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Improving the Sample Complexity Using Global Data

Shahar Mendelson

Abstract—We study the sample complexity of proper and im- presentation will be given from the “learning-theoretic” point of
proper learning problems with respect to differentg-loss functions.  view rather than from the statistical one.
We improve the known estimates for classes which have relatively pjike previous results, originating from the work of Vapnik
small covering numbers in empirical L, spaces (e.g., log-covering . . . .
numbers which are polynomial with exponentp < 2). We present and Chervor_wenkls, in which compIeX|t_y e_stlmates were ba_sed
several examples of relevant classes which have a “small” fat-shat- ON the covering numbers at a scale which is roughly the desired
tering dimension, hence fit our setup, the most important of which accuracy, we use global data regarding the “size” of the class
are kernel machines. to obtain complexity estimates at every scale. One example we
Index Terms—Fat-shattering dimension, Glivenko—Cantelli focus onis when the log-covering numbers of the class in ques-
classes, kernel machines, learning sample complexity, uniform tion are polynomial ire—! with exponenip < 2.
convexity. We were motivated by two methods previously used in the
investigation of sample complexity [2]. The first is the standard
approach which uses the Glivenko—Cantelli (GC) condition to
estimate the sample complexity. By this we mean the following:
N this paper, we present sample complexity estimates i@t ¢ pe a class of functions defined &, let 7 be a fixed
various learning problems with respect to different normgynction, sett < ¢ < o, and putr’ = {|g — T|?|g € G}. The
under the assumption that the classes are not “too large.” gc sample complexity of the clags with respect to accuracy

The question we explore is the following: |€t be a class . and confidencé is the smallest integer, such that for every
of functions defined on a probability spa¢®, ;) wherepis  , - no

an unknown probability measure and egch G mapsf? into

[0, 1]. SetT to be an unknown function, which is not necessarily
amember of7. Let (X;) be independent random variables dis-
tributed according tg:. Recall that a learning rulé& is a map
which assigns to each samgie = (X1, ..., X,,) a function Wherey,, is the empirical measure supportedéq,, ..., X,).
Ls, € G. Thelearning sample complexitgssociated with a  Hence, ifg is an “almost” minimizer of the empirical loss
g-loss function, accuracy, and confidencé is the first integer functional n=' 377 |g(x;) — T'(;)|* and if the sample is
ng such that the following holds: there exists a learning dule “large enough” thery is an “almost” minimizer of the average

such that for every, > n, and every probability measure distance td with respect to the&, (1) norm. One can show that
the learning sample complexity is bounded by the supremum

of the GC sample complexities, where the supremum is taken
over all possible targets, bounded byl. This is true even in
the regression scenario, simply be settiig= E(Y|X) (for
whereE, is the expectation with respect to further details, see [2]).
In other words, the objective of the learning rule is to find a Recently, it was shown [15] that if the log-covering numbers
function in the class; which is “almost” the best approximation(resp., the fat-shattering dimensionY®#re of the order of 7
to 7' in G with respect to theL, (1) norm. then the GC sample complexity &f is ©(s~ ™2x(2.7}) up to
Estimating the sample complexity is closely related to thegarithmic factors ine=!, §~!. This implied that ifp > 2,
notion of the rate of convergence of regression problems [2@hd in the case of the squared IdSly — 7'|%, the learning
For example, assume that= 2 and thatY” is an unknown sample complexity has the same rate as the GC sample com-
random variable. It follows that solving the regression problegiexity. Indeed, in this case, the learning sample complexity is
for Y with respect to the clas§ is equivalent to solving the Q(fat,.(G)) [2].
learning problem for the functidf = E(Y'|.X). Inaddition, the It is important to emphasize that the learning sample com-
translation from the notion of sample complexity to that of thglexity may be established by other means rather than via the
rate of convergence used in statistics is relatively standard. @€ condition. Therefore, it comes with no surprise that there
are certain cases in which it is possible to improve this bound

, . _ on the learning sample complexities. In [11], [12], the following
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elements in such a way that the “best” distance with respectwtere P; 7 is a nearest element 16 in G with respect to the
Ly (1) is now attained af. Assume that there is an absolutel, norm. We denote by’ the set of loss function, (g).

constantC such that for everyf € F, E, f* < CE,f. This Let G be a GC class. For evely < ¢, 6 < 1, denote
simply means that it is possible to control the variance of eably S (e, §) the GC sample complexity of the cla§sassoci-
function in I using its expectation. In this case, the learningted with accuracy and confidence. LetC¢ (e, §) be the
sample complexity with accuracy and confidence can be learning sample complexity of the claéswith respect to the

bounded by target?” and theg-loss, for accuracy and confidencé.
The assumption we have to make is thatit is possible to bound
19 <1 <fatC(G) log? fat (G) + log 1)) . the variancg of every c'lass member by an appropri_ate power of
€ € 6 its expectation, which is the idea behind the following lemma.

Therefore, iffat.(G) = O(e~?), the learning sample com- Its proof will be presented in Section IV.

plexity is bounded by (up to logarithmic factor€) e~ (1)), Lemma 1.1: Let G be a class of functions which mé&bpinto
If p < 1, this estimate is better than the one obtained using tfig 1], setg > 2, and letF be theg-loss class associated with
GC sample complexities. and the target conceft, which also map8 into [0, 1]. Assume

As itturns out, the preceding assumption is not so far fetchetiat there is some constaBtsuch that for anyf € F,E,, f* <
it is possible to show [11], [12] that there are two generic casé¥E, f)*?. Lete > 0, « = 2 — 2/q, set
in whichE, f2 < CE,f. The first case is whel” € G, be- .
cause it implies that eaghc F'is nonnegative. The other case H= {i‘ feEF E,f>e E,f2> 5} (1.2)
is when(G is convex andy = 2, in which case, every function in E.f s =
Fisgivenby|g—T|*—|T — PgT|*, whereP;T is the nearest
pointto in G with respectto thé.»(4) norm. Thus, one imme-
diate question_which comes to mind is whetherthg same kin(_j of F.={feF|E.f><e}
a result holds in otheL, spaces. The reason for this interest in
variousL, norms is not just for the sake of generalizing knowR"
results. Asg increase, one obtains an approximation of the un- c={he H|E,h* < Be*}.
known function with respect to a “stronger” norm. Therefore
it is only natural to investigate the price one has to pay (in thhen, forevend < e, § < 1

complexity sense) for this finer approximation. { e § RS
s (550 (5.9}

and put

Here, we combine the ideas used in [12] and in [15] to im- C§ (e, §) < max 2’ 3 53
prove the learning complexity estimates. We show thaf if

maps$2 into [0, 1] such that Thus, the learning sample complexity Gfat scales may be
. determined by the GC sample complexity of the clasBes
Slrllp S:Llp log N(e, G, La(n)) = O (¢77) andH., at a scale which is proportional to the largest variance

of a member off. (resp.,H.), and this holds provided that
forp < 2,andif eithefl” € Gorif ¢ > 2andGisacompactand I consists of functions for whick,, f> may be bounded by
convex subset oL, (), then the learning sample complexityB([Euf)Q/q for some constanB.

with respect to thg-loss isO(e ~(*+#/2)) up to logarithmic fac- : . .
tors ine~*, 6-1. Recently, it was shown in [15] that there is an This key lemma dictates the structure of this paper. In the

second section, we investigate the GC condition for clagses
absolute constartf’ such that ; o R .
which have “small” log-covering numbers, and we focus on the
2fat s (G) case where the deviation in the GC condition is of the same
<—> order of magnitude asup ;. E,f?. The proof is based on
(1.1) estimates on the Rademacher averages (defined later) associ-
ated with the class. Next, we explore sufficient conditions which
therefore, ifG has a polynomial fat-shattering dimension withmply that if 7" is the g-loss function associated with a convex
exponenty < 2 one can bound the uniform covering numberélass@, thenE,, /2 may be controlled by powers &, /. We
and obtain a bound which improves the one established in [12F€ & geometric approach to prove thagif> 2, there in-
The idea behind our analysis is that the sample complexity@®ed is some constait, such that for every-loss function
an arbitrary clasg” is bounded by the GC sample complexity/> E.f? < B(E, f)*/?. Then, we present results regarding the
of two classes associated with where the deviation in the GC learning sample complexity, which is investigated in the fourth
condition is roughly the same as the largest variance of a clg&stion. The final sections are devoted to examples of inter-
member. esting classes for which our results apply. Among the examples
Formally, if G is a class of functiong is the unknown func- We present are estimates on the learning sample complexity of
tion (WhICh will be referred to as the “target Concept”) dndg convex hulls of Vapnik—ChervonenkiS (VC) classes, classes of
g < oo, then for everyy € G let£,(g) be itsg-loss function. sufficiently smooth functions, and kernel machines. In fact, we
Thus, present new bounds on the fat-shattering dimension of the latter.
We demonstrate that in some sense, the fat-shattering dimension
Llg)=¢g—T|"—|T — PT)? can be controlled by the rate of decay of the eigenvalues of an

supsup log N(e, G, La(pin)) < Clat: (G) log?

