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Abstract: GRACE observations and land subsidence data derived from InSAR both assess ground-
water storage changes. However, GRACE data at local scales are restricted by the coarser spatial
resolution of satellite systems, and inversion of Groundwater Storage Anomalies (GWSA) by InSAR
requires extensive and unavailable lithological data. Here, we propose a New Subsidence Feature
Weighted Combination (NSFWC) scheme to enhance the spatial resolution of GRACE-derived GWSA
from 0.5◦ to 0.05◦. This method can not only retain the spatial distribution of groundwater changes
but also reflect local details related to surface subsidence. A case study was executed to evaluate
the performance of the NSFWC scheme in the Beijing Plain, which has seriously overexploited
groundwater. Results showed that the simulated GWSA were consistent with in situ measurements in
most regions, with a correlation coefficient of 0.85 and an RMSE of 4.41 mm/year. Additionally, there
were 22 overexploited wells in the Beijing Plain, although groundwater levels generally recovered
after the South to North Water Diversion Project. Simultaneously, four cones of depression were
detected by the InSAR technology, where the maximum cumulative subsidence and subsidence rate
achieved −198.52 mm and −53.09 mm/year, respectively. This paper provides data support and
technical guarantees for small-scale groundwater resources management.

Keywords: GRACE; new subsidence feature weighed combination scheme; spatial resolution;
groundwater storage changes; land deformation; the Beijing Plain

1. Introduction

Many semi-arid regions suffer from intensive groundwater depletion that exceeds nat-
ural replenishment. Excessive use of groundwater resources increases the risk of decreasing
aquifers’ pore water levels. The changes of effective stress result in surface deformation be-
cause of the compaction of cohesive soil. The consequences of subsidence may reduce flood
discharge efficiency and damage urban infrastructures such as buildings, highways, and
bridges [1]. Additionally, the inelastic sediments caused by aquifer-system compaction lead
to the inability of aquifer storage and unsustainable water management [2]. The problem of
subsidence induced by groundwater overexploitation has become increasingly prominent
in the North China Plain, such as in Zhengzhou [3], Beijing [4], Tianjin [5], Dezhou [6], and
Changzhou [7]. An adequate measuring tool for water authorities is necessary to solve
supply and demand problems.

Currently, traditional groundwater monitoring approaches comprise in situ wells
and groundwater budgets. However, field points are sparse, and monitoring is time-
consuming and labor-intensive. Thus, drilling observations are insufficient for capturing the
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spatial details of groundwater variability. A groundwater budget is a common estimation
method used by management organizations, but it ignores both aquifer dynamics and local
water circulation, which change with GWSA. The shortage of climatic agreements and the
difficulty of calculating water fluxes (recharge and discharge) also make it hard to compare
different water administrations. Hence, efficient survey tools are necessary to measure
the growing pressure on groundwater resources. Recently, remote sensing monitoring
technologies such as GRACE and InSAR have shown powerful potential in hydrological
applications, which can achieve continuous real-time monitoring.

The Gravity Recovery and Climate Experiment (GRACE) satellite mission was launched
in 2002 to detect the mass loss caused by water migration. However, after 15 years
(2002–2017) of operation in orbit, GRACE no longer provided available measurement
data. Subsequently, the GRACE Follow-On (GRACE-FO) mission was launched by NASA
and the German Aerospace Centre (GFZ) to produce more accurate data from June 2018 to
now. There is a one-year data gap between GRACE and GRACE-FO, and many previous
researchers reconstructed the GRACE time series to fill in the gap [8]. GRACE mascon solu-
tions were released by the Jet Propulsion Laboratory (JPL), the University of Texas at Austin
Center for Space Research (CSR), and the NASA Goddard Space Flight Center (GSFC).
At present, the GRACE mascon has been widely applied for evaluating hydrogeological
and climatological issues. For instance, Alshehri and Mohamed (2023) used GRACE data
with the results of the Global Land Data Assimilation System (GLDAS) model to estimate
changes in the Wadi As-Sirhan Basin’s groundwater storage and the controlling factors [9].
Mohamed et al. (2023) integrated three GRACE mascon products with GLDAS models to
estimate the spatiotemporal changes of TWSA, GWSA, the recharge rates resulting from
climate change, and human activities in the Republic of Chad [10].

InSAR technology offers a novel viewpoint to the global groundwater monitoring
system, which is increasingly used to monitor ground subsidence and infer hydrogeological
properties [11,12]. Previous studies reported that InSAR-based deformation could deduce
elastic aquifer storage coefficient, estimate groundwater level (GWL) changes, and calibrate
groundwater numerical models [13–15]. InSAR detects land deformation because of the
soil-layer response to pressure (water head) variations. This method has the advantages
of global extent, high precision, and high resolution, but there are certain limitations in
regions covered by abundant vegetation. Additionally, the compaction thickness varies
in space because of the uneven aquifer response to hydrostatic pressure changes. Even if
stress changes seem to impact the structure of compressed layers, some depleted layers
are not affected by land displacement greater than the typically detected values of InSAR.
Its applications in the evaluation of water resources are constricted to aquifers, which
are susceptible to evident motion. Persistent Scatterers Interferometry (PS-InSAR) [16]
and Small Baseline Subset (SBAS) [17] algorithms have been widely utilized in urban
deformation monitoring [18]. The phase and amplitude of persistent scatterers are relatively
stable for a long time, which can effectively reduce the impacts of spatiotemporal de-
coherence, atmospheric delay, and noise. The increasing availability of Sentinel-1 images
makes it possible to obtain land subsidence data at the basin scale.

