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Abstract

Tropical forests are significant carbon sinks and their soils’ carbon storage potential is

immense. However, little is known about the soil organic carbon (SOC) stocks of tropical

mountain areas whose complex soil-landscape and difficult accessibility pose a chal-

lenge to spatial analysis. The choice of methodology for spatial prediction is of high

importance to improve the expected poor model results in case of low predictor-response

correlations. Four aspects were considered to improve model performance in predicting

SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial

predictor settings, predictor selection strategies, various machine learning algorithms

and model tuning. Five machine learning algorithms: random forests, artificial neural net-

works, multivariate adaptive regression splines, boosted regression trees and support

vector machines were trained and tuned to predict SOC stocks from predictors derived

from a digital elevation model and satellite image. Topographical predictors were calcu-

lated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies

were applied to the total set of 236 predictors. All machine learning algorithms—including

the model tuning and predictor selection—were compared via five repetitions of a tenfold

cross-validation. The boosted regression tree algorithm resulted in the overall best

model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with

diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor

selection and model tuning improved the models’ predictive performance in all five

machine learning algorithms. The rather low number of selected predictors favours for-

ward compared to backward selection procedures. Choosing predictors due to their indi-

viual performance was vanquished by the two procedures which accounted for predictor

interaction.
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1 Introduction

Tropical forests play a key role in the global carbon cycle storing a total of 471 Pg carbon [1,2].

The soils’ carbon storage potential is generally even greater than that of the vegetation [3]. Don

et al. [4] report, that 36 to 60% of the tropical ecosystem’s carbon is stored in soil. But, land use

change from primary forest to other land uses leads to a decrease in soil organic carbon (SOC)

stocks [4,5]. Ecuador in particular has the highest annual deforestation rate in South America

[6]. Tapia-Armijos et al. [7] report a reduction of the area covered by natural vegetation by

46% (Southern Ecuadorian provinces). Local farmers make “extensive use of fire” to convert

primary forest into farming land and pastures [8]. According to Bahr et al. [9] 9 to 13 Mg SOC

per hectare are lost due to land use changes from forest to crop land and pastures. Finally, spa-

tial estimates of SOC are increasingly important to acknowledge the soils’ carbon storage

potential in the context of climate change. However, it is particluarly the tropical mountain

areas with their thick organic layers which are highly complex and difficult to access [10]. SOC

stock data of tropical mountain forest soils are scarce, SOC stock data of the organic layer

hardly exist.

Regression based digital soil mapping (DSM) provides a means of regionalising soil data

from a limited amount of samples to a landscape level by making use of the factors of soil for-

mation [11] as predictors. Spatial continuous predictors representing topography and vegeta-

tion are obtained from digital elevation models (DEMs) and satellite images. However, for

many soil properties, spatial regression modelling may not produce a robust model. According

to Ryan et al. [12], low r2 values may result from one or more of the following causes: (1) poor

relation to the available environmental predictor variables, (2) extreme local variation due to

unknown or random effects, or (3) the collected data spans a very small interval in the total

range of the response variable. While the latter can be mostly avoided by a good sampling

design which follows a good representation of the predictor space [13], the former two causes

provide real challenges.

DEMs are often used at their original raster resolution with a 3x3 window size for the calcu-

lation of the derived predictors. However, a number of studies suggest that predictor-response

relationships are strongly landscape and scale dependent [12]. Cavazzi et al.[14] investigated

the interacting effect between window and raster cell size and found cell size to be significant in

all considered areas whereas the interaction between window and cell size was significant in

morphological rough areas. Finally, soil-forming factors (predictors) vary and respond at dif-

ferent scales [15]. Maynard and Johnson [16] found a strong scale-dependency for total carbon

having the best model performance at coarse neighbourhood extents (150 to 300 m); DEM res-

olution affected soil-terrain correlations to a much lesser degree. Samuel-Rosa et al. [17] have

shown that investigating the impact of scale in predictors is more important when the predic-

tor-response relationships are weak. Finally, multi-scale as well as feature selection approaches

according to [15] deserve more research to obtain a better prediction accuracy.

The term feature selection refers to the process of removing irrelevant predictors from the

predictor set to enhance a model’s performance and generalisation capability (e.g. [18]). It

requires an exhaustive search of all possible subsets of predictors in order to decide which sub-

set performs best. With a large set of predictors, this procedure is simply not applicable [19].

Therefore, due to practicability reasons the selection of a subset which is just good enough if

not optimal, might have to be sufficient [20]. Predictor selection procedures can be described

by two main categories [21]: (1) filter methods and (2) wrapper methods. Filter methods make

a predictor assessment based on general characteristics of the dataset (e.g. predictor–response

correlation), independently from the particular machine learning algorithm and hence ignore

the predictors’s effectiveness within the particular model. Wrapper methods, evaluate predictor
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performance by running the particular machine learning algorithm on the dataset [22].

Accordingly, most filter methods evaluate each predictor individually and ignore possibly

important predictor interactions, whereas wrapper methods result in an increase in computa-

tion time [23]. It is often argued that particularly recursive partitioning methods do not require

predictor selection as they are at least theoretically resistant to irrelevant predictors [23,24].

However, Witten and Frank [18] show that decision trees are affected by non-informative pre-

dictors and Kuhn and Johnson [23] show that ANN and SVM are affected to an even larger

extent.

