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Abstract The next generation gravitational wave interferometric detectors will

likely be underground detectors to extend the GW detection frequency band to fre-

quencies below the Newtonian noise limit. Newtonian noise originates from the con-

tinuous motion of the Earth’s crust driven by human activity, tidal stresses and seismic

motion, and from mass density fluctuations in the atmosphere. It is calculated that on

Earth’s surface, on a typical day, it will exceed the expected GW signals at frequen-

cies below 10 Hz. The noise will decrease underground by an unknown amount. It is

important to investigate and to quantify this expected reduction and its effect on the

sensitivity of future detectors, to plan for further improvement strategies. We report
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624 M. G. Beker et al.

about some of these aspects. Analytical models can be used in the simplest scenar-

ios to get a better qualitative and semi-quantitative understanding. As more complete

modeling can be done numerically, we will discuss also some results obtained with a

finite-element-based modeling tool. The method is verified by comparing its results

with the results of analytic calculations for surface detectors. A key point about noise

models is their initial parameters and conditions, which require detailed information

about seismic motion in a real scenario. We will describe an effort to characterize the

seismic activity at the Homestake mine which is currently in progress. This activity

is specifically aimed to provide informations and to explore the site as a possible

candidate for an underground observatory. Although the only compelling reason to

put the interferometer underground is to reduce the Newtonian noise, we expect that

the more stable underground environment will have a more general positive impact

on the sensitivity. We will end this report with some considerations about seismic and

suspension noise.

Keywords Gravitational waves · Noises

1 Introduction

The noise sources that limit the design sensitivity of the first and second generation

gravitational interferometric wave detectors (GWID) are well identified [1]. At very

low frequency the seismic noise plays a dominant role. It affects the detector design

because seismic vibrations have to be sufficiently attenuated through the seismic filter

chain used to suspend the test masses. Furthermore, seismic noise complicates the

controls of the seismic filter chain (giving rise to the so-called control noise). The

required seismic noise reduction for second generation GWID will be achieved by

improving passive and active vibration isolation systems. To suppress seismic noise in

third generation detectors, the test masses will be suspended from even more sizeable

and complex seismic attenuators.

More importantly, seismically induced fluctuating gravitational fields directly cou-

ple to the test masses themselves, bypassing all attenuation stages. This limitation is

called Newtonian noise or gravity gradient noise (NN from now on). Figure 1 (top)

shows the expected noise budget for a “second generation” GWID. Figure 1 (bottom)

shows a comparison between NN noise [4–6] and the planned sensitivity of a third

generation detector (the Einstein Telescope, see http://www.et-gw.eu/). Arguably, NN

becomes the most critical sensitivity limit in the low frequency region.

NN originates from both seismic and atmospheric density fluctuation, generating a

varying gravitational force on the test mass, which is in practice indistinguishable from

GW. In general, seismic waves originate from crustal creep, human induced activities

(cultural seismic noise), ocean and ground water dynamics, slow gravity drifts, and

atmospheric influences. Since no filter or shield can be built for gravitational coupling,

suppressing this noise source is difficult and low seismicity sites should be identified.

To quantify the issue, Fig. 1 (bottom) shows that a reduction of NN of at least

a factor 10 is required in order to obtain the desired “conventional ET” sensitivity
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Fig. 1 In the top plot we show the current estimates for some important noise contributions to Advanced

LIGO. The plot was generated with the GWINC matlab script [1]. Updated estimates can be found in [3].

In the bottom plot the Advanced LIGO sensitivity (green) is plotted together with two possible sensitivi-

ties for a third generation interferometer, ignoring the NN contributions. The blue curve correspond to a

“conventional” realization of Einstein Telescope (see [1]), the black one to a different implementation with

an optimized low frequency sensitivity (see [2]). The filled region correspond to the predicted NN noise,

accordingly with [5]

below 20 Hz, and much more to allow for a “low frequency optimized ET” sensitivity.

Ignoring other noises, at 1 Hz the gravity gradient noise (on the surface) must be

suppressed by a factor of about 103 to make gravitational-wave detection feasible at

this frequency.
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626 M. G. Beker et al.

On Earth’s surface, the dominant sources are expected to be the seismic motion

of the ground, atmospheric fluctuations, and the human factor. The seismic motion

contribution is dominantly caused by the heavy soil replacing light air as the seismic

waves propagate along the surface. In principle, this noise source could be suppressed

using an active suppression system, based on a two-dimensional array of seismom-

eters or accelerometers around the interferometer tracking the vertical motion of the

surface and subtracting from the interferometer’s signal the fraction correlated to it.

In practice, due to the short correlation length of seismic waves on the surface (∼10 m

at 1 Hz), which is a consequence of the small speed of sound in the surface layers, of

low cohesion and large density variations of surface soil, and of the presence of local

noise sources, the number of these instruments would have to be large (likely several

thousands [17]). The atmospheric fluctuations include pressure and temperature fluc-

tuations, wind, rain etc. Their effect is estimated to be of similar size to the seismic

ground motion [4,7]. Moreover, it is not clear whether it is feasible to design a sensing

system capable to track the atmospheric conditions to the detail needed to subtract this

noise source. Such a system would also require a non-trivial task of processing a large

data flow to extract the gravity gradient signal. Finally, the human factor, including

effects such as ground/air traffic or local activities, would also be difficult to control

on the surface.

The underground environment is expected to improve on all sources of gravita-

tional noise. The atmospheric fluctuations are relatively far and the local environ-

mental conditions underground are usually stable (and controllable). Similarly, the

human-induced gravitational fluctuations are much more controllable underground,

where access is limited. This leaves the seismic motion as the unavoidable dominant

source of the gravitational noise underground.

The surface wave seismic noise is exponentially reduced with depth, ∼e−4d/λ,

where d is the depth and λ is the wavelength of the seismic wave. Our preliminary

measurements at the Homestake mine, (Sect. 4), indicate a factor of ∼10 suppression

at 1 Hz at the depth of 600 m, and substantially more at higher frequencies. At Homes-

take the speed of sound at 1–2 km underground (hardrock) is ∼5 km/s, implying that

the seismic waves in the 0.1–10 Hz band have much longer wavelengths that at the

surface: 500 m–50 km. These dimensions are much larger than the size of the cavities

that would host the interferometer, so to zero-th order their movement from passing

seismic waves would have only a small effect on the gravitational field at the center of

the cavity. More importantly, the correlation length for seismic waves at these frequen-

cies will be much larger than on the surface. This fact has two important implications.

First, the gravity gradients will be correlated across the entire detector, which will

suppress their noise contribution especially at the lowest frequencies (largest wave-

lengths). Second, the higher correlation in compact rocks makes so that the number

of instruments needed for an active suppression system (such as an array of seismom-

eters) is expected to be significantly smaller than on the surface. Active suppression

comes in addition to the ten-times noise reduction from the deep location; at 1 Hz the

noise suppression system would need to provide only a 100-times suppression factor.

The actual situation is complicated by the local geology limiting the correla-

tion length. Correlation measurements show resonances related to inhomogeneities

of the ground between the two seismometer locations [9]. Fundamental resonance
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Improving the sensitivity of future GW observatories in the 1–10 Hz band 627

frequencies of the local geology also deform the seismic field in a characteristic way

which can be revealed in local measurements with a single seismometer [10]. Reso-

nances are created by reflections from so-called impedance contrasts, which mark a

sudden change in rock density and wave speed. Indeed, former drill-hole studies at

Homestake proved that the local rock formation exhibits large planes of discontinuities

which appear as smooth interfaces on kilometer scales [11]. Whether such structure

results in standing (seismic) waves over kilometer lengths remains to be investigated.

At smaller scales (10–100 m) the rock inhomogeneities become irregular, partially

because of the mine workings which decrease the mean density of the rock and gener-

ate additional scattering of waves at 10–100 m wavelengths. Although such scattering

is relevant at high frequencies (>50 Hz), it could potentially decrease the correlation

length for seismic waves underground and hence impact the design of a GWID.

Although an interferometer could be placed at a safe distance from any mined

volume, it cannot avoid its own tunnels and cavities. It is, therefore, crucial to make

detailed measurements of the seismic noise underground to understand its ampli-

tude and correlation length as a function of depth, frequency, rock composition,

excavations, etc.