GRACE data are sensitive to water resource changes. It offers an effective approach
to derive GWSA, supposing that other water components have been estimated and re-
duced [19–21]. However, the footprint of GRACE is approximately 300 km [22], which is
applicable to a basin above 100,000 km2. The original resolution of GRACE is inadequate
to favor estimation on a regional scale. Many attempts were conducted to enhance GRACE
resolution, focusing on new algorithm development [23,24]. The improved GRACE inver-
sion algorithm is significantly better for evaluating groundwater changes by considering
the spatial heterogeneity of masses [25,26]. Thus, combining groundwater-related GRACE
signals with InSAR measurements can tender high-resolution groundwater depletion data.

The coarse spatial resolution of GRACE has motivated a number of studies focused
on downscaling GRACE measurements by both dynamic and statistical methods for use at
smaller spatial scales [27,28]. Dynamic downscaling methods downscale GRACE by assim-
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ilating measurements into existing process-based models. Statistical downscaling methods
attempt to derive empirical relationships between GRACE observations and smaller-scale
quantities of interest. Previous works, such as Zhong et al. [29], Arshad et al. [30,31],
Ali et al. [32,33], and Noor et al. [34], have reported the results of downscaling in the
hydrological field. For example, Arshad et al. (2021) made an attempt to develop an
integrated downscaling and calibration framework to generate high-resolution gridded
precipitation data. The result reported that a Mixed Geographically Weighted Regression
(MGWR) model, capable of dealing with fixed and spatially varied environmental variables,
was proposed to downscale the original TRMM precipitation data from 0.25◦ to 1 km [30].
Ali et al. (2023) employed machine learning models, such as extreme gradient boosting
and artificial neural networks, to downscale GRACE-TWSA from 1◦ to 0.25◦ [33]. Several
attempts have been made to combine both approaches to strengthen the capabilities of In-
SAR and GRACE [35]. For instance, Castellazzi et al. (2016) expounded on the benefits and
challenges of integrating GRACE and InSAR and reported the theoretical and conceptual
basis of the two approaches [13]. Subsequently, Castellazzi et al. (2018) found that ground
displacement could be regarded as a prior spatial map of groundwater storage loss [36].
Shang et al. (2019) designed a downscaling model using the relevance vector machine,
inversing the overexploitation-induced ground subsidence [37]. Liu et al. (2019) observed
the displacement resulting from groundwater pumping in the southern Central Valley
using Sentinel-1 data. Results showed a good correlation between GRACE-derived GWSA
and sedimentation records [34]. Massoud et al. (2021) measured the groundwater changes
and estimated the land movement based on the high-resolution InSAR algorithm [38].
Bai et al. (2022) investigated the GWSA in Cangzhou in the past decades by coupling
multiple SAR images and hydraulic head measurements [7]. However, an effective method
has not yet been proposed to improve the spatial resolution by combining both data in the
Beijing Plain.

According to previous research, land subsidence rates were extremely interrelated
to the declining trend of groundwater levels over the overexploitation centers [13,39].
However, as one of the effective methods to detect groundwater changes, the coarse
resolution of GRACE restricted its application at a local scale. Moreover, the spatial
distribution of groundwater changes monitored by GRACE was usually inconsistent with
official data due to leakage errors. Little research has been published on the GWSA of aquifer
compaction by combining InSAR-derived deformation in spatial patterns. Nevertheless,
the spatial downscaling performance of machine learning will be affected by the input
variables, applied algorithms, and data period. This paper proposed the New Subsidence
Feature Weighted Combination (NSFWC) scheme to investigate GRACE signals at the
resolution of 0.05◦. This method reflects the physical processes with high spatial resolution,
and it is suitable to be popularized because it does not need a large amount of auxiliary data.
The Beijing Plain, where the groundwater is seriously exhausted, was utilized to confirm
the effectiveness of the NSFWC scheme. Section 1 introduces the research background and
significance. Section 2 describes the hydrogeological conditions of the Beijing Plain, the
data processing methods of in situ observations, InSAR, and GRACE, as well as the theory
of the feature-weighted combination scheme. Section 3 illustrates the results of in situ
observations, land subsidence, groundwater storage anomaly, and simulated GWSA from
GRACE/InSAR. The impact factors of subsidence and simulated uncertainties of vertical
displacement are discussed in Section 4. The conclusions are revealed in Section 5.

The main goal of this study is to downscale the spatial resolution of GRACE-derived
GWSA from 0.5◦ to 0.05◦ by merging InSAR data. The sub-objectives include (1) obtaining
field data to display the true groundwater level changes, (2) studying land subsidence using
time-series InSAR technology, (3) retrieving the GWSA using GRACE and GLDAS data,
and (4) designing an optimum fusion model based on (2) and (3), as well as comparison
with field data.
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2. Materials and Methods
2.1. Study Area

Beijing belongs to the Haihe River Basin along with Tianjin and Hebei. It is located
at 115.5 E~117.5 E and 39 N~41 N, as shown in Figure 1. The Beijing Plain consists of
13 districts, including the 8 districts in the old city, as well as portions of Pinggu, Tongzhou,
Miyun, Huairou, and Shunyi. The spatiotemporal distribution of precipitation is uneven,
with relatively rainy mountains and rainless plains. It suffered drought for five consecutive
years beginning in 1999, which resulted in a main contradiction between water supply and
water use. Afterward, the aquifer system was perennially overexploited to ensure water
supply. The average groundwater depth in the Beijing Plain declined from 11.9 m in 1998
to 24.3 m in 2012 [40]. Rapid ground deformation was caused by groundwater pumping in
past decades.
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Figure 1. The geographical overview of the study area.

