
Improving the Robustness of Deep Neural Networks via Stability Training

Stephan Zheng

Google, Caltech

stzheng@caltech.edu

Yang Song

Google

yangsong@google.com

Thomas Leung

Google

leungt@google.com

Ian Goodfellow

Google

goodfellow@google.com

Abstract

In this paper we address the issue of output instability

of deep neural networks: small perturbations in the visual

input can significantly distort the feature embeddings and

output of a neural network. Such instability affects many

deep architectures with state-of-the-art performance on a

wide range of computer vision tasks. We present a general

stability training method to stabilize deep networks against

small input distortions that result from various types of com-

mon image processing, such as compression, rescaling, and

cropping. We validate our method by stabilizing the state-

of-the-art Inception architecture [11] against these types of

distortions. In addition, we demonstrate that our stabilized

model gives robust state-of-the-art performance on large-

scale near-duplicate detection, similar-image ranking, and

classification on noisy datasets.

1. Introduction

Deep neural networks learn feature embeddings of the

input data that enable state-of-the-art performance in a wide

range of computer vision tasks, such as visual recognition

[3, 11] and similar-image ranking [13]. Due to this suc-

cess, neural networks are now routinely applied to vision

tasks on large-scale un-curated visual datasets that, for in-

stance, can be obtained from the Internet. Such un-curated

visual datasets often contain small distortions that are un-

detectable to the human eye, due to the large diversity in

formats, compression, and manual post-processing that are

commonly applied to visual data in the wild. These lossy

image processes do not change the correct ground truth la-

bels and semantic content of the visual data, but can sig-

nificantly confuse feature extractors, including deep neural

networks. Namely, when presented with a pair of indis-

tinguishable images, state-of-the-art feature extractors can

produce two significantly different outputs.

In fact, current feature embeddings and class labels are

not robust to a large class of small perturbations. Recently,

it has become known that intentionally engineered imper-

ceptible perturbations of the input can change the class label

Figure 1: Near-duplicate images can confuse state-of-the-art neu-

ral networks due to feature embedding instability. Left and middle

columns: near-duplicates with small (left) and large (middle) fea-

ture distance. Image A is the original, image B is a JPEG version

at quality factor 50. Right column: a pair of dissimilar images. In

each column we display the pixel-wise difference of image A and

image B, and the feature distance D [13]. Because the feature dis-

tances of the middle near-duplicate pair and the dissimilar image

pair are comparable, near-duplicate detection using a threshold on

the feature distance will confuse the two pairs.

output by the model [1, 12]. A scientific contribution of this

paper is the demonstration that these imperceptible pertur-

bations can also occur without being contrived and widely

occur due to compression, resizing, and cropping corrup-

tions in visual input.

As such, output instability poses a significant challenge

for the large-scale application of neural networks because

high performance at large scale requires robust performance

on noisy visual inputs. Feature instability complicates

tasks such as near-duplicate detection, which is essential for

large-scale image retrieval and other applications. In near-

duplicate detection, the goal is to detect whether two given

images are visually similar or not. When neural networks

14480

Figure 2: Visually similar video frames can confuse state-of-the-

art classifiers: two neighboring frames are visually indistinguish-

able, but can lead to very different class predictions. The class

score for ’fox’ is significantly different for the left frame (27%)

and right frame (63%), which causes only the fox in the right im-

age to be correctly recognized, using any reasonable confidence

threshold (e.g. > 50%).

are applied to this task, there are many failure cases due to

output instability. For instance, Figure 1 shows a case where

a state-of-the-art deep network cannot distinguish a pair of

near-duplicates [13] and a pair of dissimilar images.

Analogously, class label instability introduces many

failure cases in large-scale classification and annotation.

For example, unstable classifiers can classify neighboring

video-frames inconsistently, as shown in Figure 2. In this

setting, output instability can cause large changes in label

scores of a state-of-the-art convolutional neural network on

consecutive video-frames that are indistinguishable.

