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Abstract—In modern process control systems, Ethernet is
achieving a leading position, proposing itself as a network ca-
pable of supporting all communication needs at all levels in the
Computer Integrated Manufacturing hierarchy. The main ob-
stacle to using Ethernet at the Field level is the nondeterminism
of the Ethernet MAC protocol, which cannot provide real-time
traffic with bounded channel access times. This paper focuses on
industrial applications featuring soft real-time constraints, such
as periodic control or industrial multimedia, which do not require
deterministic guarantees on deadline meeting. To cope with this
class of applications, Ethernet should be able to guarantee the
timely delivery of real-time packets in statistical terms.

The paper presents fuzzy traffic smoothing, a technique to per-
form adaptive traffic smoothing over Ethernet networks at the Field
level thus enabling them to provide a statistical bound on packet
delivery time. Previous work showed that the fuzzy smoother out-
performs other adaptive smoothers proposed in the literature. This
paper addresses fuzzy smoother optimization through genetic algo-
rithms. The proposed optimization is applied to tune the inference
engine membership functions. The results obtained show the effec-
tiveness of the approach.

Index Terms—Ethernet, fuzzy control, genetic algorithms, real-
time communication, traffic smoothing.

I. INTRODUCTION

MODERN process control systems create a hierarchy of
plant activities. This hierarchy is reflected in the commu-

nication architecture, which features three levels with different
traffic requirements. The use of different protocols at the var-
ious levels represents a limit, and complicates the information
exchange between networks at different levels. Both manufac-
turers and users are therefore making great efforts toward har-
monizing the communication infrastructure at the plant level. In
this context, Ethernet is achieving a leading position, proposing
itself as a network capable of supporting all communication
needs at all levels in the control hierarchy [1]. Ethernet is gaining
ground over other technologies at the plant Backbone level,
and it is widely used at the Cell level. However, at the Field
level, where real-time constraints are imposed on communica-
tion, the nondeterminism of the Ethernet MAC protocol [2],
which cannot guarantee that data delivery deadlines will be met,
represents a great obstacle.

This paper focuses on industrial applications featuring soft
real-time constraints which do not require deterministic guar-
antees on deadline meeting and can be satisfied with a statis-
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tical bound on packet delivery time. Statistical guarantees on
deadline meeting satisfy the requirements of real-time non-mis-
sion-critical applications, such as periodic control or industrial
multimedia, which can tolerate a small violation probability
with delay bounds. In an automated manufacturing system, for
example, real-time periodic control messages may need to be
delivered within 20 ms of their generation with a 98% proba-
bility, while voice packets may require delivery within 40 ms
with a 94% probability, and so on. To cope with this class of
soft real-time applications, Ethernet should be able to guarantee
the timely delivery of real-time packets in statistical terms, i.e.,
with a given probability. To this end, traffic smoothing [3] can be
used at the Field level. Traffic smoothing is a technique which
enables an Ethernet to support soft real-time communications
requiring a statistical bound on packet delivery time.

This paper deals with fuzzy traffic smoothing, a soft com-
puting-based technique to perform adaptive traffic smoothing
over Ethernet networks and addresses optimization of the fuzzy
smoother through genetic algorithms. The paper is organized as
follows. After discussing the case for traffic smoothing over Eth-
ernet networks, Section II focuses on fuzzy smoothing and com-
pares its performance with that of another adaptive smoother
proposed in the literature. Section III addresses optimization
of the fuzzy traffic smoother through genetic algorithms, while
Section IV presents and discusses the experimental results ob-
tained. Finally, Section V gives our concluding remarks.

II. TRAFFIC SMOOTHING OVER ETHERNET NETWORKS

When both real-time (RT) and non-real-time (NRT) packets
are transported over an Ethernet, RT packets from a node may
experience a long delay due to a) contention with NRT packets
in the source node and b) collision with RT and NRT packets
from the other nodes. In [3], Shin et al. analytically demon-
strated that, to statistically bound the medium access time for an
Ethernet frame, it is sufficient to keep the total arrival rate for
new packets generated by stations below a threshold called the
network-wide input limit. This makes it possible to achieve sta-
tistical real-time communication over an Ethernet. However, the
Ethernet MAC protocol is totally distributed, and no station is
aware of either the current packet arrival rate for the whole net-
work or the transmission needs of other nodes. As a result, the
only way to enforce the network-wide input limit on an Ethernet
is to enforce the limit on a per-station basis. In [3], each station is
assigned a local threshold, called a station input limit, and a mid-
dleware called a traffic smoother is implemented on each node to
regulate the outgoing NRT stream, to maintain the traffic gener-
ation rate below the station input limit. Several traffic smoothers
have been proposed in the literature, for either Shared [3]–[6] or
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Switched Ethernet [7], which differ in the way the station input
limit is enforced. The traffic smoother in [3]–[6] is implemented
at a kernel level, as a software layer inserted between the TCP/IP
(or UDP/IP) and the Data Link layer. Within a node, RT packets
are distinguished from NRT packets using the Type Of Service
(TOS) field in the IP header, and a priority queue with two pri-
ority levels, high for RT and low for NRT packets, is maintained.
An RT packet is not affected by smoothing, while NRT traffic is
transmitted as long as the overall station arrival rate (which com-
prises both RT and NRT packets) is below the station input limit;
otherwise NRT packets are delayed. The traffic smoother there-
fore has two main effects: first it gives RT packets priority over
NRT ones, in order to eliminate contention within each local
node, and secondly it smoothes NRT traffic so as to reduce the
likelihood of collision with RT packets from the other nodes.
As a result, the number of packet collisions on the network is
dramatically decreased.