no pe €
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integral operator associated with kernel, and improve the cov-ltis possible to show that the covering numbers of¢Hess
ering numbers estimates established in [21]. classF are essentially the same as thos&of

It is |mportant.to mention that thrloughout this paper we are | .mma 1.2: Let G C B(L-.()) and sef o be theg-loss
only interested in the rates by which the sample complexit . . -

. ; . .{Xass associated witf¥. Then, for any probability measuye
changes and its relations to the covering numbers. Though itIS
. : . and everys > 0

also possible to derive bounds on the constants which appear in
the estimates, we have made no such attempt, nor do we claim log N(e, F, La(1)) < log N(¢/q, G, La(1)).
that the constants could not be improved by some other method
of proof. We do believe, however, that rate-wise, our results are - proof: For every target functioff’, |7 — P T|? is a fixed

optimal, though this is something we leave for future researcfnction, thus, the covering numbersifare determined by the
Next, we turn to some definitions, notation, and basic obs&fgyering numbers off = {|g — T|?|g € G}.

vations we shall use throughout this paper. First, assume that > 1. By Lagrange’s theorem far(z) =
Given a real Banach space, let B(X) be the unit ball of |12 andz,, 2, € [~1, 1], it follows that

X.If B C X is aball, seint (B) to be the interior ofB and

dB is the boundary of3. Thedual of X, denoted byX*, con- l|z1]? = |z2|?| < qlor — 22|

sists of all the bounded linear functionals &n endowed with

the norm||z*|| = sup), = |=*(x). £5 is a realn-dimensional Hence, for every’: @ — [0, 1] and anyw € ©

inner product space, which will always be identified WRh

with respect to the Euclidean norry is the space of all the  [|g(w) =T (w)|*—|¢'(w) = T(w)|*| L glg(w) —g'(W)]. (L.3)

real sequence; )52, such thady ;2 7 < oo, endowed with .
the inner product Let G’ be ane-cover of G with respect to thel.;(;:) norm.

Clearly, we may assume that everye G’ maps2 into [0, 1],
> which, combined with (1.3), implies thg#’' —T'|? is angs-cover
(o, ) =Dz of H with respect to thd (1) norm, as claimed.
=t The casey = 1 may be derived using a similar argument, but
For anyz, y € X, the intervalz, y] is defined by the triangle inequality will replace Lagrange’s theorem. [

[z, y] = {tz + (1 — )yl <t < 1} Two combinatorial parameters used in Learning Theory are
’ ' T the VC dimension and the fat-shattering dimension [2].
If n is a probability measure on a measurable space

(€2, ), let E,, be the expectation with respect o Ly(x) on a spac€). We say thaf” shatterwy, ..., w,} C Q, if for

is the set of functions which satisfly,,|f|? < oo and set . . .
Iflle = (EIf|9)1/2. Lo(S2) is the space of bounded functionseveryI c {1, ..., n} there is a functionf; € I for which

on Q, with respect to the nomfi f|lc = sup_cq |f(w)|- fi(wi) =1if i € Tandfr(w;) = 0if ¢ ¢ I. Let

We denote byu,, an empirical measure supported on a set of _ :

n points, hencey,, = 3" 6., whereé,, is the point VC(F, ) = sup{A[] 4 € @, Als shattered by}

evaluation functional ojw;}. If ' is a class of functions and\,c (F, ) is called the VC dimension df, and we shall some-

g is any function, let" — g|* = {|f — ¢|?|f € F}. Ingeneral, times denote it by VGF)

given setsd andB, letA+ B ={a+bla € A, b € B}. . _ _ _ _ _
If (X, d) is a metric space, C X andz € X, the distance  ItiS possible to use a parametric version of the VC dimension,

of z to Y is defined asi(z, Y) = inf,cy d(z, y). AsetAis called the fat-shattering dimension.

Definition 1.3: Let F' be a class of0, 1}-valued functions

called symmetric if the fact that € A implies that—z € A. Definition 1.4: For everye > 0, asetd = {wy, ..., w,} C
The symmetric convex hull ofl, denoted byabsconv (4), IS ¢ js said to be-shattered by if there is some functios: A —
the convex hull ofA U —A. R, such that for every C {1, ..., n} thereis somg; € F for

If (X, d) is a metric space, sé&(z, r) to be the closed ball \ynich Fr(wi) > s(wy) +eif i € I, andfy(w;) < s(w;) — e if
centered at with radiusr. Recall thatiff” C X, thee-covering ; & 1 | et
number off’, denoted byN (e, F, d), is the minimal number
of open balls with radius > 0 (with respect to the metri@) fat. (F, Q) = sup{|A|| A C Q, Aise-shattered by"'}.
needed to coveF'. A setA C X is said to be am-cover of I’
if the union of open ballg J, -, B(a, €) containst'. In cases f; is called the shattering function of the dednd the sets;) =
where the metrid is clear, we denote the covering numbers ofs(w; )|w; € A} is called a witness to the-shattering. In cases
I by N(e, F). The logarithm of the covering numbers of a sevhere the sef is clear, we shall denote the fat-shattering di-
is sometimes referred to as theetric entropyof the set. mension byfat.(F).

A set is calleds-separated if the distance between any two The important property of the VC dimension and the fat-shat-
elements of the setis larger tharLet D(e, F') be the maximal tering dimension is that given any probability measure, itis pos-
cardinality of ane-separated set ifi. D(e, F') are called the sible to estimate thé. (1) covering numbers of a given class
packing numbers of (with respect to the fixed metri€). The using those parameters, as presented in the next result. The first
packing numbers are closely related to the covering numbepayt of the result is due to Haussler [20], while the second was
sinceN(e, ') < D(e, F') < N(e/2, F). established in [15].
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Theorem 1.5:Let F' C B(L..(£2)). [I. GLIVENKO—CANTELLI (GC) ESTIMATES

1) If Fis {0, 1}-valued and VQF') = d, then there is  The main tool we use in the analysis of the GC sample
an absolute constart such that for every probability complexity is an exponential inequality which is due to Tala-

measurg: on {2 and every > 0 grand [19]. This result enables one to control the GC sample
1\ 2 complexity using two parameters. The first one is thih
N(e, F, Ly(p)) < Cd(4e)? <;> Rademacher average associated with the class. The second is

the “largest” variance of a member of the class. As explained
2) Ifforeverys > 0 F has a finite fat-shattering dimension,n the Introduction, this is very significant from our point of
then there is some absolute constdrsuch that for every View, as in the sequel we will show that the learning sample
probability measure: complexity is governed by GC deviation estimates of certain
classes associated wifh, where the deviation is of the same
2fati (F) . .
log N(e, F, Ly(p)) < Clat = (F) log” [ —=2—~). orderof magnitude as the largest variance of a member of those
- 32 £
classes.

Next, we define the Rademacher averages of a given class ofheorem 2.1:Assume that/” is a class of functions into
functions, which is the main tool we use in the analysis of G0, 1]. Let

classes. —
o _ o? =supE,(f —E,.f)%, S, =no*+vnR, ..
Definition 1.6: Let F" be a class of functions and Igtbe a fEF

probability measure ofe. Set

1 n For everyL, S > 0 andt > 0 define
Fn, , = — E,E. sup e, f(X)
v T fer ; e if t < LS
L, s(t) =
wheree; are independent Rademacher random variables (that ¢r.5(?) t (log%)l/Q, if+> LS.

is, symmetric,{—1, 1} valued) and X, ) are independent, dis-
tributed according t:. There is an absolute constafitsuch that ift > C\/n R

The Rademacher averages play animportant role in the theEW”
of empirical processes because they can be used to control the {

n,

n

Z J(Xi) —nEuf

=1

deviation of the empirical means from the actual ones. As anPr
example, we will mention the following symmetrization result,
due to Giné and Zinn [20], who proved that

sup
fer

> t} < exp(—o¢c, s, (1)).

