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Improving the Sample Complexity Using Global Data
Shahar Mendelson

Abstract—We study the sample complexity of proper and im-
proper learning problems with respect to different -loss functions.
We improve the known estimates for classes which have relatively
small covering numbers in empirical 2 spaces (e.g., log-covering
numbers which are polynomial with exponent 2). We present
several examples of relevant classes which have a “small” fat-shat-
tering dimension, hence fit our setup, the most important of which
are kernel machines.

Index Terms—Fat-shattering dimension, Glivenko–Cantelli
classes, kernel machines, learning sample complexity, uniform
convexity.

I. INTRODUCTION

I N this paper, we present sample complexity estimates for
various learning problems with respect to different norms,

under the assumption that the classes are not “too large.”
The question we explore is the following: let be a class

of functions defined on a probability space where is
an unknown probability measure and each maps into

. Set to be an unknown function, which is not necessarily
a member of . Let be independent random variables dis-
tributed according to . Recall that a learning rule is a map
which assigns to each sample a function

. The learning sample complexityassociated with a
-loss function, accuracy, and confidence is the first integer

such that the following holds: there exists a learning rule
such that for every and every probability measure

where is the expectation with respect to.
In other words, the objective of the learning rule is to find a

function in the class which is “almost” the best approximation
to in with respect to the norm.

Estimating the sample complexity is closely related to the
notion of the rate of convergence of regression problems [20].
For example, assume that and that is an unknown
random variable. It follows that solving the regression problem
for with respect to the class is equivalent to solving the
learning problem for the function . In addition, the
translation from the notion of sample complexity to that of the
rate of convergence used in statistics is relatively standard. Our
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presentation will be given from the “learning-theoretic” point of
view rather than from the statistical one.

Unlike previous results, originating from the work of Vapnik
and Chervonenkis, in which complexity estimates were based
on the covering numbers at a scale which is roughly the desired
accuracy, we use global data regarding the “size” of the class
to obtain complexity estimates at every scale. One example we
focus on is when the log-covering numbers of the class in ques-
tion are polynomial in with exponent .

We were motivated by two methods previously used in the
investigation of sample complexity [2]. The first is the standard
approach which uses the Glivenko–Cantelli (GC) condition to
estimate the sample complexity. By this we mean the following:
let be a class of functions defined on, let be a fixed
function, set , and put . The
GC sample complexity of the classwith respect to accuracy

and confidence is the smallest integer such that for every

where is the empirical measure supported on .
Hence, if is an “almost” minimizer of the empirical loss

functional and if the sample is
“large enough” then is an “almost” minimizer of the average
distance to with respect to the norm. One can show that
the learning sample complexity is bounded by the supremum
of the GC sample complexities, where the supremum is taken
over all possible targets, bounded by . This is true even in
the regression scenario, simply be setting (for
further details, see [2]).

Recently, it was shown [15] that if the log-covering numbers
(resp., the fat-shattering dimension) ofare of the order of
then the GC sample complexity of is up to
logarithmic factors in , . This implied that if ,
and in the case of the squared loss , the learning
sample complexity has the same rate as the GC sample com-
plexity. Indeed, in this case, the learning sample complexity is

[2].
It is important to emphasize that the learning sample com-

plexity may be established by other means rather than via the
GC condition. Therefore, it comes with no surprise that there
are certain cases in which it is possible to improve this bound
on the learning sample complexities. In [11], [12], the following
case was examined; let be the class given by

where is a nearest point to in with respect to the
norm. In other words, is a class which consists of “shifted”
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elements in such a way that the “best” distance with respect to
is now attained at . Assume that there is an absolute

constant such that for every , . This
simply means that it is possible to control the variance of each
function in using its expectation. In this case, the learning
sample complexity with accuracy and confidence can be
bounded by

Therefore, if , the learning sample com-
plexity is bounded by (up to logarithmic factors) .
If , this estimate is better than the one obtained using the
GC sample complexities.

As it turns out, the preceding assumption is not so far fetched;
it is possible to show [11], [12] that there are two generic cases
in which . The first case is when , be-
cause it implies that each is nonnegative. The other case
is when is convex and , in which case, every function in

is given by , where is the nearest
point to in with respect to the norm. Thus, one imme-
diate question which comes to mind is whether the same kind of
a result holds in other spaces. The reason for this interest in
various norms is not just for the sake of generalizing known
results. As increase, one obtains an approximation of the un-
known function with respect to a “stronger” norm. Therefore,
it is only natural to investigate the price one has to pay (in the
complexity sense) for this finer approximation.

Here, we combine the ideas used in [12] and in [15] to im-
prove the learning complexity estimates. We show that if
maps into such that

for , and if either or if and is a compact and
convex subset of , then the learning sample complexity
with respect to the-loss is up to logarithmic fac-
tors in . Recently, it was shown in [15] that there is an
absolute constant such that

(1.1)

therefore, if has a polynomial fat-shattering dimension with
exponent one can bound the uniform covering numbers
and obtain a bound which improves the one established in [12].

The idea behind our analysis is that the sample complexity of
an arbitrary class is bounded by the GC sample complexity
of two classes associated with, where the deviation in the GC
condition is roughly the same as the largest variance of a class
member.

Formally, if is a class of functions, is the unknown func-
tion (which will be referred to as the “target concept”) and

, then for every let be its -loss function.
Thus,

where is a nearest element to in with respect to the
norm. We denote by the set of loss functions .

