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1 X-band CW EPR spectra under irradiation

Figure S1: Experimental (black) and simulated (red) X-band CW EPR spectra of the Ti0.909W0.091O2Nx

nanoparticles under irradiation with a 455 nm LED light source, measured at 50K around the free spin
region. The simulated spectrum is deconvoluted into its three components N1 (green), N2 (blue) and N3
(magenta). The relative spectral contributions are also reported in the Figure. The experimental spectrum
was recorded at 100 kHz field modulation frequency; 0.2mT field modulation amplitude; 2 ➭W microwave
power and 72 dB receiver gain.

.
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Figure S2: Experimental (black) and simulated (red) X-band CW EPR spectra of the Ti0.909W0.091O2Nx

nanoparticles under irradiation with a 455 nm LED light source, measured at 50K at high fields. The
simulated spectrum is deconvoluted into its two components W1 (green), W2 (blue). The relative spectral
contributions are also reported in the Figure. The experimental spectrum was recorded at 100 kHz field
modulation frequency; 0.2mT field modulation amplitude; 2➭W microwave power and 72 dB receiver gain.
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2 Dyson line simulation and analysis

The EPR spectrum at low fields reported in Figure 11 of the main manuscript was simulated

using a Dyson function with three parameters:1

PD ∝

[

∆B + α(B − B0)

4(B − B0)2 +∆B2
+

∆B + α(B +B0)

4(B +B0)2 +∆B2

]

(S1)

that was differentiated with respect to the magnetic field B to obtain the signal amplitude

s.a. of the derivative of resonance (first harmonic):

s.a. =
dPD

dB
(S2)

In equation S1, α, also called asymmetry parameter, represents the ratio of signal am-

plitude of the left peak A to the right peak B in the derivative of resonance; ∆B is the

Dyson linewidth and B0 is the Dyson line position in mT. Simulation was performed as

best fit of Equation S2 to the experimental spectrum in Figure 11, from which the optimised

parameters (reported in Figure 11) α, ∆B and B0 were derived. The fitting was perfomed

using a non-linear least square method based on the Levenberg-Marquardt algorithm, with:

function tolerance 10−6, maximum number of iterations 400, maximum function evalutations

1500.
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