Displacement noise data have been analyzed [12,13] for various surface and under-

ground sites. Although the SGN low noise model [14] (more recent that the new low

noise model NLMN [15]) shows displacement noise as low as 0.1 nm/
√

Hz at fre-

quencies near 1 Hz, sites with such levels are difficult to find, mainly due to cultural

noise. Various sites have been identified that feature seismic displacement noise levels

around 1 nm/
√

Hz. These include the Black Forest Observatory, BFO, the Seismo-

logische Observatorium Berggieshübel, BRG, and the Graefenberg, GRFO, borehole

station in Germany, and the CLIO site in Kamioka, Japan.

The BFO station is realized in a formed nickel mine. The sensors are located at

a depth of 62 m in granite base-rock, covered by sediments. BRG is an abandoned

mine with hornblende slates geology with sensors located at 36 m depth. GRFO is a

116 m deep borehole with sensors in chalk and dolomite. In Japan the test site for the

Cryogenic Laser Interferometer Observatory (CLIO) at 1 km depth in the Kamioka

mine located 220 km west from Tokyo. CLIO is a Fabry-Perot interferometer built as

a precursor of the Large Cryogenic Gravitational Telescope (LCGT), a project which

is waiting to be approved of an underground cryogenic interferometer with 3 km long

arms.

The Japanese site country rock is generally hard and fine-grained stable bedrock

(gneiss) with an elastic speed exceeding 6 km/s. Figure 2 shows quiet night-time dis-

placement noise spectra for BFO, BRG, GRFO and CLIO. For comparison the SGN

low noise model [14] (more recent than NLNM) data from the GEO600 gravitational

wave detector near Hannover and data from the Homestake mine at a 1,250 m depth

(see Sect. 4 for a detailed discussion) are shown.

The displacement noise of BFO, BRG and GRFO can be roughly described as

0.5–0.8 nm/
√

Hz at 1 Hz further falling as 1/ f 2 at higher frequencies. Noise levels

are less than an order of magnitude above SGN, lower than the Kamioka values, and

significantly lower than those obtained at the GEO600 surface site. For BFO diurnal

variations of about a factor 2–3 have been determined for frequencies in the range

1–10 Hz. Figure 3 shows noise spectra from the BFO station.
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Fig. 2 Displacement noise spectra from the BFO, BRG and GRFO seismic stations in Germany [13]. For

comparison data from Kamioka and GEO600, the SGN low noise model [14] and the data from Homestake

mine at 1,250 m depth are shown. The Homestake data are obtained by minimizing over the 12-day period

at each frequency bin. They are comparable with NLMN [15] or the cited SGN, which are obtained by a

similar minimization over a large network of surface seismic stations

Fig. 3 High frequency cultural noise at the Black Forest Observatory in Germany http://www-gpi.physik.

uni-karlsruhe.de/pub/widmer/BFO/. The color code at quiet times (i.e. Sunday) corresponds to the trace

“BFO, night” in Fig. 2. The amplitude spectral density at more noisy times (i.e. Monday 6–11 UT), is

roughly a factor of two higher for the region 2–10 Hz, and up to a factor of 10 just below 5 Hz

Cultural noise is seen on working days, between 6 a.m. and 4 p.m. The noise is

strongest around 5 Hz and is presumably caused by sawing mills in the vicinity of the

site. This is an example of cultural noise with a particular frequency spectrum (i.e.

non-uniform frequency excitation) originating from specific places on the surface.

2 Analytical models for NN

For a given distribution of masses, which can be described by a mass density function

ρ (x, t), the acceleration experienced by a test mass located at y can be written as
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aN N (y, t) = G

∫

V

ρ (x, t) K (x − y) dVx (1)

where the integration is extended to the volume V of interest and

K (x) =
x

|x|3
(2)

We are interested in the fluctuating part of this quantity when the medium is an elastic

solid. From the expression of mass conservation we get

ρ̇ + ∇ · Jm = 0 (3)

where the mass density current is given by Jm = ρ0 (x) ξ̇(x, t), ρ0 being the density

of the medium in the static configuration and ξ its small displacement at a given point.

We will work in the frequency domain, so transforming and inserting Eq. (3) inside

Eq. (1) we find

aN N (y, ω) = −G

∫

V

∇
[

ρ0 (x) ξ (x, ω)
]

K (x − y) dVx (4)

Note that this expression contains two different effects, as can be seen expanding

the derivative. The terms proportional to ρ0∇ξ describes the fluctuations of the local

density connected to the compression of the medium, while the term ξ · ∇ρ0 takes

into account the effect of the movement of density inhomogeneities, for example at

the surface boundary. We get an alternate expression with an integration by parts

aN N (y, ω) = G

∫

V

[

∇ ⊗ K (x − y)
]

ρ0 (x) ξ (x, ω) dVx

− G

∫

∂V

K (x − y) ρ0 (x) ξ (x, ω) · dSx (5)

where the symbol ⊗ represents the dyadic product and we used

[∇ ⊗ K (x)]T = [∇ ⊗ K (x)] =
|x|2 1 − 3x ⊗ x

|x|5
(6)

as the gravitational field is curl free. In the following we will neglect the second term

in Eq. (5). This is reasonable because fluctuations are not supposed to be coherent

at large distances, so they will give a negligible contributions when integrated on a

far away surface. The relevant quantity from our point of view is the power spectrum

of the noise induced by the random acceleration of the test masses. The strain noise
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Table 1 The quantities that

characterize a standard

interferometer with arm length

L in Eqs. (7) and (9)

m 1 2 3 4

σ(m) −1 +1 −1 +1

i(m) x x y y

x(m) Lnx 0 0 Lny

equivalent for an interferometer with arms oriented along the x and y axis, of length

L , can be written as

hN N (ω) =
δL N N

x (ω) − δL N N
y (ω)

L
=

1

ω2 L

4
∑

m=1

σ(m)a
N N
i(m)

(

x(m)

)

(7)

The values of σ(m), i(m) and x(m) defines the optical configuration (a standard inter-

ferometer in our case) and are listed in Table 1 for clarity.

The power spectrum SN N
h of hN N is given by the expectation value

〈

hN N (ω)∗ hN N
(

ω′)
〉

= 2πδ
(

ω − ω′) SN N
h (ω) (8)

where the δ
(

ω − ω′) is due to the fact that we are assuming stationarity.

Note that if the accelerations of the two mirrors of an optical cavity are coherent, the

fluctuations of aN N
x (y + Lnx , ω)−aN N

x (y, ω) and aN N
y (y, ω)−aN N

y

(

y + Lny, ω
)

will be reduced, and the noise suppressed. This is expected to be the case in the low

frequency regime.

Inserting the expression (7) inside the Eq. (8) we can express the NN power spec-

trum as a sum of several contributions

SN N
h (ω) =

1

L2ω4

4
∑

m,n=1

σ(m)σ(n) Ai(m)i(n)
(x(m), x(m)) (9)

each generated by a cross correlation between the gravitational acceleration evaluated

at two points x, y which can be defined as

〈

aN N
i (x, ω)∗ aN N

j

(

y, ω′)
〉

= 2πδ
(

ω − ω′) Ai j (x, y) (10)

In order to make predictions about NN we need some assumption about the dynamic

of the elastic medium. We assume that it is possible to classify the normal modes of

oscillation for the system. These modes are excited by external unspecified influences,

and at the same time they lose energy as a results of dissipation and scattering effects.

We suppose that it is possible to write the total displacement field as

ξ (x, ω) =
∑

(k)

g(k)(ω) ξ (k) (x) (11)
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where the sum is over all the modes, labeled synthetically by the multi-index (k) and

normalized such as
(

ξ (k), ξ (k′)
)

= δ(k)(k′) using an appropriate scalar product that

in the case of normal modes is given by the kinetic energy, as we will see in a spe-

cific example in Sect. 2.1. The amplitudes g(k) are modeled as stochastic amplitudes

of unknown properties. We are interested in particular to their second order statistic,

which we can parametrize assuming again stationarity as

〈

g∗
(k) (ω) g(k′)

(

ω′)
〉

= 2πδ
(

ω − ω′)C
g

(k)(k′) (ω) (12)

Inserting the mode expansion in Eq. (10) we can express the correlation between

gravitational accelerations in term of the unknown quantities C
g

(k)(k′) obtaining

Ai j (x1, x2) = G2ρ2
0

∑

(k)(k′)

C
g

(k)(k′) (ω) I
(k)
i (x1)

∗ I
(k′)
j (x2) (13)

where the integrals

I(k) (x) =
∫

∇ ⊗ K (y − x) ξ (k) (y) dVy (14)

are independent by the correlation of the amplitudes g(k) and quantify the contribution

of a given mode to the NN at a point. The final result, which can be obtained inserting

Eq. (13) inside Eq. (9), is the expression of the NN power spectrum SN N
h in term of

the unknown C N N
(k)(k′).