The compressible materials of aquifers form an overlying stratum, and the compaction
thickness increases from west to east. According to the Quaternary sedimentary pattern,
aquifer structure, and groundwater consumption, aquifer systems in Beijing are divided
into four layer groups [41]. The lithology of the phreatic aquifer mainly consists of silt,
while that of confined aquifers is composed of clay, silt, and sand. Remarkably, the third
confined aquifer is the major extraction layer for living. The groundwater level of the
aquitard generally appears as elastic–plastic changes, which is the primary contributing
layer of long-term subsidence [37]. The operation of the SNWD project is expected to
restore the groundwater level through ecological replenishment and irrigated infiltration.
The government has strictly limited groundwater pumping in recent years; however, some
regions are still overexploited. Therefore, detailed groundwater monitoring on a local scale
is necessary for comprehending groundwater resources.

2.2. Materials
2.2.1. SAR Data

In total, 39 Sentinel-1A single-look complex images were obtained from the European
Space Agency [42]. The SAR datasets were collected at intervals of approximately one
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month, and the missing values for March and September 2019 were filled using linear
interpolation. The Sentinel-1A satellite includes 4 scanning modes, including Stripmap
(SM), Interferometric Wide swath (IW), Extra-Wide swath (EW), and Wave (WV). The
incident angle of Sentinel-1A data is approximately 39.5◦ in the interference width swath
mode. The terrain phase was removed with the 30 m SRTM DEM. At the same time, POD
precise orbit data were downloaded as the auxiliary data for SAR pre-processing. We
summarized the parameters of Sentinel-1A, as shown in Table 1.

Table 1. Parameters of Sentinel-1A sensor and datasets used in this study.

Sentinel-1A Parameter Dataset Parameter

Launch time 2014.4.3 Sensing period 20 May 2017–15 July 2020
Band C-band (~5.6 cm) Image number 39

Coverage width 250 km Orbit number 142
Spatial resolution 5 m × 20 m Multi-look 10 × 2

Track height 700 km Order Ascending
Revisit time 12 day Sensor mode IW
Sensor mode SM, IW, EW, WV Polarisation VV

Polarisation
VV, HH,

VV+VH, HH+HV
Time baseline 24/36 days
Space baseline <180 m

2.2.2. GRACE and GLDAS Data

Two new versions of GRACE regularized mascon solutions from May 2017 to July
2020 were considered: the Jet Propulsion Laboratory RL06 v02 (JPL) [43] and the Center for
Space Research (CSR) [44]. Other components needed to be removed from Terrestrial Water
Storage Anomalies (TWSA) when GRACE was applied to retrieve GWSA. Soil Moisture
Storage Anomalies (SMSA) and Surface Water Storage Anomalies (SWSA) were both
calculated using the Global Land Data Assimilation System (GLDAS) NOAH land surface
model. For the sake of spatial compatibility of different datasets, the resolution was unified
to 0.05◦ × 0.05◦. All components derived using GRACE and NOAH are required to be
interpolated and anomaly processed.

2.2.3. Validation Data

The groundwater level data originate from the Statistical Yearbook of Groundwater
Level in China’s Geological Environment. There are 102 monitoring wells distributed in
the Beijing Plain. Local governments manage the volume of groundwater exploitation
according to aquifer availabilities. The groundwater level in water-receiving regions
gradually recovered after the operation of SNWD in December 2014. The pumping amount
of different aquifers should be reasonably arranged according to the residuals of recharge
and discharge fluxes. GPS stations were collected from the Crustal Movement Observation
Network of China. Two GPS sites (BJSH and BJFS) in Beijing were considered to confirm
the reliability of InSAR. However, antenna replacement or earthquake may induce a jump
mutation of sequences at a certain time, resulting in the uneven sampling of GPS stations. It
is essential to carry out pre-processing before analyzing original GPS data, such as anomaly
detection, temporal interpolation, and leap correction [45].

2.3. Method

The purpose of this study was to enhance the resolution of GRACE-derived GWSA
from 0.5◦ to 0.05◦ using the NSFWC scheme. Since InSAR cannot directly provide quanti-
tative groundwater changes, it is difficult to use it alone. Firstly, the distribution of land
deformations was detected by InSAR technology in pumping regions. Secondly, ground-
water storage anomalies were derived from GRACE data. Thirdly, as the prior spatial
knowledge, deformations were combined with groundwater storage anomalies into a new
set of estimations. Indeed, GRACE-based GWSA with a higher resolution was acquired,
which could satisfy the need for water resources management. Considering the quality and
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availability of data, as well as the geological conditions of the Beijing Plain, the time span
during 2017–2020 was selected as the study period. Figure 2 shows the data processing
flowchart.
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2.3.1. InSAR Measurements

The improved multi-temporal InSAR approach based on SBAS-InSAR and PS-InSAR
was utilized to survey the spatiotemporal assessment of land deformation, and the model
was constructed as follows [46].