Let be a GC class. For every , , denote
by the GC sample complexity of the classassoci-
ated with accuracy and confidence . Let be the
learning sample complexity of the classwith respect to the
target and the -loss, for accuracy and confidence.

The assumption we have to make is that it is possible to bound
the variance of every class member by an appropriate power of
its expectation, which is the idea behind the following lemma.
Its proof will be presented in Section IV.

Lemma 1.1:Let be a class of functions which mapinto
, set , and let be the -loss class associated with

and the target concept, which also maps into . Assume
that there is some constantsuch that for any ,

. Let , , set

(1.2)

and put

and

Then, for every ,

Thus, the learning sample complexity of at scale may be
determined by the GC sample complexity of the classes
and , at a scale which is proportional to the largest variance
of a member of (resp., ), and this holds provided that

consists of functions for which may be bounded by
for some constant .

This key lemma dictates the structure of this paper. In the
second section, we investigate the GC condition for classes
which have “small” log-covering numbers, and we focus on the
case where the deviation in the GC condition is of the same
order of magnitude as . The proof is based on
estimates on the Rademacher averages (defined later) associ-
ated with the class. Next, we explore sufficient conditions which
imply that if is the -loss function associated with a convex
class , then may be controlled by powers of . We
use a geometric approach to prove that if , there in-
deed is some constant, such that for every -loss function

, . Then, we present results regarding the
learning sample complexity, which is investigated in the fourth
section. The final sections are devoted to examples of inter-
esting classes for which our results apply. Among the examples
we present are estimates on the learning sample complexity of
convex hulls of Vapnik–Chervonenkis (VC) classes, classes of
sufficiently smooth functions, and kernel machines. In fact, we
present new bounds on the fat-shattering dimension of the latter.
We demonstrate that in some sense, the fat-shattering dimension
can be controlled by the rate of decay of the eigenvalues of an



MENDELSON: IMPROVING THE SAMPLE COMPLEXITY USING GLOBAL DATA 1979

integral operator associated with kernel, and improve the cov-
ering numbers estimates established in [21].

It is important to mention that throughout this paper we are
only interested in the rates by which the sample complexity
changes and its relations to the covering numbers. Though it is
also possible to derive bounds on the constants which appear in
the estimates, we have made no such attempt, nor do we claim
that the constants could not be improved by some other method
of proof. We do believe, however, that rate-wise, our results are
optimal, though this is something we leave for future research.

Next, we turn to some definitions, notation, and basic obser-
vations we shall use throughout this paper.

Given a real Banach space, let be the unit ball of
. If is a ball, set to be the interior of and

is the boundary of . Thedual of , denoted by , con-
sists of all the bounded linear functionals on, endowed with
the norm . is a real -dimensional
inner product space, which will always be identified with
with respect to the Euclidean norm. is the space of all the
real sequences such that , endowed with
the inner product

For any , the interval is defined by

If is a probability measure on a measurable space
, let be the expectation with respect to.

is the set of functions which satisfy and set
. is the space of bounded functions

on , with respect to the norm .
We denote by an empirical measure supported on a set of

points, hence, , where is the point
evaluation functional on . If is a class of functions and

is any function, let . In general,
given sets and , let .

If is a metric space, and , the distance
of to is defined as . A set is
called symmetric if the fact that implies that .
The symmetric convex hull of , denoted by , is
the convex hull of .

If is a metric space, set to be the closed ball
centered at with radius . Recall that if , the -covering
number of , denoted by , is the minimal number
of open balls with radius (with respect to the metric)
needed to cover . A set is said to be an-cover of
if the union of open balls contains . In cases
where the metric is clear, we denote the covering numbers of

by . The logarithm of the covering numbers of a set
is sometimes referred to as themetric entropyof the set.

A set is called -separated if the distance between any two
elements of the set is larger than. Let be the maximal
cardinality of an -separated set in . are called the
packing numbers of (with respect to the fixed metric). The
packing numbers are closely related to the covering numbers,
since .

It is possible to show that the covering numbers of the-loss
class are essentially the same as those of.

Lemma 1.2:Let and set to be the -loss
class associated with . Then, for any probability measure
and every

Proof: For every target function , is a fixed
function, thus, the covering numbers ofare determined by the
covering numbers of .

First, assume that . By Lagrange’s theorem for
and , it follows that

Hence, for every : and any

(1.3)

Let be an -cover of with respect to the norm.
Clearly, we may assume that every maps into ,
which, combined with (1.3), implies that is an -cover
of with respect to the norm, as claimed.

The case may be derived using a similar argument, but
the triangle inequality will replace Lagrange’s theorem.

Two combinatorial parameters used in Learning Theory are
the VC dimension and the fat-shattering dimension [2].

Definition 1.3: Let be a class of -valued functions
on a space . We say that shatters , if for
every there is a function for which

if and if . Let

VC is shattered by

VC is called the VC dimension of , and we shall some-
times denote it by VC .

It is possible to use a parametric version of the VC dimension,
called the fat-shattering dimension.

Definition 1.4: For every , a set
is said to be -shattered by if there is some function:
, such that for every there is some for

which if , and if
. Let

is -shattered by

is called the shattering function of the setand the set
is called a witness to the-shattering. In cases

where the set is clear, we shall denote the fat-shattering di-
mension by .