A number of machine learning algorithms are commonly used in DSM, such as e.g. tree-

based methods, artificial neural networks (ANN), multivariate adaptive regression splines

(MARS) and support vector machines (SVM). Each of them has its strengths and pitfalls and

in dependence of the particular application and soil-landscape there is no single algorithm

which serves all. Grimm et al. [25] and Guo et al. [26] use random forest to map SOC. Stepwise

regression was applied by Gessler et al. [27], Gasparini et al. [28] and Zhang et al. [29]. Martin

et al. [30,31] applied boosted regression trees. Pastick et al. [32] and Bou Kheir et al. [33] used

decision tree models. ANN were applied by Dai et al. [34]. However, comparisons of various

machine learning approaches to spatially predict SOC in tropical mountain areas are scarce.

Indeed we only found one: Were et al. [35] compare SVM to ANN and random forest to map

SOC stocks in an afromontane landscape with SVM showing the best performance.

Typically the machine learning algorithms have one or several tuning parameters, and the

estimation of these tuning parameters should be based on an estimate of the prediction error

[24]. The number of layers and neurons is a crucial decision to be made when constructing

ANNs. A network with too few neurons cannot differentiate between complex data patterns,

whereas too many neurons would lead to overfitting [36]. In support vector regression the

model parameters C and ε as well as the kernel parameters must be tuned to obtain sensible

results [37,38]. According to Hastie et al. [24] random forests do remarkably well with little

tuning. In our experience [10,39] tuning random forest and boosted regression tree models can

improve prediction results, but tuning needs to be tested carefully for it can also cause

overfitting.

Particularly in the complex soil-landscape settings of tropical mountain areas, the choice of

methodology for spatial prediction is of high importance to improve the expected poor model

results. Accordingly within this study four aspects will be considered to obtain the best possible

model:

1. Considering different spatial settings/scales for the predictors

2. Apply predictor selection strategies to reduce noise and enhance the model’s performance

3. Try different machine learning algorithms to capture the complex predictor-response rela-

tion. Among the vast choice of algorithms, we selected algorithms that follow different

adaptation strategies

4. Apply model tuning to optimise the model’s performance

2 Material and Methods

2.1 Research area

The research permit for the respective area was granted by the Ecuadorian Ministry of the

Environment. The research area is situated on the eastern escarpment of the southern Ecuador-

ean Andes between the provincial capitals Loja and Zamora (Fig 1). It forms part of the Natural

Reserve Podocarpus—El Condor and is mainly covered by tropical montane forest vegetation
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changing into shrub and grassland vegetation above the tree line of ca. 2800 m a.s.l.. The area is

influenced by an altitudinal decrease in temperature and increase in rainfall. This corresponds

to a mean annual air temperature ranging from 19.4°C to 9.4°C and a mean annual total rain-

fall from 2050 mm to 4400 mm [40,41]. Geologically the area is part of a metamorphic belt of

palaeozoic age. Litherland et al. [42] describe the underlying bedrock as part of the Chiguinda

Unit of the litho-tectonic section Loja Terrane, consisting of pelite, schist, phyllite, meta-silt-

stone, sandstone and quartzite. The area is known for its immense organic layers leading to its

description as sloping mire soil-landscape [10]. Its formation is partly related to the dominance

of soil hydromorphic properties in the topsoil caused by the silty soil texture, heavy rainfall

and shallow slope parallel subsurface flow [43,44]. The occurrence of frequent landslides adds

to the complexity of this remote tropical mountain landscape.

2.2 Dataset

2.2.1 Carbon data–sampling and analysis. The organic layer of the research area was

sampled along transects as indicated in Fig 1. The transects were laid to cover the complete hill-

slope from the ridge to the valley bottom. They were positioned to cover terrain units formed

by an overlay of two altitudinal, three slope and two aspect classes, while inclination had to be

considered to permit accessibility of the very steep terrain [45]. Each transect was then sampled

randomly at three positions to cover the upper, middle and foot slope. Sampling was conducted

by using a 20 by 20 cm metal frame of 10 cm height. Samples were oven-dried at 45°C until

mass consistency. After the removal of fresh roots, organic carbon contents were determined

by a VARIOMAX elemental analyser at the soil laboratory of the University of Halle.

Fig 2 gives an overview of the SOC stocks of the organic layer [46] used for this study. Inter-

estingly, the highest stocks are found at the upper slope position of transects M1 and M19,

Fig 1. Research area with sampling transects (adapted from [45]).

doi:10.1371/journal.pone.0153673.g001
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both positioned at rather low altitudes, while transects M4 to M7 which are positioned at high

altitudes have very low carbon stocks.