Implementation of the traffic smoother only requires a min-
imal modification of the kernel, i.e., in the device driver for
Linux (or a new network driver interface specification (NDIS)
[8] for Windows NT), and does not entail any changes to the
current standard Ethernet MAC protocol or TCP/IP (or UDP/IP)
stack. What has to be modified is the Ethernet device driver to
record the time when a packet in the Network Interface Card
(NIC) experiences a collision, so that the smoothing algorithm
may use it. Traffic smoothing is based on a credit bucket mech-
anism, which is a leaky bucket-based algorithm [9]. The credit
bucket has two parameters: Credit Bucket Depth (CBD), which
indicates the capacity of the credit bucket, and Refresh Period,
which indicates the replenishment period (RP). Up to CBD
credits are added to the bucket every RP seconds. CBD limits
the maximum number of credits that can be stored in the credit
bucket. If the number of credits exceeds CBD, overflow credits
are discarded. When a packet arrives at the traffic smoother, if
there is at least one credit in the bucket, the traffic smoother
forward it to the Ethernet NIC and removes as many credits as
the size of the packet (in bytes). When the number of available
credits is lower than the packet size, credits are allowed to
be borrowed from the next credit budget. So, the balance of
credits can be negative until the next replenishment, when an
algebraic sum of the credits in the bucket will be performed.
If, on the other hand, the number of credits in the bucket when
a packet arrives is less than or equal to zero, the packet is
not transmitted to the Ethernet NIC until at least one credit
becomes available following a replenishment. The CBD/RP
ratio is the station input limit. The solution proposed in [3]
was static traffic smoothing, where each station is assigned a
given, constant, station input limit. Static smoothing is easy to
implement but it suffers from two main problems, i.e., inflex-
ibility and lack of scalability. To overcome these limitations,
adaptive traffic smoothing was proposed, which allows a station
to dynamically modify the station input limit it is assigned,
according to the current network workload. For this to be
possible, it is necessary to know the workload on the network
at any one time. The problem is solved by activating a suitable
user process in each machine (called a sniffer) to monitor the
global traffic trends. This is possible because in Ethernet-based
networks a transmitted frame is listened to by all the other

stations. In order to evaluate the current network workload and,
therefore, to guide adaptive smoothing, different approaches
have been used, based on the measurement of either throughput
[5] or the number of collisions. The Harmonic-Increase and
Multiplicative-Decrease (HIMD) approach described in [4]
applies an adaptation mechanism which reacts to the detection
of a single collision over a given time . When a collision is
detected, the RP is increased by whichever is lower between
twice its current value and a given value, while in the
absence of collisions the RP is periodically decreased (with a
period of ) by a constant heuristically determined down to
a value of . The parameters , , , and
are user-controllable. By using different values, different delay
and throughput characteristics can be obtained. The HIMD
smoother suffers from some limitations, which motivated the
development of another approach, the fuzzy traffic smoother.

A. Fuzzy Traffic Smoothing

The fuzzy traffic smoother [6] is an adaptive traffic smoother
based on a fuzzy controller. It has two inputs—the number of
collisions and the overall throughput observed in a reference in-
terval—and a single output, here called VarRP, which represents
the variation of the refresh period as compared with the current
value. If is the current refresh period and is the
new value, the formula used by the smoothing driver is

(2.1)

The fuzzy smoother represents an improvement on previous
work on adaptive smoothing in two respects. First, it uses both
total throughput and the number of collisions as input param-
eters for the smoother, and these two parameters together give
a more complete picture of the actual workload than the detec-
tion of a single collision over an interval of length . One crit-
icism that can be made of the HIMD approach [4] is that the
occurrence of a single collision is not necessarily due to net-
work congestion, but may derive from a temporary coincidence
between the transmission requirements of two or more stations
when the load on the network is not particularly high. According
to the throughput value, therefore, doubling the RP value when
a collision occurs may be too drastic or excessively penalizing
for NRT traffic. The second improvement offered by the fuzzy
smoother, as compared with previous dynamic smoothers, is
that the variation of the station input limit is not based on fixed
variations as in [4] and [5], but is dynamic and gauged according
to the actual workload by the fuzzy controller which, according
to the total throughput and number of collisions, applies rules to
choose the most appropriate RP on a case-by-case basis.

Fuzzy control is particularly suitable when knowledge of the
system to be controlled is insufficient or the dynamic model is
too complex to model and control. This is the case of the system
considered here, i.e., Ethernet combined with traffic smoothing,
which, due to its nonlinear and quite complex behavior, is dif-
ficult to model and control using traditional controllers, as they
rely on some knowledge of the model of the system to be con-
trolled. The system here is, on the other hand, highly suitable
for control that is capable of integrating heuristic knowledge ac-
quired in the field by experts. Three membership functions were
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TABLE I
INFERENCE RULES USED

defined for each input to the fuzzy controller, corresponding re-
spectively to the values (low, med, high) of each variable. This
number was chosen heuristically to represent all the possible op-
erating modes of the system in relation to the values taken by the
input parameters, without introducing an excessive number of
combinations (and thus inference rules) to be defined. As there
are two input variables, each of which can have three different
membership functions, there are combinations, i.e.,
nine rules. The membership functions chosen for the input vari-
ables were triangular and trapezoidal, as they are the most suit-
able for representing the type of inputs being examined. For the
output variable, singleton membership functions were chosen,
i.e., each set comprises a single point with a degree of member-
ship of 1 (crisp). To complete the controller, the inference rules
were defined, indicating the control action to apply according to
all the possible combinations of the input variables. The struc-
ture of an inference rule in our case is