The important property of the VC dimension and the fat-shat-
tering dimension is that given any probability measure, it is pos-
sible to estimate the covering numbers of a given class
using those parameters, as presented in the next result. The first
part of the result is due to Haussler [20], while the second was
established in [15].
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Theorem 1.5:Let .

1) If is -valued and VC , then there is
an absolute constant such that for every probability
measure on and every

2) If for every has a finite fat-shattering dimension,
then there is some absolute constantsuch that for every
probability measure

Next, we define the Rademacher averages of a given class of
functions, which is the main tool we use in the analysis of GC
classes.

Definition 1.6: Let be a class of functions and letbe a
probability measure on . Set

where are independent Rademacher random variables (that
is, symmetric, valued) and are independent, dis-
tributed according to .

The Rademacher averages play an important role in the theory
of empirical processes because they can be used to control the
deviation of the empirical means from the actual ones. As an
example, we will mention the following symmetrization result,
due to Giné and Zinn [20], who proved that

It is possible to estimate of a given class using its
covering numbers. The fundamental result behind this estimate
is the following theorem which is due to Dudley for Gaussian
processes. This was extended to the more general setting of
subgaussian processes [20]. We shall formulate it only for
Rademacher processes.

Theorem 1.7:There is an absolute constantsuch that for
every sample

where

and is the empirical measure supported on the given sample
.

Finally, throughout this paper, all absolute constants are as-
sumed to be positive and are denoted byor . denotes a
constant which depends only on. The values of constants may
change from line to line or even within the same line.

II. GLIVENKO–CANTELLI (GC) ESTIMATES

The main tool we use in the analysis of the GC sample
complexity is an exponential inequality which is due to Tala-
grand [19]. This result enables one to control the GC sample
complexity using two parameters. The first one is theth
Rademacher average associated with the class. The second is
the “largest” variance of a member of the class. As explained
in the Introduction, this is very significant from our point of
view, as in the sequel we will show that the learning sample
complexity is governed by GC deviation estimates of certain
classes associated with, where the deviation is of the same
order of magnitude as the largest variance of a member of those
classes.

Theorem 2.1:Assume that is a class of functions into
. Let

For every and define

if

if .

There is an absolute constantsuch that if ,
then

This result was improved by Massart [13] by providing an
estimate on the constants appearing above.

The strength of Talagrand’s inequality is that, unlike the usual
results in Machine Learning literature, it does use the union
bound to estimate the deviation of the empirical means from the
actual ones. This result may be viewed as a “functional” Bern-
stein inequality, and it is evident that the performance of a class
will depend on the behavior of the Rademacher averages asso-
ciated with it.

In the following subsection we present a bound on the
Rademacher averages using a “global” estimate on the covering
numbers—the growth rates of the covering numbers.

A. Estimating

As a starting point, the classes we are interested in are rel-
atively small. This may be seen by the fact that are uni-
formly bounded as a function of [15]. Our objective here is to
estimate as a function of .

An important part of our analysis is the following result,
again, due to Talagrand [19], on the expectation of the diameter
of when considered as a subset of .

Lemma 2.2:Let and set .

Then
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Now, we are ready to present the estimates on using
data on and on the covering numbers of in empirical
spaces. We use global data, namely, the growth rates of the cov-
ering numbers, and not the covering numbers at a specific scale.
This enables one to use a “chaining procedure” which leads to
considerably better bounds on , and, thus, to sharper
generalization bounds. The chaining argument is hidden be-
cause we use Dudley’s entropy integral which is based on that
idea.

We present our estimates regarding the Rademacher averages
in several parts, according to the different growth rates of the
covering numbers which are of interest to us.

Lemma 2.3:Let be a class of functions into and set
. Assume that there are , , and

such that for every empirical measure

Then, there is a constant such that

Before proving the lemma, we require the next result.

Lemma 2.4:For every and , there is some
constant such that for every

and is increasing and concave in .

The first part of the proof follows from the fact that both terms
are equal at , but for an appropriate constant , the
derivative of the function on left-hand side is smaller than that
of the function on the right-hand side. The second part is evident
by differentiation.

Proof of Lemma 2.3:Set .
By Theorem 1.7, there is an absolute constantsuch that

By Lemma 2.4, there is a constant such that for every

where is increasing and concave in
.

Since

and since , then by Jensen’s inequality,
Lemma 2.2 and the fact thatis increasing in

Therefore,

and our claim follows from a straightforward computation.

Now, we turn to the case where the log-covering numbers are
polynomial with exponent .

Lemma 2.5:Let be a class of functions into and set
. Assume that there are and

such that for every empirical measure

Then, there is a constant such that

Proof: Again, let

and given , set to be the empirical measure
supported on . By Theorem 1.7, for every fixed
sample, there is an absolute constantsuch that

Taking the expectation with respect toand applying Jensen’s
inequality and Lemma 2.2

Therefore,

from which the claim easily follows.

In a similar fashion to the proofs in Lemmas 2.3 and 2.5, one
can obtain the following.
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Lemma 2.6:Let be a class of functions into and set
. Assume that there are and

such that for every empirical measure and every

Then, there is a constant such that

where .

B. Deviation Estimates

After bounding using the growth rates of the covering
numbers, it is possible to obtain the deviation results we require
by applying Theorem 2.1.

Theorem 2.7:Let be a class of functions whose range is
contained in and set .