The goal of this paper is to propose a general approach to

stabilize machine learning models, in particular deep neural

networks, and make them more robust to visual perturba-

tions. To this end, we introduce a fast and effective stability

training technique that makes the output of neural networks

significantly more robust, while maintaining or improving

state-of-the-art performance on the original task. To do so,

our method operates through two mechanisms: 1) introduc-

ing an additional stability training objective and 2) training

on a large class of distorted copies of the input. The goal

of this approach is to force the prediction function of the

model to be more constant around the input data, while pre-

venting underfitting on the original learning objective. In

summary, our contributions are as follows:

• We propose stability training as a general technique

that improves model output stability while maintaining

or improving the original performance. Our method is

fast in practice and can be used at a minimal additional

computational cost.

• We validate our method by stabilizing state-of-the-art

classification and ranking networks based on the In-

ception architecture [11, 13]. We evaluate on three

tasks: near-duplicate image detection, similar-image

ranking, and image classification.

• We show the impact of stability training by visualizing

what perturbations the model has become robust to.

• Finally, we show that stabilized networks offer robust

performance and significantly outperform unstabilized

models on noisy and corrupted data.

2. Related work

Adversarial examples. Recently, several machine

learning algorithms were found to have extreme instabil-

ity against contrived input perturbations [12] called adver-

sarial examples. An open question remained as to whether

such small perturbations that change the class label could

occur without intentional human intervention. In this work,

we document that they do in fact occur. Previous work has

shown that training a classifier to resist adversarial perturba-

tion can improve its performance on both the original data

and on perturbed data [1, 6]. We extend this approach by

training our feature embeddings to resist the naturally oc-

curring perturbations that are far more common in practice.

Furthermore, our work differs drastically from [7],

which is about how a model responds to intentionally con-

trived inputs that don’t resemble the original data at all. In

contrast, in this paper we consider the stability to practically

widely occurring perturbations.

Data augmentation. A natural strategy to improve la-

bel stability is to augment the training data with hard posi-

tives, which are examples that the prediction model does not

classify correctly with high confidence, but that are visu-

ally similar to easy positives. Finding such hard positives in

video data for data augmentation has been used in [5, 4, 8]

and has been found to improve predictive performance and

consistency. As such, data augmentation with hard positives

can confer output stability on the classes of perturbations

that the hard positives represent. However, our work differs

from data augmentation in two ways. Firstly, we take a gen-

eral approach by proposing a method that intends to make

model performance more robust to various types of natu-

ral perturbations. Secondly, our proposed method does not

use the extra generated samples as training examples for the

original prediction task, but only for the stability objective.

3. Stability training

We now present our stability training approach, and how

it can be applied to learn robust feature embeddings and

class label predictions.

3.1. Stability objective

Our goal is to stabilize the output f(x) ∈ R
m of a neural

network N against small natural perturbations to a natural

image x ∈ [0, 1]w×h of size w × h, where we normalize all

pixel values. Intuitively, this means that we want to formu-

late a training objective that flattens f in a small neighbor-

hood of any natural image x: if a perturbed copy x′ is close

4481

to x, we want f(x) to be close to f(x′), that is

∀x′ : d(x, x′) small ⇔ D(f(x), f(x′)) small. (1)

Here d is the distance on [0, 1]w×h and D is an appropriate

distance measure in feature space.

Given a training objective L0 for the original task (e.g.

classification, ranking), a reference input x and a perturbed

copy x′, we can implement the stability objective (1) as:

L(x, x′; θ) = L0(x; θ) + αLstability(x, x
′; θ), (2)

Lstability(x, x
′; θ) = D(f(x), f(x′)), (3)

where α controls the strength of the stability term and θ

denotes the weights of the model N . The stability objective

Lstability forces the output f(x) of the model to be similar

between the original x and the distorted copy x′. Note that

our approach differs from data augmentation: we do not

evaluate the original loss L on the distorted inputs x′. This

is required to achieve both output stability and performance

on the original task, as we explain in 3.2.

Given a training dataset D, stability training now pro-

ceeds by finding the optimal weights θ∗ for the training ob-

jective (2), that is, we solve

θ∗ = argmin
θ

∑

xi∈D,d(xi,x
′

i
)<ǫ

L(xi, x
′
i; θ). (4)

To fully specify the optimization problem, we firstly need

a mechanism to generate, for each training step, for each

training sample xi, a random perturbed copy x′
i. Secondly,

we need to define the distance D, which is task-specific.

3.2. Sampling perturbed images x′

Sampling using Gaussian noise. During training, at ev-

ery training step we need to generate perturbed versions x′

of a clean image x to evaluate the stability objective (3).