Now we need to connect SN N
h with measurable quantities. A natural candidate is

the correlation between the seismic displacement at two points

〈

ξ (x1, ω)∗ ⊗ ξ
(

x2, ω
′)〉 = 2πδ

(

ω − ω′)Cseism (x1, x2, ω) (15)

which can also be expanded in modes, obtaining

Cseism
i j (x1, x2, ω) =

∑

(k)(k′)

C
g

(k)(k′) (ω)

{

ξ
(k)
i (x1)

∗ ξ
(k′)
j (x2)

}

(16)

Ideally we can invert this relation and obtain C
g

(k)(k′). Using the scalar product

defined over the modes we find formally

C
g

(k)(k′)(ω) =
(

ξ (k′), C
seismξ (k)

)

(17)

and the NN power spectrum will be written as

SN N
h (ω) =

G2ρ2
0

L2ω4

∑

(k)(k)′

(

ξ (k′), C
seismξ (k)

)
4
∑

m,n=1

σ(m)σ(n) I
(k)
i(m)

(

x(m)

)∗
I
(k′)
i(n)

(

x(n)

)

(18)
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However this way to solve the problem assumes that we know everything about

seismic correlations, which is not a realistic assumption. We thus need to understand if

it is possible to estimate SN N
h from an incomplete knowledge of the seismic excitations.

A simple approach can be as follows. We can interpretate Eq. (16) as a scalar prod-

uct between the unknown “vector” C
g

(k)(k′) and a known one (the quantity between {}
braces) which represents the measurement of a seismic quantity. The scalar product

is given simply by the double sum over modes. In the same way Eq. (18) can be seen

as the scalar product between C
g

(k)(k′) and another known vector which represents the

measurement of NN. We can estimate this scalar product, which is the quantity we are

interested in, by approximating C
g

(k)(k′) with its projection in the subspace spanned by

the seismic measurements. In other words

SN N
h (ω) ≈ N+S

(

S+S
)−1

M (19)

where N is the NN measurement vector, S a matrix with columns given by the seismic

measurement vectors and M the vector of their results.

This procedure can be improved if we assume some symmetry, for example homo-

geneity and/or isotropy. In the homogeneous case for example it must be possible to

classify the modes using the horizontal wave vector (kx , ky). An immediate conse-

quence is that only modes with the same (kx , ky) could be correlated, and this will

strongly reduce the number of unknown quantities to be estimated or, to express the

same concept in a different way, we will need to consider only a restricted subspace

of all the possible measurements.

A more refined approach could be based on the Bayesian approach [16], in particular

on the maximum entropy method. This is currently under investigation.

2.1 Simplified NN estimate

The final result of this subsection will be an expression of SN N
h in terms of available or

(hopefully) measurable seismic quantity. We will limit our discussion to a simplified

model.

We model the ground as a homogeneous medium of given density ρ0, longitudinal

sound speed cL and transverse one cT . The normal modes ξ (k) can be obtained in this

case from the Lagrangian

L =
1

2
ρ0ξ̇i ξ̇i

˙
−

1

2
ρ0c2

T

(

ξi, j

)2 −
1

2
ρ0

(

c2
L − c2

T

)

ξi, jξi, j (20)

and they will be orthogonal with respect to the scalar product defined by

(ξ1, ξ2) =
∫

ξ1(r)
∗ · ξ2(r)dVr (21)

Neglecting the effect of underground structures, as for instance the galleries needed

to accommodate the interferometer underground, we can use the results of [6]. This

should be a reasonable approximation when the wavelength is much larger than the
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typical structures’ size. We will include only surface waves in our simplified model.

These can be labeled by the two components Kx , K y of the horizontal wave vector

and written as

ξ (Kx ,K y) = K −1/2
N

⎡

⎣i

(

eβL K z −
2βLβT

1 + β2
T

eβT K z

)

⎛

⎝

Kx

K y

0

⎞

⎠

+ βL K

(

eβL K z −
2

1 + β2
T

eβT K z

)

⎛

⎝

0

0

1

⎞

⎠

⎤

⎦ ei Kx x+i K y y

where βT =
√

(1 − x)/x, βL =
√

(1 − xξ)/x, ξ = c2
T /c2

L and x is the solution of

x3 − 8x2 + 8x(3 − 2ξ) + 16(ξ − 1) = 0 with 0 < x < 1. The mode independent

normalization constant N is fixed by the requirement that

(

ξ (Kx ,K y), ξ (K ′
x ,K ′

y)
)

= (2π)2 δ
(

Kx − K ′
x

)

δ
(

K y − K ′
y

)

(22)

and the sum over modes is defined by

∑

(k)

≡
∫ ∫

d Kx

2π

d K y

2π
(23)

Note that these modes correspond to a resonance frequency given by ω = K cT

√
x .

They are exponentially damped in z, and are expected to be the dominant contribution

to NN, mainly because they are preferentially excited by surface forces, and are an

efficient way to transport energy over long distances.

Now we assume both homogeneity and isotropy in the horizontal plane. This means

that the seismic correlations will be of the form

Cseism
zz (x, y) = CV V (|h| , z1, z2)

Cseism
z I (x1, x2) = h I CV H (|h| , z1, z2)

Cseism
I J (x1, x2) = δI J C S

H H (|h| , z1, z2) +
(

h I h J −
1

2
|h|2 δI J

)

CT
H H (|h| , z1, z2)

where h is the projection of x − y in the horizontal plane and I, J ∈ {x, y}. Inserting

these expressions in Eq. (16) it is possible to verify directly that

C
g

(Kx ,K y)(K ′
x ,K ′

y)
= (2π)2 δ

(

Kx − K ′
x

)

δ
(

K y − K ′
y

)

S
g

(Kx ,K y)
(24)

which means that different modes are uncorrelated. As a consequence of isotropy,

S
g

(Kx ,K y)
will be really a function of K only, S

g

(Kx ,K y)
≡ S

g

K , and we can rewrite
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Eq. (16) as

Cseism
i j (x1, x2, ω) =

∫

d Kx d K y

(2π)2
S

g

K (ω)ξ
(Kx ,K y)

i (x1)
∗ ξ

(Kx ,K y)

j (x2) (25)

In order to understand the meaning of this expression let us specialize to the case of

vertical seismic correlations on the surface.

The first observation is that Cseism
V V is essentially the (order 0) Hankel transform of

K S
g

K

Cseism
V V (|h| , 0, 0;ω) = C

∫

d Kx d K y

(2π)2
S

g

K (ω)K eiK·h

=
C

2π

∫

S
g

K (ω)J0 (K |h|) K 2d K (26)

(C is a normalization constant) and the transformation can easily be inverted obtaining

S
g

K . This means that we can fully characterize the parameters of this model with sur-

face measurements, and obtain a prediction for NN. We can also insert S
g

K in Eq. (16)

obtaining the general seismic cross correlation function from a knowledge of the Cseism
V V

only. This give us a method to check the validity of the model.

Another important point is that with an appropriately chosen S
g

K we can explore the

effects of a finite correlation length. The general idea is that S
g

K contains the informa-

tion both about the strength of the unknown forces that excite a given mode, and about

the response of the mode when forced at a non-resonant frequency. We will see in a

specific example that if a mode is excited only at its resonant frequency the seismic

correlation has a power-law asymptotic behavior. If the mode has a finite quality factor

the typical asymptotic behavior is exponential.

The coupling of a mode to the NN is given by the integral (14) which can be esti-

mated easily in our case. For simplicity we will consider the gravitational acceleration

along the direction x of single test mass located at a position r inside a spherical cavity

of radius R. For a better understanding we will discuss separately the bulk and the

surface contributions.

Bulk contributions are proportional to ∇ · ξ (Kx ,K y). An explicit evaluation of this

quantity shows that only the longitudinal part contribute, as expected. The mode cou-

pling to NN will be proportional to

I
(Kx ,K y)

bulk (x) = 2πN K −1/2
∇x

{

eiK·h
[

2eβL K z − (1 + βL)eK z
]}

(27)

which is exponentially damped with the position of the mass.