2.2.2 Predictors. Predictors used for model development include parameters derived from

a satellite image and a DEM. The Landsat 8 OLI/TIRS image from 2014, February 18th, was

provided as image courtesy of the U.S. Geological Survey (USGS). The provided image bands

were transformed to Top of the Atmosphere Reflectance (TOA) and At-Satellite Brightness

Temperature (SatTEMP) using the image’s metadata and information provided by the USGS

[47]. The normalised difference vegetation index (NDVI), and the normalised difference mois-

ture index (NDMI) were calculated according to Jackson et al. [48]. The perpendicular

Fig 2. Carbon stocks of the organic layer in each of the sampled profiles at the upper,middle and lower part of the transects M1 to
M20. Each part of the stacked bar plots refers to the carbon stock of a layer of 10 cm with exception of the lowermost layer, here indicated
by black colour.

doi:10.1371/journal.pone.0153673.g002
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vegetation index (PVI) and the transformed soil adjusted vegetation index (TSAVI) are using

the soil line concept introduced by Richardson andWiegand [49]. The soil line concept dem-

onstrates the observed linear relationship between Red and NIR reflectance of bare soil. The

parameters β1 and β0 in Eqs 1 and 2 refer to the slope and intercept of this relation and were

automatically determined according to Fox et al. [50] as β1 = 0.71 and β0 = 0.11. X in Eq 2 is a

constant usually assumed to be 0.08 [50] [51] [52].

PVI ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2

1
þ 1

q ðNIR� b
1
R� b

0
Þ Eq1

TSAVI ¼
b
1
ðNIR� b

1
R� b

0
Þ

b
1
NIRþ R� b

1
b
0
þ Xð1þ b

2

1
Þ

Eq2

All predictors calculated from the mentioned landsat image are shown in Table 1. Landsat

bands 1 to 11 refer to the predictor ID 1 to 10, the calculated vegetation indices refer to ID 11

to 14.

Geomorphological and hydrological DEM parameters were calculated by R-package

RSAGA [53,54]. The DEM was provided by the DFG RU 816 database [55]. Its cell size was

adapted to the landsat image’s cell size of 30 m.

The DEM parameters are listed in Table 2. Please be aware of their ID numbers 15 to 236.

Predictors 37 to 236 were calculated with different computing window sizes of 3x3 to 41x41

cells corresponding to different degrees of terrain smoothing and search radii of 45 to 615 m.

2.3 Regression models

Five machine learning algorithms were compared in their performance to predict the organic

layer carbon stocks:

1. Random Forest (RF)

2. Artificial neural network (ANN)

3. Multivariate adaptive regression splines (MARS)

Table 1. Predictors derived from the landsat image.

ID Predictor Input Calculation

1 Aerosol band 1 1.2901E-02*x-64.50640

2 Blue band 2 1.3211E-02*x-66.05534

3 Green band 3 1.2174E-02*x-60.86943

4 Red band 4 1.0266E-02*x-51.32853

5 NIR band 5 6.2821E-03*x-31.41050

6 SWIR1 band 6 1.5623E-03*x-7.81151

7 SWIR2 band 7 5.2658E-04*x-2.63290

8 Panchromatic band 8 1.1618E-02*x-58.08977

9 TIRS1 band 10 3.3420E-04*x+0.10000

10 TIRS2 band 11 3.3420E-04*x+0.10000

11 NDVI band 4, band 5

12 PVI band 4, band 5

13 TSAVI band 4, band 5

14 NDMI band 5, band 6

doi:10.1371/journal.pone.0153673.t001
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4. Boosted regression trees (BRT)

5. Support vector machine (SVM)

2.3.1 Random forest. RF is a recursive partitioning method which grows a number of

regression trees [80] and averages the results. In a regression tree the data is subsequently

Table 2. Predictors obtained from DEM.

ID Terrain Parameter Module Library Module Reference SAGA author/ year

15 Altitude (DEM) Grid—Spline
Interpolation

Multilevel B-Spline Interpolation Conrad/ 2006

16 Slope Morphometric Features [56] Conrad/ 2013

17 Aspect

18 Mass Balance Index (MBI) Mass Balance Index [57–59] Conrad/ 2008

19 Slope Height

20 Valley Depth Terrain Analysis - Relative Heights Böhner &

21 Normalised Height Morphometry and Slope Positions Conrad/ 2008

22 Standardised Height

23 Wind Effect Wind Effect Böhner & Ringeler/2008, Conrad/
2011

24 Hill Index Valley and Ridge Detection [60] Conrad/ 2013

25 Direct Insolation Potential Incoming [61–63] Conrad/ 2010

26 Diffuse Insolation Terrain Analysis Solar Radiation

27 Visible Sky - Lighting, Sky View Factor [61,62,64] Conrad/ 2008

28 Sky View Factor Visibility

29 Positive Openness Topographic Openness [65–67] Conrad/ 2012

30 Negative Openness

31 Catchment Area Catchment Area (Flow Tracing/

32 Catchment Height Terrain Analysis - Kinematic routing algorithm) [68] Conrad/ 2001

33 Catchment Slope Hydrology

34 SAGA Wetness Index (SWI) (with pre-processed
DEM)

SAGA Wetness Index [69] Böhner & Conrad/ 2001

35 Topographic Wetness Index
(TWI)

Topographic Wetness Index [70–72] Conrad/ 2003

36 LS Factor LS Factor [71,73,74] Conrad/ 2003

37–56 Convergence Convergence Index (Search
Radius)

[75] Conrad/ 2003

57–76 Terrain Ruggedness Index
(TRI)

Terrain Ruggedness Index [76] Conrad/ 2010

77–96 Terrain Surface Texture Terrain Surface Texture [77] Conrad/ 2012

97–116 Terrain Surface Convexity Terrain Surface Convexity [77] Conrad/ 2012

117–
136

Plan Curvature Terrain Analysis -

137–
156

Profile Curvature Morphometry

157–
176

Longitudinal Curvature Morphometric Features [78,79] Conrad/ 2013

177–
196

Cross-Sectional Curvature

197–
216

Minimum Curvature

217–
236

Maximum Curvature

doi:10.1371/journal.pone.0153673.t002

Spatial Soil Carbon Stocks Prediction

PLOS ONE | DOI:10.1371/journal.pone.0153673 April 29, 2016 7 / 22



partitioned by the predictor variables into preferably homogeneous subsets regarding the

response variable. The mean of each data subset is then used as predicted response value. A

partition point or so called node is always defined by that predictor and threshold in its range,

which achieves the most homogeneous partition into two subsets (tree branches). At each node

all predictors with all possible threshold values are tested.