A natural approach would be to augment the training

data with examples with explicitly chosen classes of per-

turbation that the model should be robust against. However,

it is hard to obtain general robustness in this way, as there

are many classes of perturbations that cause output instabil-

ity, and model robustness to one class of perturbations does

not confer robustness to other classes of perturbations.

Therefore, we take a general approach and use a sam-

pling mechanism that adds pixel-wise uncorrelated Gaus-

sian noise ǫ to the visual input x. If k indexes the raw pixels,

a new sample is given by:

x′
k = xk + ǫk, ǫk ∼ N

(

0, σ2
k

)

, σk > 0, (5)

where σ2
k is the variance of the Gaussian noise at pixel k. In

this work, we use uniform sampling σk = σ to produce un-

biased samples of the neighborhood of x, using the variance

σ2 as a hyper-parameter to be optimized.

Figure 3: Examples of reference and distorted training images

used for stability training. Left: an original image x. Right: a

copy x′ perturbed with pixel-wise uncorrelated Gaussian noise

with σ = 0.06, in normalized pixel values. During stability train-

ing, we use dynamically sampled copies x′ together with the sta-

bility loss (3) to flatten the prediction function f around the origi-

nal image x.

Gaussian noise strength σ 0.0 0.1 0.2

Triplet ranking score @ top-30 7,312 6,300 5,065

Table 1: Underfitting by data augmentation with Gaussian noise

on an image ranking task (higher score is better), see section 5.2

for details. The entry with σ = 0.0 is the model without data

augmentation.

Preventing underfitting. Augmenting the training data

by adding uncorrelated Gaussian noise can potentially sim-

ulate many types of perturbations. Training on these extra

samples could in principle lead to output robustness to many

classes of perturbations. However, we found that training on

a dataset augmented by Gaussian perturbation leads to un-

derfitting, as shown in Table 1. To prevent such underfitting,

we do not evaluate the original loss L0 on the perturbed im-

ages x′ in the full training objective (2), but only evaluate

the stability loss (3) on both x and x′. This approach dif-

fers from data augmentation, where one would evaluate L0

on the extra training samples as well. It enables achieving

both output stability and maintaining high performance on

the original task, as we validate empirically.

3.3. Stability for feature embeddings

We now show how stability training can be used to obtain

stable feature embeddings. In this work, we aim to learn

feature embeddings for robust similar-image detection. To

this end, we apply stability training in a ranking setting. The

objective for similar-image ranking is to learn a feature rep-

resentation f(x) that detects visual image similarity [13].

This learning problem is modeled by considering a ranking

triplet of images (q, p, n): a query image q, a positive image

p that is visually similar to q, and a negative image n that is

less similar to q than p is.

The objective is to learn a feature representation f that

4482

respects the triplet ranking relationship in feature space, that

is,

D(f(q), f(p)) + g < D(f(q), f(n)), g > 0, (6)

where g is a margin and D is the distance. We can learn a

model for this objective by using a hinge loss:

L0(q, p, n) =

max(0, g +D(f(q), f(p))−D(f(q), f(n))). (7)

In this setting, a natural choice for the similarity metric D

is the L2-distance. The stability loss is,

Lstability(x, x
′) = ||f(x)− f(x′)||2. (8)

To make the feature representation f stable using our ap-

proach, we sample triplet images (q′, p′, n′) close to the ref-

erence (q, p, n), by applying (5) to each image in the triplet.

3.4. Stability for classification

We also apply stability training in the classification set-

ting to learn stable prediction labels for visual recognition.

For this task, we model the likelihood P (y|x; θ) for a la-

beled dataset {(xi, ŷi)}i∈I
, where ŷ represents a vector of

ground truth binary class labels and i indexes the dataset.

The training objective is then to minimize the standard

cross-entropy loss

L0(x; θ) = −
∑

j

ŷj logP (yj |x; θ), (9)

where the index j runs over classes. To apply stability train-

ing, we use the KL-divergence as the distance function D:

Lstability(x, x
′; θ) = −

∑

j

P (yj |x; θ) logP (yj |x
′; θ),

(10)

which measures the correspondence between the likelihood

on the natural and perturbed inputs.