This result was improved by Massart [13] by providing an
n n estimate on the constants appearing above.
Ep. ;22 Z(f(Xi) —Eu.f)| < 2F,E. JSCEI; ZEif(Xi) : The strength of Talagrand’s inequality is that, unlike the usual
=1 =1 results in Machine Learning literature, it does use the union

Itis possible to estimat&,, ,, of a given class using its>(p,,) bound to estimate the deviation of the empirical means from the
covering numbers. The fundamental result behind this estimagual ones. This result may be viewed as a “functional” Bern-
is the following theorem which is due to Dudley for Gaussiastein inequality, and it is evident that the performance of a class
processes. This was extended to the more general settingvdf depend on the behavior of the Rademacher averages asso-
subgaussian processes [20]. We shall formulate it only foiated with it.
Rademacher processes. In the following subsection we present a bound on the
Rademacher averages using a “global” estimate on the covering

Theorem 1.7:There is an absolute constafitsuch that for | oo o growth rates of the covering numbers.

every samplé Xy, ..., X,,)
1 c n wl<e 61 b NP L ; A. EstimatingR,, ,,
N fcgg ;E”f( |= it (8 £ La(pn)) de As a starting point, the classes we are interested in are rel-
= atively small. This may be seen by the fact tli&af ,, are uni-
where formly bounded as a function ef[15]. Our objective here is to
1o 5 estimater,, ,, as a function okup ¢ [EHf2' _
S§=sup | = ZfQ(Xi) An important part of our analysis is the following result,
feF\ " again, due to Talagrand [19], on the expectation of the diameter

and, is the empirical measure supported on the given sam[%F when considered as a subsetofun).
(X1, oy Xp). Lemma 2.2:Let F C B(Lo(2)) and set? = iuf; E,f2
<

Finally, throughout this paper, all absolute constants are d3en
sumed to be positive and are denotedbyr c. C,, denotes a "
constant which depends only pnThe values of constants may E, sup Z FAX) < 7t + 8RR .
change from line to line or even within the same line. feF iy
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Now, we are ready to present the estimate®qn,(#') using and sincer? + 8R,,_,./v/n < 9, then by Jensen’s inequality,
data onr? and on the covering numbers 6fin empirical L, Lemma 2.2 and the fact thatis increasing in(0, 10)
spaces. We use global data, namely, the growth rates of the cov- 2 Cp,

. . p (Y2 log= —)
ering numbers, and not the covering numbers at a specific scale.
This enables one to use a “chaining procedure” which leads to < ([Euy)g log? S,y
considerably better bounds d#, ,.(F"), and, thus, to sharper E.Y
generalization bounds. The chaining argument is hidden be- 2 ) 1
cause we use Dudley’s entropy integral which is based on that < ¢y <T +8 m ) log® s
idea. 24 =
We present our estimates regarding the Rademacher averages

< Gy <

in several parts, according to the different growth rates of the
covering numbers which are of interest to us.

Therefore,
Lemma 2.3:Let F' be a class of functions inf0, 1] and set _ 1
72 = sup;. - E, f?. Assume that there are> 1,d > 1, and R <O <T2 n M) : log5 l
p > 1 such that for every empirical measurg = e N
and our claim follows from a straightforward computatioiIl
log N(e, F, Lo(pin)) < dlog” (1) :

£ Now, we turn to the case where the log-covering numbers are

Then, there is a consta®}, -, such that polynomial with exponent < 2.

Lemma 2.5:Let I be a class of functions inf0, 1] and set

d 1 2 1 2 _ 2
Rn <G, A,max{—logp =, \/gﬂogg _}_ 7% = supsep Euf*. Ass_u_me that there are > 2 andp < 2
NZD T T such that for every empirical measyrg
. . IOgN(Ev F7 LQ(N”)) < l
Before proving the lemma, we require the next result. ep
) Then, there is a constafi, ., such that
Lemma 2.4:For every0 < p < oo andy > 1, there is some iz
constant,, , such that for everg < = < 1 Ry, u < Cp, max {n 2T _5}-
@ B Proof: Again, let
/ log? T de < 2z logh 22T 1 n
0 € z Y = —SupiQ(XJ
dzl/2loa? -2 is i ; d - M ferio
andz*/"log” =5+ s increasing and concave {0, 10). and givenX., ..., X,,, setpu, to be the empirical measure
The first part of the proof follows from the fact that both termsupported onX;, ..., X,,. By Theorem 1.7, for every fixed

are equal atr = 0, but for an appropriate constagy, , the sample, there is an absolute const@rguch that

derivative of the function on left-hand side is smaller than that
of the function on the right-hand side. The second partis evident [E sup Z e f
by differentiation. fer iz
. 1 n 2 VY 1
Proof of Lemma 2..3.SetY = SSupscep i [O(XG). < C/ log? N(e, F, Ly(pn)) de
By Theorem 1.7, there is an absolute constarsuch that 0
o O 1 z(1-%)
1 - Yoo1 < — sup Z f )
— E. su g f(X; SC’/ log? N(e, F, La(j1,,)) de - 1- 2<n
7 B 2 J(Xi) | los ( 2(1n)) | p/. fer < |
N Taking the expectation with respect/icand applying Jensen’s
=C\/c_l/ 10%2 ¥ ds inequality and Lemma 2.2
0 3(1-%)
n 2
By Lemma 2.4, there is a constamyt ., such that for everg < B, 20,y < E, sup Z S X )
z <1 fCF7 —1
5 z(1-%)
R 2 2
: 3¢ <SCpqy [T+ =2
/0 log” —d5<2azlog a;’ = Cpy <T + \/ﬁ)
Therefore,
wherev(z) = \/Elogp/Q(cpﬂ/x) is increasing and concave in B R 3(1-%)
(0, 10). R, ,.<C,, <T2 + &)
SinceY <1 . . : v
from which the claim easily follows. O
1 P .. . .
— E. sup eif < CVdY 1085 P In a similar fashion to the proofs in Lemmas 2.3 and 2.5, one
Vo per ; (%) Y can obtain the following.
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Lemma 2.6:Let F be a class of functions inf®, 1] and set and ' is the squared-loss class theEpf* < BE,f, andB
72 = SUp e E,f2. Assume that there are > 2 andp < 2 depends on thé., bound on the members 6f and the target.
such that for every empirical measyrg and everyg < 1 The question we study is whether the same kind of bound can
v 2 be established with respect to othiey norms. We will show
log N(e, I, Lo(pn)) < — log” - that if ¢ > 2 and if F' is theg-loss fl?ﬁ{:tion associated witH,
Then, there is a consta®}, -, such that there is someB such that for every € F,E,, f? < B([Euf)?
_ _1zp . 532 |_»p 2 Our proofis based on a geometric characterization of the nearest
R, p < Cp, ymax {” »77r log! i log ;} point map onto a convex subsetlaf. This fact was used in [12]

whereg = 4/(2 + p). forq = 2, butno emphasis was puton the geomgtric idea behind
it. Our methods enable us to obtain the bound.jrfor ¢ > 2.
B. Deviation Estimates Formally, let2 < ¢ < oo, setG to be a compact, convex

After boundingR,, ,, using the growth rates of the coverin subset ofl,, () which is contained ItB(Loo(£2)), and letF” be

numbers, it is possible to obtain the deviation results we reql?%e _q-losz clais ;ssoc;atedpwm? aan qT Hhenc? _eat?]tf te Ft
by applying Theorem 2.1. Is given byf = [T — g|? — |PcT — T1, whereT'is the targe

concept and®; 7 is the nearest point t& in G with respect to
Theorem 2.7:Let I be a class of functions whose range ighe L,(;:) norm.

contained in0, 1] and set = sup ;. - E,. f>. It is possible to show (see the Appendix) that ik ¢ < oo
1) If there arey > 2, d > 1, andp > 1 such that for every and if G C L, is convex and compact, the nearest point map
empirical measurg,, ontoG is a well-defined map, in the sense that e#ch L, has

a unique best approximation .