The RF ensemble model’s stability is obtained through varying the trees’ input dataset and

the subset of predictors used to subsequently split the data in each tree node. According to Has-

tie et al. [24], RF does not require much tuning. The RF model was adapted by R-package “ran-

domForest” [81], growing 1000 trees (ntree) and the models default parameters for the size of

the predictor subset (mtry = p/3) and the minimum amount of data in the terminal nodes

(nodesize = 5). The size of the data subset selected to grow each tree was set to the size of the

training set, sampling was done with replacement.

2.3.2 Artificial neural network. ANNs consist of a number of neurons, the processing

units of the algorithm, which are organised in layers. The input–the predictor vectors at each

sampling point–has to pass these processing units to relate to the output: the response variable

at each sampling point. The neurons of the input layer send data via synapses to the neurons of

the first internal layer and these pass it via other synapses to the neurons of the next layer. The

synapses store parameters called synaptic weights, which guide the learning process [82]. In

general, an ANN is defined by (1) the interconnection pattern between the layers of neurons,

(2) the learning rule which updates the weights of these connections, (3) the propagation func-

tion that converts a neuron’s weighted input to its output, and (4) the activation function,

which determines how the state of the neuron at point of time t+1 is calculated based on its

state at point of time t and the new input [83]. Finally, the number of layers and neurons is a

crucial decision to be made [36]. Generally one hidden layer is enough to approximate continu-

ous functions, whereas two hidden layers might be necessary in the case of discontinuities [84].

A network with too few neurons cannot differentiate between complex data patterns, whereas

too many neurons would lead to overfitting [36]. Data normalisation before ANN training, is

essential to prevent larger values from dominating smaller values, which otherwise might lead

to premature saturation of neurons [36].

A two layer feed-forward ANN with Bayesian regularisation [85] was trained with function

“brnn” of R-package “brnn” [86]. The optimal number of neurons (1 to 20) was selected by five

repetitions of an external tenfold cross-validation.

For the all-predictor model the maximum number of possible neurons was reduced to 13

(instead of 20) to combat computation time. With a number of 238 predictors, 13 neurons

resulted in the estimation of 3094 parameters (weights and biases) and tuning the number of

neurons with a range of 1 to 13 neurons in five times repeated tenfold cross-validation with

parallel computing still resulted in a computation time of c. 30 hours. In this particular case the

tuning resulted in best performance with only 1 neuron.

2.3.3 Multivariate adaptive regression splines. The model algorithm is constructed by a

weighted sum of piecewise linear basis functions of the form (x-t)+ and (t-x)+. Each of these so

called linear splines is defined by a predictor (x) and a node (t), with the latter separating the

first linear part of the function from the second linear part [24]. Starting with the intercept (the

mean of the response variable), the algorithm repeatedly adds such a spline or a product of two

or more splines. To define a new spline, at each step, the algorithm searches all predictors and

all values of each predictor. This process of adding splines continues until a threshold value for

the change in residual error or the maximum number of terms is reached. Due to its construc-

tion of splines with their internal node, MARS resembles recursive partitioning algorithms.

However, in contrast to the latter, MARS produces continuous models [87]. Alltogether, the

model algorithm also resembles stepwise forward linear regression, but instead of using the

Spatial Soil Carbon Stocks Prediction
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predictors themselves as input, it also permits to make use of already included model terms

and products thereof [24]. MARS was implemented by R-package “earth” [88], which is based

on Friedman’s manuscripts "Multivariate Adaptive Regression Splines" and "Fast MARS"

[87,89]. No pruning of the forward pass was applied, but the number of added terms, 1 to 50,

was tuned by 5 repetitions of an external tenfold cross-validation. The degree of interaction

between predictors was set to 2.

2.3.4 Boosted regression trees. Despite their many benefits, such as intuitive model struc-

ture, handling of input data of different measurement level and scale, insusceptibility to irrele-

vant predictors, insensitiveness to outliers etc., tree models have also disadvantages limiting

their performance, particularly in modelling smooth functions, and the dependence of their

structure from the input data [90].

Boosting sequentially applies a learning algorithm to repeatedly modified data versions and

thereby produces a sequence of simple models, whose predictions are finally combined to make

the overall prediction [24]. In BRT, at first a regression tree is constructed by assigning all train-

ing observations the same weight. Then at each iteration step a new regression tree is trained by

giving those observations which impaired model performance in the previous step a higher

weight [20]. In this way a sequence of models is build. The resulting BRT model is similar to an

additive regression model with the subsequently fitted regression trees as individual terms [90].