4. Implementation

4.1. Network

Base network. In our experiments, we use a state-of-

the-art convolutional neural network architecture, the In-

ception network [11] as our base architecture. Inception

is formed by a deep stack of composite layers, where each

composite layer output is a concatenation of outputs of con-

volutional and pooling layers. This network is used for the

classification task and as a main component in the triplet

ranking network.

Triplet ranking network. Triplet ranking loss (7) is

used train feature embeddings for image similarity and for

Figure 4: The architecture used to apply stability training to any

given deep neural network. The arrows display the flow of infor-

mation during the forward pass. For each input image I , a copy I ′

is perturbed with pixel-wise independent Gaussian noise ǫ. Both

the original and perturbed version are then processed by the neu-

ral network. The task objective L0 is only evaluated on the output

f(I) of the original image, while the stability loss Lstability uses

the outputs of both versions. The gradients from both L0 and

Lstability are then combined into the final loss L and propagated

back through the network. For triplet ranking training, three im-

ages are processed to compute the triplet ranking objective.

near duplicate image detection, similar to [13]. This net-

work architecture uses an Inception module (while in [13],

a network like [3] is used) to process every input image x

at full resolution and uses 2 additional low-resolution tow-

ers. The outputs of these towers map into a 64-dimensional

L2-normalized embedding feature f(x). These features are

used for the ranking task: for each triplet of images (q, p, n),
we use the features (f(q), f(p), f(n)) to compute the rank-

ing loss and train the entire architecture.

Stability training. It is straightforward to implement

stability training for any given neural network by adding a

Gaussian perturbation sampler to generate perturbed copies

of the input image x and an additional stability objective

layer. This setup is depicted in Figure 4.

4.2. Distortion types

To demonstrate the robustness of our models after sta-

bility training is deployed, we evaluate the ranking, near-

duplicate detection and classification performance of our

stabilized models on both the original and transformed

copies of the evaluation datasets. To generate the trans-

formed copies, we apply visual perturbations that widely

occur in real-world visual data and that are a result of lossy

image processes.

JPEG compression. JPEG compression is a commonly

used lossy compression method that introduces small arti-

facts in the image. The extent and intensity of these arti-

facts can be controlled by specifying a quality level q. In

this work, we refer to this as JPEG-q.

Thumbnail resizing. Thumbnails are smaller versions

of a reference image and obtained by downscaling the orig-

inal image. Because convolutional neural networks use a

4483

Figure 5: Examples of natural distortions that are introduced by common types of image processing. From left to right: original image

(column 1 and 5), pixel-wise differences from the original after different forms of transformation: thumbnail downscaling to 225 × 225
(column 2 and 6), JPEG compression at quality level 50% (column 3 and 7) and random cropping with offset 10 (column 4 and 8). For

clarity, the JPEG distortions have been up-scaled by 5×. Random cropping and thumbnail resizing introduce distortions that are structured

and resemble the edge structure of the original image. In contrast, JPEG compression introduces more unstructured noise.

fixed input size, both the original image and its thumbnail

have to be rescaled to fit the input window. Downscaling

and rescaling introduces small differences between the orig-

inal and thumbnail versions of the network input. In this

work we refer to this process as THUMB-A, where we down-

scale to a thumbnail with A pixels, preserving the aspect

ratio.

Random cropping. We also evaluated the performance

on perturbations coming from random crops of the original

image. This means that we take large crops with window

size w′ × h′ of the original image of size w × h, using an

offset o > 0 to define w′ = w − o, h′ = h − o. The crops

are centered at random positions, with the constraint that

the cropping window does not exceed the image boundaries.

Due to the fixed network input size, resizing the cropped im-

age and the original image to the input window introduces

small perturbations in the visual input, analogous to thumb-

nail noise. We refer to this process as CROP-o, for crops

with a window defined by offset o.

4.3. Optimization

To perform stability training, we solved the optimiza-

tion problem (2) by training the network using mini-batch

stochastic gradient descent with momentum, dropout [10],

RMSprop and batch normalization [2]. To tune the hyper-

parameters, we used a grid search, where the search ranges

are displayed in Table 2.