The surface contribution is also exponentially damped, and it is given explicitly by

I
(Kx ,K y)

sur f (x) = 2πN K −1/2
βL

(

β2
T − 1

)

β2
T + 1

∇x eK z+iK·h (28)

We consider now the effect of the cavity. Because we neglect its effect on the normal

modes, we will be able to give only an estimate, which is expected however to be
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Fig. 4 The geometrical

suppression factor F as a

function of the ratio between the

mode’s wavelength λ and the

length L of the interferometer’s

arm. F suppress the NN at low

frequency. It is normalized to

one in the high frequency region,

where the contribution of the

motion of each test mass is

uncorrelated and adds in

quadrature
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accurate enough when the cavity size is small compared with the wavelength of the

mode. In this limit we get

I
(Kx ,K y)

bulk,c (x) = −2πN K −1/2 (K R)2 (β2
L − 1)∇x eKβL z+iK·h (29)

where we added a factor (−1) to take in account the fact that this must be subtracted.

This is also damped with the depth, and suppressed by a factor (R/λ)2. The contribu-

tion of the surface of the cavity is

I
(Kx ,K y)

sur f,c (x) = −
4

3
πN K −1/2 (K R)2

(

β2
L − 1

)

∇xeKβL z+iK·h (30)

which is also suppressed. We can write now the final expression for the NN estimate.

Neglecting for simplicity the cavity contributions we have

SN N
h (ω) =

4πG2ρ2
0

L2ω4

∫

N
2S

g

K (ω)

[

2eβL K z −
1 + 2βL + β2

T

β2
T + 1

eK z

]2

F (K L) K d K

(31)

where the factor

F (K L) = 1 + 2J2(kL) −
2

kL
J1(kL) −

1

2
J2

(

kL
√

2
)

(32)

describes the coherence between the gravitational accelerations of different test masses,

which is apparently real and near to one in the low frequency regime. This is due to

the fact that when λ < L the phase factors suppress the integral unless the masses are

located at the same place (see Fig. 4)

This expression do not change if we rescale N , because the factor will be

re-adsorbed by the change of S
g

K . To make this explicit we can substitute S
g

K with our

preferred seismic estimate for it. With surface modes only we can write for example
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the inverse of Eq. (25) as

K S
g

K (ω) =
2π

N 2β2
L

(

β2
T + 1

β2
T − 1

)2
∫

Cseism
vv (r;ω) J0 (Kr) rdr (33)

We can compare this prediction with previous estimates in literature by assuming that

modes are excited only at their natural frequency. This means that

K S
g

k (ω) =
2π

N 2β2
L K

(

β2
T + 1

β2
T − 1

)2

Cseism
vv (0;ω) δ

(

K −
ω

cT

√
x

)

(34)

Inserting this expression in Eq. (31) we find a transfer function between vertical

seismic noise and NN

√

SN N
h (ω)

Cseism
vv (0;ω)

=
4πGρ0

Lω2
√

2

×
(

2
(

β2
T + 1

)

eβL K z −
(

1 + 2βL + β2
T

)

eK z

βL

(

β2
T − 1

)

)

F

(

ωL

cT

√
x

)1/2

(35)

and setting z = 0 we can directly compare with [5,6], taking into account the fact that

we have only surface modes in our model.

The attenuation factor, which is the ratio between the NN amplitude at a depth z

and the one on the surface, can be obtained comparing the intermediate factor between

in Eq. (35). It is plotted in Fig. 5 for several selected frequencies, as a function of the

depth.

For a given frequency NN can be zero at a peculiar depth. This in a sense is an

artifact of our oversimplified model, and depend from our assumption that a mode

contribute to the NN noise only at its resonant frequency. Another consequence of this

assumption is that the vertical seismic correlation is proportional to J0

(

ωr

cT

√
x

)

, so it

decrease quite slowly (as r−1/2) at large distances, which is also quite unrealistic.

We can take into account coherence effects by imposing a finite linewidth to S
g

K .

Just for illustrative purpose we can choose a Gaussian linewidth

K S
g

K (ω) ∼ exp

⎡

⎣−
1

2Ŵ2

(

K −
ω

c2
T

√
x

)2
⎤

⎦ (36)

and compare the result for the N N estimate. We do not report the analytical details

here,̧ instead we present the result comparing the attenuation factor at different values

of Ŵ in Fig. 6.

We see the expected smoothing effect, and also an apparent saturation of the atten-

uation factor for the smallest Q. This can be understood, because when the quality

123



Improving the sensitivity of future GW observatories in the 1–10 Hz band 637

0 50 100 150 200

depth (m)

10
6

10
5

10
4

10
3

10
2

10
1

1

Fig. 5 The attenuation factor (vertical axis) predicted by Eq. (35) as a function of the depth (horizontal

axis, in m) for selected frequencies. The correspondence is red 1 Hz, green 2 Hz, blue 5 Hz, orange 10 Hz,

purple 20 Hz and brown 50 Hz. Here cT 220 m/s and cL 440 m/s (continuous line) or cL = 880 m/s (dashed

line). The zero appears when the two exponentially damped factors in Eq. (35) cancel. Before and after this

point the decrease will be dominated by one of the two, therefore the decay constant changes

Fig. 6 Effect of the quality

factor on the attenuation factor

(vertical axis) as a function of

the depth (horizontal axis, in m)

for selected frequencies. The

correspondence is red 1 Hz,

green 2 Hz, blue 5 Hz, orange

10 Hz, purple 20 Hz and brown

50 Hz. Here cT = 220 m/s and

cL = 440 m/s. Quality factor is

modeled using Eq. (36) and

correspond roughly to Q = 104

(continuous line), Q = 103

(dashed line) and Q = 2 × 103

(dotted line)
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factor is small there are longer wavelength modes which are excited for a given fre-

quency. Coherence effect have also an impact on the estimate of NN, which will not

be discussed here.

2.2 NN subtraction

A possible approach to the problem of NN mitigation is its subtraction. The basic idea

is to exploit the expected correlation between NN and a set of auxiliary quantities

which are continuously monitored [17].
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The natural candidates for these are seismic displacement, and we can imagine a

basic scenario where a set of sensors (let’s say displacement sensors) record several

time series.

We will consider here the simplest possibility, namely we suppose that the rele-

vant quantities are stationary in a statistical sense. The time series recorded by the

I th sensor will be X I = sI + σI , where sI is the seismic displacement evaluated at

the sensor’s position and σI its instrumental noise. We will write the output of the

interferometer as Y = H + N , where N is the NN and H the remaining part, which

we suppose uncorrelated with the seismic motion. Note that from the point of view of

the subtraction we can threat seismic and Newtonian noise on the same footing, and

we will do this in the following. A simple way to state the problem is asking what is

the linear combination of the interferometer’s and sensors’ time series

Ys(ω) = Y (ω) +
∫

dω′
∑

I

αI (ω, ω′)X I (ω
′) (37)

which we can call subtracted signal which minimizes the power spectrum at each fre-

quency. The minimization variables are the functions αI (ω), which clearly represent

linear filters that must be applied to the output of the sensors before adding them to

the interferometer’s data. The power spectrum SYs Ys of the linear combination (37) is

related to the correlation

〈

Ys(ω)∗Ys(ω
′)
〉

=
〈

Y (ω)∗Y (ω′)
〉

+
∫

dω′′
∑

I

αI (ω, ω′′)∗
〈

X I (ω
′′)∗Y (ω′)

〉

+αI (ω
′, ω′′)

〈

Y (ω)∗ X I (ω
′′)
〉

+
∫

dω′′dω′′′
∑

I,J

αI (ω, ω′′)∗αJ (ω′, ω′′′)
〈

X I (ω
′′)∗ X J (ω′′′)

〉

(38)

and minimizing this expression with respect to αK (ω, ω′′)∗ we obtain a set of linear

integral equations for the optimal filters

〈

X K (ω′′)∗Y (ω′)
〉

+
∑

J

∫

dω′′ 〈X K (ω′′)∗ X J (ω′′′)
〉

αJ (ω′, ω′′′) = 0 (39)

In principle the expressions of αJ ’s can be obtained by finding the inverse of the kernel