(2.2)

In [6], the behavior of the fuzzy smoother was investigated
in a real scenario, comparing its performance with that of
the HIMD smoother. The experimental test-bed comprised
11 workstations equipped with Linux operating system and
connected via a 10BASE-T Ethernet. The smoother was imple-
mented as a Linux kernel module and the fuzzy algorithm via the
Fuzzy Studio1 2.0 program [10] developed by SGS-Thomson
Microelectronics. The fuzzy controller comprised the inference
rules shown in Table I. The KURT (KU Real-Time) patch
developed by the ITTC (Information and Telecommunication
Technology Center) at the University of Kansas, which includes
and extends UTIME [11], was used to increase the resolution
of the timers, as Linux cannot handle timers with a resolution
of less than 10 ms. Both the fuzzy and HIMD smoothers were
implemented, and a performance comparison was made in the
same environment and operating conditions as outlined in [4].
In both cases, the smoothing driver was activated on each node
with an of 100 ms, an of 3 ms and a of 1 ms;
the observation period for the sniffer process used to measure
the network load was set to 10 ms. As in [4], we measured
the roundtrip delay for RT control messages exchanged be-
tween two processes, called Client and Server, running on two

1Fuzzy Studio is a registered trademark of SGS-Thomson Microelectronics.

different PCs, and calculated the deadline miss ratio for RT
messages, taking the deadline for a complete transaction to be
129.6 ms. The duration of RT transactions was measured with
a growing workload, progressively activating the processes
generating NRT bursts, called Station processes. In [6], a
complete description of the experimental scenario is given.
Here, for the sake of brevity, we only show some results for
comparative purposes. Fig. 1(a) and (c) show how throughput
and roundtrip delay are distributed with a varying workload
during bursts using HIMD smoothing. The five bursts are of
increasing intensity, ranging from only one NRT Station active
to five NRT Stations active. Whereas roundtrip delay values are
quite low in the absence of bursts, they increase considerably
during bursts and several messages miss their deadlines. It can
be also observed that the delays affecting RT messages are
high even between one burst and another. This is because the
HIMD approach delays the handling of NRT traffic beyond the
end of the burst, thus keeping the throughput high for a certain
time after the burst. This is confirmed by the throughput curve.
Fig. 1(c) shows that several RT messages feature high roundtrip
delay values even after the NRT workload burst has ended, be-
cause a number of NRT messages have not been dispatched, so
the overall traffic is still high. On the other hand, the roundtrip
values for the single messages with varying workloads from
all the processes, both RT and NRT, obtained using the fuzzy
smoother and shown in Fig. 1(d), show that the delays are much
shorter, even when there are bursts. Very few messages feature
roundtrip delay values over the deadline. This means that only
a few messages collide with NRT traffic. As all the NRT traffic
is dispatched during bursts, RT messages outside burst periods
are not affected by an appreciable delay. The improvement in
performance achieved by fuzzy smoothing as compared with
the HIMD approach is also confirmed by the total network
throughput graph in Fig. 1(b), which shows a more regular
trend and higher throughput values than the graph in Fig. 1(a).
This is due to the fact that the fuzzy smoother does not totally
block NRT traffic, which may reach values very close to the
workload. Moreover, in the time interval between consecutive
bursts there is no “tail” due to the previous burst, because all the
traffic has been handled on time. Thus, unlike the HIMD case,
the effect of the bursts does not spread out the burst period.
Finally, a deadline miss ratio comparison between the
two approaches showed that, with a deadline of 129.6 ms, the

never exceeds 0.7% when the fuzzy smoother is used,
which is about 1/3 of the value obtained using HIMD. This
result is highly satisfactory for many soft RT applications.

III. FUZZY SMOOTHER OPTIMIZATION BASED

ON GENETIC ALGORITHMS

The successful results obtained in [6] suggested looking for
a way to further improve the performance of the fuzzy con-
troller. Genetic Algorithms (GAs) were chosen to accomplish
this task, as several works (e.g., [12]–[14]) have confirmed the
efficiency of GAs in the design of a fuzzy controller to obtain
desired behavior from the system being controlled. We therefore
used GAs to tune the parameters of the membership functions
of our fuzzy traffic smoother. There is no run-time overhead for
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Fig. 1. Performance comparison between HIMD and fuzzy smoothing. (a) HIMD throughput. (b) Fuzzy smoother throughput. (c) HIMD roundtrip delay.
(d) Fuzzy smoother roundtrip delay.

the genetic algorithm. It runs off-line, performing genetic op-
timization according to the requirements of the scenario being
considered. In Sections III-A–G, the steps taken to optimize the
fuzzy smoother are described and discussed.

A. Coding

It was decided to use standard binary coding for the chro-
mosomes and to encode each smoother input (throughput and
collisions) in 8-bit strings. A value of 8 bits was chosen be-
cause a lower number was deemed insufficient: it would, in fact,
have entailed an excessively loose discretization of the search
space. Higher values, on the other hand, would certainly have
increased the accuracy of the search, but would have involved
greater complexity. Tests carried out in with various values con-
firmed the 8-bit solution as being a successful trade-off. As the
inputs fall within the real number intervals of and
respectively, they have to be normalized in the range of integers
that can be represented with 8 bits, i.e., . Having chosen
the type of coding and the range in which to normalize the in-
puts, it was necessary to choose the type of mapping to adopt.
The following mapping function was chosen [14], [15]:

(3.1)

where is the real value to be normalized, and are
the upper and lower bounds of the range of real numbers, and
is the integer represented by the string of bits.