.
. 2
log N(e, F, Lo(pn)) < dlog” - We start our discussion by proving an upper bound Q.

then there is a consta@, ., which satisfies that for every
E>0

Sp(k7?, 6)
2 2 2
< C’pﬁdmax{k_l, k_Q} <i2 log? ’y) log%. Enf” < aBulg = PeT"
T

Lemma 3.1:Letg € G, 1 < ¢ < o0, and setf = £,(g).
Then

=
2) If there arey > 2 andp < 2 such that for any empirical Proof: Given anyw & (2, apply Lagrange’s theorem to
the functiony =|z|? for 1 = g(w)—T(w) andxs = PoT(w)—

measure
) v T(w). The result follows by taking the expectation and since
log N(e, F, LQ(Nn).) < E_P . |1, 2] <1. 0
which satisfies that for every The next step, which is to bourfg,|g — PsT|? from above
y usingE,, f is considerably more difficult. To that end, we require
Sp(kt®, 6) the following definitions which are standard in Banach spaces

1\'*"E 1 theory [3], [10].
< Cp max{k™!, k7?} <—2) <1 + log —) . y [3]. [10]
T 6 Definition 3.2: A Banach space is called strictly convex if

3) Ifthere arey > 2 andp < 2 such that for any empirical everyz, y € X such thatr # y and||z||, ||y|| = 1, satisfy
measureu,, that ||z + y|| < 2. X is called uniformly convex if there is a
) v, o1 positive functiond(e) which satisfies that for evely < £ < 2
log N(e, F, La(pn)) < E_plog e and everyr, y € X for which ||z|[, ||y|]| < 1 and|jz — || > ¢,
there is a constar,, -, for which lz 4+ y|| < 2—26(e). Thus,

2
Sr (k™ 9) s (e) = inf {1 = 3z + il Izl Iwll <1, | =l > <}
1 2 1 1
<C, ,max{k™*, k_2}<5> <log2 ;)(H—log 5) The functions(e) is called the modulus of convexity of .

for everyk > 0. It is easy to see thaX is strictly convex if and only if its
unit sphere does not contain intervals. Indeed, if the unit sphere
®ntains an interval then it is clearly not strictly convex. On
the other hand, let # y be such thaf|z|| = ||y|| = 1 and
l(z +y)/2|| = 1. If there is somd < ¢ < 1 for which z =
tz + (1 —t)y satisfies thafz|| < 1, then(z +y)/2 is a convex

The main assumption used in the proof of learning samptembination of:z and eitherz or y. Therefore||(x + v)/2|| <
complexity estimate established in [12] was that there is sorte-which is impossible, implying that the interval, ] is on
B > 0 such that for every loss functiof, E,,f*> < BE,f. the sphere ofY.
Though this is easily satisfied in proper learning (that is, when Clearly, if X is uniformly convex then it is strictly convex.
the target function belongs to the clag$ because eaclf is Using the modulus of convexity one can provide a lower bound
nonnegative, it is far from obvious whether the same holds fon the distance of an average of elements on the unit sphere of
improper learning. In [12], it was observed thatdfis convex X and the sphere.

then there is a constaft, -,
k>0

Since the proof is a straightforward (but tedious) calculati
and follows from Theorem 2.1, we omit the details.

[1l. D OMINATING THE VARIANCE



MENDELSON: IMPROVING THE SAMPLE COMPLEXITY USING GLOBAL DATA 1983

From the quantitative point of view, it was shown in [9] thaaind that for every integes and any empirical measune,,

if 2 < g < o0, the modulus of convexity of, is given by log N(e, G, La(pn)) < ~e P for everye > 0. Then, there
6,(6) =1—(1—(g/2)1)*/1 is a constant’;, , -, such that if

while forl < ¢ < 2 S 1 a(q)(lJrg)1 9
6(e) = (g — 1)e?/8 + o(e?). "= Cer, (‘) 85

The next lemma enables one to prove the desired boundﬂa@npr{[g fi o zep <6
E.lg — FPgT)?. Its proof is based on several ideas commonly The same holds if
used in the field of Convex Geometry and is presented in the
- Y P suplog N(z, G, La(pn)) < velog?(1/e)
Appendix. P

Lemma 3.3:Let X be a uniformly convex, smooth Banachand if
space with a modulus of convexit and letG C X be com- 1\ *(@0+3) 1 1
pact and convex. S& ¢ G and putd = || T — PsT||. Then, n 2 Cqp~ <g> <108 —> log 5
for everyg € G
5 <||9 - PGT||> <1 @ Next, we turn to the improper case.

g dg Theorem 4.2:Let G be as in Theorem 4.1 and set
whered, = |[T"— g]|. T € B(Leo(S)) which satisfies thal’ ¢ G. Fix ¢ > 2,
Corollary 3.4: Let ¢ > 2 and assume tha® is a compact 0 < p < 2, andy > 1; assume that¥ C La(p) is convex and
convex subset ok, (y). If I is theg-loss class associated withclosed and that” is theg-loss class associated with and”'.

G, then for everyy € G Then, there is a constat, ,, -, for which the following holds.
E.f? < 4% E,f)7. 1) Foreveryf € F,E,f? < 4¢*(E, f)*/2.
Proof: Recall that the modulus of uniform convexity bf 2) If
forg > 2is6,(e) =1 — (1 — (¢/2)1)*/9. By Lemma 3.3 supsuplog N (e, G, Lo(jn)) < e~
1 ||g - PGTH 1 > i 1 no fly
2d, ~\dy/) then
Note thatE,./,(g) = dZ — d?, hence, for every € I 1\ ¥@DA+5) 5
Euf = Euly(g) = df —d? > 27, |g — PET|". CRCOELIN og 5
By Lemma 3.1 and sinckf |2 < || f|l, 3) If
2< PE lg — 2< - )% <4 i
Buf® S 0'Fulg = PeT 4" (Bulg = PeT|)7 <40°(B ”f)D supsuplog N(e, G, La(in)) < ve Plog?(1/e)
no fin
then

IV. LEARNING SAMPLE COMPLEXITY

a(g)(1+%)

Unlike the GC sample complexity, the behavior of the Cé (e, 8) < Cyp,y <g> <10g2 %) 10%%-
learning sample complexitig not monotone, in the sense that
even if H C G, it is possible that the learning sample com- We begin with the observation that the learning sample
plexity associated witlir may besmallerthan that associated complexity is determined by the GC sample complexity of
with H. This is due to the fact that a well-behaved geometrizjo classes associated wifi, but the deviation required in
structure of the class (e.g., convexity) enables one to deriy@ GC condition is roughly the largest variance of a member
additional data regarding the loss functions associated wighthe classes. Recall that this result was formulated in the
the class. We will show that the learning sample complexityitroduction.
is upper-bounded by the GC sample complexity of classes of

; ; : Lemma 4.3:Let G C B(L..(R2)), setg > 2 and putZ’
functions with the property thatup,,. ; E,,2? is roughly the \ ;
same as the desired accuracy in the GC condition. to be theg-loss class associated with and the target concept

We formulate our results in two cases. The first theorem de%& efB(L oo (E1))- ?s[sEque t<hathtEere ;.j,qso':me constﬁn;u;:h

with proper learing (that i]” € G). In the second, we discuss! a_t ;r a;yf [6) ! wf (Ef) IXe > 0and let

improper learning in whici’ may not belong td=. We present @ — 2/q. Define

a complete proof only to the second claim. _ e*f FEf>cE.f2> 41
Let us introduce the following notation: for a fixed> 0 and E.f JeFEufze Bu” 2e (4.1)

given any empirical measuye,, let f;; be anyf € F'suchthat and set

B, f.. < /2. Thus, |fg € Gsuch that «(9) = [, theng )

is an “almost minimizer” of the emplrlcal loss. Also, for every Fo={feF[E.f <e}

1< q< oo leta(q) = max{1, 2 —2/q}, H.={he€H|Eh* <Be"}.

Theorem 4.1:Let G C B(L..(Q)) and fix somel’ € . Then, forevend < <1
Assume thatl < ¢ < oo, and letF' be theg-loss class as- ot 5 < g e 6 g e* 6
sociated withGG and 7. Assume further that > 2, p < 2, ¢, (e, 6) < max Sk, 3 5) %155
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Proof: First, note that Lemma 4.5:Let X be a normed space and ¢tC B(.X) be
Pr{E, . > e} totally bounded. Then, for anjz|| < 1 and every > 0
- 2
<Pr{3feF E.f>e¢, E.f°<e E, f< e/2} log N(2e, star(A4, z)) < log = +log N(e, A).
£
+Pr{3feFE.f2>e E.f?>¢ E,, f<e/2} Proof: Fix e > 0 and lety, ..., yx be ans-cover of A.
=(1)+(2). Note that for anya € A and anyz € [a, z] there is some
If E,f > ethen # € [y;, ] such that|z’ — z|| < . Hence, are-cover of the
1 1 unionJ!-_, [, =] is a2e-cover forstar (A, ). Since for every
Enf 2 5(Euf+e) 2 SEuf +Ep f. i ||z —ui|| < 2, it follows that each interval may be covered by
Therefore, 2¢~! balls of radiuss and our claim follows. O
1 Lemma 4.6: Let G be a class of functions which mé&binto
E.f—-E >-E.f>¢/2
Bnf = Bufl 2 2 nfzel [0, 1], putT € G, setl < g < oo, and letF be theg-loss class
hence, associated witld” andT". Leta = 2—2/gand putd asin (4.1).