BRT was implemented with R-package “gbm” [91], which is based on Freund and Schapire’s

AdaBoost [92], using a maximum number of 500 iterations. The optimal number of iterations

was then selected by five repetitions of a tenfold cross-validation. Shrinkage, a crucial parame-

ter refering to the learning rate was set to 0.001. The data subsampling rate for each of the trees

which incorporates a random effect into the BRT algorithm and provides, therefore, the chance

to improve BRT model performance [93], was set to 0.90. From the two parameters determin-

ing the size of each of the regression trees, interaction depth was set to 2 and the minimum

number of samples in each of the final subsets was set to 5.

2.3.5 Support vector machine. SVMs were originally developed as an algorithm for classi-

fication, which seperates the classes like other machine learning algorithms by a hyperplane.

However, in contrast to other algorithms it searches for that hyperplane which leaves the larg-

est possible margin between classes free of data, leading to a better generalisation probability

[94]. Each object to be classified is represented by a vector; the distance of those vectors closest

to the hyperplane is maximised. Consequently, only the vectors close to the hyperplane are

important for defining it, and are, therefore, called support vectors [94]. Points on the correct

side and far away from it are ignored in the process of finding the best hyperplane.

In support vector regression (SVR) there is an analogy in that these “low-error-points” are

those with small residuals [24]. The margin of a regression line shall contain all points with

errors smaller than ε, i.e. no importance is given to these errors as long as they are smaller than

ε [95]. SVR searches for a function which fulfils this ε-criterion and is as flat as possible [96].

Points outside the margin are allowed while a penalty weight C is introduced. It determines the

trade-off between allowing points outside ε and the flatness of the regression function [96].

This is particularly important to decrease the impact of outliers. Non-linear regression is typi-

cally achieved by applying the so-called Kernel trick. Here, the training data is first transformed

into a higher-dimensional feature space by applying a non-linear kernel function. Then a linear

model is adapted to this new feature space [97]. Finally, the linear regression in the new feature

space is equivalent to a non-linear regression in the original predictor space.

Data normalisation before training a SVM is very important to avoid attributes of higher

ranges dominating those with smaller ranges and to avoid problems when calculating the kernel

function [37]. The support vector regression model parameters C and ε and the kernel parameters

must be tuned to obtain sensible results [37,38]. SVR with a gaussian radial basis function kernel

Spatial Soil Carbon Stocks Prediction
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f ðxÞ ¼ eð�gjx�vi j
2Þ was applied by R-package “e1071” [98]. The width parameter γ, the inverse of

the radius of influence of the selected support vectors vi, determines the amount of generalisation

of the model. According to Cherkassky andMa [38] ε ¼ 3s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðnÞ=n
p

gives good performance.

C and the radial kernel parameter γ were adapted by five repetitions of a tenfold cross-validation.

For C a range of 0.1 till 1.0 with a step size of 0.1 was chosen, following Mattera and Haykin [99]

and Cherkassky andMa [38]. For γ a range of 0.2 till 0.5 with a step size of 0.05 was chosen [38].

2.4 Model validation and comparison

Five- or tenfold cross-validation are usually recommended to test model performance (e.g.

[100,101]). The decision on how the subsets are formed remains important as the formed sub-

sets may have an impact on the cross-validated error [100]. Subsets were formed by random

selection. However, to account for the impact of subset membership, tenfold cross-validation

was repeated five times with different subsets. Parallel computing of the five repetitions was

employed with r-packages “doParallel” and “foreach” [102,103] to combat computation time.

Predictors as well as response variable where normalised prior to model training for all five

model algorithms to allow for comparison regarding their predictive performance; the scaling

default setting, which exists in some of the models (ANN, MARS and SVM), was turned off.

2.5 Predictor selection

Wrapper methods developed for multiple regression models include forward selection, back-

ward elimination, stepwise selection and best subsets. The forward selection procedure usually

starts with the predictor most highly correlated with the response variable and tests if the

resulting model is significant. It then repeatedly adds predictors at each step, testing for model

improvement due to the significance of the calculated F-statistic [19]. We applied a slightly dif-

ferent approach to forward selection: At first all individual predictor models of the five

machine learning algorithms were compared in performance by their repeated cross-validated

RMSE resulting in a predictor ranking. The single predictor included in the best individual pre-

dictor model was then used to start the forward selection procedure. At the end of step 1 it was

tested whether the various algorithms’ parameter ranges to select the optimal parameter via

cross-validation were reasonable or needed to be adapted.

The model including the ten best predictors of the predictor ranking obtained after step 1

(Fig 3) was compared to two forward selection procedures: Simple forward selection starting

with the best predictor (as selected by the best individual predictor model) and a three step for-

ward selection procedure. Fig 3 includes all three procedures:

1. Predictor ranking at the end of step 1 (Fig 3) based on all individual predictor models and

their repeatedly cross-validated RMSE. Build model of the 10 best predictors as selected by

the ten best individual predictor models: 10bestPR.

2. Simple forward selection (sFS) includes steps 1 and 2 (Fig 3).

3. Three-step forward selection (3stepFS) included all three steps and repeats steps 2 and 3

until no further improvement in repeated cross-validated RMSE is achieved.

3 Results and Discussion

3.1 Selected predictors

Table 3 gives an overview of the selected predictors for each machine learning algorithm (please

compare Tables 1 and 2 for predictor IDs). The selected predictors are ordered according to their
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individual importance (predictor ranking) or order of inclusion during the selection procedures.