KK J (ω, ω′) ≡
〈

X K (ω)∗ X J (ω′)
〉

, formally

aI (ω
′, ω) = −

∑

K

∫

dω′′K −1
I K

(

ω,ω′′) 〈X K (ω′′)∗Y (ω′)
〉

(40)

If non stationary noise is present, we should define what is the relevant quantity that

must be maximized, as the definition of the optimal apparatus sensitivity cannot be

123



Improving the sensitivity of future GW observatories in the 1–10 Hz band 639

given it term of noise power spectrum only. In the stationary case we can write

〈

X I (ω)∗Y (ω′)
〉

= 2πδ
(

ω − ω′)CSN I (ω) (41)

and define CSN (ω) as the vector whose I th component is the cross correlation between

the I th sensor’s output and the NN. Similarly

〈

X I (ω)∗ X J (ω′)
〉

= 2πδ
(

ω − ω′) [CSS I J (ω) + C I J (ω)] (42)

Here the I, J entry of the array CSS is the cross correlation between the seismic noise

measured by the I th and J th sensors. Similarly C I J is the correlation between the

intrinsic noises of the I th and J th sensors. Finally

〈

Y (ω)∗Y (ω′)
〉

= 2πδ
(

ω − ω′) [CN N (ω) + CH H (ω)] (43)

is the decomposition of interferometer’s power spectrum in a Newtonian Noise con-

tribution plus all which is uncorrelated with it. Putting all this inside Eqs. (40) and

(38) we get the optimal filters

αI (ω, ω′) = −δ
(

ω − ω′) [CSS(ω) + C(ω)]−1
I J [CSN (ω)]J (44)

which in the stationary case considered are time invariant, and the amplitude efficiency

ǫ(ω) of NN subtraction, which we define in term of the ratio between the power spectra

of the subtracted (SYs (ω)) and unsubtracted (SY (ω)) interferometer’s signal spectral

amplitude

1 − ε (ω) =

√

SYs (ω)

SY (ω)
=

√

1 −
C+

SN (ω) [CSS (ω) + C (ω)]−1 CSN (ω)

CN N (ω)
(45)

Note that (1 − ε)2 gives the ratio between the power spectra of the NN contained in

the subtracted and un-subtracted signal.

Equation (45) tells us that to achieve a good subtraction efficiency three conditions

are needed. First of all the sensors should be coupled as much as possible to NN, in

other words CSN must be as large as possible. Second, the intrinsic noise of the sensor

described by C should be small. Third, the correlation between quantities measured

by different sensors, described by CSS , must also be low. It is important to observe

that the second term below the square root is always positive, so the procedure will

never reduce the sensitivity at each frequency.

The quantities CSS, CSN and CN N can be estimated using a given model. CN N is

clearly given by Eq. (31), and CSS by Eq. (25). A similar formula can be derived also

for CSN . Note that only CSS can be measured easily, so there is no real hope to fully

test the subtraction procedure without building a NN sensitive detector.

One issue to be investigated is connected with the optimal way in which the set of

sensors available must be displaced on the field. This can be studied theoretically using

a given model, and optimizing Eq. (45) over the positions and the orientations. For
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illustrative purposes we report the results of a simple optimization study, done using

a model with seismic correlations characterized by a single (frequency dependent)

correlation length ξ(ω).

We consider a single test mass inside an infinite medium, and we suppose that

each sensor can monitor the mass density fluctuation at its position. The i th sensor is

also affected by a intrinsic noise σ̃i ( f ), without correlations between σ̃i and σ̃ j when

i 
= j . We model the density fluctuations as a Gaussian stochastic field described by

an exponential cross correlation function

〈

ρ̃ (ω, x)∗ ρ̃
(

ω′, x′)∗〉 = 2πŴ(ω)2δ
(

ω − ω′) exp

(

−
∣

∣x − x′∣
∣

ξ(ω)

)

(46)

The correlation functions relevant for the subtraction are easily evaluated, obtaining

CSS (ω)I J + C (ω)I J = Ŵ(ω)2 exp (− |uI − uJ |) + σ 2(ω)δI J (47)

CSN (ω)I = 4πξGŴ(ω)2 cos θI �(u I ) (48)

CN N (ω) =
16

3
π2ξ2G2Ŵ(ω)2 (49)

where uI = ξ−1rI is the position of the I -th sensor measured in ξ units, θI the angle

between the axis along which the Newtonian acceleration is measured and the sensor’s

position vector and

�(u) =
1

u2

[

2 − e−u
(

2 + 2u + u2
)]

(50)

For a given arrangement of the sensors Eq. (45) becomes

1 − ǫ =

√

1 − 3

(

e−|uI −uJ | +
σ 2

Ŵ2
δI J

)−1

�(u I )�(u J ) cos θI cos θJ (51)

With two sensors only the optimal positions are on the Newtonian acceleration

axis, ad a distance d ≃ ±1.281 ξ from the est mass (we will consider only the σ = 0

case). The cos θ factor is maximized along the axis, while �(u) has a maximum at

u ≃ 1.451. In this optimal case 1 − ǫ ≃ 0.902. If we add a third sensor, we can eval-

uate 1 − ǫ as a function of its position, with the other two fixed. This is represented

in Fig. 7, assuming that the NN is measured along the z axis. We can see how the

subtraction efficiency changes with the position of the sensor, measured in unit of the

correlation length. There is no improvement if we put the third sensor near the others,

due to the complete correlation of the new measurement with the others. We do not

gain anything far from the test mass or at z = 0, because in this case the measure

is uncorrelated to NN. The best positions are along the z axis, at a distance roughly

doubled from the center.

The model is quite crude so these are only indicative results, which however

shows one expected feature. The separation between the sensors must be optimized

accordingly with the typical correlation length ξ of the contributions to NN we want

to subtract, which depends on the frequency band where the subtraction is needed.
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Fig. 7 The percentage reduction of NN on a single test mass with three sensors, for the model described

by Eq. (46) The test mass is at the origin of the coordinate system, and the sensors measure the local density

fluctuation. NN acceleration is sensed along the z axis. Two sensors are fixed at their optimal positions,

which are located at the circular dark spots at (x, z) = (0, ±). The quantity 1 − ε (see Eq. (45)) is plotted

as a function of the position of the third sensor. There is axial symmetry around the z axis, so only the x − z

plane is displayed

Another important point to understand is how the subtraction procedure improves

with the number of sensors, and how much it is sensitive to a non optimal placement

of the sensors. This is important because in a practical implementation the possibility

of optimizing the placement will be limited, especially if the number of sensors will

be large. It must be remembered that the optimization of the sensors’ positions is a

global process and all the parameters must be changed at the same time.

Remaining in the framework of the simple model considered we optimized Eq. (51)

for a different number of sensors. We used a simulated annealing procedure to be rea-

sonably sure to find a global minimum. A typical result for the optimal configuration

of the sensors is shown in Fig. 8. We considered 512 sensors, adjusting their positions.

Each sphere in the plot has a radius length ξ , and is centered on a sensor’s position.

We see that the spheres attempt to cover the region which is maximally coupled to

NN acceleration (the test mass is between the two clouds), but they attempt also not

to overlap in order to minimize the correlation between sensors. Figure 8 correspond

to the optimal configuration in the σ = 0 case. We do not show similar plots for

σ > 0, however in that case we found that the overlap between the spheres increases

with σ/Ŵ. This is expected because in that case a correlation between detectors can

be compensated by the average of intrinsic noises.

In Fig. 9 we show the relative reduction of NN as a function of the number N of

auxiliary sensors. The reference plot is labeled with circles, and it corresponds to the

optimal configuration in the σ = 0 case. We see that the reduction of NN is quite
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Fig. 8 The optimal positions for 512 sensors, evaluated accordingly with the model (46). Each sensor is

supposed to measure the local fluctuation of density, and is represented as a sphere with the center on its

position and radius ξ . The single test mass considered is at the center of the two clouds, and the NN is

measured along the approximate axis of symmetry of the distribution
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Fig. 9 The percentage reduction of NN on a single test as a function of the number of auxiliary sensors,

accordingly with the model (46). The sensors are supposed to measure the local fluctuation of density. Solid

lines correspond to optimal configurations, evaluated for different intrinsic noises of the sensors. Dashed

lines correspond to regular grids with sizes Lx = L y and Lz . The grid is centered on the grid and the

number of sensors is given by Lx L y Lz . The NN is sensed along the z axis, and σ = 0 in this case

modest, and improves slowly with N . This is partly due to the chosen model, which

is quite bad from this point of view, as can be seen with the following argument. Each

sensor can be used at best to subtract the contribution to the NN of a sphere of radius

ξ centered on it. The number of non overlapping spheres at distance nξ from the test

mass scales as n2, while the contribution of each of them to NN scales as n−2. We

have to sum all the contributions in quadrature, so if all the spheres with n < N are

monitored we expect for large n that 1 − ε ∼
√

∑∞
k=n k−2 ∼ n−1/2 or, as the number

of sensors Ns scales as n3, 1 − ε ∼ N
−1/6
s .