- E} Then, for every > 0 and every empirical measuye,
=2

)+ @) 5 Pr{37 € FELS <l lEuf ~Epf > "
log N(2¢, H, Lo(pi,)) < log— +log N <—, G, Lg(un)> .
€ q

2
+Pr{3f €L Ef2ze Buf 2e, Proof: Recall that everyr € H is of the formh = r;f
1 where0 < k; < 1. Thus,H C star (F, 0), and by Lemma 4.5
||EHf_IEan Z _IEHf}' R 2 .
2 log N(2e, H, Lo(pn)) < log— +log N(e, F, La(pn)).
_ _ £
Recall that = 2af2/q and that Therefore, our claim follows from Lemma 1.2. O
_J°c 2
H= { [Euf‘ feF Euf 2e Buf” 2 5} : Now, we estimate the covering numbers even wianight
Sinceq > 2 thena > 1, and since < 1, eachk € H maps2 ot belong toG.
into [0, 1]. Also, if E,.f? < B(Euf)Q/q then Lemma 4.7:Let G C B(Lo,(2)) be a convex class of func-
ER<B ° < Be® tions. Setl’ € B(L.(2)), put L’ to be theg-loss class associ-
Pm T (EL )Y T ) ated withG andT’, and letoe and H be as in Lemma 4.6. Then,
Therefore, for anye > 0 and any probability measuye
s 4
Pr {[Eufu,,, Z 5} log N(e, H, La(11)) < logN <4i, G, Lg(p)) + 2log —.
2 € q €
= Pr {3 JeF B <e [Euf —Eu fl2 5} Proof: Again, every member off is given by ¢ f, where

) R 0 < ry < 1. Hence,
+Pr{f|h € H E,h” < Be®, |E,h—E, k| > 7} Hc {kly(g)lg G relo, 1]} =0

(4.2) By the definition of theg-loss function, it is possible to decom-
which proves our claim. O poseQ = Q; + Qo, Where

The only problem in applying Theorem 2.7 directlyb is Q = {rlg ~T"[x €0, 1], g € G}

the fact that one does not have amriori bound on the cov- and
ering numbers of that class. The question we need to tackle be- Qs = {—&|T — PsT|¥x €0, 1]}.

fqre proceeding is hpw to estimate the covering numbef$.0f gincar and P& T mapQ2into [0, 1] then|Z'— Pe 7| is bounded
given that the covering numbers sfare well behaved. To that 1 hointwise. ThereforeQs is contained in an interval whose

end, we have to use_the sp(_ecific structuré«”oﬁa_lmely, th?lt itis  adius is at most, implying that for any probability measure
aq-loss class associated with the cléss/NVe divide our discus-

2
sion into two parts. First we deal with proper learning, in which N(e, Q, La(w)) < -

each loss function is given by = |g — 7'? and no specific | oty — {lg — T|?|g € G}. Since every € G andT map<
assumptions are needed on the structur@.cfhen we explore ¢4 [0, 1] thenV C B(L..(£2)). Hence, by Lemma 1.2 and for
the improper case whefi is convex andF’ is the g-loss class every 7probabi|ity measJ?@ and ever)e'> 0

for someq > 2.
To handle the both cases, we need the following simple defi- N, V, Lo(w)) < N(e/q, G, La(1).

nition. Also, Q; C star(V, 0), thus for any > 0
N (5, V, La(w)

Definition 4.4: Let X be a normed space and l¢tC X. We Nie, Qp, La(p)) <2
say thatA is star shapedvith centerz if for everya € A the €
interval [a, ] C A. Given A andz, denote bytar (4, x) the N (2; G, LQ(N))
union of all the intervalga, z], wherea € A. <2 !

£
The next lemma shows that the covering numbers which suffices, since one can combine the separate covers for

star (A, x) are almost the same as thosebf Q; andQ, to form a cover forH. O
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Finally, we can prove Theorem 4.2. We present a proof only 1) If VC (G) = 4, there is a constartf, such that for every
in the case where the metric entropylié=—?) for somep < 2. 0<eg bd<1
The proofin the other case is essentially the same and is omitted. CL (e, 8) < Cyd <€_a(q) log g) log g'
Proof of Theorem 4.2Fix 0 < €, § < 1 and letx, F., H ’ € 6 _
and H. be as in Lemma 4.3. Note th#. C F andH. C 2) If fat(G) < ~e™" for somey > 2 andp < 2, thereis a
H. Thus, by Lemma 4.7, for every > 0 and any probability constant’y, ,, -, such that for every < e, § <1

alg)(1+8)
measureu,, 1 2 2 2
9 C (e, 6) < Cgpy <—> <10g2 g) log 5

10gN(p, E, LQ(Nn)) < % €
and o B. Improper Learning
log N(p, H., La(11,)) < % Recall that if one wishes to use the results in the improper

learning setup, one must assume that the concept class is convex.
ence, the most natural starting point is to take the convex hulls
of “small” classes. Unfortunately, convex hulls of classes with
Remark 4.8:1t is possible to prove an analogous result tpolynomial fat-shattering dimension are “too large.” Even if the
Theorem 4.2 when the covering numbergcbére polynomial; fat-shattering dimension of original class is polynomial with an
indeed, if there are > 1, d > 1, andp > 0 such that for every exponenp < 2, the covering numbers of its convex hull may be

The assertion follows by combining Lemma 4.3 and Theore
2.7.

0<e<l as bad a&(e~2log! ~2/?(1/¢)) [5], [16]. Thus, we are left with
supsuplog N(e, @, Lo(u,)) < C dlog” 7 convex hulls of VC classes. Estimating the covering numbers of
no € VC classes was a well-known problem which was investigated
then for eveny0 < e, 6 < 1 by Dudley [7] and then by Carl and Van-der Vaart and Wellner
_, 2 2 [4], [20]. The following is a modification of the result in [20],
q a(q) max{l,p} < L4
Cé (e, 6) < Cqpnd <5 log E) log which was presented in [16].
wherea(q) = max{1, 2 - 2/q}. Theorem 5.2:Let G be the convex hull of a class of
{0, 1}-valued functions, denoted b, and assume that
V. BASIC EXAMPLES VC (Gy) = d. Then, there is an absolute consté@hsuch that

. . , for every probability measurg and every > 0
We present several examples in which one may estimate the yp y R ¥

learning sample complexity of proper and improper learning log N(e, G, Ly(p) < Cd <1> o )
problems. All the results are based on estimates on the covering 3

numbers which are obtained either directly or via the fat'Shat‘Corollary 53: Let ¢ be as in Theorem 5.2, set
tering dimension. The reason for presenting these examples igto- B(Loo(f2)) and put2 < ¢ < oc. Then, there is a
indicate that there are many interesting classes which are beg?'lstam()q 2 such that for everg < e, § < 1

“relatively small” and convex, hence fit our improper learning ’ 1\ P 9

framework. Although some of the results to follow may not be cg; o2, 8) < Cya <_> 1Og2 z
new, we still think that presenting them in this context empha- ’ € 6
sizes the fact that the theory developed here covers interestifigres = (2 — 2/¢)(1 + z%5)-

ground. Functions With Bounded OscillationThere are many im-
portant classes of sufficiently smooth functions which appear
naturally in learning problems. Such classes of functions fit our
The two examples presented in this section are propsstup perfectly, since they usually are convex and uniformly
learning problems for classes which are either VC classestjunded. Though in many problems it is possible to obtain
classes with polynomial fat-shattering dimension with exponepbunds on the covering numbers of such classes directly (see,
p < 2. By Theorem 1.5, it follows that there is an absolutg g., [20]), we wish to formulate an estimate on the fat-shat-
constantC' which satisfies that iiZ is a VC class for which tering dimension of a class using data on the ability of members

A. Proper Learning

VC (G) = d, then forevery) < e < 1 of the class to change quickly. Natural parameters which come
2 to mind in this context are theariation of the function and the
log N(e, G, La(pn)) < Cdlog - i ) .