In the reverse operation (going from a real number to a binary
number) accuracy is often lost, so it is necessary to find an ap-
proximation that will not jeopardize the functioning of the GA.

We chose to round down when the second decimal was less than
or equal to 5 and to round up in other cases.

B. Structure of a Chromosome

The shapes of the membership functions were left the same
as those of the original fuzzy smoother which has to be tuned.
They are trapezoid for the linguistic terms High and Low, and
triangular for the term Medium. Fig. 2 shows the parameters
of the membership functions to be optimized. The sub chromo-
some for a generic -th input will therefore be

(3.2)

where the parameters must comply with the following
constraints:

(3.3)

The resulting chromosome, given that there are two inputs,
will be

(3.4)
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Fig. 2. Parameters of the membership functions to be optimized.

represented by . We recall that the smoother
output is not involved in the structure of the chromosome be-
cause we are not interested in tuning it. The minimum and max-
imum values (0 for both inputs; 10 for throughput and 16 for
collisions) are not encoded in the chromosome, as they are con-
stant and are added in the decoding stage.

C. Initial Population

The number of individuals chosen for the population, after
several tests, was 40 and did not change during the evolution.
During the various simulations the 40 initial individuals were
at times generated in a random manner, whereas at others one
or more individuals were inserted ad hoc, using known config-
urations obtained from previous simulations or on the basis of
acquired knowledge of the problem.

D. Fitness Function

As is known, the validity of a solution to an optimization
problem dealt with by using GAs is determined by a function

, called the fitness of the solution. The fitness function
chosen does not refer directly to the fuzzy controller output,
as happens in some applications of GAs to fuzzy logic, but to
the effects a fuzzy controller has on the network in the context
of a whole simulation. The fitness function assigned to a given
chromosome is

(3.5)

where is the percentage of RT frames, out of the total
number generated, that miss their deadlines and is the input_
burst_duration/output_burst_duration ratio.

The fitness function takes values in the range : the
higher it is, the better the solution represented by the chromo-
some. The chosen is an attempt to find the right tradeoff
between the need to meet deadlines for RT frames and to end
NRT bursts in as short a time as possible. This choice is not
only dictated by the need to avoid sacrificing NRT traffic, but
also because the shorter the bursts are, the lower the probability
of overlapping bursts from different stations degrading the per-
formance of RT traffic even further. In multi-objective optimiza-
tions the Weighted Sum Approach, i.e., the weighted sum of the
objectives to be optimized, is commonly used [16], [17] so as to
change the multi-objective problem into a scalar one. Knowing
that a genuine genetic algorithm needs scalar fitness information
to work, the simplest idea that we could devise was to combine
all the objectives into a single one using addition, multiplica-
tion, or any other combination of arithmetical operations that
we could think of. There are, however, obvious problems with
this approach. The first is that we have to provide some accu-
rate scalar information on the range of the objectives, to avoid

having one of them dominate the others. This implies that we
should know, to a certain extent, the behavior of each of the
objective functions. This is not only the simplest approach, but
also one of the most efficient, since it requires no further inter-
action with the fitness function: once chosen, the fitness func-
tion requires no further modification. If the GA succeeds in op-
timizing the resulting fitness function, then the results will be
at least suboptimum in most cases. In our case, as the system
model is not known and we do not have the transfer function,
we acquired knowledge of the behavior of the objective func-
tions through a number of experiments. After implementing the
evolutionary process, we performed a sensitivity analysis of the
weights of the objective function. The results obtained showed
that the best tradeoff for the requirements of the system being
considered was achieved with weights of 0.5 for both objectives.
To assess the validity of the result obtained using the Weighted
Sum Approach, we also performed a search for the Pareto front
[16], [17]. More details are given in Appendix.

In the fitness values we used in our optimization, the values of
and were obtained from the outputs of a simulator we

developed for optimization purposes, which is written in Java.
The membership parameters were coded by a chromosome in-
serted into the fuzzy controller of the simulator and the average
deadline miss ratio and burst duration values over ten simula-
tions were used to calculate the fitness of the chromosome on
the basis of function (3.5).

E. Stop Condition

In order to establish when to stop the evolutionary process,
it was decided to set a limit on the number of generations. The
limit chosen was 50 generations, a value beyond which no fur-
ther improvement was achieved during the numerous optimiza-
tions performed using our reference scenarios, which will be
depicted in Section IV.

F. Genetic Operators

The genetic operators used on each population to create the
next one were as follows.

— Roulette wheel selection: Selection is not completely
random but linked, via randomly generated values, to
the ratio between the fitness of the chromosome being
investigated and the overall fitness of the population.
Each chromosome is assigned a certain probability of
selection, proportional to its relative fitness.

— Crossover: Here we used one point crossover, which
consists of obtaining two individuals from an original
pair by defining a randomly chosen crossover point
and exchanging the binary semi strings thus obtained.
The crossover was applied with a single randomly
chosen cutoff point, as a larger number gave no apparent
advantages.

— Mutation: This was applied by complementing a ran-
domly chosen bit of the chromosome.