Different models are expected to allow better subtraction performances, especially

when the loss of coherence described by the scale ξ is less relevant. This could be the
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Fig. 10 On the left, the reduction of NN noise for a configuration of the sensors optimized for ξ = ξ0,

as a function of the ratio ξ(ω)/ξ0, where ξ(ω) correspond to the observed frequency. The different plots

correspond to a different number of sensors. On the right, for N = 32 sensors in the configuration optimized

at ξ = ξ0, the reduction of NN noise is plotted as a function of ξ(ω)/ξ0. The different plots correspond to

different values of the intrinsic noise of the sensors

case in some geological scenarios, while in others the simplified model presented can

give an adequate description. It is an important issue, which is currently under careful

investigation.

Coming back to Fig. 9, the plots labeled with squares, triangles and diamonds gives

1 − ε for the optimal configuration in presence of some amount of instrumental noise.

As expected there is a reduction of the subtraction performances.

Finally, we showed in the same figure for comparison the results which can be

obtained with a non optimal configuration, namely a regular grid of detectors with

different sizes Lx = Lx and L z , centered on the test mass. The optimization here is

done only on the grid size, and σ = 0. The best regular grids correspond to the shapes

which are best overlapped to the region coupled to NN, which means L z > 2Lx,y .

The optimization of the positions of sensors can clearly be done at a given coher-

ence length ξ(ω), while the subtraction procedure will be applied to an entire range

of frequencies (we can assume for definiteness ξ proportional to the frequency). This

means that the subtraction will be optimal at a chosen frequency only.

In Fig. 10 (left) we plotted the NN reduction as a function of the ratio ξ(ω)/ξ0

between the coherence length at the observed frequency and the one ξ0 which corre-

spond to the optimized sensors’ configuration. Different plot correspond to a different

number of sensors, and σ = 0. A sensible reduction of the subtraction performance

is evident when ξ changes by one order of magnitude. This reduction is somewhat

decreased by a large number of sensors.

The effect of noise can be seen in Fig. 10 (right). Here the number of sensors is fixed

at 32, and different plots correspond to different values of σ/Ŵ. The plot suggest (with
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some extrapolation) that to achieve an hundred fold NN suppression, rock density (and

position) fluctuations need to be measured in real time with resolution less than 1% of

the actual motion (in quiescent times in a quiet location), i.e. σ/Ŵ < 10−2. Because

the available seismometers have been mainly developed to detect seismic events, their

sensitivity is just below the normal rock activity level. A well defined subtraction

pipeline has to be tested with models in order to give a precise estimate, however

our conservative expectation is that seismic sensors 100 times more sensitive must be

developed for NN suppression to become useful. Preliminary studies in this direction

are being done at Homestake, specifically in the direction of laser strain meters and

high sensitivity dilatometers. We expect that these developments, if successful, will

also yield important side results in geology.

3 Finite-element models for noise contributions

In our finite-element analysis (FEA) we subdivide a 3D continuum in small hexae-

dral elements. Within each element the relevant physical variables (like displacement,

stress) are approximated by spline functions (of arbitrary order) that are continuous on

a number of so-called inter-elemental node points. In our elastic mechanical FEA soil

model the continuum is approximated by N nodes and we use the nodal displacement

ξi due to vibrations directly to compute the NN signal at the mirror location. This is

achieved by associating to each node the mass mi of a fixed fraction of the elements

sharing this node.

The mirror (test-mass) with mass M is placed at the origin and node i with mass

mi is located at position ri . The acceleration of the mirror is given by

aN N =
∑

i

ai =
∑

i

Gmi K(ri ) (52)

with G the universal gravitational constant. When a disturbance is present, e.g. a seis-

mic wave, the nodes suffer displacement. Note that in the FE model the mass of each

node is unchanged. The displacement vectors are denoted by ξi . The gravity gradient

acceleration due to these displacements is given by

aNN =
∑

i

(∇ ⊗ ai )
T ξi , (53)

The corresponding analytical expression [Eq. (5)] can be obtained by the substitution

mi → ρdV , with ρ the instantaneous mass density.

The FE model was validated by creating simple homogeneous half-space models,

equivalent to those discussed by Saulson for a surface detector [4,18]. The isotropic,

elastic half-space with ρ = 1.8 g/cm3, Poisson ratio σ = 0.33, longitudinal wave

speed cL = 440 m/s and transverse wave speed cT = 220 m/s was excited on one

boundary to yield plane harmonic pressure waves scaled to a flat ambient seismic

noise spectrum of 1 nm/
√

Hz between 1 and 10 Hz and the subsequent nodal dis-

placements were recorded as a function of time. Boundary conditions were set such
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Fig. 11 FE calculation of the Newtonian displacement noise amplitude for a surface detector. For com-

parison the results of Saulson, Hughes and Thorne, and the analytic expression given by Eq. (5) are shown.

Also the ET design sensitivity is shown

that no reflections occurred and seismic waves were continuous. With this input spec-

trum the gravity gradient displacement noise amplitude at the interferometer output

was calculated and is shown in Fig. 11. The FE results are compared with the ana-

lytic results of Saulson, Hughes and Thorne [5,19], and the required displacement

sensitivity for Einstein Telescope [1].

To facilitate comparison, a cut-off equal to that used in Saulson’s analysis (rcut−off =
λ/4) was employed in the summation process. Figure 11 shows that good agreement

is obtained. To assess the effect of this cut-off the above model was calculated analyt-

ically by using Eq. (5). Removing the cut-off leads to an increase of NN by about a

factor 2 (see Fig. 11). The FE results approach those of the analytic expression in the

limit that the element size decreases to zero.

3.1 Noise from surface waves

An important aspect for third generation GW detectors is the influence of cultural seis-

mic noise. It has been shown [20] that the distribution of displacement waves from an

excitation with a circular footing on a homogeneous, isotropic half-space largely con-

sists of Rayleigh surface waves carrying 67% of the energy, with 26% and 7% in shear

and compression waves, respectively. The best solution to reduce the cultural noise

amplitude, is to move away from (sub)urban and industrial areas. While measurements

at Kamioka and BFO show that remote subterranean sites exhibit lower ambient seis-

mic noise amplitude levels, Fig. 3 shows even such sites suffer from cultural noise if

close to significant human activities.

Rayleigh waves are confined to the surface. Their amplitude decays exponentially

and is negligible at a depth of a few Rayleigh wavelengths, λR = 0.92cT / f . Therefore,

it seems natural to consider underground sites for third-generation GW detectors.
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Fig. 12 Left panel Comparison between the local horizontal NN acceleration determined with FEA and

analytic predictions as a function of depth for various frequencies. Right panel NN reduction factor as

a function of depth compared to a surface site. The modelizations takes into account the surface wave

contribution only. The mesh element size used is 20 m × 20 m × 10 m

The gravitational disturbance has been determined for an isotropic, elastic half-

space with parameters ρ = 1.8 g/cm3, σ = 0.33, cL = 440 m/s and cT = 220 m/s.

The model was configured to confine waves in a thick surface layer and results were

scaled to a seismic noise spectrum of 1 nm/
√

Hz(1 Hz/ f )2. Pressure waves were sent

through the top layer plane originating from two orthogonal directions. The resulting

acceleration was calculated at various depths in the half-space giving good agreement

with analytic values obtained using Eq. (5). The left plot of Fig. 12 shows the local

horizontal acceleration. The FEA results are in good agreement with the analytic pre-

dictions, breaking down at f = 5 Hz and for depths exceeding 200 m. The right panel

in Fig. 12 shows the NN reduction factor as a function of depth compared to a surface

site. It is seen that significant depth is needed to suppress low frequency NN from

surface waves.