The best individual predictor is predictor 22 “Standardised Height” in all five model algorithms.

As the sFS procedure starts with the best individual predictor, this first predictor is the same as in

Fig 3. Forward selection procedure for predictor subset selection.

doi:10.1371/journal.pone.0153673.g003

Table 3. Selected predictors in order of importance.

Model RF ANN MARS BRT SVM

Selection Proc. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Predictors 1 22 22 236 22 22 22 22 22 22 22 22 26 22 22 22

2 174 236 15 18 21 217 30 97 97 26 26 198 37 26 26

3 37 15 198 97 148 26 18 36 36 15 198 148 18 148 148

4 119 198 169 37 217 20 153 145 145 5 148 47 26 217 217

5 97 20 26 38 26 225 20 156 156 37 47 118 15 15 15

6 153 169 103 33 20 65 197 175 118 219 12 119 119

7 5 26 235 225 10 33 119 219 73 174 121 121

8 175 103 236 65 167 198 174 73 178 198

9 178 149 39 10 124 23 30 178 171 38

10 155 217 40 37 155 171 150 217

11 138 150

12 24

13 14

Predictor selection: 1 = 10bestPR, 2 = sFS, 3 = 3stepFS, predictor IDs are listed in order of importance from 1 to 13

doi:10.1371/journal.pone.0153673.t003
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the model ranking (10bestPR). In two cases this best predictor is removed while applying

3stepFS, the two tree algorithms: RF and BRT. Interestingly, most of the ten single most impor-

tant predictors (10bestPR) are not included in sFS: only one predictor for RF and MARS, two for

ANN and BRT, and three for SVM (indicated by surrounding boxes and bold style in Table 3).

For MARS and SVM the 3stepFS procedure did not lead to any improvement compared to sFS,

which is why the selected predictors are the same. In the three other model algorithms 3stepFS

resulted in an improvement in predictive performance and a reduced number of predictors.

Table 4 includes only those predictors of Tables 1 and 2 which have been selected at least

once. To summarise, similar predictors were grouped. This shows that there are many

Table 4. Overview of selected predictors.

Algorithm RF ANN MARS BRT SVM

Predictor selection 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

group predictor

NIR X X

satellite TIRS2 X X

data PVI X

NDMI X

altitude altitude X X X X X X

MBI MBI X X X

slope Valley Depth X X X X

position Norm. Height

Stand. Height X X X X X X X X X X X X X

lighting, Diff. Insolation X X X X X X X X X X

visability, Neg. Openness X X

wind Wind Effect

hydrology catchm. Slope X X

LS factor X X

TRI 285 285 525 525

hill index X

45 45 135 45 45 345 345 45

Convergence 75 75

105

TS Convexity 45 225 225 45 45 45

Plan Curv. 105 255 105 75 75 105 105

conver- 165 165

gence/ Prof. Curv. 525 405 75 17 285 285 585 375 375 375 375

curvature 585 375 615 615 435 435

Long. Curv. 555 405 405 345 555 465 465 555

585 585

Cross.-Curv. 75 75 75

Min Curv. 75 75 1 75 75 75

2

615 615 45 45 45 105 105 45 45 45

Max Curv. 585 285 285

615

predictor selection: 1 = 10bestPR, 2 = sFS, 3 = 3stepFS

filled cells indicate selected predictors, numbers in cells indicate the applied GIS search radius in meters

doi:10.1371/journal.pone.0153673.t004
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predictors which describe terrain curvature in one way or another, such as Hill Index, Conver-

gence, TS Convexity and the various types of curvature. Filled table cells indicate whether a cer-

tain predictor was selected by the predictor selection procedure in the particular machine

learning algorithm. The numbers in some of the cells refer to the search radii of the selected

predictors. The table shows that sometimes a particular predictor was included in different

radii in the forward selection process compared to the 10best predictor ranking. All together

convergence and curvature parameters were always among the selected predictors. Another

often chosen predictor was “Diffuse Insolation”. The common best predictor for all machine

learning algorithms was “Standardised Height”, a predictor referring to the slope position.

Altitude was only important for RF, BRT and SVM, but not for ANN and MARS. Satellite

data was important for all algorithms except MARS. The predictor “diffuse insolation” was

among the final predictor set (3stepFS selection) in four of the five algorithms. Interestingly,

MBI was among the 10bestPR in ANN, MARS and SVM but never selected in any of the two

selection procedures in any of the five algorithms. From the hydrological parameters only

catchment slope and LS Factor were of any relevance for ANN and MARS.

3.2 Model performance

Fig 4A1–4E1 compare the results of the three selection procedures (1, 2, 3) for the five machine

learning algorithms to the all-predictor model (all) results. The figures show the RMSE box-

plots of the repeated cross-validation. Please be aware that the RMSEs refer to the normalised

C stock data.

The 10bestPR predictor selection improved predictive performance compared to the all-

predictor model in all but the ANN algorithm. Applying the sFS procedure improved it even

further and in all five algorithms. As mentioned before, in two algorithms, MARS and SVM

the subset selection (step 3 in Fig 3) did not improve model results. Therefore, the RMSE box-

plots 2 and 3 of Fig 4C1 and 4E1 are exactly the same. But even for ANN and BRT there was

only a very slight improvement (Fig 4B1 and 4D1); the median and the interquartile range of

the RMSE boxplots are very similar. This improvement is somewhat more pronounced for RF,

particularly while comparing the interquartile ranges of RMSE boxplot 2 and 3 (Fig 4A1).