— Elitism: To prevent the best chromosome in the genera-
tion from being lost via mutation and crossover, the best
individual was copied directly into the population of the
next generation before applying the other operators.
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The crossover and mutation probabilities, and , are not
initially set, but computed dynamically during the evolution.
The formulae used were [14]:

(3.6)

where is the current generation and the maximum one.
Initially, therefore, at the first generation , decreasing

exponentially toward a value of 0.1 as the evolution proceeds.
Mutation, on the other hand, is initially 0, increasing exponen-
tially up to a final value of about 0.25. This value may seem
excessively high, but given the large number of nonvalid chro-
mosomes that can result from mutation, it is necessary to have
a sufficiently high probability for mutation to produce a suffi-
cient number of valid new solutions. We define a valid solution
as one which does not violate the constraints on the membership
function parameters defined in (3.3). Nonvalid chromosomes
are eliminated immediately and thus are not part of the new pop-
ulation. In this way, we are certain that the population is always
made up of valid chromosomes. It would have been possible to
limit the genetic operators’ mode of operation a priori, thus pre-
venting them from generating mutating chromosomes, but this
would have led to far greater complexity in implementing the
operators. Initially, thanks to the high crossover probability, it
is possible to have a high degree of recombination of the sub-
strings in the search space, which is initially very large. Then,
as the evolution proceeds, this probability decreases and mu-
tation increases, i.e., the possibility of a refined exploration of
the smaller search space concentrated around the optimal solu-
tion obtained. This method proved to be a good one, overcoming
local maxima quickly and exploring a very large number of pos-
sible solutions to the problem. Selection was implemented as
follows.

1) The fitness of each individual , belonging to the set
of chromosomes in the current gen-

eration, is modified on the basis of the following formula
[15]:

(3.7)

2) The total fitness of the population is calculated as:

(3.8)

where is the number of individuals in the population.
3) The relative fitness of each individual is calculated as:

(3.9)

So the value corresponds to the probability of
individual being selected, according to the classical
roulette wheel method, with the addition that the fitness
function has been modified by raising its power. This
method is very useful when the differences between the
fitness values are minimal [15], and proved to speed up
the optimization process considerably, in terms of the
number of epochs needed to reach a global maximum.

G. Structure of the Algorithm Used

The genetic algorithm was implemented according to the fol-
lowing steps.

1) Construction of an initial population of individuals.
2) Evaluation of the fitness of each individual, obtained

from the outcome of a simulation for each of them, with
the same topology and workload.

3) Selection of the elite element and insertion into the new
population.

4) Roulette wheel selection of a meta-population of
individuals.

5) Application to the meta-population of crossover and mu-
tation on the basis of their probabilities.

6) Verification of the offspring obtained.
7) Substitution of parents in the meta-population with valid

offspring.
8) Execution of steps 5 to 7 times.
9) Turning the meta-population into the new one for the next

generation.
10) Return to point 2 if the set number of epochs has not been

reached.
11) End. The element with the greatest fitness is the result of

the optimization.

As in any optimization with GAs, account is taken of the av-
erage fitness of the population during the evolutionary process
to ensure it is proceeding correctly. It would, in fact, be wrong
to refer to the element with the greatest fitness, which could be
a “strange” case in a population of mediocre individuals. What
is being sought is an optimally adjusted element in a group of
well-adjusted individuals. This is even more true in our case,
given the highly stochastic nature of an Ethernet.

IV. PERFORMANCE EVALUATION

The performance of the optimized fuzzy smoother was eval-
uated on a test-bed comprising ten workstations equipped with
Linux operating systems and connected via a 10BASE-T Eth-
ernet. The reference environment was a factory communication
system with soft real-time requirements. All stations generate
the same amount of soft RT traffic. The RT and NRT traffic were
produced by two different generation processes implemented
in the nodes. Two scenarios with different RT traffic deadlines
were evaluated: the first one, henceforward called Scenario 1,
features light RT traffic (100 Kbps) with a urgent deadline, i.e.,
1 ms (thus emulating fast-dynamic control systems); the second
one, henceforward called Scenario 2, features heavier RT traffic
than the previous one (1.5 Mbps), with a less urgent deadline,
i.e., 50 ms (thus emulating industrial multimedia applications).
In both cases, while all the nodes generate RT traffic, there are
5 of them which also generate bursts of NRT traffic that heavily
load the network.

The optimized membership functions of the fuzzy controller
were obtained for each scenario. They are shown in Fig. 3, while
Table II gives the optimized values obtained for the parameters
of the membership functions. We can observe that the member-
ship functions obtained for Scenario 1 are quite different from
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Fig. 3. Optimized membership functions for the two scenarios considered.

those obtained for Scenario 2, due to the different deadline and
RT traffic workload values used during the optimization process
(while the NRT traffic burst was 5 Mbps in both cases). In Sce-
nario 1, the RT workload is low, but the deadline is urgent. For
this reason, the optimized Throughput function is more severe
than the one obtained in Scenario 2, while the membership func-
tion for Collisions is less severe than in Scenario 2. This is be-
cause in Scenario 2 the overall throughput is higher than in Sce-
nario 1, so in order not to penalize NRT traffic, the Throughput
membership function has to be less severe, while RT perfor-
mance is enforced by a more severe membership function for
Collisions.

In the following, performance figures will be shown. All the
graphs refer to measures taken during 300 seconds of operation.
For reasons of graphics, the values measured were averaged over
50 ms windows; single peaks in the graphs are smoothed in the
observation window being considered. On the -axis, time is
expressed as the sequence number of the observation windows.

Scenario 1: In this scenario the ten stations produce a total
RT workload of 100 Kbps with 1-Kbit frames. We first evalu-
ated the number of collisions occurring in the various operating
conditions. Two set of measurements were performed, with and
without smoothing, using two different types of burst, hencefor-
ward referred to as Burst A and Burst B.