1) If there are , , and such that for every
empirical measure

then there is a constant which satisfies that for every

2) If there are and such that for any empirical
measure

then there is a constant which satisfies that for every

3) If there are and such that for any empirical
measure

there is a constant for which

for every .

Since the proof is a straightforward (but tedious) calculation
and follows from Theorem 2.1, we omit the details.

III. D OMINATING THE VARIANCE

The main assumption used in the proof of learning sample
complexity estimate established in [12] was that there is some

such that for every loss function, .
Though this is easily satisfied in proper learning (that is, when
the target function belongs to the class) because each is
nonnegative, it is far from obvious whether the same holds for
improper learning. In [12], it was observed that ifis convex

and is the squared-loss class then , and
depends on the bound on the members of and the target.
The question we study is whether the same kind of bound can
be established with respect to other norms. We will show
that if and if is the -loss function associated with,
there is some such that for every , .
Our proof is based on a geometric characterization of the nearest
point map onto a convex subset of. This fact was used in [12]
for , but no emphasis was put on the geometric idea behind
it. Our methods enable us to obtain the bound infor .

Formally, let , set to be a compact, convex
subset of which is contained in , and let be
the -loss class associated with and . Hence, each
is given by , where is the target
concept and is the nearest point to in with respect to
the norm.

It is possible to show (see the Appendix) that if
and if is convex and compact, the nearest point map
onto is a well-defined map, in the sense that each has
a unique best approximation in.

We start our discussion by proving an upper bound on .

Lemma 3.1:Let , , and set .
Then

Proof: Given any , apply Lagrange’s theorem to
the function for and

. The result follows by taking the expectation and since
.

The next step, which is to bound from above
using is considerably more difficult. To that end, we require
the following definitions which are standard in Banach spaces
theory [3], [10].

Definition 3.2: A Banach space is called strictly convex if
every such that and , satisfy
that . is called uniformly convex if there is a
positive function which satisfies that for every
and every for which and ,

. Thus,

The function is called the modulus of convexity of .

It is easy to see that is strictly convex if and only if its
unit sphere does not contain intervals. Indeed, if the unit sphere
contains an interval then it is clearly not strictly convex. On
the other hand, let be such that and

. If there is some for which
satisfies that , then is a convex

combination of and either or . Therefore,
—which is impossible, implying that the interval is on

the sphere of .
Clearly, if is uniformly convex then it is strictly convex.

Using the modulus of convexity one can provide a lower bound
on the distance of an average of elements on the unit sphere of

and the sphere.
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From the quantitative point of view, it was shown in [9] that
if , the modulus of convexity of is given by

while for

The next lemma enables one to prove the desired bound on
. Its proof is based on several ideas commonly

used in the field of Convex Geometry and is presented in the
Appendix.

Lemma 3.3:Let be a uniformly convex, smooth Banach
space with a modulus of convexity and let be com-
pact and convex. Set and put . Then,
for every

where .

Corollary 3.4: Let and assume that is a compact
convex subset of . If is the -loss class associated with

, then for every

Proof: Recall that the modulus of uniform convexity of
for is . By Lemma 3.3

Note that , hence, for every

By Lemma 3.1 and since

IV. L EARNING SAMPLE COMPLEXITY

Unlike the GC sample complexity, the behavior of the
learning sample complexityis not monotone, in the sense that
even if , it is possible that the learning sample com-
plexity associated with may besmaller than that associated
with . This is due to the fact that a well-behaved geometric
structure of the class (e.g., convexity) enables one to derive
additional data regarding the loss functions associated with
the class. We will show that the learning sample complexity
is upper-bounded by the GC sample complexity of classes of
functions with the property that is roughly the
same as the desired accuracy in the GC condition.

We formulate our results in two cases. The first theorem deals
with proper learning (that is, ). In the second, we discuss
improper learning in which may not belong to . We present
a complete proof only to the second claim.

Let us introduce the following notation: for a fixed and
given any empirical measure , let be any such that

. Thus, if such that then
is an “almost minimizer” of the empirical loss. Also, for every

, let ,

Theorem 4.1:Let and fix some .
Assume that , and let be the -loss class as-
sociated with and . Assume further that , ,

and that for every integer and any empirical measure ,
for every . Then, there

is a constant such that if

then .
The same holds if

and if

Next, we turn to the improper case.

Theorem 4.2:Let be as in Theorem 4.1 and set
which satisfies that . Fix ,

, and ; assume that is convex and
closed and that is the -loss class associated with and .
Then, there is a constant , for which the following holds.

1) For every , .

2) If

then

3) If

then

We begin with the observation that the learning sample
complexity is determined by the GC sample complexity of
two classes associated with, but the deviation required in
the GC condition is roughly the largest variance of a member
of the classes. Recall that this result was formulated in the
Introduction.

Lemma 4.3:Let , set and put
to be the -loss class associated with and the target concept

. Assume that there is some constantsuch
that for any , . Fix and let

. Define

(4.1)

and set

Then, for every
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Proof: First, note that

If then

Therefore,

hence,

Recall that and that

Since then , and since , each maps
into . Also, if then

Therefore,

(4.2)

which proves our claim.

The only problem in applying Theorem 2.7 directly to is
the fact that one does not have ana priori bound on the cov-
ering numbers of that class. The question we need to tackle be-
fore proceeding is how to estimate the covering numbers of,
given that the covering numbers ofare well behaved. To that
end, we have to use the specific structure of, namely, that it is
a -loss class associated with the class. We divide our discus-
sion into two parts. First we deal with proper learning, in which
each loss function is given by and no specific
assumptions are needed on the structure of. Then we explore
the improper case when is convex and is the -loss class
for some .