Fig 4A2–4E2 show the development of the repeatedly cross-validated mean RMSE during

the three-step selection procedure. Here the dashed line represents the repeatedly cross-vali-

dated mean RMSE of the all-predictor model. The star represents the same error measure

regarding the best individual predictor model (step 1, Fig 3). The hereby selected first predictor

is then entering the simple forward selection procedure (step 2, Fig 3). The first black point

refers to the error measure of the model with the first additional predictor (step 2, Fig 3). The

number of this first sequence of black points corresponds to the number of predictors added in

step 2 before no further improvement can be achieved in sFS. Then the grey point represents

the error measure of the best subset selected in step 3 (Fig 3). Black points after the grey point

indicate that another sequence of simple forward selection (step 2) is applied and so on. For RF

(Fig 4A2) it was enough to run the three steps once, BRT (Fig 4D2) repeated step 2 a second

time, ANN needed to repeat step 2 a third time (Fig 4B2). Finally, applying the 3stepFS to BRT

resulted in the best predictive performance with a mean RMSE of 0.116, corresponding to a

ten-predictor-model (please compare Table 3). However, RF and ANN performed only slightly

worse with a mean RMSE of 0.120 and 0.121, respectively. Particularly, the RF model has the

benefit of being much less complex with a number of only six predictors (Table 3). Interest-

ingly, the one-predictor model improved model performance compared to the all-predictor

model in all but one machine learning algorithm (RF). For MARS this improvement was com-

paratively high. In all five considered machine learning algorithms sFS resulted in an

Spatial Soil Carbon Stocks Prediction

PLOS ONE | DOI:10.1371/journal.pone.0153673 April 29, 2016 13 / 22



improvement in the predictive performance. This improvement was particularly pronounced

for the three recursive partitioning algorithms: RF, MARS and BRT. Usually, recursive parti-

tioning methods are said to be rather resistant to non-informative predictors [23]. They choose

the best predictor at each split and should, therefore, theoretically be resistent to irrelevant pre-

dictors. However, adding irrelevant predictors to a classification tree algorithm also resulted in

Fig 4. RMSE boxplots of repeated cross-validation (a1-e1) and development of the mean RMSE of rpeated cross-validation during the predictor selection
process (a2-e2). a) RF, b) ANN, c) MARS, d) BRT, e) SVM. In a1-e1: “all” refers to the all-predictor model, “1”refers to the 10bestPRmodel, “2” to the sFS
model, and “3” to the 3stepFS model. In a2-e2: The star refers to the mean RMSE of the best individual predictor model of step 1, black points refer to added
predictors and the resulting mean RMSE during step 2, and grey points refer to the mean RMSE after step 3. The dashed line represents the mean RMSE of
the all-predictor model.

doi:10.1371/journal.pone.0153673.g004
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a deterioration by 5 to 10% on datasets tested by Witten and Frank [18]. Witten and Frank

[18] also explain why even relevant attributes can cause harm in recursive partitioning algo-

rithms due to the possibly highly unbalanced subdivision into two subsets. According to Kuhn

and Johnson [23], ANN and SVM are even affected to a much larger extent by irrelevant pre-

dictors, which could not be confirmed by our results.

With a high number of non-informative predictors, sFS will always result in an improve-

ment even after few iterations steps. And a number of non-informative predictors is likely to be

tested in situations were the predictor-response correlation is weak. During model parameter

tuning we further realised that the level of improvement is controlled by the algorithms’ fine

tuning. BRT for example resulted in the overall worst model while only 500 iterations were

computed, but in the best with the final 10,000 iterations. At the end of step 1 it was tested

whether the various algorithms’ parameter ranges to select the optimal parameter via cross-val-

idation were reasonable or needed to be adapted. Accordingly, the upper and lower limit of the

SVM gamma and C parameter ranges needed to be adapted with the new range from 10−3 to

104. A higher range of neurons might have resulted into a slightly better RMSE. However, we

refrained from doing so since it tremendously increased computation time of the already most

time consuming machine learning algorithm. To allow for practicability, the amount of param-

eter tuning was set to reduce the very time-consuming forward selection (step 2) to a maximum

of 12 hours (with parallel computing). This means we do not know if particularly ANN and

SVM could be improved even further by testing smaller steps in the C and gamma ranges of

SVM and a higher number of neurons in ANN.

3.3 Predicted carbon stocks

Fig 5A shows the median carbon stocks of the soil organic layer under tropical mountain forest

and páramo vegetation as predicted by the overall best model: BRT with 3stepFS. The area

north of the interprovincial road (Fig 1) was not predicted due to lack of data for this area of

high disturbance by fire and non-natural vegetation (pasture). The majority of studies assessing

SOC in tropical forests have been conducted in lowland forests, while the SOC stocks of tropi-

cal mountain forests are less well known [104]. Moser et al. [104] investigated SOC in two plots

of 20 x 20 m within our research area (at 1890 and 2380 m a.s.l.) and report 3.7 to 4.8 Kg m-2

SOC in the organic layer which lie within the lower range of our findings. The corresponding

interquartile range of our predictions (Fig 5B) is below 1 kg m-² for 90% of the area indicating

a low prediction uncertainty due to the underlying position specific density function in areas of

high SOC stocks. Accordingly, the relative prediction uncertainty in areas of low SOC is higher;

rainfall induced landslides, frequently occurring within the area, certainly reduce predictability.