Sgp SBP ogN(e 2(in)) R oscillation function of the clas§ he latter is the supremum of
whereas iffat.(G) < ve~? then there is a constanj, ., such the modulus of continuity of functions ifr, that is, for every
that for everyd < e < 1 6>0

2
supsuplog N(e, G, Ly(jim)) < 27 log? = ocsp(8) = sup sup |f(2) - ().
n g ep € FEF Jla—yl|<s

Thereforg, applymg Theorem 4.2, we can derive the sam%%fore proving a connection between the “smoothness” prop-
complexity estimates for such classes.

erties of the class and its fat-shattering dimension, we require
Theorem 5.1:Let G C B(L..(2)), assume thdl’ € G and the following property of the fat-shattering dimension of classes
thatl < g < co. Seta(q) = max{l, 2 —2/q}. which are both convex and symmetric.
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Lemma 5.4: Let F' be a convex and symmetric class of func- Example 5.9:Let1 < « < 2 and set@ = {g|V.(g) < 1}.
tions on®2. If {wy, ..., w,} ise-shattered by then(s;); = Itis easy to see thal is convex and symmetric. Assume that
(0, 0, ..., 0) may be selected as a witness to the shattering. {w1, ..., wy, } ise-shattered and recall that we may t&k¢*_,

Proof: Assume thats;)>, is a witness to the shattering,as a witness to the shattering. Thus, there is spraeG such
and for everyl C {1, ..., n}, let f; be the function which thatforeven2 < i < n, |g(w;) —g(w;—1)| > 2. The variation
shatters the sdt. Therefore, for every suchand every € of this g satisfies that

Jr(wi) = fre(wi) 2 si +e—si+e=2¢ (26)*(n—1) S Valg) £ 1
and ifi ¢ I therefore,
frlw) — fre(wi) < s; —e—(s;+¢) = —2e. 1\
For everyl, let f£ = (fr — fr-)/2. SinceF' is convex and fat-(G) < <§) +1.
symmetric, eacly; belongs toF' and the set f;) s-shatters
{wi, ..., wy } With (0, 0, ..., 0) as a witness. O Hence, for event’ € B(L..(£2)) and everyy > 2

Using this observation, it is easy to connect the fat-shattering Cé 1 = O(e MHe/DE2/0)
dimension of a class of functions éhwith its oscillation and yp to logarithmic factors ir— ands—!.
the packing numbers @?.

Lemma 5.5: Let G be a convex and symmetric class of func- VI. APPLICATION: KERNEL MACHINES
tions on a metric spadé?, p). Then, for every > 0 and every his final i licati ¢ |
e > ocss(G)/2, fat (G) < D(5, Q, p). In this final section, we present an application of our results

Proof: Assume that there ae> 0 ande > ocss(G)/2 t_o affine functionals on ellipsoids _in Hilbert spaces, and in par-
such thatfat.(G) > D(8, Q, p). Thus, there is a set ticular, we focus on kernel machines. We present new bounds

., wn} which is e-shattered, such that there are el the fat-shattering dimension of such classes, which yields
s ’ an estimate on their covering numbers. We chose to present the
results in a separate section since kernel machines are very im-
portant in Machine Learning and deserve special attention.
The bounds we present improve some of the bounds ap-

pearing in [21]. After presenting our results, we compare them
Remark 5.6:Note that a class of functions which isto the ones established in [21].

defined by a constraint on its oscillation function is nec-
essarily convex and symmetric, since for every > 0, A. Affine Functionals od.

{wi, -
indexesi # j, for which p(w;, w;) < 6. By Lemma 5.4, we
may assume thaf0, 0, ...0) is a witness to the shattering.
Hence, there is somg € G such thatig(w;) — g(w;)| = 2e,
which is impossible.

0566 (8) = 08Cabsconv()(6)- Let A: ¢, — /- be a diagonal operator with eigenvalugs>
Example 5.7:LetQ c B(R*) and set7 C B(Loo(Q2))tobe a2 = --- = 0. SetQ = A(B({2)) and putH to be the set

a class of functions oft such that for ever§ > 0, osco(6) < of affine functionsh(w) = 2*(w) + b, where||z*[|,, < 1 and

~6P for somep > 0. In particular, we may assume thatis |6 < 1. Our goal is to estimate the fat-shattering dimension of

convex and symmetric. Note that with respect to the Euclide##e classH when considered as functions tn

metric,D(6, Q) < C6~¢. Thus, there is some absolute constant Tight estimates on the fat-shattering dimension of the class

C such that for every > 0 of linear functionals on the unit ball of a Banach space were
o~ presented in [8], [14], [16]. In [14], [16] it was shown that
fat.(G) SC(;) if X is infinite-dimensional, the fat-shattering dimension

fat.(B(X™*), B(X)) is determined by a geometric property of
X, calledtype The technique used in the proof of that estimate
is based on the fact that the domain of the function class is
a bounded subset of the Banach space. Intuitiv&(3(¢2))
up to logarithmic factors im~* and§—!. should be “much smaller” than a ball (depending, of course,
A natural example of a family of functions which have ®n(a;)2,). Hence, there is hope one may be able to obtain an
power type oscillation function is the unit ball of certain Soboleimproved bound. Another issue one must address is that we
spaces (see [1] for more details). investigateaffine functions and not just linear ones. Thus, the

, . i .. first order of business is to show that the affine case may be
The second family of functions we shall be interested inis trb%sny reduced to the linear one

family of functions with bounded variation.

which implies that ifd/p < 2, then for everyl’ € B(L.o(2))
and everyg > 2
CL ;. = O(e~WH/2(2=2/0)y

Note that we can embe&d and? in 4». Indeed, eachy € €2
Definition 5.8: Given a > 0, we say that a functiorf: is given byAz = (a;z,)$2;, wherel|z|l,, < 1. We mapw to

[a, b] — R has anx bounded variation if @ = (1, ay71, agze - --). The affine functionh = z* + b is
n mapped toh = (b, z1, x5, ...). Therefore, for every andw,
Va(f) =sup > [f(wi) = flwimy)|™ < oo M&) = f(w), and||h|le, < 2. Moreover,{@|w € Q} is the

i=1 image of theZ; unit ball under the diagonal operator given by

where the supremum is taken with respect to all integeasd T'c; = e;, andTe; = a;_1¢; fori > 2, where(e;)32, are
all the partitions{c = wo < wy < -+ < w,, = b}. the unit vectors irY5. Thus, the clas®{ is a class of uniformly
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bounded linear functionals, and we consider it as a set of furtbat its symmetric convex hull contairB(¢5)? Intuitively,
tions on a domairnf2, which is the image of unit ball by a di- one would suspect that if the facetsa@fsconv{zy, ..., xn}
agonal operator with one additional “large” eigenvalue. To sinare “far away” fromo0, then “most” of the vertices must have a
plify things, we will abuse notation and denote our “new” classonsiderably larger norm and should be “close” to orthogonal

of linear functionals by and the “new” domain by2. in some sense. On the other hand, they are restricted by the
The next step in our analysis is to translate the fact that a sétucture of the ellipsoidc. The analysis of this situation
{z1, ..., xn} C Qise-shattered to a geometric language. follows from a volumetric argument which requires some

knowledge in convex geometry and falls beyond the scope of
this article. We refer the interested reader to [17] for a detailed
discussion and a proof of a more general claim than the one we
a[equire, which is presented in what follows.

Lemma 6.1:1f A = {z1, ..., x,} is e-shattered byB(¢;)
theneB,, C absconv(A), whereB,, = B({3) Nspan(A).
Proof: Assumethattheséty, ..., x,} ise-shattered by
B(4s). SinceB(¥5) is convex and symmetric, then by Lemm
5.4, we may assume théi)?_, is a witness to the shattering. Theorem 6.2:Let& C 4, be an ellipsoid with principle axes
Let (a;)?, C R, setl = {ila; > 0}, and putz} to be the of lengths(a;) arranged in a nonincreasing order. Assume that

functional shattering of the sét Note that for every suchand thereis asefzi, ..., x,} C £ which ise-shattered byB(¢,),
everyi € 1 let K = absconv (21, ..., x,) andE = span (21, ..., ).
Then, there are absolute constafitandc such that
(@) — xfe(x) = 1
xl(xz) Ly (J} ) = 2e VOl’ll(K) > CE/\/ﬁ
and ifi & I and
x3(x;) — 2 (x;) < —2e. e "
o) — o 2) 1LK<V°1%<5“E><C<£W> g
Thus, vol™ (K) < NG < - (6.1)
z”’: <z”: ) wherevol(-) denotes the-dimensional Lebesgue measure.
a; ;|| = sup | a;T; ;
vt v eBLy) vt In particular
1 n n n %
> — sup z* a;x; | — " a;T; : >
2 0+ 3 €B(Ls) <§=; ) <; )‘ <Hl az) z Cevn.
=(%).