To handle the both cases, we need the following simple defi-
nition.

Definition 4.4: Let be a normed space and let . We
say that is star shapedwith center if for every the
interval . Given and , denote by the
union of all the intervals , where .

The next lemma shows that the covering numbers of
are almost the same as those of.

Lemma 4.5:Let be a normed space and let be
totally bounded. Then, for any and every

Proof: Fix and let be an -cover of .
Note that for any and any there is some

such that . Hence, an -cover of the
union is a -cover for . Since for every

, it follows that each interval may be covered by
balls of radius and our claim follows.

Lemma 4.6:Let be a class of functions which mapinto
, put , set , and let be the -loss class

associated with and . Let and put as in (4.1).
Then, for every and every empirical measure

Proof: Recall that every is of the form
where . Thus, , and by Lemma 4.5

Therefore, our claim follows from Lemma 1.2.

Now, we estimate the covering numbers even whenmight
not belong to .

Lemma 4.7:Let be a convex class of func-
tions. Set , put to be the -loss class associ-
ated with and , and let and be as in Lemma 4.6. Then,
for any and any probability measure

Proof: Again, every member of is given by , where
. Hence,

By the definition of the -loss function, it is possible to decom-
pose , where

and

Since and map into then is bounded
by pointwise. Therefore, is contained in an interval whose
radius is at most, implying that for any probability measure

Let . Since every and map
into then . Hence, by Lemma 1.2 and for
every probability measure and every

Also, , thus for any

which suffices, since one can combine the separate covers for
and to form a cover for .
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Finally, we can prove Theorem 4.2. We present a proof only
in the case where the metric entropy is for some .
The proof in the other case is essentially the same and is omitted.

Proof of Theorem 4.2:Fix and let
and be as in Lemma 4.3. Note that and

. Thus, by Lemma 4.7, for every and any probability
measure

and

The assertion follows by combining Lemma 4.3 and Theorem
2.7.

Remark 4.8: It is possible to prove an analogous result to
Theorem 4.2 when the covering numbers ofare polynomial;
indeed, if there are , , and such that for every

then for every

where .

V. BASIC EXAMPLES

We present several examples in which one may estimate the
learning sample complexity of proper and improper learning
problems. All the results are based on estimates on the covering
numbers which are obtained either directly or via the fat-shat-
tering dimension. The reason for presenting these examples is to
indicate that there are many interesting classes which are both
“relatively small” and convex, hence fit our improper learning
framework. Although some of the results to follow may not be
new, we still think that presenting them in this context empha-
sizes the fact that the theory developed here covers interesting
ground.

A. Proper Learning

The two examples presented in this section are proper
learning problems for classes which are either VC classes or
classes with polynomial fat-shattering dimension with exponent

. By Theorem 1.5, it follows that there is an absolute
constant which satisfies that if is a VC class for which
VC , then for every

whereas if then there is a constant such
that for every

Therefore, applying Theorem 4.2, we can derive the sample
complexity estimates for such classes.

Theorem 5.1:Let , assume that and
that . Set .

1) If VC , there is a constant such that for every

2) If for some and , there is a
constant such that for every

B. Improper Learning

Recall that if one wishes to use the results in the improper
learning setup, one must assume that the concept class is convex.
Hence, the most natural starting point is to take the convex hulls
of “small” classes. Unfortunately, convex hulls of classes with
polynomial fat-shattering dimension are “too large.” Even if the
fat-shattering dimension of original class is polynomial with an
exponent , the covering numbers of its convex hull may be
as bad as [5], [16]. Thus, we are left with
convex hulls of VC classes. Estimating the covering numbers of
VC classes was a well-known problem which was investigated
by Dudley [7] and then by Carl and Van-der Vaart and Wellner
[4], [20]. The following is a modification of the result in [20],
which was presented in [16].

Theorem 5.2:Let be the convex hull of a class of
-valued functions, denoted by , and assume that

VC . Then, there is an absolute constantsuch that
for every probability measure and every

Corollary 5.3: Let be as in Theorem 5.2, set
and put . Then, there is a

constant such that for every

where .

Functions With Bounded Oscillation:There are many im-
portant classes of sufficiently smooth functions which appear
naturally in learning problems. Such classes of functions fit our
setup perfectly, since they usually are convex and uniformly
bounded. Though in many problems it is possible to obtain
bounds on the covering numbers of such classes directly (see,
e.g., [20]), we wish to formulate an estimate on the fat-shat-
tering dimension of a class using data on the ability of members
of the class to change quickly. Natural parameters which come
to mind in this context are thevariation of the function and the
oscillation function of the class. The latter is the supremum of
the modulus of continuity of functions in , that is, for every

Before proving a connection between the “smoothness” prop-
erties of the class and its fat-shattering dimension, we require
the following property of the fat-shattering dimension of classes
which are both convex and symmetric.
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Lemma 5.4:Let be a convex and symmetric class of func-
tions on . If is -shattered by then

may be selected as a witness to the shattering.
Proof: Assume that is a witness to the shattering,

and for every , let be the function which
shatters the set. Therefore, for every suchand every

and if

For every , let . Since is convex and
symmetric, each belongs to and the set -shatters

with as a witness.