φde f o = φint −
(

φre f + φdem + φatm + φres

)
,

φint =
4π
λ · ∆R,

φre f =
4π
λ B0
‖,

φdem = 4π
λ ·

B0
⊥h

R sin θ

, (1)
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where φint refers to the interference phase; φre f stands for the reference ellipsoid phase; φdem
suggests the topographical phase, which refers to the relative ground motion during the
two shooting dates. φatm is the atmospheric delay phase, and φres means the residual phase.
B0
‖ and B0

⊥ represent the parallel and vertical projection components of the space baseline in
the line of sight (LOS) direction, respectively. θ means incidence angle, λ indicates the radar
wavelength, R is the radar slant distance, ∆R signifies the displacement in LOS, and h is
ground elevation relative to the reference ellipsoid. Note that atmospheric delay signals are
not eliminated by the high-pass filter because it contains seasonal information. Therefore,
the time-series deformation may contain contributions of the atmosphere, which is low due
to the flat topography in the Beijing Plain.

Long-term displacement based on the InSAR method consists of the following crucial
steps. Firstly, SAR images were processed using differential interferometry [47]. The
SAR image on May 2017 was selected as the super master (SM) image, and the others
images were re-sampled and registered to SM. During the interference process, the multi-
look processing of 10 × 2 was used to improve the signal/noise ratio. Secondly, DEM
data were employed to reduce the φdem from the interference phase after interferograms
and amplitude values were generated. Targets with high coherence and stable scattering
properties were taken as persistent scatterers, such as road edges, bridge bodies, exposed
rocks, and house roofs. The coherence of interferograms was evaluated by the coherence
coefficient threshold (0 < γ < 1) combining intensity and coherent information, which
was set as 0.3 in this paper. Thirdly, a three-dimensional phase unwrapping method was
utilized to regain the true values. Fourthly, the Goldstein filtering algorithm was used
to suppress noise, and then the linear phase slope of each interferogram was subtracted
to eliminate orbit errors and atmospheric impacts. Finally, time-series LOS deformations
were ultimately retrieved with the least square method and geocoded to the geographic
coordinate system.

The deformations measured by InSAR were calculated relative to the reference point,
which was Yuyuantan Park, almost free of compression. Since the reference point had
stable backscattering characteristics, its deformation was assumed to be zero. Owing to the
large coverage area of the Beijing Plain, a total of 11 bursts were processed with the aid of
the reference point to unify the benchmark. Generally speaking, ground deformation in
Beijing is usually caused by groundwater extraction, so horizontal displacement caused by
crustal movement is very small compared with vertical displacement. In addition, the radar
wave is the most sensitive to vertical displacement, followed by east–west displacement,
and the least sensitive to north–south motion. Therefore, horizontal deformations (the
east–west and north–south directions) were negligible. According to the incident angle and
radar parameters, LOS deformations were converted into perpendicular subsidence by the
trigonometric function. The calculation method was as follows [48,49].

Dv(x, y) = DLOS(x,y)+sin θ cos ϕ·Dn(x,y)+sin θ sin ϕ·De(x,y)−δLOS
cos θ ,

Dn(x, y) = DLOS/cos α,
De(x, y) = −DLOS/sin α

(2)

where DLOS is the LOS deformation; Dv is the perpendicular movement; Dn and De indicate
the horizontal movements; θ, α, and ϕ represent radar incidence angle, heading angle, and
azimuth angle, respectively; δLOS is radar noise.

2.3.2. GRACE Solutions

Generally, TWSA contains five components, including GWSA, SMSA, SWSA, Canopy
Water Storage Anomalies (CWSA), and Snow Water Storage Anomalies (SnWSA). For the
Beijing Plain, the SnWSA are relatively small, so they can be ignored [50]. Research [51]
implies that changes in water resources caused by plants are about 5 mm, far less than
GRACE uncertainties (2 cm). Hence, canopy water storage is negligible, too [50]. Under
these hypotheses, the distribution maps of GWSA were obtained by subtracting Soil Mois-
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ture Storage Anomalies (SMSA) and Surface Water Storage Anomalies (SWSA) from TWSA
under the same resolution, which is expressed by the following equation [52,53].

GWSAk = TWSAk − SMSAk − SWSAk, (3)

where TWSAk is the terrestrial water storage anomalies of the kth grid from GRACE;
SMSAk is the NOAH-derived soil moisture storage anomalies of the kth grid; SWSAk is the
NOAH-derived surface water storage anomalies of the kth grid.

The Mann–Kendall (MK) [54] test is utilized to assess the significance level of hydro-
logical data. It indicates significant trends with 95% confidence when the absolute value
of Z overtakes 1.96. On the contrary, non-significant trends are indicated with grey dots
in the spatial distribution map (p ≥ 0.05). Additionally, singular spectrum analysis (SSA)
was applied to decompose original data into three components, including long-term trend,
periodic season, and residual error [55].

2.3.3. New Subsidence Feature Weighted Combination Scheme

Deformations derived from InSAR provided high-density and evenly distributed
pixels, including uplift zones and subsidence zones. The inversion process of the NSFWC
scheme depended on finding a group of pixels with a declining deformation rate. The
deformation map was taken as a priori knowledge to process GWSA at the grid scale.
After the sedimentation pixels were extracted, InSAR-based subsidence and GRACE-based
GWSA were converted into new values at the unified resolution to reduce the simulation
errors. The NSFWC method was verified by the absolute errors, and the processing
workflows were mainly divided into the following five steps.