The firstinequality is a consequence of Lemma 6.1 and standard
estimates on the volume of the Euclidean ball. The proof of (6.1)

is considerably more difficult (see [17]).
2 il iele Theorem 6.3:Let A: ¢, — ¢35 be a diagonal operator with
eigenvalues; > ap > --- > 0, and set = A(B(¢2)).
— I Z @ili + Z @ik 1) If there arep, v > 0 such that for every integet, a,, <
el el ~/n¥, there is an absolute constatitsuch that for every
1 . . e>0
= 5|2 @il (e) = o () -
icl at. < - .
c fat. (B(fs), &) < C (E)
+ Z(—ai)(x} () — x}(xi))‘ 2) If there arep, v > 0 such that for every integet, a,, <
iele exp(—yn?), there is an absolute constafisuch that for
L everye > 0
>e Z |a]- a1
) fat.(B(£s), £) < Cy 77 logr —
. . . £
Note that every point on the boundaryafsconv (A) is given Proof: For the first part, fixe > 0 and assume that

by 37, &ii, WhereZ?:l_ |a;| = 1. Hence, by the inequality 1, ;1 C ¢ is e-shattered. By Theorem 6.2, there is an
above,[| >_;_, aizi|| > <, implying that thel, norm of every apsolute constant such tha( T, ;)" > Cey/n. On the
point on the boundary ofbsconv (4) is larger thare. Thus,  ther hand, using the estimate on the growth ratéaoh and
eB,, C absconv (A), as claimed. 0 stirling’s approximation

n

The geometric interpretation of our situation is as follows: n oD
first, the setQ corresponds to an ellipsoiél, which is the Cey/n < <H ai> < ’y(n!)_% < Cr (—)
image of theZ, unit ball under a positive semidefinite operator. i=1 "

If €2 contains a set which is-shattered by the dual unit ball,thus,

then it contains a se#i, consisting ofn elements, such that e

absconv (A) contains ann-dimensional Euclidean ball of n<C (—) e

radiuse. This brings up the next question we have to face: what

is the geometric structure of a séty, ..., x,} C & such as claimed.
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The second claim follows since the case, for example, for translation invariant kernels). In that
n ‘ = . case, every. € Hy may be represented by < ¢, and every
Cev/n < <H e””’) < "D O =z € X may be represented by somg e #, such that
i=1 *
W) = (h, K(z, =)rx = (#hs Za)es (6.3)

Corollary 6.4: Let A be as in Theorem 6.3 and péit = . , N .
A(B(£)). Set where||z;||¢, = ||h||l#,, and there is an ellipsoifl C ¢, which

contains every,,. The “size” of the ellipsoid€ is determined
G={a" +|||z"|l, <1, o] <1} ¥ b

by the eigenvalues dfy, as described in the following lemma.
to be a class of affine functions ghand let;; to be a probability

measure off. Lemma 6.5 [6], [21]: Let » be a measure oft and setk

1) If th >~ 9 and 0 h that f . to be a positive-definite kernel such that the eigenvectors of
) Ift e arelp—th andp > bS“CI tt at OFt%’;W 'r':ttig?rTK satisfy that(¢,.) C B(Leo(X)). Assume further that (6.2)
n, ap S yn 7, e s an absolute constanisuch thal 545 - \where(\,)22 , is the nonincreasing sequence of the

n=1
for everye > 0 eigenvalues of k. Set(a,, )32, € £, to be such that

‘ Y\TFE 2
log N(z, &, La(n) < € (1) log® 7. ()220 = (VAnfan)3y € £

2) If there arey > 2 andp > 0 such that for every integer gng PULR = |(b,)|lc, . If A: £ — £ is defined byAe; = Ra,e;,
n, an < exp(—yn?), then there is an absolute constént ang if& = A(B(¢,)), then for everyr € X, z, € €.

such that for every > 0 ) .
L1 a1 Any such sequencg;)s2, is called a scaling sequence, and
log N(e, G, La(p)) < Cy7 7 log™ > it determines the lengths of the principle axes of the ellipgoid

Proof: Recall that by the argument presented in the begin- xample 6.6 [21]: Let K and(\,)°2, be as in Lemma 6.5,

ning of this section, one may consid@rto be a class of linear 544 assume that there afeanda > 0 such that for any integer
functionals, which was denoted 6% The price one paysisthat,, \ < cn—(a+1) Then, the scaling sequenge, )52, may be
G is contained in a ball of radiuscentered at the origin and thegg|ected ada, )22, =(n=7/2)%, for anyr < a. An Ze_xample of

“new” domain is an ellipsoid which has an additional eigen-g;,ch a kernel is the convolution kernel generated(gy=c—".
valueag = 1. Thus, our result follows immediately from The-

m | =

orem 6.3. O Example 6.7 [21]: Let K and(\,,)22, be as in Lemma 6.5
and assume that there are positi/e« andp such that for every
B. Kernels integern, A, < Be~*"". Then, the scaling sequence may be

elected as,, = ¢~"™"/2 for anyr < «. An example of such a

One of the most interesting family of function classes ai— i ) 12
ernel is the convolution kernel generatedify) = ¢ *".

pearing in modern Learning Theory is the familykefrnel ma-
chines In this setup, one is given a positive—definite function Let us define the class of functions we shall be interested in.

K(—, —) defined onX » X, where.X is a probability space. Each function consists of a “linear part” which is an element
Consider a probability measureon X and letZ%: Ly(1) —  in the unit ball of the reproducing kernel Hilbert space, and an
Lz(p) be the integral operator defined i and .. Thus, “affine part” which will be a constant ifi-1, 1]. One can show

that this class has the following representation.

Ticf = [ Ko ) 1w dutw).
Definition 6.8: Let K and(),,)2 , be as in Lemma 6.5. Set

By Mercer’s theorem7’x has a diagonal representation as an
operator onL. (). Moreover, let(¢,,(z)) be the sequence of n
eigenvectors of the integral operatdy, and set(\,) to be G = Z%K(wi, —)+bneN, (z)_, C X, [0 <1,
the nonincreasing sequence of eigenvalues associated with the | i=t

eigenvectors. It is possible to show [18], [6] that;) are or-

thogonal inL»(x) and that under suitable assumptions on the Z i K (i, 2;) <1p. (6.4)
measureu =
i Hence, each “linear part” of a function € G is a finite
Kz, ) = Z Aidi()bi(v) (6-2)  combination of basis functions subject to a constraint on the
=t coefficients, which ensures that it belongs to the unit ball in the
for everyz, y € X. reproducing kernel Hilbert space (see the proof below).

Also, one can define theeproducing kernel Hilbert space
associated withl’x, which will be denoted byH . One of
the properties of this Hilbert space is that for everye X,

Theorem 6.9:Let K, (A,,)22 ;, and@ be as in the definition

n=11

above, and denotd(| = sup, K (z, z).

K(x, —) € Hy, and for evenyh € H 1) Ifthere areB anda > 0 forwhich,, < Bn~(**Y), then
W) — (h K for any probability measurg and anyr < « there is a
() = (h K(@, =)o constanC' = C|, g, - such that for everg < ¢ < 1

We focus on the case in which the eigenvector#’gfare uni-
formly bounded functions (i.e., there exists sofdesuch that ) Hr 52
for every integen and everyr € X, |¢,(z)| < M—which is log(e, G, La(m) < C <g) log™ =
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In particular, for everyl” € B(L.o(2)) Therefore, for every > 0
2 —(1+1/(1+7
Gz = O EHET) Nee, M, Lu@) N (5,8 6) =N (5.8, ).
up to logarithmic factors im—* andé—!.

2) Ifthere are positivé3, « andp such that for every integer Our bounds ard.»>(1.,,) bounds, which suffice for the general-
n, An < Be @™ then for any probability measureand ization results and are considerably smaller. For example, if the
everyr < o there is a constar® = C| x|, 5., -, Such that €igenvalues of the kernel have a polynomial decay with expo-
for every0 < e < 1 nent—(« + 1), the covering numbers rate obtained in [21] is

) O(e=2/7) for every0 < 7 < «/2, while here we get (up to
z logarithmic factors)O(e =%/ (1+7)),
€ When the decay rate is exponential, our bound is essentially
In particular, for everyl’ € B(L.o(2)), Cé »=0(e1), the same as thatin [21], since in both cases the “dominant part”
up to logarithmic factors im~% andé—!. of the covering numbers is the “affine” part (the-8") of the
Cl L flfnctions, which means that the covering numbers cannot be
early, one can obtain similar bounds for other values Better than2(¢~1). In our analysis there is an additional ef-
¢>2 fect, which is due to some looseness in the bound on the cov-
Proof: Let Hx be the reproducing kernel Hilbert spaceering numbers in terms of the fat-shattering dimension. On the
associated witl'x. By the reproducing kernel property it fol- other hand, this byproduct has little influence on the complexity
lows thatifh = 3" | o, K(x;, —), then bounds, since the dominant term in the learning sample com-
plexity estimate will always be at least of the ordeeof .