Burst A: 5 stations generating an NRT burst of 6.8 Mbps
lasting 60 s.
Burst B: 5 stations generating an NRT burst of 11 Mbps
lasting 60 s.

Fig. 4(a) shows the number of collisions during a burst A of
NRT traffic without smoothing. If we increase the workload up
to the network saturation point (with a type B burst), we see that
the number of collisions increases and the overload situation
is prolonged, as shown in Fig. 4(b). This is due to the limited
capacity of the network, which remains congested even after
the burst. The effect of smoothing on collisions is very inter-
esting because it shows the smoother’s capacity to serve all the
traffic (even NRT) efficiently. As Fig. 4(c) shows, in the same
workload conditions as Fig. 4(a) (Burst A), the number of colli-
sions is drastically reduced. The peak that can be observed at the
start of the burst depends on the response time of the smoother,
which takes some tens of milliseconds to apply its control ac-
tion. Fig. 4(d) shows the number of collisions obtained in the
same scenario as in Fig. 4(b) (Burst B) with smoothing. As can
be seen, the smoother reduces the number of collisions, but this

TABLE II
PARAMETERS OF THE OPTIMIZED MEMBERSHIP FUNCTIONS

time the overload situation lasts longer than the NRT burst, and
is greater than when smoothing is not applied. This is because
the need to maintain the performance levels required for RT
traffic means limiting NRT throughput, so the burst takes longer
to end than it does in the absence of smoothing.

The second set of measurements refers to throughput and
delay. Graphs in Fig. 5, which show the overall throughput
with and without smoothing, reveal that the fuzzy smoother
also improves throughput for NRT traffic. This positive effect
on the network’s capacity to serve NRT traffic derives from
the drastic reduction of the number of collisions obtained by
fuzzy smoothing. This benefit to NRT traffic is a very inter-
esting result, since the function of smoothing is above all to
privilege RT traffic. On the other hand, when no smoothing
is applied, the throughput burst is prolonged: due to the high
number of collisions, the traffic is occasionally blocked and
thus takes longer to serve. As far as RT traffic delivery delay
is concerned, we first measured the transmission delay (i.e.,
the time between the generation of a message and its delivery
to the remote station) without bursts and compared it with the
deadline (for soft RT applications, it is not very important to
know the actual delay for single messages but the percentage of
deadline miss). The results given in Table III show that without
bursts there were no deadline misses for RT traffic. We recall
that the value obtained depends not only on the time required to
send a 1-Kbit frame, but also on the various delays introduced
by the operating system (due to the presence of other processes
that are needed for acquisition of the information required by
the smoother), the Transport layer (UDP) and the hub. Then,
the effect of Burst A and Burst B on RT traffic delivery delay
was assessed. With Burst A, in the presence of smoothing
[Fig. 6(a)], the RT delay increases to a limited extent and only
during the workload burst. Without smoothing [Fig. 6(b)], the
delay is much greater and is prolonged beyond the workload
burst, because the overloaded network needs more time to end
the burst. The same measurements were repeated for Burst B.
In this case, the smoother behaves differently, because the very
high workload (beyond network saturation) forces the smoother
to penalize NRT traffic. We observed that the smoother pro-
longs the transmission burst (if compared with the duration
of the workload burst) due to the need to limit the number of
collisions. Table III shows that the number of deadline misses
is significantly reduced by smoothing in the presence of both
type of bursts. The positive effect of the smoother on both RT
and NRT traffic is due to the optimization performed on the
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Fig. 4. Number of collisions with and without smoothing for Scenario 1. (a) Burst A, no smoothing. (b) Burst B, no smoothing. (c) Burst A, with smoothing. (d)
Burst B, with smoothing.

Fig. 5. Trace of throughput with Burst A with smoothing and without smoothing in Scenario 1.

smoother parameters, which achieved a good trade-off between
the need to safeguard RT traffic delay and NRT throughput.

Scenario 2: In Scenario 2, the ten stations produce a total
RT workload of 1.5 Mbps (the RT frame generation rate at each
station being 50 frame/s, and the RT frame size at the Phys-
ical layer 3 Kbit). For NRT traffic, the workload is the same
as Scenario 1. Scenario 2 therefore features more RT traffic,
but with less urgent deadlines than the previous one (50 ms
as compared with 1 ms). As much more RT traffic is gener-
ated than in the previous scenario, here, even when there are
no bursts of NRT traffic, the number of collisions we measured
was quite high and there were deadline misses, as shown in

Table III (although the percentage was quite low: 4E-4). This
is because no type of smoothing was applied to RT traffic, and
under the heavy RT workload here considered, the probability
of repeated collisions between RT packets is low, but not null.
We then performed the same set of measurements as in Sce-
nario 1, generating two bursts of NRT traffic: Burst A, which
puts a heavy workload on the network (about 6.8 Mbps) and
Burst B, which saturates the network by generating a work-
load of about 11 Mbps. For the sake of brevity, we will not
show graphs, but discuss the results obtained, which are consis-
tent with those shown in Scenario 1. Smoothing improves the
overall throughput, included NRT one. Without smoothing, the
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Fig. 6. Trace of RT traffic delivery delay for Burst A, Scenario 1. (a) With smoothing. (b) Without smoothing.