First, the deformation estimated by InSAR was re-sampled from vector pixels (50 × 40 m)
to raster grids (0.05◦ × 0.05◦) using the kriging spatial interpolation method [56].

Z∗(λ0, ϕ0, h0) =
n

∑
i=1

σiZ(λi, ϕi, hi), (4)

The pending weight coefficient was obtained by the corresponding minimum kriging
variance on the premise of unbiased, which was determined by the following equation.

C
(
(λ0, ϕ0, h0),

(
λj, ϕj, hj

))
=

n
∑

i=1
σiC
(
(λi, ϕi, hi),

(
λj, ϕj, hj

))
+ µ

n
∑

i=1
σi = 1

, (5)

where σi stands for the pending weight coefficient; Z∗(λ0, ϕ0, h0) means deformation
results based on the kriging interpolation method; Z(λi, ϕi, hi) is deformation at the coordi-
nate of (λi, ϕi, hi), C

(
(λ0, ϕ0, h0),

(
λj, ϕj, hj

))
represents the covariance of Z(λi, ϕi, hi) and

Z
(
λj, ϕj, hj

)
.

Second, 16,353 pixels were generated in Beijing Plain, which was re-sampled into 406
grids. Then, sinking grids were extracted as the data source for calculating weight in the
next step [57].

Dsub = Filter(Dv < 0, N), (6)

where Dsub is the rate value of decreasing grid; Dv is the trend of vertical displacement; N
is the total grid number, N = 406.

Third, the sample data can be processed into dimensionless data in the range of [0, 1]
according to the Max-Min normalization algorithm [58]:

y =
x− xmin

xmax − xmin
, (7)

However, the Max-Min normalization algorithm is easily affected by extreme values.
We took the average subsidence rate at the four funnels as the minimum value, and then
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an improved normalization algorithm was obtained. The subsidence rate was inversely
proportional to the weight in the new algorithm. The improved normalized data was
assigned to GRACE as the weight of the NSFWC scheme.

Wk = 1−
Dk

sub
−
(

DA
v + DB

v + DC
v + DD

v
)
/n

Dmax
sub −

(
DA

v + DB
v + DC

v + DD
v
)
/n

, (8)

where Wk is the normalization result of subsidence grids; DA
v , DB

v , DC
v , and DD

v are the
vertical displacements at four cones of depression (A, B, C, and D) respectively; Dk

sub
denotes

the subsidence rate of the kth grid; Dmax
sub means the maximum subsidence rate; and n is the

total grid number of depression funnels.
Forth, GRACE-derived GWSA were re-estimated based on the NSFWC scheme. The

new algorithm added the characteristics of surface deformation caused by groundwater
exploitation.

GWSAk
M
= GWSAk ×Wk + GWSAk, (9)

where GWSAk
M

represents the GWSA estimated by the feature combined scheme; GWSAk

denotes GRACE-based groundwater storage anomaly of the kth grid; k denotes the number
of subsidence grids in the study area, k = 1, 2, . . . , 258.

Fifth, The GWSA estimated from groundwater level changes (4GWL) were regarded
as reference values, which were applied to affirm the reliability of combined GWSA based
on the NSFWC scheme [59].

GWSAk
O = ∆GWLk × Sy, (10)

where GWSAk
O suggests the GWSA estimated by groundwater level changes of the kth grid,

∆GWLk is the groundwater level changes of the kth grid, and Sy is the average specific
yield in the phreatic aquifer [60].

Ultimately, the simulation results were evaluated by absolute error (ek) [57], Pearson
correlation coefficient (r) [61], and root mean square error (RMSE) [62]:

ek =
∣∣∣GWSAk

M
− GWSAk

O

∣∣∣, (11)

r =

m
∑

k=1

(
GWSAk

M
− GWSAM

)(
GWSAk

O
− GWSAO

)
√

m
∑

k=1

(
GWSAk

M
− GWSAM

)2
(

GWSAk
O
− GWSAO

)2
, (12)

RMSE =

√√√√√ m
∑

k=1
(GWSAk

M
− GWSAk

O
)

2

m
, (13)

where ek denotes the absolute error at the kth grid, GWSAk
M

indicates the simulation result
at the kth grid, GWSAk

O means the in situ data at the kth grid, GWSAM is the average of
simulated results, GWSAO is the average of in situ data. m is the number of settlement
grids.

3. Results
3.1. Groundwater Level Changes

Figures 3 and 4 illustrate the spatial distribution of ∆GWL trends and the average
sequence of groundwater depth changes in the Beijing Plain, respectively. Figure 3a–c
show the ∆GWL trend during 2005–2011, 2012–2014, and 2015–2018, respectively. GWL in
2005–2011 mostly shows decreased trends due to continuous groundwater overexploitation.
Then, it becomes gradually stable owing to the increase in rainfall during 2012–2014. Since
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2015, the operation of SNWD has relieved water scarcity in water-receiving regions. The
water levels in most wells have recovered to a certain degree, and the transformation of
the ∆GWL trend also changes from negative to positive (Figure 4). The average trends
of groundwater depth in three periods are calculated by the linear fitting method at the
rate of −0.91 m/year, 0.16 m/year, and 0.03 m/year, respectively. However, there are still
some monitoring wells whose trends continue to decline at the moment, and a total of 22
such points have been detected. Ten points at downward trends are selected to display the
temporal GWL changes in the third phase, as shown in Figure 5, which are marked with
red triangles in Figure 1.
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3.2. InSAR-Derived Land Deformation