As stability training requires a distorted version of the

original training example, it effectively doubles the train-

ing batch-size during the forward-pass, which introduces

a significant extra computational cost. To avoid this over-

Hyper-parameter Start range End range

Noise standard deviation σ 0.01 0.4

Regularization coefficient α 0.001 1.0

Learning rate λ 0.001 0.1

Table 2: Hyper-parameter search range for the stability training

experiments.

head, in our experiments we first trained the network on the

original objective L0(x; θ) only and started stability training

with L(x, x′; θ) only in the fine-tuning phase. Additionally,

when applying stability training, we only fine-tuned the fi-

nal fully-connected layers of the network. Experiments in-

dicate that this approach leads to the same model perfor-

mance as applying stability training right from the begin-

ning and training the whole network during stability train-

ing.

5. Experiments

Here we present experimental results to validate our sta-

bility training method and characterize stabilized models.

• Firstly, we evaluate stabilized features on near-

duplicate detection and similar-image ranking tasks.

• Secondly, we validate our approach of stabilizing clas-

sifiers on the ImageNet classification task.

We use training data as in [13] to train the feature embed-

dings for near-duplicate detection and similar-image rank-

ing. For the classification task, training data from ImageNet

are used.

4484

5.1. Nearduplicate detection

Detection criterion. We used our stabilized ranking fea-

ture to perform near-duplicate detection. To do so, we de-

fine the detection criterion as follows: given an image pair

(a, b), we say that

a, b are near-duplicates ⇐⇒ ||f(a)− f(b)||2 < T, (11)

where T is the near-duplicate detection threshold.

Near-duplicate evaluation dataset. For our experi-

ments, we generated an image-pair dataset with two parts:

one set of pairs of near-duplicate images (true positives) and

a set of dissimilar images (true negatives).

We constructed the near-duplicate dataset by collecting

650,000 images from randomly chosen queries on Google

Image Search. In this way, we obtained a representative

sample of un-curated images. We then combined every im-

age with a copy perturbed with the distortion(s) from sec-

tion 4.2 to construct near-duplicate pairs. For the set of dis-

similar images, we collected 900,000 random image pairs

from the top 30 Image Search results for 900,000 random

search queries, where the images in each pair come from

the same search query.

5.1.1 Experimental results

Precision-recall performance. To analyze the detection

performance of the stabilized features, we report the near-

duplicate precision-recall values by varying the detection

threshold in (11). Our results are summarized in Figure 6.

The stabilized deep ranking features outperform the base-

line features for all three types of distortions, for all lev-

els of fixed recall or fixed precision. Although the baseline

features already offer very high performance in both preci-

sion and recall on the near-duplicate detection task, the sta-

bilized features significantly improve precision across the

board. For instance, recall increases by 1.0% at 99.5% pre-

cision for thumbnail near-duplicates, and increases by 3.0%

at 98% precision for JPEG near-duplicates. This improved

performance is due to the improved robustness of the stabi-

lized features, which enables them to correctly detect near-

duplicate pairs that were confused with dissimilar image

pairs by the baseline features, as illustrated in Figure 1.

Feature distance distribution. To analyze the robust-

ness of the stabilized features, we show the distribution of

the feature distance D(f(x), f(x′)) for the near-duplicate

evaluation dataset in Figure 7, for both the baseline and sta-

bilized deep ranking feature. Stability training significantly

increases the feature robustness, as the distribution of fea-

ture distances becomes more concentrated towards 0. For

instance, for the original feature 76% of near-duplicate im-

age pairs has feature distance smaller than 0.1, whereas this

is 86% for the stabilized feature, i.e. the stabilized feature

is significantly more similar for near-duplicate images.

Figure 7: Cumulative distribution of the deep ranking feature dis-

tance D(f(xi), f(x
′

i)) = ||f(xi) − f(x′

i)||2 for near-duplicate

pairs (xi, x
′

i). Red: baseline features, 76% of distribution <

0.1. Green: stabilized features using stability training with α =
0.1, σ = 0.2, 86% of distribution < 0.1. The feature distances

are computed over a dataset of 650,000 near-duplicate image pairs

(reference image and a JPEG-50 version). Applying stability train-

ing makes the distribution of D(f(x), f(x′)) more concentrated

towards 0 and hence makes the feature f significantly more stable.