Two mechanisms lead to the reduction in the acceleration noise originating from

the surface with increasing depth. As the distance to the displaced masses is increased

geometric averaging over surface waves occurs while the larger distance reduces the

overall effect. Both effects give rise to an exponential decrease with the depth [compare

the analytical expressions for mode contributions, Eqs. (27) and (28)]. The averag-

ing becomes more effective at greater depth and shorter wavelength. Note that the

averaging mechanism is more effective with media with lower S-wave velocity.

3.2 NN results for Rayleigh, shear and compression waves

FE simulations of NN were performed in the time domain to study the response to

both harmonic and impulse excitations. The left panel in Fig. 13 shows the response to

an impulse surface excitation where the half-space is modeled by a half-sphere (only

a quarter slice shown, symmetry is used to obtain the full result). The half-space has

parameters ρ = 2.0 g/cm3, σ = 0.25, cL = 220 m/s and cT = 127 m/s.

The excitation was given at the center of the half-sphere, and the figure shows prop-

agation of seismic Rayleigh, shear, Head and compression waves. The model gives
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Fig. 13 Left panel Total displacement for a time domain simulation at 3 s after an impulse excitation at

the center of the sphere. Right panel Time domain evolution of NN acceleration at various depths. Both

horizontal (upper panel) and vertical (lower panel) components of the NN acceleration are shown

a good description of the various waves. For example, the horizontal component of

the Rayleigh wave features the expected sign change at a depth of about 0.2λR . The

maximum displacement shown in Fig. 13 amounts to 1 nm. The nodal displacements

were recorded and the NN accelerations were calculated at various depths. The right

panel in Fig. 13 shows the resulting NN accelerations at a depth of 0 (surface), 200,

400, and 600 m. The calculated points are on a vertical line at a distance of 200 m

from the z axis. Comparison with the results shown in Fig. 14 reveals that the reduc-

tion in NN acceleration is significantly less. This can be attributed to the fact that

impulse excitations do not benefit from geometric surface wave averaging (which

would actually be higher in the present case due to the relatively low transverse wave

speed).

In order to decompose the NN acceleration into contributions from surface waves

and body waves (head, shear and compression waves), the summation given in Eq. (53)

was performed for elements with depths in the range 0–200 m (defined as surface con-

tribution) and for elements with depths larger than 200 m (body contribution). Note

that for short times after the excitation, this distinction is not precise.

Figure 14 shows the NN acceleration due to a point load excitation as a function of

time at various depths in the soil. Only the NN acceleration in the horizontal direction

is shown since it has the largest effect on the performance of third-generation detec-

tors. The figure shows the contributions of both surface and body waves. At the surface

(z = 0 m), the main contribution originates from surface waves and almost no body

waves contribute to the NN acceleration. At a depth of 200 m, the contributions of

surface and body waves are comparable. Finally, the last two plots show the NN noise

at depths of 400 and 600 m where the contribution from body waves dominates. Note

that the contribution of surface waves at depths d ≥ 200 m changes sign compared

to the surface value. This is due to the phase change of the horizontal component of

the Rayleigh wave for depths larger than 0.2λR ≈ 25 m for frequencies around 1 Hz.

The figure also shows that the NN acceleration builds up instantaneously and for short

times it is determined mainly by surface contributions.
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4 Characterizing seismic noise at Homestake mine

Homestake mine was chosen by the NSF to host the Deep Underground Science

and Engineering Laboratory (DUSEL). Efforts are under way to develop plans for the

DUSEL facility and its initial suite of experiments on astroparticle experiments, which

require the low cosmic-ray background, biology, geology and seismology.

Homestake mine also provides a unique low gravitational background environment.

The reduced seismic motion, the protection from variable weather, and the controlled

level of human activity make the Homestake mine an ideal site for sensitive mechanical

measurements. The Homestake mine includes about 600 km of tunnels, allowing us to

probe correlations and propagation of seismic waves over kilometer-scale horizontal

distances. Due to the ongoing dewatering of the mine, it is currently possible to access

levels down to 1,480 m. We have started to develop an array of seismic stations at the

Homestake mine (see Figs. 15, 16), and currently have five operational stations: at 90,

240, 610 and 1,250 m.

Each station operates at least one high-sensitivity broadband seismometer. We

instrumented them with either the Streckheisen STS-2 and the Nanometrics T240

low frequency seismometers (depending on availability), which are the best available

and have similar performance in the frequency band of interest, between 5–8 mHz and

10–30 Hz. The instruments are placed onto horizontal granite tiles glued to a concrete

slab that is well-connected to the bedrock. This arrangement was found to provide

good contact with the rock and to minimize the effects of uneven surfaces. In addition
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Fig. 15 Map of the levels with seismometer stations whose construction is completed. Two stations at

the 4,100 ft level and one at the 2,000 ft level are not yet operative. their seismometers are expected to be

installed at those stations in September 2009

Fig. 16 Photos of the existing stations at the Homestake mine. From left to right instrument hut, seismom-

eters, PCB operating environment monitors, and computer hut

to the seismometer, each station also operates a number of instruments to monitor the

environment: thermometers, magnetometers, hygrometers, barometers, microphones

etc.

The instruments are isolated from the local acoustic disturbances and air-flow by

nested huts made of rigid polyisocyanurate foam (at least two levels). They are read-

out locally, using a standard PC with a National Instruments PCI-6289 digitizer card,

located in a separate hut ∼10 m away. The computer is connected to the network

using a fiber optic cable. This link is used both to transfer the data to the surface,

and to synchronize the data acquisition at different locations. Timing is important in

our studies, because they are focused on propagation and scattering of waves, as well

as measurement of propagation speed. Our current synchronization (at the level of

0.2 ms) is based on NTP protocols, and is presently sufficient for our frequency band

of interest (0.1–10 Hz). A separate fiber link will be used to provide sub-microsecond

timing precision [21]. With the current data acquisition system the acquired data is

limited below 1 Hz, this constraint is being removed.

The preliminary data acquired by the existing stations is already informative. The

vertical spectral displacement amplitude can be seen in Fig. 2, and apparently the

mine environment is seismically quiet. As shown in Fig. 17 (top), the environment of

the mine is remarkably stable. Figure 18 shows that our near-surface station observes
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Fig. 17 Preliminary data from Homestake. Top temperature stability of the 610 m station is remarkable

over the 12-day period. Bottom spectral coherence of vertical displacement between stations at 610 and

1,250 m depth is close to 1 below 0.1 Hz. The distance between the two stations is 1 km

a number of local disturbances (in the 0.2–1 Hz band) which are not present at the

deeper location, illustrating one reason why underground locations are preferred for

gravitational-wave detectors. However, for a more detailed understanding of the seis-

mic noise and its correlation length as a function of depth and position, three sta-

tions are not sufficient—a more detailed network of stations is required. We expect

to increase the array size to 8 stations (see Fig. 15) by the end of September 2009:

with a sub-array of three at 1,250 and 610 m each, complementing the existing sta-

tions at 240 and 90 m. Further expansions of the array are planned for the future.

We expect that this array will begin to provide a more detailed understanding of

the seismic noise underground. The data from this array will be used as an input to

finite-element models of the underground gravitational field, which will then produce

an estimate of the gravity gradient noise underground. The experiment will char-

acterize the local site, and will provide a benchmark on how to characterize other
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Fig. 18 Time-frequency maps of the seismic noise spectra at 90 m (left) and 610 m (right) indicate a large

number of transient disturbances at 90 m at 0.2–1 Hz (likely due to local/surface disturbances). The 90 m

data below 0.1 Hz is known to be unreliable

perspective sites, as well as studying the measurement techniques necessary for NN

subtraction.

5 Seismic attenuation

The basic concept for seismic attenuation will likely be based on variations of the

Virgo SuperAttenuators (SA) [22], which produce seismic attenuation in the Virgo-

LIGO band and below [23]. Lower frequency attenuation will require longer chains,

which practically eliminate the GEO-AdLIGO option of parallel attenuation chains

for test mass controls, in favor of the branched topology of Virgo’s recoil masses. The

adaptation of seismic attenuation to cryogenic systems, if this option will be consid-

ered, has been studied with the proposed LCGT detector in mind [24], and solved with

a parallel attenuation chain isolating the chiller’s mechanical noise.