Figure 6a reflects the cumulative deformation of the Beijing Plain from 2017 to 2020. For
subsequent combined inversion, the vector map is converted into a grid map at a resolution
of 0.05◦, as shown in Figure 6b. It is found that major regions are stable without evident
deformation. In terms of spatial distribution, deformations are mainly located in the border
zone among Chaoyang, Tongzhou, Changping, and Haidian, forming four depression
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funnels. In terms of time-series changes, the first image (20 May 2017) is taken as reference
values to calculate the cumulative displacement. It reaches up to −183.70~−92.63 mm at
the four funnels with a maximum subsidence rate of −53.09 mm/year (Figure 7b). The
findings in this paper are similar to the previous studies on the NCP, which is the most
serious subsidence region in China [63,64]. However, many previous works focused on
extracting Beijing’s deformation using ENVISAT data from 2007 to 2010, during which the
serious subsidence speed reached 150 mm/year [65,66]. Owing to the SNWD replenishment
and the strict groundwater pumping policy, ground subsidence in most urban areas was
alleviated in 2017–2020.
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3.3. Reliability of InSAR Results

Figure 8 presents 258 sinking grids estimated by InSAR, and the blank grids express
the uplift zone. Four monitoring wells (P17, P66, P68, and P86) located at the descend
zone are selected to analyze the relationship between4GWL and subsidence. It is found
that trends of InSAR subsidence are consistent with4GWL, JPL-GWSA, CSR-GWSA, and
CLSM-GWSA by comparison (Figure 9a–d). Note that GWSA retrieved with JPL and CSR
stands for the annual average, and the time span of data availability is from June 2018 to
December 2020. Additionally, land deformation is delayed by 1 ~ 6 months compared with
4GWL. To reasonably analyze the relationship between land subsidence and groundwater
changes, it is necessary to pre-treat 4GWL. The benchmark values (20 May 2017) are
subtracted from the original records, and the trend component is decomposed by the
STL method before comparison. Figure 9e–h show the correlation among their trend
components of InSAR subsidence, CLSM-GWSA, and4GWL at the four monitoring wells.
The correlation coefficients are shown in Table 2, which are above 0.85 during 2017–2020.
In other words, subsidence rates rise with the decrease in groundwater level; meanwhile,
subsidence rates also slow down when the groundwater level rises.
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(a–d) The original sequence comparison at the in situ points of P17, P66, P68, and P86, respectively;
(e–h) The correlations of trend components between subsidence and groundwater changes at the four
in situ points.

Table 2. Correlation coefficients between subsidence and4GWL at the four in situ points (P17, P66,
P68, and P86).

ID P17 P66 P68 P86

r1 (InSAR/4GWL) 0.97 0.98 0.94 0.97
r2 (InSAR/CLSM) 0.95 0.97 0.94 0.86

3.4. GWSA Derived by NSFWC Scheme

Figure 10 shows the spatial distribution of annual trends, including JPL-TWSA, CSR-
TWSA, NOAH-SMSA, and NOAH-SWSA. Figure 10a–d display the spatial trend maps
of four components under the original resolution, with 0.5◦ for JPL and 0.25◦ for the
other three components. Then, the trend maps of four components are interpolated to
0.05◦ using the cubic spline interpolation method, as shown in Figure 10e–h. The spatial
distribution of trends after interpolation is almost the same as before; thus, the errors
caused by interpolation are not considered. On the one hand, two GRACE solutions make
use of different de-striping strategies, resulting in different effects of de-striped residuals
on them. That is the reason why TWSA estimated with JPL is inconsistent with that of CSR
(Figure 10a,b). On the other hand, GRACE leakage errors may be caused by data solutions
such as spherical harmonic coefficients truncation, de-striping strategies, and Gaussian
smoothing filtering. At present, it fails to determine the appropriate GRACE solutions for a
specific region. Therefore, three available GWSA derived from JPL, CSR, and CLSM are
employed for comparative analysis.
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GRACE-derived GWSA. Figure 11a,b show GWSA trends obtained from two GRACE so-
lutions at the resolution of 0.5° during 2018–2020, according to Equation (1). Figure 11c 
displays CLSM-GWSA trends during 2017–2020, which are matched with the down-
loaded SAR images. Three GWSA trends are downscaled to 0.05° based on the NSFWC 
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Figure 10. Annual trends of variables retrieved with GRACE and GLDAS during 2017–2020. (a) 0.5◦

JPL-TWSA; (b) 0.25◦ CSR-TWSA; (c) 0.25◦ NOAH-SMSA; (d) 0.25◦ NOAH-SWSA; (e–h) the inter-
polated results at 0.05◦ corresponding to (a–d), respectively. The grey dots represent areas with
non-significant trends (p ≥ 0.05).