The apparently lower organic carbon stocks above an altitude of about 2500 m a.s.l. coincide

with a change from mountain forest to shrub and páramo vegetation and the corresponding

shallower organic layers (1 to 15 cm) observed during sampling: Transect M4 to M7 (Fig 1). In

general, median organic layer thickness varies between c. 20 to 70 cm throughout the area,

with organic layer thickness being highest on mid-slope positions [10].

According to Roman et al. [105], the high SOC stocks of tropical montane cloud forests can-

not only be explained by low soil organic matter turnover due to slow rates of litter decomposi-

tion, soil acidity and reduced rates of nutrient cycling. They conclude that the organic soil layer

of these ecosystems is highly variable. Furthermore, soil water logging and the altitudinal gradi-

ent alone cannot explain the complex spatial pattern [10]. SOC stocks in tropical forest soils of

Papua New Guinea are reported to vary between 4.8 and 19.4 kg m-2 (litter and top 100 cm)

with an increase of 5.1 kg m-2 per 1000 m increase in altitude, while SOC in litter stayed the

same [106]. Don et al. [4] report SOC stocks between 7.3 and 10.5 kg m-2 in tropical primary
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forests. They analysed 385 studies on SOC from tropical countries but had to exclude data on

organic layer SOC due to dataset scarcity.

The selected predictors which influence the spatial variation include diffuse insolation,

topographic ruggedness index, convergence and all considered curvatures (some in different

search radii). Diffuse insolation and topographic ruggedness index are related to site exposure,

a factor termed important by Roman et al. [105] when studying the global and local variations

in tropical montane cloud forest soils and particularly the accumulation of soil organic matter.

The low search radii for plan curvature, cross-sectional curvature, minimum and maximum

curvature (75 and 105 m) indicate the importance of local curvatures, while the rather high

search radii for the profile and longitudinal curvature (375 to 465 m) indicate the importance

of the larger landscape topography. The influence of the diffuse insolation and the influence of

the ridge and valley topography on the spatial carbon stock pattern are clearly visible in Fig 5.

Carbon stocks are lower in areas of high diffuse insolation (Summit area in the South-East)

and in the concave valley structures. Similarly, Wilcke et al. [107], who studied transects in the

lower part of the here investigated area, also report higher humus concentrations on the ridge-

tops as compared to the valley structures and explain this with stronger acidification and nutri-

ent leaching on the exposed sites. Gessler et al. [27] report flow accumulation being a good pre-

dictor for SOC. According to them, ignoring the effect of topography presents a serious

weakness in approaches to regional and global carbon modelling, as water distribution between

Fig 5. SOC stock prediction with best model BRT 3stepFS. a) Median prediction value, b) Interquartile range (overlaid hillshading
with light source from north).

doi:10.1371/journal.pone.0153673.g005
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convex and concave landscape positions may account for differences in SOC similar to dramat-

ically different climatic zones. According to Grimm et al. [25], topographical parameters

approximate water and solute transport, relate to solar insolation and determine the micro-cli-

mate. In that effect, they have the potential to explain large parts of SOC variation.

Predictors obtained from satellite images were not among the selected predictors for the

best model: According to Waring and Running [108] multi-spectral reflectance data obtained

from satellite images can provide valuable information on forest structure and productivity.

However, in forested areas, remote sensing methods are of limited utility for soil studies due to

the variable effects of vegetation [12].

4 Conclusions

It was shown, that particularly in the complex soil-landscape setting of tropical mountain areas

with possibly low predictor-response correlations, the applied methodology for spatial predic-

tion is of high importance to improve the expected poor model results. Considering different

spatial settings/scales for the predictors as well as applying predictor selection and model tun-

ing are important to improve predictive performance.

Concerning predictor selection, choosing predictors individually was not the best option.

The forward selection resulted in better predictions than the 10bestPR, emphasizing the impor-

tance of predictor interaction. Among the forward selection procedures, the tested 3stepFS

algorithm did not result into much improvement compared to the sFS. However, the amount

of improvement in predictive performance due to predictor selection depended on model tun-

ing. Finally, even a single- or two-predictor model was better than the all-predictor model inde-

pendent of the applied machine learning algorithm. Predictor selection is, therefore, also

important for recursive partitioning algorithms which are often reportet to be immune to non-

informative predictors. To save computation time in the case of many (>100) predictors we

recommend to rather apply forward instead of backward selection. Choosing the initial best

starting predictor by running the model and not due to correlation seems favourable to make

the approach more consistent.

Predictors obtained from satellite images were not among the selected predictors for the

best overall model. We assume that satellite images are most probably of higher importance in

predicting SOC in areas with contrasting land use types. The highest C stocks appear at the

ridges and mid-slope positions at altitudes below 2500 m a.s.l.. Various curvatures in different

search radii and the diffuse insolation are best suited to describe this pattern. The interquartile

range show slightly bigger uncertainties in the transition zone from montane forest to paramo

vegetation at 2500 m a.s.l.. One might argue that other predictors would lead to even better

results. However, in most tropical mountain regions it will be difficult to obtain additional pre-

dictors apart from the here presented.
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