Producing seismic isolation for lower frequencies than in Virgo is a tough prob-

lem and will introduce a whole host of new issues. The observed low-frequency extra

noise in the superattenuator’s inverted pendula (IP) has shown a hint of the problems

to come. Seismic attenuation is based on harmonic oscillators, relying on material

elasticity (springs and flexures). Hysteresis and random motion observed in the Virgo

IP, and later in the tilt hysteresis of masses suspended with metal wires, have drawn

the attention to the fact that at low frequencies the Young’s modulus of ordinary spring

materials are far from ideal and stable. New studies, as well as review of many, scat-

tered, older observations, have shown evidence of time-dependent deviations from the

Hooke law below 1 Hz.

The evidence points towards a phase transition from dissipation dominated by

movement of individual dislocations, resulting in viscous-like behavior, to collec-

tive dislocation activities, in a Self Organized Criticality state, resulting in avalanche

dominated dissipation, spontaneous equilibrium point changes, and sudden tempo-

rary drops of the Young’s modulus [25,26]. This anomalous behavior was observed

to reduce the effectiveness of harmonic oscillators as vibration filters [27]. Because

of this, the transfer function of a low frequency mechanical filter stage are observed

to changes from an f −2 roll off to a much less effective f −1 roll off. If the problem
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was limited to the reduction from f −2 to a f −1, it could be solved with brute force,

by doubling the number of the filters in an attenuation chain.

But this effect can generate unexpected noises. At low frequency equilibrium point

random walk (due to dislocation distribution drifts), spontaneous collapse (due to

sudden, although temporary, reduction of the Young’s modulus during dislocation

re-arrangement) and large hysteresis, may produce fractal noise and vastly complicate

the problem of designing seismic attenuation systems at lower frequencies. Linear

controls would have to be abandoned, in favor of more advanced schemes. Further

studies are needed to understand this issue.

The problem is not hopeless though, it is not clear if there will be excess noise

in seismic attenuators after sufficiently long settling time and in sufficiently stable

thermal conditions. Torsion pendula show excess noise for hours after large perturba-

tions, but were observed to reach their expected thermal noise limited behavior after

sufficient time [28].

Additionally, as most of the identified problems appear to be connected to disloca-

tion movement in polycrystalline metals, springs can be manufactured with alternative

materials, like glassy metals that having no crystals have no dislocations, or ceramic

materials (for example tungsten carbide) that having polar bonds only have frozen

dislocations. Impeding or avoiding dislocation mobility is expected to restore the f −2

transfer function of the filters, and more importantly remove the additional sources of

internal noise.

The use of dislocation-free or frozen-dislocation materials may inevitably intro-

duce some level of fragility (this is the case of ceramic materials, but not of glassy

metals) and complicate the engineering, but it does not seem to pose insurmountable

technical problems. Confident that these engineering problems can be solved in the

near future (just as the introduction of Maraging steel has made the Virgo cantilever

springs possible) we can try to have a peek to possible seismic attenuation schemes

for lower frequencies.

The 7-m tall Virgo superattenuators provide attenuation that crosses into the mirror

thermal noise level at 7–8 Hz, quite sufficient for a GWID sensitive above 10 Hz.

A naively equivalent superattenuator, designed to allow GW detection starting from

1 Hz, would require pendula 100 times longer and be more than 500 m tall. Such

tall pendula would be unthinkable on the surface but not too difficult to realize under-

ground, where the longer suspension wires could be housed in low-diameter bore holes

and the filters housed in small caverns dug at different heights along the bore hole.

Fortunately it is not necessary to build such a tall seismic attenuator.

Labeling with T H
i the horizontal displacement transfer function from the top sus-

pension point to the mass of the i-th pendulum, numerated top to the bottom, we can

write

⎛
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(54)
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where the coefficient are defined as

ki =
τi

ℓi

=
g

ℓi

N
∑

k=i

mk and di = ki + (1 − δi N ) ki+1 − miω
2 (55)

and τi is the tension of the i th pendulum, ℓi its length, mi its mass.

In order to find the attenuation of the last stage it is enough to determine the N , 1

element of the inverse of the tridiagonal, symmetric matrix [29] obtaining for the

top-bottom displacement transfer function

T H
N =

N
∏

p=1

kp

Cb
p

(56)

where Cb
p is the pth convergent of the backward continued fraction associated with

the tridiagonal matrix in Eq. (54),

Cb
p = dp −

k2
p

dp−1 − k2
p−1

. . .

d2 − k2
2

d1

(57)

In the higher frequency region Cb
p ≃ dp ≃ −m pω

2 and we get the expected power

law behavior

T H
N ≃ (−1)N 1

f 2N

N
∏

p=1

⎡

⎣

g

(2π)2 ℓp

N
∑

k=p

mk

m p

⎤

⎦ (58)

In Virgo the horizontal attenuation chain was designed with seven 1 m tall pendula,

then reduced to 5 in the practical implementation, each with the same mass and with

fpendulum =
1

2π

√

g

ℓ
= 5 × 10−1 Hz (59)

and this gives (in the 7 stages case)

T H
N ≃ −5040

(

fpendulum

f

)14

(60)

where the large numerical factor is connected to the fact that each pendulum in the

chain has a different tension. At 10 Hz we get
∣

∣T H
N

∣

∣ ≃ 3 × 10−15. Similar consid-

erations can be done for the vertical top-bottom transfer function T V
N , with a main

difference. Here the low frequency spring effect is obtained with a Magnetic Anti
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Fig. 19 Horizontal attenuation

performances of a

superattenuator chain at 1 Hz

(vertical axis) as a function of

the total length of the chain

(horizontal axis, in meters) for

several number of stages. The

parameters of each stage are the

same. In order of increasing

thickness the plot correspond to

n = 2, 3, 4, 5, 6, 7, 8, 9 stages
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Spring (MAS) filter, described by spring constants χi that can be supposed to be equal

and

T V
N ≃ (−1)N 1

f 2N

N
∏

p=1

χp

(2π)2 m p

= (−1)N

(

fM AS

f

)2N

(61)

without the large multiplicative factor. Note that fM AS = 3 × 10−1 Hz. This allows

the superattenuator to obtain the required attenuation with a relatively small number

of filters.

The lower level of seismic noise underground requires less attenuation, thus requir-

ing 4, or maybe even as little as 3 attenuation filter stages below the initial inverted

pendulum, assuming the use of the new GAS filters, which provide almost double

attenuation (80 dB/unit instead of 40 dB/unit) than the older MAS filters. If the verti-

cal height was still a problem one can reduce to half the overall length of the attenuation

chain, without losing performance, by doubling the number of stages, within each sec-

tion. A two stage chain delivering 10−5 attenuation at 1 Hz is 200 m tall (see Fig. 19,

red line). It can be replaced by a three stage chain with the same performances 70 m

tall (Fig. 19, orange line), or by a four stage one 40 m tall (Fig. 19, light green line).

Attenuation chains shorter than 200 m can be designed with present technologies.

Completely new developments would be required to design shorter ones. The IP is

a compact horizontal attenuator. Unfortunately, while it is easy to chain normal pen-

dula, chaining more than one stage of IPs results in instability. Shortened, but low

frequency pendula may be possible by applying horizontal magnetic anti-springs to

normal pendula.
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6 Conclusions

The need to reduce both the seismic and gravity gradient noise can be fulfilled by an

underground site. Low seismic activity and uniformity of the soil plays a dominant

role in the site identification process. As a next step the effectiveness of NN subtraction

schemes will be studied in detail. We expect that a synergy between analytical work,

numerical modelizations and seismic measurements will improve in the near future

our understanding of the problem, allowing us to obtain more accurate and trustable

predictions. This will be important in order to make a good choice for the sites of third

generation interferometers.

A vigorous R&D effort to improve the sensitivity of inexpensive borehole type

detectors to rock motion and density will be necessary to fulfill the target of bringing

the sensitivity of underground GW observatories all the way down to 1 Hz.

Alternative to the underground solution involves the possibility of finding a quiet

enough place on the surface, or a space based detector. The first option does not seems

feasible up to our knowledge, but a search effort in this direction is surely important.

Concerning the space option, it will be hardly less expensive. A single space-borne

detector cannot compete with an underground detector at frequencies where both can

achieve similar sensitivity.

We are not proposing in any way that something like a BBO [30] can be built on

Earth. Our NN discussion is really relevant for a one-on-one comparison, not for com-

paring space-borne arrays with arrays on Earth. Space-borne arrays obviously will

have a great advantage at low frequencies.
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