Using this observation, it is easy to connect the fat-shattering
dimension of a class of functions onwith its oscillation and
the packing numbers of .

Lemma 5.5:Let be a convex and symmetric class of func-
tions on a metric space . Then, for every and every

, .
Proof: Assume that there are and

such that . Thus, there is a set
which is -shattered, such that there are two

indexes , for which . By Lemma 5.4, we
may assume that is a witness to the shattering.
Hence, there is some such that ,
which is impossible.

Remark 5.6:Note that a class of functions which is
defined by a constraint on its oscillation function is nec-
essarily convex and symmetric, since for every ,

.

Example 5.7:Let and set to be
a class of functions on such that for every ,

for some . In particular, we may assume that is
convex and symmetric. Note that with respect to the Euclidean
metric, . Thus, there is some absolute constant

such that for every

which implies that if , then for every
and every

up to logarithmic factors in and .
A natural example of a family of functions which have a

power type oscillation function is the unit ball of certain Sobolev
spaces (see [1] for more details).

The second family of functions we shall be interested in is the
family of functions with bounded variation.

Definition 5.8: Given , we say that a function :
has an bounded variation if

where the supremum is taken with respect to all integersand
all the partitions .

Example 5.9:Let and set .
It is easy to see that is convex and symmetric. Assume that

is -shattered and recall that we may take
as a witness to the shattering. Thus, there is some such
that for every , . The variation
of this satisfies that

therefore,

Hence, for every and every

up to logarithmic factors in and .

VI. A PPLICATION: KERNEL MACHINES

In this final section, we present an application of our results
to affine functionals on ellipsoids in Hilbert spaces, and in par-
ticular, we focus on kernel machines. We present new bounds
on the fat-shattering dimension of such classes, which yields
an estimate on their covering numbers. We chose to present the
results in a separate section since kernel machines are very im-
portant in Machine Learning and deserve special attention.

The bounds we present improve some of the bounds ap-
pearing in [21]. After presenting our results, we compare them
to the ones established in [21].

A. Affine Functionals on

Let : be a diagonal operator with eigenvalues
. Set and put to be the set

of affine functions , where and
. Our goal is to estimate the fat-shattering dimension of

the class when considered as functions on.
Tight estimates on the fat-shattering dimension of the class

of linear functionals on the unit ball of a Banach space were
presented in [8], [14], [16]. In [14], [16] it was shown that
if is infinite-dimensional, the fat-shattering dimension

is determined by a geometric property of
, calledtype. The technique used in the proof of that estimate

is based on the fact that the domain of the function class is
a bounded subset of the Banach space. Intuitively,
should be “much smaller” than a ball (depending, of course,
on ). Hence, there is hope one may be able to obtain an
improved bound. Another issue one must address is that we
investigateaffine functions and not just linear ones. Thus, the
first order of business is to show that the affine case may be
easily reduced to the linear one.

Note that we can embed and in . Indeed, each
is given by , where . We map to

. The affine function is
mapped to . Therefore, for every and ,

, and . Moreover, is the
image of the unit ball under the diagonal operator given by

, and for , where are
the unit vectors in . Thus, the class is a class of uniformly
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bounded linear functionals, and we consider it as a set of func-
tions on a domain , which is the image of unit ball by a di-
agonal operator with one additional “large” eigenvalue. To sim-
plify things, we will abuse notation and denote our “new” class
of linear functionals by and the “new” domain by .

The next step in our analysis is to translate the fact that a set
is -shattered to a geometric language.

Lemma 6.1: If is -shattered by
then , where .

Proof: Assume that the set is -shattered by
. Since is convex and symmetric, then by Lemma

5.4, we may assume that is a witness to the shattering.
Let , set , and put to be the
functional shattering of the set. Note that for every suchand
every

and if

Thus,

Selecting and

Note that every point on the boundary of is given
by , where . Hence, by the inequality
above, , implying that the norm of every
point on the boundary of is larger than . Thus,

, as claimed.

The geometric interpretation of our situation is as follows:
first, the set corresponds to an ellipsoid, which is the
image of the unit ball under a positive semidefinite operator.
If contains a set which is-shattered by the dual unit ball,
then it contains a set , consisting of elements, such that

contains an -dimensional Euclidean ball of
radius . This brings up the next question we have to face: what
is the geometric structure of a set such

that its symmetric convex hull contains ? Intuitively,
one would suspect that if the facets of
are “far away” from , then “most” of the vertices must have a
considerably larger norm and should be “close” to orthogonal
in some sense. On the other hand, they are restricted by the
structure of the ellipsoid . The analysis of this situation
follows from a volumetric argument which requires some
knowledge in convex geometry and falls beyond the scope of
this article. We refer the interested reader to [17] for a detailed
discussion and a proof of a more general claim than the one we
require, which is presented in what follows.

Theorem 6.2:Let be an ellipsoid with principle axes
of lengths arranged in a nonincreasing order. Assume that
there is a set which is -shattered by ,
let and .
Then, there are absolute constantsand such that

and

(6.1)

where denotes the -dimensional Lebesgue measure.
In particular

The first inequality is a consequence of Lemma 6.1 and standard
estimates on the volume of the Euclidean ball. The proof of (6.1)
is considerably more difficult (see [17]).

Theorem 6.3:Let be a diagonal operator with
eigenvalues , and set .

