." Poster at the 5th International Semantic Web Conference, 2006.

Christian Bizer, Tom Heath, and Tim Berners-Lee: Linked Data – The Story So Far. In: Inter-

national Journal on Semantic Web and Information Systems, 5(3):1–22, 2009a.

Christian Bizer,  Jens Lehmann,  Georgi Kobilarov,  Sören Auer,  Christian Becker,  Richard 

Cyganiak, and Sebastian Hellmann: DBpedia - A crystallization point for the Web of Data. In: 

Web Semantics – Science Services and Agents on the World Wide Web, 7(3):154–165, 2009b.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka Jr., and 

Tom M. Mitchell:  Toward an Architecture  for  Never-Ending Language  Learning.  In:  AAAI 

2010.

Varun Chandola, Arindam Banerjee and Vipin Kumar: Anomaly Detection: A Survey.  In: 

ACM Computing Surveys 41.3 (2009).

Arnab Dutta, Christian Meilicke, and Simone Paolo Ponzetto: A Probabilistic Approach for 

Integrating Heterogeneous Knowledge Sources. In: Extended Semantic Web Conference, 2014.

Aldo Gangemi, Andrea Giovanni Nuzzolese, Valentina Presutti, Francesco Draicchio, Alberto 

Musetti, and Paolo Ciancarini. Automatic Typing of DBpedia Entities. In: 11th International Se-

mantic Web Conference (ISWC 2012), 2012.

Lise Getoor and Christopher P. Diehl. Link Mining: a Survey. In: ACM SIGKDD Explo-

rations Newsletter, 7(2):3-12, 2005.

Andrea Giovanni, Aldo Gangemi, Valentina Presutti, and Paolo Ciancarini. Type Inference 

through the Analysis of Wikipedia Links. In: Linked Data on the Web (LDOW), 2012.

Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich and Gerhard Weikum: YAGO2: a 

spatially and temporally enhanced knowledge base from Wikipedia. In: Artificial Intelligence, 

194, 28-61, 2013.

Qiu Ji, Zhiqiang Gao, and Zhisheng Huang. Reasoning with noisy semantic data. In: The Se-

mantic Web: Research and Applications (ESWC 2011).

Daniel Gerber and Axel-Cyrille Ngonga Ngomo: Extracting Multilingual Natural-Language 

Patterns for RDF Predicates. In: Knowledge Engineering and Knowledge Management, 2012.

Silviu Homoceanu, Philipp Wille, and Wolf-Tilo Balke: ProSWIP: Property-based Data Ac-

cess for Semantic Web Interactive Programming. In:12th International Semantic Web Confer-

ence (ISWC 2013).



Jens Lehmann and Lorenz Bühmann: ORE - A Tool for Repairing and Enriching Knowledge 

Bases. In: Proceedings of the 9th International Semantic Web Conference (ISWC 2010).

Jens Lehmann, Daniel Gerber, Mohamed Morsey, Axel-Cyrille Ngonga Ngomo: DeFacto - 

Deep Fact Validation. In: International Semantic Web Conference (ISWC 2012).

Jens  Lehmann,  Robert  Isele,  Max  Jakob,  Anja  Jentzsch,  Dimitris  Kontokostas,  Pablo  N. 

Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, Christian Bizer: 

DBpedia – A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia. In: Seman-

tic Web Journal, 2014.

Cynthia Matuszek, John Cabral, Michael Witbrock, and John DeOliveira. An Introduction to 

the Syntax and Content of Cyc. In: AAAI Spring Symposium on Formalizing and Compiling 

Background Knowledge and its Applications to Knowledge Representation and Question An-

swering, 2006.

Jennifer Neville and David Jensen. Iterative classification in relational data. In: AAAI-2000 

Workshop on Learning Statistical Models from Relational Data.