TABLE III
EXPERIMENTAL SCENARIOS AND DEADLINE MISS RATIO COMPARISON

NRT throughput burst is prolonged, because the traffic is occa-
sionally blocked due to the high number of collisions and thus
takes longer to serve. The peak throughput value (7.89 Mbps) is
also higher with smoothing than without (about 6.1 Mbps). In
the presence of smoothing, the RT delay grows to a limited ex-
tent and only during the workload burst. Without smoothing, the
delay is much greater (more than two times) and prolonged be-
yond the workload burst, because the network takes much longer
to deal with the burst owing to the heavy workload. The deadline
miss ratio obtained with and without smoothing are summarized
in Table III. These measures show once more the positive effect
of smoothing on both RT and NRT traffic, with both kind of
bursts.

V. CONCLUDING REMARKS

This paper addressed optimization of a fuzzy smoother by
GAs, showing the effectiveness of the approach for a Shared
Ethernet under different workload conditions. Nowadays, the
trend is toward an extensive use of switches. However, it should
be stressed that a switch by itself cannot guarantee determin-
istic RT behavior [18]–[20]. For example, in scenarios where
the producer/consumer model is adopted (e.g., at the Field level,
where such a model is quite common), switches handle pro-
ducer/consumer interaction as broadcast traffic, and thus one
of the major benefits deriving from the use of switches, that is,
the existence of multiple simultaneous transmission paths, may
be affected. In this context, [19] addresses the broadcast storms
problem and the RT behavior of Ethernet switches in general.
A set of practical experiments, carried out on an off-the-shelf

Ethernet switch, showed some weaknesses affecting the RT be-
havior of Switched Ethernet, such as the low number of different
priority levels provided by IEEE 802.1D [21] and IEEE 802.1Q
[22] (up to eight distinct traffic classes to prioritize messages in-
side the switches), which is not enough to support efficient pri-
ority-based scheduling in general cases. The experiments also
showed diverse sources of interference that RT traffic in a switch
is subject to when the switch is heavily loaded. For example, it is
possible for lower-prioritized traffic to lock the switch memory
so that it cannot be used for higher-prioritized traffic. To solve
the problem, the authors of [19] indicate traffic control, and in
particular traffic smoothing, as a possible solution to be adopted
inside switches. Given the promising nature of the topic, further
work on fuzzy traffic smoothing will deal with fuzzy smoothers
for Switched Ethernet networks.

APPENDIX

SEARCHING FOR THE PARETO FRONT TO VALIDATE

THE OPTIMIZATION APPROACH

Given a set of objectives to be maximized, a solution is
said to be weakly dominated by a solution (where is other
than ) if the following relation holds:

(A.1)

where and are the parameters to be optimized, whereas
is the objective function relating to the -th objective. If is
weakly dominated by , but there exists at least one index
such that

(A.2)

is said to be strongly dominated by . It is therefore preferable
to for part of the objectives to be maximized, and is no worse
for the remaining objectives.

On the basis of the previous definitions, a solution is said
to be a Pareto solution if it is not dominated (either weakly
or strongly) by any other solution [23]. When a solution is a
Pareto solution, it is not possible to obtain improvements in an
objective without a consequent deterioration in performance for
the other objectives. There is an infinite number of Pareto so-
lutions: all those not dominated by others. This infinite number
of solutions makes up what is called the Pareto front [16], [17],
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Fig. 7. Pareto front for Scenario 1 (f = 100�D � 100, f = E � 100).

which represents a bound, in our case an upper bound, to the
possible solutions that can be found, which we will consider
as being made up of strong solutions. The Pareto front shows
the range of values to search for in order to find the solution
which best matches the designer requirements. It is not neces-
sary to find all the solutions to provide a qualitative definition
of the front: it is sufficient to choose a set of an appropriate
size. One of the best methods proposed to obtain the Pareto
front using GAs is based on multi-objective optimization ge-
netic algorithms (MOGAs), initially proposed in [24] and sub-
sequently in [17], and then efficiently applied to the tuning of the
parameters of a fuzzy controller in [25]. Here we implemented
the MOGA technique to perform a search for the Pareto front
of our optimization problem, thus enabling us to compare the
results obtained and validate the choices made, especially the
fitness function (3.5). Let us note that the Pareto front we are
seeking is made up of solutions that are not strongly dominated
by other solutions. Other techniques were also taken into con-
sideration in our optimization, such as the use of vector eval-
uated genetic algorithms (VEGAs) [26], nondominated sorting
genetic algorithms (NSGAs [27]), and other variations (for an
extensive survey of the various techniques, the reader is referred
to [16] and [17]). MOGAs base the search for and selection of
solutions on the concept of rank: each member of the population
is related to the others according to the principle of dominance,
its rank corresponding to the number of individuals by which
it is dominated. We used this technique as follows. Let us con-
sider an individual at generation , which is dominated by

individuals in the current generation. Its current position
in the rank of individuals can be given by

(A.3)

All nondominated individuals are assigned a rank of 1, while
dominated ones are penalized according to the population den-
sity of the corresponding region of the tradeoff surface. Fitness
assignment is performed in the following way.

1) Sort population according to rank.
2) Assign fitness to individuals by interpolating from the

best (rank 1) to the worst (rank ) according to
some function, usually but not necessarily linear.

3) Average the fitnesses of individuals with the same rank,
so that all of them will be sampled at the same rate.