1) If there are such that for every integer,
, there is an absolute constantsuch that for every

2) If there are such that for every integer,
, there is an absolute constantsuch that for

every

Proof: For the first part, fix and assume that
is -shattered. By Theorem 6.2, there is an

absolute constant such that . On the
other hand, using the estimate on the growth rate on and
Stirling’s approximation

thus,

as claimed.
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The second claim follows since

Corollary 6.4: Let be as in Theorem 6.3 and put
. Set

to be a class of affine functions onand let to be a probability
measure on .

1) If there are and such that for every integer
, , there is an absolute constantsuch that

for every

2) If there are and such that for every integer
, , then there is an absolute constant

such that for every

Proof: Recall that by the argument presented in the begin-
ning of this section, one may considerto be a class of linear
functionals, which was denoted by. The price one pays is that

is contained in a ball of radiuscentered at the origin and the
“new” domain is an ellipsoid which has an additional eigen-
value . Thus, our result follows immediately from The-
orem 6.3.

B. Kernels

One of the most interesting family of function classes ap-
pearing in modern Learning Theory is the family ofkernel ma-
chines. In this setup, one is given a positive–definite function

defined on , where is a probability space.
Consider a probability measureon and let :

be the integral operator defined by and . Thus,

By Mercer’s theorem, has a diagonal representation as an
operator on . Moreover, let be the sequence of
eigenvectors of the integral operator and set to be
the nonincreasing sequence of eigenvalues associated with the
eigenvectors. It is possible to show [18], [6] that are or-
thogonal in and that under suitable assumptions on the
measure

(6.2)

for every .
Also, one can define thereproducing kernel Hilbert space

associated with , which will be denoted by . One of
the properties of this Hilbert space is that for every ,

, and for every

We focus on the case in which the eigenvectors ofare uni-
formly bounded functions (i.e., there exists somesuch that
for every integer and every , —which is

the case, for example, for translation invariant kernels). In that
case, every may be represented by and every

may be represented by some such that

(6.3)

where , and there is an ellipsoid which
contains every . The “size” of the ellipsoid is determined
by the eigenvalues of , as described in the following lemma.

Lemma 6.5 [6], [21]: Let be a measure on and set
to be a positive-definite kernel such that the eigenvectors of

satisfy that . Assume further that (6.2)
holds, where is the nonincreasing sequence of the
eigenvalues of . Set to be such that

and put . If : is defined by ,
and if , then for every , .

Any such sequence is called a scaling sequence, and
it determines the lengths of the principle axes of the ellipsoid.

Example 6.6 [21]: Let and be as in Lemma 6.5,
and assume that there areand such that for any integer

, . Then, the scaling sequence may be
selected as for any . An example of
such a kernel is the convolution kernel generated by .

Example 6.7 [21]: Let and be as in Lemma 6.5
and assume that there are positive and such that for every
integer , . Then, the scaling sequence may be
selected as for any . An example of such a
kernel is the convolution kernel generated by .

Let us define the class of functions we shall be interested in.
Each function consists of a “linear part” which is an element
in the unit ball of the reproducing kernel Hilbert space, and an
“affine part” which will be a constant in . One can show
that this class has the following representation.

Definition 6.8: Let and be as in Lemma 6.5. Set

(6.4)

Hence, each “linear part” of a function is a finite
combination of basis functions subject to a constraint on the
coefficients, which ensures that it belongs to the unit ball in the
reproducing kernel Hilbert space (see the proof below).

Theorem 6.9:Let , , and be as in the definition
above, and denote .

1) If there are and for which , then
for any probability measure and any there is a
constant such that for every
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In particular, for every

up to logarithmic factors in and .

2) If there are positive and such that for every integer
, , then for any probability measureand

every there is a constant , such that
for every

In particular, for every ,
up to logarithmic factors in and .

Clearly, one can obtain similar bounds for other values of
.

Proof: Let be the reproducing kernel Hilbert space
associated with . By the reproducing kernel property it fol-
lows that if , then

Thus, the “linear part” of every
is contained in the unit ball of . Again, by reproducing the
kernel property (6.3) and Lemma 6.5, eachmay be viewed
as a linear functional on an ellipsoid defined by the scaling se-
quence . Applying a similar argument to the one used in
Section VI-A, we can identify each as a linear functional
on an ellipsoid which has one additional “large” eigenvalue.
Hence, our result follows immediately from the selection of the
scaling sequence (Examples 6.6 and 6.7), the covering numbers
of the ellipsoid defined by the scaling sequences (Corollary 6.4)
and Theorem 4.2.

Remark 6.10:The condition in (6.4) is imposed simply to
ensure that the “linear” part of every is contained in
the unit ball of the reproducing kernel Hilbert space associ-
ated with . This could also be obtained by imposing a convex
constraint, namely, that . In that case, every

satisfies that .

It is worthwhile to compare our results with those obtained
in [21]. First, note that for generalization estimates, the norm
used in [21] is too strong, yielding poorer covering results. In-
deed, the authors were able to bound the entropy numbers of the
scaling operator , hence, they provided an-covering num-
bers estimate on the ellipsoid . When translated to cov-
ering numbers of the class on the domain , these are, in fact,

estimates. Indeed, if is represented by and
every is represented by , then

Hence, the class may be viewed as a class of linear func-
tionals contained in on a domain which is

. Let be an -cover of . Thus,
If , then for every

Therefore, for every

Our bounds are bounds, which suffice for the general-
ization results and are considerably smaller. For example, if the
eigenvalues of the kernel have a polynomial decay with expo-
nent , the covering numbers rate obtained in [21] is

for every , while here we get (up to
logarithmic factors) .