Stabilized feature distance. We also present our quali-

tative results to visualize the improvements of the stabilized

features over the original features. In Figure 8 we show

pairs of images and their JPEG versions that were confusing

for the un-stabilized features, i.e. that lay far apart in feature

space, but whose stabilized features are significantly more

close. This means that they are correctly detected as near-

duplicates for much more aggressive, that is, lower detec-

tion thresholds by the stabilized feature, whereas the origi-

nal feature easily confuses these as dissimilar images. Con-

sistent with the intuition that Gaussian noise applies a wide

range of types of perturbations, we see improved perfor-

mance for a wide range of perturbation types. Importantly,

this includes even localized, structured perturbations that do

not resemble a typical Gaussian noise sample.

5.2. Similar image ranking

The stabilized deep ranking features (see section 3.3) are

evaluated on the similar image ranking task. Hand-labeled

triplets from [13]1 are used as evaluation data. There are

14,000 such triplets. The ranking score-at-top-K (K = 30)

is used as evaluation metric. The ranking score-at-top-K is

defined as

ranking score @top-K =

correctly ranked triplets − # incorrectly ranked triplets,

(12)

where only triplets whose positive or negative image occurs

among the closest K results from the query image are con-

1https://sites.google.com/site/

imagesimilaritydata/.

4485

https://sites.google.com/site/imagesimilaritydata/
https://sites.google.com/site/imagesimilaritydata/

Figure 6: Precision-recall performance for near-duplicate detection using feature distance thresholding on deep ranking features. We

compare Inception-based deep ranking features (blue), and the same features with stability training applied (red). Every graph shows the

performance using near-duplicates generated through different distortions. Left: THUMB-50k. Middle: JPEG-50. Right: CROP-10. Across

the three near-duplicate tasks, the stabilized model significantly improves the near-duplicate detection precision over the baseline model.

0.102 → 0.030 0.107 → 0.048

0.105 → 0.039 0.100 → 0.054

0.106 → 0.013 0.104 → 0.055

0.128 → 0.041 0.131 → 0.072

0.122 → 0.068 0.120 → 0.062

0.150 → 0.079 0.125 → 0.077

Figure 8: Examples of near-duplicate image pairs that are robustly recognized as near-duplicates by stabilized features (small feature

distance), but easily confuse un-stabilized features (large feature distance). Left group: using JPEG-50 compression corruptions. Right

group: random cropping CROP-10 corruptions. For each image pair, we display the reference image x, the difference with its corrupted

copy x− x′, and the distance in feature space D(f(x), f(x′)) for the un-stabilized (red) and stabilized features (green).

sidered. This metric measures the ranking performance on

the K most relevant results of the query image. We use this

evaluation metric because it reflects better the performance

of similarity models in practical image retrieval systems as

users pay most of their attentions to the results on the first

few pages.

5.2.1 Experimental results.

Our results for triplet ranking are displayed in Table 3. The

results show that applying stability training improves the

ranking score on both the original and transformed ver-

sions of the evaluation dataset. The ranking performance

of the baseline model degrades on all distorted versions of

the original dataset, showing that it is not robust to the in-

put distortions. In contrast, the stabilized network achieves

ranking scores that are higher than the ranking score of the

baseline model on the original dataset.

5.3. Image classification

In the classification setting, we validated stability train-

ing on the ImageNet classification task [9], using the Incep-

tion network [11]. We used the full classification dataset,

which covers 1,000 classes and contains 1.2 million im-

ages, where 50,000 are used for validation. We evaluated

the classification precision on both the original and a JPEG-

50 version of the validation set. Our benchmark results are

in Table 4.

4486

Distortion Deep ranking Deep ranking + ST

Original 7,312 7,368

JPEG-50 7,286 7,360

THUMB-30k 7,160 7,172

CROP-10 7,298 7,322

Table 3: Ranking score @top-30 for the deep ranking network

with and without stability training (higher is better) on distorted

image data. Stability training increases ranking performance over

the baseline on all versions of the evaluation dataset. We do not

report precision scores, as in [13], as the ranking score @top-30

agrees more with human perception of practical similar image re-

trieval.