This type of approach is highly selective and may cause
premature convergence [17], [24]. We therefore modified the

MOGA technique, adding fitness sharing [16], [17], which
consists of penalizing solutions which yield results that are too
close to each other in terms of fitness, to differentiate as much as
possible between the number of optimal solutions found, thus
covering the search space better. Fig. 7 shows the Pareto front
we found for Scenario 1 (Section IV) using MOGAs. Scenario
1 was chosen as it is more critical than Scenario 2 for RT traffic
(more urgent deadlines). The Pareto front provides the designer
with a view of the search space from the perspective of the
objectives to be optimized. We recall that here the objectives
are the two components of the fitness function (A.4):

(A.4)

more precisely:

(A.5)

Examining Fig. 7, we find that all the points belonging to the
lefthand side of the front (which can be seen as a border line
for the search space) are admissible solutions, but not optimal,
while on the righthand side of the Pareto front no solutions exist.
In Fig. 7, the solution we found using the fitness function (3.5)
is depicted as a circle. The results obtained analyzing the Pareto
front are consistent with those obtained using the Weighted Sum
Approach [16], [17], although they are not exactly the same,
as MOGAs tend to find a set of optimal solutions rather than a
single solution. This proves that fitness function (3.5) is a good
trade-off between the two values to be optimized.
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Giordano Antonio Kaczyński received the M.S.
degree in computer engineering in 2004 from the
University of Catania, Italy. He is currently a Ph.D.
student at the Computer Engineering Department,
University of Catania.

Orazio Mirabella received the M.S. degree in
physics from the University of Catania, Italy.

He is currently a Full Professor of computer
networks with the Engineering Faculty, University
of Catania. His research interests include real-time
distributed systems, communication protocols,
Fieldbuses, ad-hoc wireless networks and sensor
networks. Since 1982 he has been active in IEC
TC65C/WG6 contributing to the definition of a
Standard Fieldbus. He is the author of more than 120
technical papers published in international journals

and conferences proceedings.


	toc
	Improving the Real-Time Behavior of Ethernet Networks Using Traf
	Lucia Lo Bello, Member, IEEE, Giordano Antonio Kaczy ski, and Or
	I. I NTRODUCTION
	II. T RAFFIC S MOOTHING O VER E THERNET N ETWORKS
	A. Fuzzy Traffic Smoothing


	TABLE I I NFERENCE R ULES U SED
	III. F UZZY S MOOTHER O PTIMIZATION B ASED ON G ENETIC A LGORITH

	Fig. 1. Performance comparison between HIMD and fuzzy smoothing.
	A. Coding
	B. Structure of a Chromosome

	Fig. 2. Parameters of the membership functions to be optimized.
	C. Initial Population
	D. Fitness Function
	E. Stop Condition
	F. Genetic Operators
	G. Structure of the Algorithm Used
	IV. P ERFORMANCE E VALUATION

	Fig. 3. Optimized membership functions for the two scenarios con
	Scenario 1: In this scenario the ten stations produce a total RT

	TABLE II P ARAMETERS OF THE O PTIMIZED M EMBERSHIP F UNCTIONS
	Fig. 4. Number of collisions with and without smoothing for Scen
	Fig. 5. Trace of throughput with Burst A with smoothing and with
	Scenario 2: In Scenario 2, the ten stations produce a total RT w

	Fig. 6. Trace of RT traffic delivery delay for Burst A, Scenario
	TABLE III E XPERIMENTAL S CENARIOS AND D EADLINE M ISS R ATIO C 
	V. C ONCLUDING R EMARKS
	S EARCHING FOR THE P ARETO F RONT TO V ALIDATE THE O PTIMIZATION

	Fig. 7. Pareto front for Scenario 1 ( $f_{1} =100-D_{mr}\cdot 10
	L. Lo Bello and O. Mirabella, Design issues for ethernet in auto

	802.3 CSMA/CD Access Method and Physical Layer Specification, IE
	S. Kweon, K. G. Shin, and Q. Zheng, Statistical real-time commun
	S. Kweon, K. G. Shin, and G. Workman, Achieving real-time commun
	L. Lo Bello, M. Lorefice, O. Mirabella, and S. Oliveri, Performa
	L. Lo Bello et al., Fuzzy traffic smoothing: An approach for rea
	M. Cho and K. G. Shin, On soft real-time guarantees on the ether

	The Network Driver Interface Specification (NIDS) Interface . [O
	J. S. Turner, New directions in communications (or which way to 

	Fuzzy Studio 2, Software Development Tool, SGS-Thomson Microelec
	R. Hill, B. Srinivasan, S. Pather, and D. Nihaus, Temporal Resol
	U. Bodenhofer and F. Herrera, Ten lectures on genetic fuzzy syst
	R. Alcalá, J. Casillas, O. Cordón, F. Herrera, and J. S. I. Zwir
	T. L. Seng, M. Khalid, and R. Yusof, Tuning of a neuro-fuzzy con
	D. E. Goldberg, Genetic Algorithms in Search, Optimization and M
	C. C. Coello, Using the min-max method to solve multiobjective o
	C. M. M. da Fonseca, Multiobjective Genetic Algorithms with Appl
	J. D. Decotignie, A perspective on ethernet-TCP/IP as a fieldbus
	P. Pedreiras, R. Leite, and L. Almeida, Characterizing the real-
	J. Loeser and H. Haertig, Low-latency hard real-time communicati

	Information Technology Telecommunications and Information Exchan
	1998 IEEE Standard for Local and Metropolitan Area Networks, IEE
	I. S. Sbalzarini, S. Muller, and P. Koumoutsakos, Multiobjective
	C. M. M. da Fonseca and P. J. Fleming, An overview of evolutiona
	T. Sayers, J. Anderson, and S. Clement, The multi-objective opti
	J. D. Schaffer, Multiple objective optimization with vector eval
	N. Srinivas and K. Deb, Multiobjective optimization using nondom