When the decay rate is exponential, our bound is essentially
the same as that in [21], since in both cases the “dominant part”
of the covering numbers is the “affine” part (the “”) of the
functions, which means that the covering numbers cannot be
better than . In our analysis there is an additional ef-
fect, which is due to some looseness in the bound on the cov-
ering numbers in terms of the fat-shattering dimension. On the
other hand, this byproduct has little influence on the complexity
bounds, since the dominant term in the learning sample com-
plexity estimate will always be at least of the order of .

VII. CONCLUDING REMARKS

There are several points which deserve closer attention and
were not treated here. First, there is the question of the rates of
the generalization bounds. Though we believe that the learning
sample complexity estimates presented here are optimal with re-
spect to the polynomial scale (i.e., ), we have not
proved it. Moreover, it is possible that there is some looseness
in logarithmic factors in . Of course, it is important to pro-
vide estimates on the constants, an issue which was completely
ignored here.

Secondly, we dealt with approximation in for . It
seems that our analysis does not extend to , since the
modulus of convexity of behaves differently for these values
of .

Finally, although we investigated the fat-shattering dimen-
sion of uniformly bounded functionals when considered as func-
tions on an ellipsoid in , a major part of the puzzle is still
missing. We have not presented the connection between the ge-
ometry of the space , the properties of the operator, and

, where : is a bounded op-
erator. The only case presented here is when , in which
the fat-shattering dimension is determined by the type of. The
general case is analyzed in [17].

APPENDIX

CONVEXITY

In this appendix, we present the definitions and preliminary
results needed for the proof of Lemma 3.3. All the definitions are
standard and may be found in any basic textbook in functional
analysis, e.g., [10].

Definition A.1: Given we say that a nonzero
functional separates and if
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It is easy to see that separates and if and only if there
is some such that for every and ,

. In that case, the hyperplane
separates and . We denote the closed “positive” halfspace

by and the “negative” one by . By
the Hahn–Banach theorem, if and are closed, convex, and
disjoint there is a hyperplane (equivalently, a functional) which
separates and .

Definition A.2: Let , we say that the hyperplane
supports in if and either or .

By the Hahn–Banach theorem, if is a ball then for
every there is a hyperplane which supportsin .
Equivalently, there is some , , and such that

and for every , .
Given a line , we say it supports

a ball in if and . By the
Hahn–Banach theorem, if supports in , there is a hyper-
plane which contains and supports in .

Definition A.3: We say that a Banach spaceis smooth if
for any there is a unique functional , such that

and .

Thus, a Banach space is smooth if and only if for everysuch
that , there is a unique hyperplane which supports the
unit ball in . It is possible to show [10] that for every

, is smooth. On the other hand, is not smooth, since
there are many hyperplanes supporting its unit ball in the unit
vector .

We shall be interested in the properties of the nearest point
map onto a compact convex set in “nice” Banach spaces, which
is the subject of the following lemma.

Lemma A.4:Let be a strictly convex space and let
be convex and compact. Then every has a unique nearest
point in .

Proof: Fix some and set . By
the compactness of and the fact that the norm is continuous,
there is some for which the infimum is attained, i.e.,

.
To show uniqueness, assume that there is some other

for which . Since is convex then

By the strict convexity of the norm, , which is
impossible.

Next, we turn to an important property of the nearest point
map onto compact convex sets in strictly convex, smooth spaces.

Lemma A.5:Let be a strictly convex, smooth Banach
space and let be compact and convex. Let and
set to be the nearest point toin . If ,
then the hyperplane supporting the ball at
separates and .

Proof: Clearly, we may assume that and that .
Therefore, if is the normalized functional which supports
at then for every , . Let ,
set to be the open halfspace , and assume

that there is some such that . Since is
convex, then for every , .
Moreover, since is the unique nearest point toin and since

is strictly convex, , otherwise, there would
have been some such that . Hence, the line

supports in . By the Hahn–
Banach theorem, there is a hyperplane which containsand
supports in . However, this hyperplane cannot bebecause
it contains . Thus, was two different supporting hyperplanes
at , contrary to the assumption that is smooth.

In the following lemma, our goal is to be able to “guess” the
location of some based on the its distance from .
The idea is that since is convex and since the norm of
is both strictly convex and smooth, the intersection of a ball
centered at the target and are contained within a “slice” of
a ball, that is, the intersection of a ball and a certain halfspace.
Formally, we claim the following.

Lemma A.6:Let be a strictly convex, smooth Banach
space and let be compact and convex. For any ,
let be the nearest point to in and set .
Let be the functional supporting in and put

Then, every satisfies that , where
.

The proof of this lemma is straightforward and is omitted.
Finally, we arrive to the proof of the main claim. We shall

estimate the diameter of the “slice” of using the modulus of
uniform convexity of . This was formulated as Lemma 3.3 in
the main text.

Lemma A.7:Let be a uniformly convex, smooth Banach
space with a modulus of convexity and let be com-
pact and convex. If and then for every

where .
Proof: Clearly, we may assume that . Using the

notation of Lemma A.6

Let , put and set
. Hence, , , and .

Thus,

Therefore,

and our claim follows.
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