According to relevant studies in Cangzhou, Dezhou, and Langfang, the empirical
relationship between subsidence and 4GWL generally presents exponential, quadratic,
or linear functions [67]. Based on the prior map of land subsidence, GWSA in the Beijing
Plain is reconstructed using the NSFWC scheme, which improves the resolution of GRACE-
derived GWSA. Figure 11a,b show GWSA trends obtained from two GRACE solutions at
the resolution of 0.5◦ during 2018–2020, according to Equation (1). Figure 11c displays
CLSM-GWSA trends during 2017–2020, which are matched with the downloaded SAR
images. Three GWSA trends are downscaled to 0.05◦ based on the NSFWC scheme, as seen
in Figure 11d–f. The resolution of simulated GWSA is greatly enhanced compared with the
original data, which can meet the needs of water resource management.
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Figure 11. The simulated GWSA based on the NSFWC scheme. (a) 0.5◦ JPL-GWSA; (b) 0.5◦ CSR-
GWSA; (c) 0.5◦ CLSM-GWSA; (d) 0.05◦ simulated JPL-GWSA; (e) 0.05◦ simulated CSR-GWSA;
(f) 0.05◦ simulated CLSM-GWSA. The grey dots represent areas with non-significant trends (p≥ 0.05).
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The InSAR/GRACE simulated GWSA performs detailed groundwater storage changes,
indicating that InSAR can serve a priori of groundwater depletion map. Furthermore,
lithology (aquifer property, thickness, and compressibility) is different over the whole
Beijing Plain; there still is a positive correlation between groundwater depletion rate and
subsidence rate. The simulated GWSA from different data sources appear in similar results
(Figure 11d–f), which proves the potential of combining GRACE and InSAR. Therefore, the
NSFWC scheme proposed in this paper can be applied to future GRACE mascon missions
to improve spatial resolution.

4. Discussion
4.1. Comparison of GWSA, Land Subsidence, and Precipitation

Figure 12 illustrates the comparison of GWSA, subsidence, and precipitation in terms of
long-term trends and seasonal changes. The Beijing Plain is divided into three parts (north,
middle, and south), and the average values of each sector are calculated to facilitate the
comparative analysis. Note that GWSA is retrieved from GRACE and CLSM; subsidence
is derived from InSAR and GPS, and precipitation is sourced from ERA 5. Figure 12a
compares the average values of the three kinds of data over the whole Beijing Plain. It
is found that long-term trends of InSAR subsidence are consistent with GRACE-GWSA,
showing a downward trend, whereas CLSM-GWSA agrees with GPS subsidence without a
significant trend. Moreover, the average subsidence rate is higher than the CLSM-GWSA
trend from 2015 to 2020. The CLSM model does not reflect the positive impact of SNWD
on surface water because of the lack of human activities in the model structure. The
discrepancy between subsidence sequences retrieved from InSAR and GPS is that there
are few GPS sites in Beijing. There is no doubt that the values of a single station cannot
accurately represent displacements at a local scale.
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Figure 12b compares the average subsidence values of InSAR in northern Beijing
Plain with GPS at the site of BJSH. The long-term trends and subsidence magnitude of
InSAR and GPS are consistent with each other, which suggests that InSAR can capture
high-precision deformation. Figure 12c shows the comparison of seasonal signals, and the
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results reveal the following three aspects. First, three data consisting of GWSA, settlement,
and precipitation all perform obvious seasonal fluctuations with different amplitude. The
ranges of precipitation and GWSA are−62.22~87.27 mm and−9.69~13.14 mm, respectively,
while the subsidence oscillates within ±3 mm. Second, subsidence lags behind GWSA,
which is explained by the low perpendicular hydraulic conductivity of aquifer systems and
the slow consolidation of soil mass in wet weather [68]. Third, subsidence and precipitation
are negatively correlated with a correlation coefficient of −0.45, while that is 0.06 with
GWSA, indicating that the vibration is most likely caused by climate change.

Because GWSA and subsidence sequences are damaged by noise, errors are produced
from the simulated GWSA estimation and seasonal component decomposition. Therefore,
we estimate the average values of regional pixels to reduce random noise. It can also be
seen from relationships that seasonal components are less relevant than long-term trend
components. Figure 13 shows the comparison of InSAR subsidence between individual
grids near site BJSH and average values in the northern Beijing Plain. Results reflect that
the time series of average values are similar to that of the adjacent grids regardless of the
different magnitude. Therefore, it is feasible to estimate subsidence at the plain scale.
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4.2. Impact of Land Subsidence

Groundwater storage variabilities play a vital role in land subsidence, which is a
response to human and climate pressure [15]. On the one hand, the long-term trends
of deformation are generally related to aquifer compaction. The specific compression of
cohesive soil passes that of sand and gravel under the same exploited conditions. The
subsidence unit of aquifers dominated by silt and clay is 2~3 times that of gravel, which is
the primary contribution of deformation in Beijing [69]. Tiny particles play a crucial role in
preventing perpendicular groundwater flow. The heterogeneity of the displacement rate
is induced by the control of early fault events on the sedimentary environment on both
sides. This phenomenon triggers different thicknesses of sediment and then leads to the
difference in aquifer compression during groundwater exploitation. Occasionally, a large
deformation will emerge even if the Quaternary sediment thickness is similar along the
same side of the fault. This can be explained by the separation of two different compressible
aquifer materials in fault activity. The response of geological media to effective stress may
exceed the pre-consolidation stress in several monitoring wells that penetrate the confined
aquifer. The time-series subsidence trends result from fine particle rearrangement, which
results in the inability of water storage. Concerning a more complete description of ground
deformation caused by the compressibility of aquifer systems, the article of Galloway (2007)
is beneficial for understanding the mechanism [70].