Eyal Oren, Sebastian Gerke, and Stefan Decker. Simple algorithms for predicate suggestions 

using similarity and co-occurrence. In: European Semantic Web Conference (ESWC 2007).

Heiko Paulheim: Browsing linked open data with auto complete.  In: Semantic Web Chal-

lenge, 2012.

Heiko Paulheim: Identifying Wrong Links between Datasets by Multi-dimensional Outlier 

Detection.  In:  International  Workshop  on  Debugging  Ontologies  and  Ontology  Mappings 

(WoDOOM 2014).

Heiko Paulheim and Christian Bizer: Type Inference on Noisy RDF Data. In: International 

Semantic Web Conference (ISWC 2013).

Axel Polleres, Aidan Hogan, Andreas Harth, and Stefan Decker. Can we ever catch up with 

the web? In: Semantic Web Journal, 1(1,2):45-52, 2010.

Leo L. Pipino, Yang W. Lee, and Richard Y. Wang: Data Quality Assessment. In: Communi-

cations of the ACM, Vol. 45, No. 4, pp. 211-218, 2002.

Aleksander Pohl. Classifying the Wikipedia Articles in the OpenCyc Taxonomy. In Web of 

Linked Entities Workshop (WoLE 2012), 2012.

Cartic Ramakrishnan, Krys J. Kochut, and Amit P. Sheth: A Framework for Schema-driven 

Relationship  Discovery from Unstructured Text.  In: International  Semantic  Web Conference, 

2006.

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur and Yarden Katz. Pellet: 

A practical OWL-DL reasoner. In: Journal of Web Semantics, 5(2), 2007.

Jennifer Sleeman and Tim Finin: Type Prediction for Efficient Coreference Resolution in Het-

erogeneous Semantic Graphs. In: 7th IEEE International Conference on Semantic Computing, 

2013.

Gerald Töpper, Magnus Knuth, and Harald Sack: DBpedia Ontology Enrichment for Inconsis-

tency Detection. In: Proceedings of the 8th International Conference on Semantic Systems (I-SE-

MANTICS 2012).

Johanna Völker and Mathias Niepert.  Statistical schema induction. In: The Semantic Web: 

Research and Applications (ESWC 2011).



Jörg Waitelonis, Nadine Ludwig, Magnus Knuth, and Harald Sack: WhoKnows? - Evaluating 

Linked Data Heuristics with a Quiz that Cleans Up DBpedia. In: International Journal of Interac-

tive Technology and Smart Education (ITSE), 2011.

Richard Y. Wang, Diane M. Strong, and Lisa Marie Guarascio: Beyond accuracy: What data 

quality  means  to  data  consumers.  In:  Journal  of  Management  Information  Systems,  Vol.  12 

Number 4, pp. 5-33, 1996.

Gabriel Weaver, Barbara Strickland, and Gregory Crane. Quantifying the Accuracy of Rela-

tional Statements in Wikipedia: a Methodology. In: 6th Joint Conference on Digital Libraries 

(JCDL 2006).

Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta, Dekang Lin: 

Knowledge Base Completion  via Search-Based Question Answering.  In:  International  World 

Wide Web Conference (WWW), 2014.

Dominik Wienand and Heiko Paulheim: Detecting Incorrect Numerical Data in DBpedia. In: 

Extended Semantic Web Conference, 2014

Amrapali  Zaveri,  Dimitris  Kontokostas,  Mohamed A. Sherif,  Lorenz Bühmann,  Mohamed 

Morsey, Sören Auer, and Jens Lehmann: User-driven Quality Evaluation of DBpedia. In: 9th In-

ternational Conference on Semantic Systems (I-SEMANTICS 2013)

Antoine  Zimmermann,  Christophe  Gravier,  Julien  Subercaze,  and  Quentin  Cruzille:  Nel-

l2RDF: Read the Web, and turn it into RDF. In: 2nd International Workshop on Knowledge Dis-

covery and Data Mining Meets Linked Open Data, 2013.