log(e, G, La(u)) < Clog**s

n
Al = Y cio K (i, ).
i,j=1 VIl. CONCLUDING REMARKS

Thus, the “linear party, = >, «;K(x;, —) of everyg € G There are several points which deserve closer attention and
is contained in the unit ball of{x . Again, by reproducing the were not treated here. First, there is the question of the rates of
kernel property (6.3) and Lemma 6.5, eaghmay be viewed the generalization bounds. Though we believe that the learning
as a linear functional on an ellipsoid defined by the scaling seample complexity estimates presented here are optimal with re-
quence(a; )2, . Applying a similar argument to the one used ispect to the polynomial scale (i.€(s~+7/2))), we have not
Section VI-A, we can identify each € G as a linear functional proved it. Moreover, it is possible that there is some looseness
on an ellipsoid which has one additional “large” eigenvaluén logarithmic factors ire—!. Of course, it is important to pro-
Hence, our result follows immediately from the selection of théide estimates on the constants, an issue which was completely
scaling sequence (Examples 6.6 and 6.7), the covering numhgr®red here.

of the ellipsoid defined by the scaling sequences (Corollary 6.4)Secondly, we dealt with approximation i, for ¢ > 2. It

and Theorem 4.2. O seems that our analysis does not extentl ¥0g < 2, since the

Remark 6.10: The condition in (6.4) is imposed simply tomodulus of convexity oL, behaves differently for these values

ensure that the “linear” part of evegy € G is contained in 0 g_‘ v, althouah . tiqated the fat-shattering di
the unit ball of the reproducing kernel Hilbert space associ: 2> athough we investigated the fat-shattering dimen-

ated withK . This could also be obtained by imposing a conveX on ofuniforml_y bo_unQed functipnals when considered. as fl_mc-
constraint, namely, tha}""_, |a;| = 1. In that case, every thns.on an ellipsoid i/, a major part of thg puzzle is still
o iy missing. We have not presented the connection between the ge-
g =>._;o;K(z;, —) satisfies that|g||», < |K]. :
ometry of the spac&, the properties of the operatet, and
It is worthwhile to compare our results with those obtainetht. (B(X*), A(B(X))), whereA: X — X is a bounded op-
in [21]. First, note that for generalization estimates, the norerator. The only case presented here is whea I, in which
used in [21] is too strong, yielding poorer covering results. Inkhe fat-shattering dimension is determined by the typ& ofhe
deed, the authors were able to bound the entropy numbers ofge@eral case is analyzed in [17].
scaling operator, hence, they provided af3-covering num-
bers estimate on the ellipsofdl = £. When translated to cov-
ering numbers of the clagg on the domailfl, these are, in fact,
L.(Q2) estimates. Indeed, ifis represented by, € B(¢;) and
everyz is represented by, = Ay, then In this appendix, we present the definitions and preliminary
results needed for the proof of Lemma 3.3. All the definitions are
h(z) = (zn, Ay) = (A2, ). standard and may be found in any basic textbook in functional

Hence, the class/ may be viewed as a class of linear func@"alysis. €.g., [10].

tionals contained if* = A*(B(42)) on a domain which is  Definition A.1: Given A, B ¢ X we say that a nonzero

B(&y). Let{z}, ..., z}} C £ be ans-cover of£*. Thus,n € functionalz* € X* separatest and B if
N(e/2, &, £5). If ||z* — x| < e, then for every: € B(¢2)

APPENDIX
CONVEXITY

. " " " inf z*(z) > supz*(b).
" () — 23(@)] < [l — a2 le]] < e. iuf @ (@) 2 supa™(b)
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Itis easy to see that* separatesi andB if and only if there that there is somg € & such thatz*(g) < 1. SinceG is
is somea € R such that for every; € A andb € B, z*(b) < convex, thenforeverg < ¢ < 1,ty+ (1 —t)g € GNH .
a < z*(a). In that case, the hyperpladé = {z|z*(x) = o} Moreover, since is the unique nearest point@in G and since
separatest and B. We denote the closed “positive” halfspaceX is strictly convex|g, y] N B = {y}, otherwise, there would
{z|z*(z) > «} by H* and the “negative” one by7~. By have beensomg € G such that|g; —z|| < 1. Hence, the line
the Hahn—-Banach theorem,Afand B are closed, convex, andV = {ty + (1 — #)g|t € R} supportsB in y. By the Hahn—
disjoint there is a hyperplane (equivalently, a functional) whicBanach theorem, there is a hyperplane which contHirend
separatesi and B. supportsB in y. However, this hyperplane cannot Hebecause
it containsg. Thus,B was two different supporting hyperplanes

Definition A.2: Let A C X, we say that the hyperplarié aty, contrary to the assumption thatis smooth, 0

supportsdina € Aif a € H and eithetA c HtorAC H™.
In the following lemma, our goal is to be able to “guess” the

location of somegy € G based on the its distance frdth¢g G.

The idea is that sincé is convex and since the norm of

is both strictly convex and smooth, the intersection of a ball

centered at the target ard are contained within a “slice” of

a ball, that is, the intersection of a ball and a certain halfspace.

Formally, we claim the following.

By the Hahn—-Banach theorem,if C X is a ball then for
everyx € 9B there is a hyperplane which suppo#sin x.
Equivalently, there is some*, ||z*|| = 1, anda € R such that
x*(z) = a and for everyy € B, z*(y) > «.

Given alineV = {tz + (1 — t)y|t € R}, we say it supports
aballBc X inzif € VnBandVNint(B) = 0. By the
Hahn—-Banach theorem, W supportsB in z, there is a hyper-
plane which containg” and supports3 in z. Lemma A.6:Let X be a strictly convex, smooth Banach
space and leff ¢ X be compact and convex. For aihyg G,
let P 7 be the nearest point tBin G and set] = ||T'— P T|.
Let z* be the functional supporting(T’, d) in PT and put

Definition A.3: We say that a Banach spa&eis smooth if
for anyx € X there is a unique functionaf* € X*, such that
lz*|| = 1andz*(z) = [|=[.

Thus, a Banach space is smooth if and only if for evesych HY = {z|z*(z) > d+ 2*(T)}.
that||z|| = 1, there is a unique hyperplane which supports the o
unit ball inz. It is possible to show [10] that for evelly< ¢ <  Then, everyy € G satisfies thay € B(T’ dy) N H, where

cc, L, is smooth. On the other hand! is not smooth, since %o = Il/ = 71|-
there are many hyperplanes supporting its unit ball in the unitthe proof of this lemma is straightforward and is omitted.

vectore; = (1,0,...,0). _ _ Finally, we arrive to the proof of the main claim. We shall
We shall be interested in the properties of the nearest pojdiimate the diameter of the “slice” 6f using the modulus of

map onto a compact convex set in “nice” Banach spaces, Whighiform convexity ofX. This was formulated as Lemma 3.3 in

is the subject of the following lemma. the main text.

Lemma A.4:Let X be astrictly convex space a_nd BtC X Lemma A.7:Let X be a uniformly convex, smooth Banach
be_convex and compact. Then everg X has a unique nearestgpace with a modulus of convexifx and letG ¢ X be com-
pointin G. pact and convex. I’ ¢ G andd = ||T’ — PgT|| then for every

Proof: Fix somez € X and setR = inf e ||g — z||. By geGq
the compactness @ and the fact that the norm is continuous,

there is someyy, € G for which the infimum is attained, i.e., llg — PaT|| d

_ bx | ——— ) < 1-—
R = |lgo — =||. < dg ) dg

To show uniqueness, assume that there is some gthet?
for which ||g — z|| = R. SinceG is convex then whered, = ||T — ¢||.

Proof: Clearly, we may assume thd@t = 0. Using the
g1=(9+90)/2€@G. notation of Lemma A.6

By the strict convexity of the nornilg; — z|| < R, which is llg — PoT|| < diam (B(T, dg) N H+) )
impossible. O

o . T o
Next, we turn to an important property of the nearest poirITtet #1, %2 € (B(T' dg) N HT), pute = ||, Z2|i and set:;

L zildg - Hencel|zi|| < 1, ||z — 22| =¢/d,, andz*(z;) > d/d,.
map onto compact convex sets in strictly convex, smooth spacﬁ (s

Lemma A.5:Let X be a strictly convex, smooth Banach

space and leff C X be compact and convex. Let¢ G and 1 |71 + 22| > lx*(zl + 22) > i
sety = Pgx to be the nearest point toin G. If R = ||z — 9|, 2 T2 T dy
then the hyperplane supporting the b&ll = B(z, R) aty Therefore,
separate®? andG.

Proof: Clearly, we may assume that= 0 and thatk = 1. d
Therefore, ifz* is the normalized functional which suppo¥ts a <
aty then foreverys € B, z*(x) < 1. LetH = {z|z*(z) = 1}, 7
setH ™~ to be the open halfspade:|z*(z) < 1}, and assume and our claim follows. O

£
1 4 2al] < 1 6 (—)
dg

| =
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