On the other hand, the elastic change of subsidence is related to the seasonal change
of precipitation. Generally, InSAR results are interfered with by various noises, such as
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atmospheric phase delay [71], which absorbs red noise of higher frequency and produces
fluctuations similar to seasonal signals [72]. Thus, the observed subsidence sequence
has measurable seasonal fluctuations, and the seasonal signals can be decomposed and
compared with precipitation. The singular spectrum analysis method was applied to obtain
the seasonal component by eliminating the trend component. Note that the extracted
season signals of precipitation may contain noise, such as the outliers caused by drought
and excessive rainfall. Generally, there is a delay of less than one year from groundwater
level changes to subsidence.

Google Earth shows that there are many vegetable greenhouses, industrial plants,
and residential buildings at the cones of depression. As shown in Figure 14a–d, regions
with serious subsidence at funnels A, B, C, and D are selected to display their geomorphic
characteristics. This indicates that human activity is one of the reasons for ground sedi-
mentation, such as industrial and agricultural production. Overall, these factors consist of
groundwater exploitation, human activities, precipitation, and hydrogeology, which jointly
affect land subsidence.
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Figure 14. The topography of four depression funnels in Google Earth. (a), (b), (c) and (d) shows the
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4.3. Uncertainty of Simulated GWSA

The spatial residual map of simulated results and official data is evaluated according
to Equation (11). The simulated CLSM-GWSA is utilized for residual analysis to unify the
period, as shown in Figure 15. According to the distribution pattern, it can be observed
that the majority of errors are below 10 mm/year, and the largest errors happen in the
northeast corner and the west of the Beijing Plain. The GWSA signals in these regions
fail to explain the mass map derived from InSAR. In addition, subsidence located in the
northeast corner and west area cannot be completely attributed to groundwater change,
and it may be greatly affected by the hydrological process. It is worth mentioning that
there are several separate studies on GWSA [23] and subsidence [37], respectively, over the
Beijing Plain, and their reported results are similar to this article. The spatial correlation
analysis of the remaining areas was carried out after removing these two abnormal regions.
We found that the simulated results were consistent with in situ wells with a correlation
coefficient of 0.85 and an RMSE of 4.41 mm/year. The correlations of original GWSA from
JPL, CSR, and CLSM data are 0.92, 0.88, and 0.86, respectively.
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The diversity between simulated GWSA and in situ monitoring wells can be explained
from four aspects. At first, GRACE-GWSA does not fully reflect the regional groundwater
depletion due to leakage errors. Second, 36% of grids are not calculated in the GWSA
trends map at 0.25◦ original resolution ((406–258)/406 ≈ 0.36), which means that several
grids are compacted at a lower rate than the InSAR detection threshold with an accuracy
of 1~4 mm/year. Third, the measuring principle of groundwater depletion by GRACE
and the official groundwater budgets is different. GRACE provides water storage changes
consisting of all dynamic changes in aquifers, but it is contaminated by leakage errors
because of the inherent resolution of the gravity field. Fourth, the official groundwater
budget ignores the dynamic impacts of aquifer depletion, wastewater recharge, and water
infiltration. It is worth noting that InSAR-derived displacements contain both reversible
and mainly irreversible. Mass changes in phreatic aquifers perform greater effects on the
compressibility of soil than those of confined aquifers [73]. The groundwater level data
from unconfined aquifers were utilized in this paper, despite the fact that both of them
contribute to the subsidence.

5. Conclusions

Both InSAR and GRACE are complementary and sensitivities to aquifer system pro-
cesses. InSAR technology can be applied to downscale the groundwater storage anomalies
retrieved by GRACE in space. The NSFWC scheme is conducive to generating high-
resolution GWSA from 0.5◦ to 0.05◦, indicating the synergy of two remote sensing tools to
survey the sustainable development of groundwater. In this paper, the datasets of GWSA
(from GRACE and CLSM), land subsidence (from InSAR and GPS), and in situ monitoring
wells are jointly analyzed, and we obtained the consistent distribution of groundwater
changes in the Beijing Plain. InSAR results manifest that there are currently four cones of
depression, and other regions are basically stable during 2017–2020. The driving factors
of subsidence are complex and strongly related to the natural consolidation of soil and
seasonal changes in precipitation. In general, the long-term component is related to ground-
water exploitation, and the seasonal component is affected by climate change, such as
precipitation and temperature. On the contrary, it is beneficial to recover the groundwater
level via the increased recharge of the SNWD project and the decreased groundwater
extraction. At present, it is essential for water authorities to focus on monitoring the regions
that are still being overdrawn.
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Furthermore, sedimentation grids are filtered from InSAR deformation, and the high
correlation between vertical displacements and groundwater level change is verified by
their trend components, despite the hydrogeology and geodesy properties. Therefore,
InSAR-based deformations are assigned to GRACE-based GWSA as weight coefficients
so that the simulated GWSA can offer high-resolution signals for intense groundwater
usage. The NSFWC scheme offers a unique perspective on the groundwater issue. The
surface displacement detected by satellites is a useful indicator for surveying GWSA. The
effectiveness of the simulated method has been proven to enhance the spatial resolution of
GWSA estimated by GRACE.

This work is the first to merge the InSAR time-series vertical deformation into GRACE-
derived GWSA over the Beijing Plain. The simulated high-resolution GWSA data can
provide guidance for groundwater management to the sustainable development of water
resources. More work toward processing the land subsidence over a longer period of time
is needed in the future. Then, spatial downscaling of GRACE combined long-term InSAR
data needs to be further explored using machine learning methods (e.g., support vector
machine). Additionally, it is interesting to reconstruct the complete GRACE time-series
data integrating InSAR data to fill the gap between the GRACE and GRACE-FO missions.
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