Precision @top-5 Original JPEG-50 JPEG-10

Szegedy et al [11] 93.3%

Inception 93.9% 92.4% 83.0%

Stability training 93.6% 92.7% 88.3%

Precision @top-1

Inception 77.8% 75.1% 61.1%

Stability training 77.9% 75.7% 67.9%

Table 4: Classification evaluation performance of Inception with

stability training, evaluated on the original and JPEG versions

of ImageNet. Both networks give similar state-of-the-art perfor-

mance on the original evaluation dataset (note that the perfor-

mance difference on the original dataset is within the statistical

error of 0.3% [9]). However, the stabilized network is significantly

more robust and outperforms the baseline on the distorted data.

Applying stability training to the Inception network

makes the class predictions of the network more robust to

input distortions. On the original dataset, both the base-

line and stabilized network achieve state-of-the-art perfor-

mance. However, the stabilized model achieves higher pre-

cision on the distorted evaluation datasets, as the perfor-

mance degrades more significantly for the baseline model

than for the stabilized model. For high distortion levels,

this gap grows to 5% to 6% in top-1 and top-5 precision.

Robust classification on noisy data. We also evalu-

ated the effectiveness of stability training on the classifica-

tion performance of Inception on the ImageNet evaluation

dataset with increasing JPEG corruption. In this experiment,

we collected the precision @top-1 scores at convergence for

a range of the training hyper-parameters: the regularization

coefficient α and noise standard deviation σ. A summary of

these results is displayed in Figure 9.

At the highest JPEG quality level, the performance of the

baseline and stabilized models are comparable, as the vi-

sual distortions are small. However, as the JPEG distortions

become stronger, the stabilized model starts to significantly

Figure 9: A comparison of the precision @ top-1 performance

on the ImageNet classification task for different stability training

hyper-parameters α, using JPEG compressed versions of the eval-

uation dataset at decreasing quality levels, using a fixed σ = 0.04.

At the highest JPEG quality level, the baseline and stabilized mod-

els perform comparably. However, as the quality level decreases,

the stabilized model starts to significantly outperform the baseline

model.

outperform the baseline model. This qualitative behavior is

visible for a wide range of hyper-parameters, for instance,

using α = 0.01 and σ = 0.04 results in better performance

already below the 80% quality level.

6. Conclusion

In this paper we proposed stability training as a

lightweight and effective method to stabilize deep neural

networks against natural distortions in the visual input. Sta-

bility training makes the output of a neural network more

robust by training a model to be constant on images that

are copies of the input image with small perturbations. As

such, our method can enable higher performance on noisy

visual data than a network without stability training. We

demonstrated this by showing that our method makes neu-

ral networks more robust against common types of distor-

tions coming from random cropping, JPEG compression

and thumbnail resizing. Additionally, we showed that using

our method, the performance of stabilized models is sig-

nificantly more robust for near-duplicate detection, similar-

image ranking and classification on noisy datasets.

References

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining

and Harnessing Adversarial Examples. arXiv:1412.6572 [cs,

stat], 2014. 1, 2

4487

[2] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

In Proceedings of the 32nd International Conference on Ma-

chine Learning, ICML 2015, Lille, France, 6-11 July 2015,

pages 448–456, 2015. 5

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012. 1, 4

[4] A. Kuznetsova, S. J. Hwang, B. Rosenhahn, and L. Sigal.

Expanding object detector’s horizon: Incremental learning

framework for object detection in videos. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2015. 2

[5] I. Misra, A. Shrivastava, and M. Hebert. Watch and learn:

Semi-supervised learning for object detectors from video.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2015. 2

[6] T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii.

Distributional Smoothing with Virtual Adversarial Training.

arXiv:1507.00677 [cs, stat], July 2015. 2

[7] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks

are easily fooled: High confidence predictions for unrecog-

nizable images. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2015. 2

[8] A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Fer-

rari. Learning object class detectors from weakly annotated

video. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), June 2012. 2

[9] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), pages 1–42, April 2015. 7, 8

[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neu-

ral networks from overfitting. Journal of Machine Learning

Research, 15(1):1929–1958, Jan. 2014. 5

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2015. 1, 2, 4, 7, 8

[12] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

I. Goodfellow, and R. Fergus. Intriguing properties of neural

networks. arXiv:1312.6199 [cs], Dec. 2013. 1, 2

[13] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang,

J. Philbin, B. Chen, and Y. Wu. Learning fine-grained im-

age similarity with deep ranking. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2014. 1, 2, 3, 4, 5, 6, 8

4488

